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Liouville’s best-known theorem, f( { q , p } , t )  = 0, describes the incompressible flow of phase-space 

probability density, f ({ q , p } , r ) .  This incompressible-flow theorem follows directly from Hamilton’s 

equations of motion. It applies to simulations of isolated systems composed of interacting particles, 

whether or not the particles are confined by a box potential. Provided that the particle-particle and 

particle-box collisions are sufficiently mixing, the long-time-averaged value (f) approaches, in a 

‘ ‘coarse-grained” sense, Gibbs’ equilibrium microcanonical probability density, fes , from which all 

equilibrium properties follow, according to Gibbs’ statistical mechanics. All these ideas can be 
extended to many-body simulations of deterministic open systems with nonequilibrium boundary 

conditions incorporating heat transfer. Then Liouville’s compressible phase-space-flow theorem- 

in the original f# 0 form-applies. I illustrate and contrast Liouville’s two theorems for two simple 

nonequilibrium systems, in each case considering both stationary and time-dependent cases. Gibbs’ 

distributions for incompressible (equilibrium) flows are typically smooth. Surprisingly, the 

long-time-averaged phase-space distributions of nonequilibrium compressible-flow systems are 

instead singular and “multifractal.” The nonequilibrium analog of Gibbs’ entropy, S= -k(ln f), 
diverges, to -00, in such a case. Gibbs’ classic remedy for such entropy errors was to 

“coarse-grain” the probability density-by averaging over finite cells of dimensions rI A q  A p .  

Such a coarse graining is effective for isolated systems approaching equilibrium, and leads to a 
unique entropy. Coarse graining is not as useful for deterministic open systems, constrained so as to 

describe stationary nonequilibrium states. Such systems have a Gibbs’ entropy which depends, 
logarithmically, upon the grain size. The two Liouville’s theorems, their applications to Gibbs’ 

entropy, and to the grain-size dependence of that entropy, are clearly illustrated here with simple 

example problems. 0 1998 American Institute of Physics. [SO021 -9606(98)51235-41 

1. INTRODUCTION 

Computer simulation is by now a familiar generator of 

equilibrium and nonequilibrium properties of classical many- 

body systems.’-3 By linking microscopic mechanics to mac- 

roscopic thermodynamics, simulation has also facilitated the- 

oretical analyses of systems far from equilibrium, and 

suggested new approaches to the foundational problems of 

statistical mechanics. Adopting the terminology used by 
Sklar, in a thorough and lively recent review: the accepted 

“orthodox” approach to reconciling time-reversible me- 
chanics with the approach to equilibrium and irreversible 

thermodynamics relies on the differential equations of 

Hamiltonian mechanics and stresses the importance of suit- 

ably chosen initial conditions. This conservative approach is 

subject to the well-known recurrence and reversibility criti- 

cisms of Poincari and Zermilo. 

By contrast, it is an article of faith, shared by simulators 

and experimentalists, that the initial conditions are irrelevant, 

and that it is instead the boundary conditions which shape 
and determine flows5 Simulators and experimentalists tend 

to analyze stationary nonequilibrium flows, rather than the 
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transients involved in equilibration. Curiously, even the im- 

position of boundary conditions, although certainly required 

for any nonequilibrium steady state, is not explicitly dis- 

cussed by the orthodox school. In the equilibrium case such 

boundary conditions are regarded as ‘interventionist’ ’.4 

The orthodox Hamiltonian approach entails solving two 

first-order differential equations of motion for each degree of 

freedom in the system: 

where the generalized coordinates { q }  are paired with their 

conjugate momenta {p=dL({q ,q} ldq ,  which are given in 

terms of the underlying Lagrangian, L( { q,  q }  K - a. In the 

usual case, where forces are nonlinear and the dynamics is 

chaotic so that analytic work is impractical, an approximate 

numerical solution of Hamilton’s equations, giving 

{ q ( t ) , p ( t ) } ,  is generated at a series of discrete time steps 

{ n A t } ,  starting with initial values of the coordinates and mo- 

menta at time 0. In the absence of special boundary forces or 
nonequilibrium constraints, or dnving fields, a typical suffi- 

ciently mixing system soon fluctuates about equilibrium. For 

stationary boundary conditions, the time series describing 

such a solution provides an approximation to Gibbs’ ideal- 

0021 -9606/98/109(11)/4164/7/$15.00 41 64 @ 1998 American Institute of Physics 

Downloaded 17 Jun 2004 to 128.1 15.97.1 52. Redistribution subject to A1P license or copyright, see http:/~cp.~ip.ar~cp/c~pyright.jsp 

mailto:hoover@bonampak.llnl.gov


J. Chem. Phys., Vol. 109, No. 11, 15 September 1998 Wm. G. Hoover 4165 

ized probability density f e q ( { q , p } ) ,  with the approximation 

to the long-time average, (f), becoming exact in the long- 

time limit. 

Gibbs’ statistical mechanics applies to such equilibrium 

systems, provided only that the microscopic dynamics can 

reach all the { q , p }  states consistent with the fixed macro- 

scopic variables characterizing the corresponding Gibbs’ en- 

semble. In such equilibrium cases Gibbs replaces the detailed 

time averages of mechanical variables, such as the kinetic 

and potential energies, ( K )  and ((a), by time-independent 

phase averages, using the weighting function (f)=f,, in 

preference to a detailed trajectory time series 

{ q ( n A t ) , p ( n A t ) } .  Gibbs also showed that the equilibrium 

(f) itself, while not a dynamical variable like the energies, 

can be used to calculate the thermodynamic entropy, 

S---k(lnfi, where k is Boltzmann’s constant. Because the 

instantaneous f is “invariant” to canonical transformations, 

the resulting entropy, from u), does not depend upon the 

particular choice of generalized coordinates { q}.6 The prob- 

ability, f H d q  d p ,  of occupying a particular region @ in 

phase space, @ = H d q  d p ,  is independent of the chosen co- 

ordinate system, and is (apart from a multiplicative constant 

of order K D N  in D dimensions) @e-s‘k for Gibbs’ micro- 

canonical ensemble and @e+(A-H)’kT for his canonical en- 

semble. Here S, A,  and H are, respectively, the entropy, the 

Helmholtz free energy, and the Hamiltonian. In addition to 

the independence off and (f) to coordinate choice, the vari- 

ous projections off onto subspaces with fewer than the total 

number of degrees of freedom, give additional “Poincari 

invariants.” These are likewise independent of the chosen 

phase-space coordinate ~ y s t e m . ~  
There is a famous difficulty with this picture for 

e n t r ~ p y : ~ ”  Consider the expansion of an ideal gas, con- 

strained initially by a piston to occupy exactly half of a large 

box of volume 2 V .  The piston then moves, with a prescribed 

time history, so that the gas fills the entire volume 2 V  at a 

later time t .  What then is the situation for times much greater 

than t ,  long after the piston has come to rest, so that the gas 

has equilibrated? If the expansion takes place so rapidly that 

the gas cannot keep up with the piston, and hence cannot do 

external work, a doubling of the volume should eventually 

leave the gas with an entropy increase of k In 2 per particle. 
On the other hand, if the expansion takes place so slowly that 

the gas remains near equilibrium throughout, the expansion 

is thermodynamically reversible, with no change in the en- 

tropy. For intermediate expansion programs, some portion of 

the maximum entropy gain, Nk In 2 ,  occurs. The Gibbsian 

ensemble picture of these volume-doubling problems is dif- 

ferent. Consider an equilibrium ensemble initially containing 

representatives of all phase-space states with energy E ,  oc- 

cupying the volume V ,  and following the prescribed expan- 

sion program. Provided only that the motion of each en- 

semble member, following the doubling, obeys the same 

time-dependent Hamiltonian mechanics with the same piston 
motion, the ensemble phase-space volume and the corre- 

sponding Gibbs entropy of the ensemble must both be un- 

changed according to Liouville’s incompressible-flow theo- 

rem. Similar considerations hold for gaseous effusion, in 

which a small hole is bored in a motionless piston at time 0. 

According to the equilibrium version of Liouville’s in- 

compressible theorem, f= 0, as discussed in Sec. 11, the fine- 

grained f cannot change with time. Thus Gibbs’ entropy 

-k(lnf) can neither increase nor decrease. Thus Gibbs’ 

‘ ‘fine-grained’’ ensemble entropy cannot possibly reproduce 

the inexorable entropy increase described by the second law 

of thermodynamics. That law requires an increasing entropy 

for any system subject to noticeably time-dependent forces. 

A way to avoid the Gibbs’ entropy difficulty, at least for 

some situations, is to use “coarse graining”?‘ a division of 

the phase space into small cells { H A q  A p } .  The resulting 

coarse-grained entropy approximates the proper equilibrium 

value, just as a trapezoidal-rule summation approximates an 

integral. It is tempting to use this same picture not only at 

equilibrium, but also away from equilibrium. But a decade of 

research has established a severe difficulty with such a 

coarse-graining remedy: nonequilibrium distribution func- 

tions are typically “multifractal” distributions, singular ev- 

erywhere, with “multifractal” signifying a density which 

varies locally as a fractional power of the small cell size, 

never giving a convergent entropy, even in the small-cell 

limit. Thus these multifractal nonequilibrium systems have 

divergent Gibbs’ 

In Sec. 11, I develop Liouville’s theorems with both f 
= 0 and f# 0. Although these theorems are generally attrib- 

uted to Liouville’s 1838 exposition,” a simpler, older, path 

to them is the many-dimensional version of Euler’s continu- 

ity equation, d In pldt=-V.u,  where the density p of a con- 

served quantity (mass or probability) flows through the ap- 

propriate space (either three-dimensional or many- 

dimensional) with velocity u .  Liouville’s theorems can be 

applied both at, and away from, equilibrium. In considering 

the compressible case, away from equilibrium, the three ar- 
ticles by Andrey make interesting reading. ‘*-14 He begins by 

focusing on the f#O theorem as a possible explanation of 

the Second law. Four years later his thoughts are clearer and 

more c ~ n c i s e . ’ ~  Finally, in an admirably clear article14 he 

gives LiouvilIe credit for both the theorems: ”a reading of 

great old masters is very beneficial.” See also the related 

articles in Refs. 15-17. In Sec. 11, I also discuss the impli- 

cations of applying the compressible f# 0 theorem to a time- 

reversible nonequilibrium flow, where such a flow is inevi- 

tably characterized by a chaotic repellor-attractor pair in the 

phase space. I relate the overall time-averaged contraction of 

such a phase-space flow to the corresponding Lyapunov 

spectrum, which is in turn directly related to the time-rate- 

of-change of Gibbs’ entropy, and to its dependence on the 

“grain size” of a coarse-grained approach. In Sec. 111, I 

briefly consider the dependence of Gibbs’ equilibrium en- 

tropy on the physical units, the grain size, and the boundary 

conditions, setting the stage for detailed nonequilibrium cal- 

culations. In Sec. IV, I describe general relationships be- 

tween isomorphic pairs of solutions to the motion equations, 

one solution thermostatted and the other not. In Sec. V, I 

illustrate compressible phase-space flow for the simplest rel- 

evant example, a harmonic oscillator, either damped, or sub- 

ject to an equivalent time-dependent force. In Sec. VI, I re- 

call the properties of the “Galton Board” problem, a particle 
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scattered by a regular lattice, in the presence of an acceler- 

ating field. For this problem, I display the grain-size depen- 

dence of Gibbs’ entropy. In Sec. VII, I summarize our 

present understanding of Liouville’s theorems, and entropy, 

for nonequilibrium states. 

II. TIME-REVERSIBLE HEAT FLOW IN PHASE SPACE 

Hamilton’s motion equations can describe isolated sys- 

tems as well as systems confined by time-dependent, but 

velocity-independent, potentials. Although they can be 

implemented in any set of generalized coordinates { q , p } ,  it 

is usually convenient to choose Cartesian coordinates, with 

the Hamiltonian a separable sum of potential and kinetic 

parts, 

The choice of coordinates can affect no physical properties 

of such a system. 

To describe thermally “open” systems, interacting with 

sources or sinks of heat, additional velocity-dependent accel- 

erations are necessary. Accordingly, those particles interact- 

ing with external heat sources or sinks are affected by cor- 

responding “thermostat forces.” The simplest such forces 

are deterministic and time reversible. When the additional 

velocity-dependent thermostat forces are obtained from me- 

chanical variational principles, such as Gauss’ principle of 

least constraint or Hamilton’s principle of least action, they 

typically involve a Lagrange multiplier, f ,  are linear in the 

momenta, and retain the property of time reversibility, with 

the equations of motion having the f ~ r m : ~ , ~ , ’ ~  

These time-reversible “thermostatted” motion equations do 

not follow from a Hamiltonian. With them, it is still usual, 

but not necessary, to choose Cartesian coordinates and mo- 

menta for the { q , p } .  The additional Lagrange multiplier, or 

“friction coefficient,” f ,  imposes a thermal constraint on the 

selected degrees of freedom in such a way as to preserve the 
overall time reversibility of the system of equations with 

both f and the { p }  changing sign along a time-reversed tra- 

jectory segment. 

It is sometimes desirable-steady heat flow is one 

example-to use two or more friction coefficients to impose 

separate kinetic temperatures on separate sets of degrees of 

freedom. In the absence of sources or sinks of probability, 

whether or not such thermal constraints are present, it is 

evident that the local comoving phase-space probability, 

f({q(t),p(t)})@ [where @ is an infinitesimal comoving and 

corotating volume element, IIdq d p ,  centered on a trajec- 

tory] must be conserved by the flow. It follows that the 

change in a differentiable probability density, f ,  at any fixed 

phase-space location { q , p } ,  is given by the divergence of the 

local flux: 

+ ~ c P f ( { q # l ) / J P l .  

This form of Liouville’s theorem, which applies to both 

cases, compressible and incompressible, is simply the 

“Eulerian” (laboratory-frame) form of Euler’s continuity 

equation, which has to be obeyed by any differentiable den- 

sity of a conserved quantity (usually these are the mass, mo- 
mentum, and energy densities). It is more usual to consider 

the “Lagrangian” (comoving-frame) form of the time de- 

pendence o f f ,  d f / d t = f .  This is the time dependence fol- 

lowing the flow: 

f= d f /at  + C [ q ( d f / d q )  + p ( df/dp)] 

- + d  In f l d t =  -d  In @ldl  

= - [ ( d i / d q )  f (djldp)]. 

This form too applies to both cases, compressible and incom- 

pressible. With Hamilton’s equations of motion each of the 

terms ( d q / d q )  f ( d p / d p )  vanishes, giving the more familiar 

incompressible Liouville’s theorem: f= 0; otherwise we 

have the more general result: i# 0. In the presence of deter- 

ministic thermostatting forces - f p ,  f changes with time in a 

definite way: 

The last approximate equality follows because the depen- 
dence of f on { p }  is typically weak, of order 1/N for an 

N-body system.2i3 

Evidently positive dissipative friction leads to diver- 

gence of (In f ) -+ t  and the consequent vanishing of the co- 

moving phase volume ln@ - - t. Negative friction would 

cause f to vanish, and @ to diverge, with (Inj)---t. It is 

clear that only the former possibility, increasing f:Cf‘)>O 

and decreasing @ : ( @ ) < O ,  is consistent with a bounded 

phase-space volume. This observation is the mechanical ana- 
log of the Second law of  thermodynamic^.'*'^ Time averages 

are required by the presence of microscopic fluctuations. 
We see that a superficially small change in the dynamics, 

just adding time-reversible friction, actually induces a quali- 

tative change in the resulting phase-space distribution as well 

as a (time-averaged) one-way “arrow of time,” with (In f )  

+w.9910 The qualitative difference between incompressible 

and compressible phase-space flows was clearly emphasized 

by Ramshaw,” who built on Andrey’s work,13 but did not 

discuss the crucial property of time reversibility. Necessarily, 

something dramatic happens in the case, typical for nonequi- 

librium steady states, that (In f )  diverges. This is the forma- 

tion of a fractal phase-space object, a “strange attractor.” In 

the nonequilibrium steady state, (f) becomes a multifractal 

attractor, with a density which is everywhere singular, and 

with a dynamics which is both “chaotic” (long-time expo- 
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nential separation of nearby trajectories) and ‘ ‘attractive,’ ’ 
converging onto an object with information dimension 

strictly less than that of the equilibrium dis t r ibu t i~n .~”~ In a 

variety of example problems, one of which” is worked out 

in detail in Sec. V, the fractal structure can be verified by 

computing the cell-size dependence of the local cell mea- 

sures {p} ,  giving the coarse-grained entropy, 

on the phase-space cell size, IIAq A P . ~ ’  If, as is usual and 

also useful, the equations of motion are time reversible, the 

time-reversed forward trajectory must correspond to a topo- 

logically similar mirror-image ({ + p } +  { - p } )  ‘ ‘repellor’ ’ 
structure corresponding to the past: 

The attractor, rather than the repellor, is actually observed in 

any numerical solution because the flow in its vicinity is 

more stable than that near the repellor. 

Flow stability can be quantified through the Lyapunov 

exponents, {A}, which describe the rates of increase (or de- 

crease) of trajectory separations parallel to the principal axes 

of a corotating hypersphere centered on a system trajectory. 

Worked-out examples show that the individual instantaneous 

exponents depend upon the choice of generalized 

coordinates,21 while the instantaneous sum, ZA=d In @ldt 

=-dlnf/dt, which is directly related to probability, and 

hence to a Poincari invariant, does not. 

An alternative method for imposing boundary condi- 

tions, so as to simulate nonequilibrium systems, is 
s t o c h a s t i ~ . ~ ~ ~ ~ - ~ ~  Then, velocities for particles reaching a sto- 

chastic boundary are chosen from the corresponding one- 

sided Maxwell-Boltzmann distribution. This choice intro- 

duces discontinuities into the particle trajectories, making a 

Lyapunov analysis difficult, and making use of Liouville’s 

theorem at the least difficult, and perhaps impossible. Be- 

cause physical phenomena ought not to depend upon the 

boundary details for large systems, this situation seems para- 

doxical. It is likely a case of nonuniform convergence, with 
the fractal distributions characteristic of deterministic ther- 

mostats emerging as large-system limits when stochastic 

boundaries are 

111. GIBBS’ ENTROPY FROM THE DISTRIBUTION 
FUNCTION 

It is important to emphasize that the catastrophic diver- 

gence of Gibbs’ entropy, associated with nonequilibrium 

steady states, occurs completely independently of the mild 

inconvenience associated with the necessary choice of either 

an absolute or a relative entropy scale. The entropy com- 

puted from the probability density (f) corresponds, at equi- 
librium, to the thermodynamic entropy, according to Gibbs. 

Because f is independent of the particular choice of coordi- 

nates { q } ,  this equilibrium entropy can only depend, loga- 
rithmically, upon the units of action. It is usual to appeal to 

Bohr’s correspondence principle, making f dimensionless by 

dividing by Planck’s constant, h ,  for each degree of freedom. 

Otherwise, a change from centimeter-gram-second (cgs) to 

meter-kilogram-second ( m k s )  units, for instance, would 

change the energy scale, and the probability density, by a 

factor of lo7, causing a decrease in S of 7 k  In 10 per degree 

of freedom. A wholly classical alternative is to measure en- 

tropy relative to that of a corresponding ideal gas: 

In a mixing system it is expected that the probability 

density will eventually approach all allowed points of the 

phase space arbitrarily closely. Thus a time averaging, or an 

instantaneous average over fixed phase-space cells, can give 

the equilibrium distribution. The expanding-gas example, 

discussed in Sec. I, illustrates this possibility. On the other 

hand, the very definition of a fractal, a distribution in which 

the density varies as a power law in the vicinity of each 

point, suggests that the corresponding Gibbs’ entropy would 
depend upon cell size. An example confirming this expecta- 

tion is worked out in Sec. VI. 

IV. ISOMORPHISMS LINKING THERMOSTAlTED AND 
ADIABATIC SYSTEMS 

Although the difference between conservative Hamil- 
tonian mechanics and reversibly thermostatted nonequilib- 

rium mechanics is qualitative, it is possible to find particular 

many-body trajectories which can be described by either me- 

chanics. Thus, these pairs of special trajectories are iso- 

morphs, the same with or without thermostats. In the ther- 

mostatted case the occupied phase space neither shrinks nor 
grows as time goes on. The process is steady, with all seg- 

ments of the trajectory equally likely. On the other hand, the 

phase space of a system driven strongly from equilibrium 

can grow without limit, by virtue of an ever-increasing en- 

ergy. 
By using an external driving field and impulsive hard- 

particle forces, ensembles of pairs of isomorphic trajectories 

can be Not just any driving will do. Any fixed 

strength for the driving forces would eventually lead to a 

high-temperature equilibrium. On the other hand, a driving 

which increases sufficiently rapidly with time, or in space, 

can be chosen to maintain a fixed ratio of the driving and 

inertial forces, resulting in a stationary nonequilibrium state. 

An example of the isomorphic pairs of trajectories can 

be based on the Galton board problem, discussed in more 

detail for conventional equilibrium and thermostatted simu- 

lations in Sec. V. The conventional Galton board contains a 

particle accelerated, in the n direction, by a constant external 

field, E .  With impulsive hard-particle forces, the equations of 
motion between collisions, 

X =pxlrn;p,  = E ;  y = p y  l m ;  p, = 0, 

lead to curved trajectories, with 
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d2xldy2= (dldy)(p, lp , )  

= (m/p , ) (d /d t ) (p ,  l P y )  

= (m/P:)r ( P y P x )  - ( P x P , ) l =  mE/p,2. 

For simplicity, choose a constant-energy solution of these 

equations with a vanishing initial energy, K+ @ =p2/2m 

- EXSO.  Then, the curvature of the trajectory depends upon 

the ratio of the driving force, dx=  -d@ldx ,  to the kinetic 

energy, which is in turn the negative of the field energy, 

p2/2m= --@=Ex. Thus an exponential field leads to a 

steady-state trajectory y ( x )  with stationary curvature fluctua- 

tions. Exactly the same trajectory results if the dynamics is 

carried out, not at constant energy but with the kinetic energy 

constrained to its initial value, by a varying time-reversible 

friction force - { p :  

x=p,lm;y = p y l m ; p x =  F,+ E - { p ,  ; 

p = F , - { p ,  ; { ~ ( F . p + E p , ) l p  2 . 
Y 

Exactly similar isomorphic pairs of many-body trajectories 

can be constructed for (i) driven systems without thermo- 
stats, and (ii) nonequilibrium thermostatted systems with dis- 

sipative mass, momentum, or energy Thus, the dis- 

sipative fractal phase-space structures can apply with or 

without thermostatting forces. An example, based on the 

Galton board p r ~ b l e m , ' ~ ~ ~ ~ ' ~ ~  is described in Sec. VI. 

V. EXAMPLE: THE DAMPED HARMONIC OSCILLATOR 

Let us examine Liouville's f theorems in detail for a 

simple example. Consider a critically damped harmonic os- 
cillator with unit mass and force constant and initial coordi- 

nate qo and momentum po .  The equations of motion, 

q=p;p = -4 -  2 p ,  

have the solution q = [ q ~ + ( q ~ + p ~ ) t ] e - ~ .  In Fig. 1 I con- 

sider the special case in which the initial conditions are 

( 9 0  $01 ={ 1911: 

q = ( 2 t  + 1 ) e - ' ;p  = q = ( 1 - 2 t )  e-'; 

q= (2 t -3 )e - '=  - q - 2 q =  -4-  2p= -q+ ( 4 t - 2 ) e - ' .  

Liouville's compressible f# 0 theorem shows that the co- 

moving phase-space probability density diverges exponen- 

tially in time: f(q,p,t)/f( 1,1,0)=ei2'. The corresponding 

comoving phase volume vanishes: @ ( q , p , t ) l @ (  l , l , O )  

,e-2r , Remarkably, the same trajectory is also the solution 

of the undamped, but driven, oscillator motion equations: 

. .. 
q = p ; p  = q = -q + F ( t ) ; F ( t )  = ( 4 t -  2)e- ' ,  

where the external force F ( t )  has been chosen to reproduce 

the damped trajectory without using a velocity-dependent 

force. Now, Liouville's incompressible theorem applies. Fig- 

ure 1 confirms that the latter equations of motion show none 

of the dissipation of the former, although the two sets have a 
common solution. 

This example indicates the impossibility of directly de- 

termining Lyapunov exponents from a single trajectory, as 

1 .  

4 = P  

L. 
-0.5 0 0.5 1 1. 

q 

FIG. 1. Motion of an ensemble of harmonic oscillators obeying Liouville's 

f = O  theorem. The initial ensemble, a square centered on ( x = q o = l , q  

= p o =  l ) ,  eventually circles the origin. Snapshots are shown at { t }  

={0.0,0.2,0.6,1.5,2.5,5.0}. Only the trajectory at the center of the cornoving 

square phase volume (heavy line) is critically damped by the force F ( f ) .  See 
Ref. 2. 

was stressed by Farmer et a1." It also illustrates the utility of 

the exponents in describing phase-space compressibility. 

With a frictional force the two exponents are both - 1 and 

the flow is compressible. With a time-dependent driving 

force the two exponents both vanish and the flow is incom- 

pressible. This instructive analysis of the harmonic oscillator 

cannot easily be extended to nonlinear chaotic systems. For 

these, numerical calculations are required. Let us turn next to 

the simplest chaotic example. 

VI. EXAMPLE: THE GALTON BOARD 

The equilibrium Galton board describes the field-free 

scattering of a particle by a fixed array of ~ c a t t e r e r s . ' ~ , ~ ~ ~ ~ ' * ~ ~  

Figure 2 shows collisions resulting when the scatterers make 

up a regular triangular lattice of hard disks. The successive 

collisions undergone by a scattering particle, a moving mass 

point, can be described by the two angles, {a ,P} .  a gives the 
location of a collision relative to the field direction, while p 
gives the direction of the outgoing velocity relative to the 

radius vector, at each collision. In the equilibrium case, with 

no driving field, all collisions {a,sinp} are equally likely, 

and, because the dynamics is mixing, the coverage in the 

Poincard plane tabulating these collisions is uniform. Al- 

though the motion obeys Liouville's f = O  theorem, the 

coarse-grained entropy, shown as the series of dots parallel 

to the abscissa in Fig. 3, is essentially independent of cell 

size. The distribution of 3 000 000 successive collisions is 

essentially uniform, as the number of phase-space cells is 

increased from 1 to 65 536, as is indicated in Fig. 3. 

Consider next a nonequilibrium finite-field sequence of 

3 000 000 collisions generated with isokinetic thermostat 
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FIG. 2. Collision sequences for the isoenergetic and isokinetic motions of a 

mass-pint particle in a “Galton board.” The sequences are sets of the 

collisional functions, {0 < a< T, - 1 <si@< + 1). The two cases illustrated 

correspond to driving fields of 0 (isoenergetic) and 3p’lmu (isokinetic), 
both at four-fifths the close-packed scatterer density. The scatterem are disks 
of diameter u and 300 OOO collisions are shown. The isokinetic sequence of 

collisions could also be obtained without friction or constraints, by using an 
exponentially increasing field. See W. G. Hoover, B. Moran, C. G. Hoover, 
and W. J. Evans, Phys. Lett. A 133, 114 (1988). 
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forces, which constrain the kinetic energy, providing a mul- 

tifractal phase-space structure with an entropy which varies 

with the logarithm of the cell size. 300 000 points, in a Poin- 

car6 section through the multifractal structure, are shown in 

Fig. 2. Now Liouville’s compressible theorem applies. This 

section produces a Gibbs’ entropy with an essential depen- 

dence on the cell size (see Fig. 3). The slope indicates that 

(ln(f/hded)) varies as 0.15 ln(l/e), where E is the cell width. 
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FIG. 3. Cell-size dependence of the coarse-grained distribution function for 

collision sequences ten times the length of those shown in Fig. 2. The 

Poincar; sections of Fig. 2 have been divided into E-* cells, with E 

= 1,0.5,0.25,0.125,. . . . The coarse-grained value of (InCf/fid,J), where 

fidcd is the uniform distribution, is plotted as a function of log,(l/E). 

This example shows that coarse graining does not cure the 
diverging entropy which inevitably accompanies determinis- 

tic chaos away from equilibrium. These same trajectories 

also result from a special time-dependent field, and then 

obey Liouville’ s incompressible theorem. 

Breymann et al. have rightly emphasized that the deriva- 

tives of coarse-grained entropy, with respect to external vari- 

ables, can be useful even when the entropy itself is not. Like- 

wise, in dealing with systems open to mass flow, the division 

of entropy change into separate convective and comoving 

parts can be useful in drawing a correspondence with irre- 

versible  thermodynamic^.^^-^^ 

VII. CONCLUSIONS 

Liouville’s incompressible flow theorem, f = 0, usually 

applied to equilibrium systems, is better known than the non- 

equilibrium compressible theorem, f= - f X d $ d p .  The 

compressible Liouville theorem usefully links fractal dimen- 

sionality, dissipation, and the Lyapunov spectrum for deter- 

ministically driven systems, and in a way which simplifies 

theoretical analysis. But Gibbs’ entropy, S = - k(lnf), which 

corresponds, in equilibrium thermodynamics, to the force 

driving systems toward equilibrium, is a casualty of this 
analysis. Gibbs’ entropy seems to have no fundamental in- 

terpretation away from equilibrium, although in some situa- 

tions derivatives of its coarse-grained analog may be useful. 

Is there a way to characterize the nonequilibrium fractals so 

as to form a nonequilibrium potential as useful as the free 

energies associated with equilibrium states? No one knows. 

The singular multifractal nature of thermostatted phase- 

space distributions is qualitatively different to the smooth 

nature which one might expect to apply with stochastic 
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boundaries. Because the number of boundary particles is 

small and the dimensionality decrease appears to be 

extensive,33 it seems likely that the multifractal structure will 

emerge only gradually. But no one knows for sure. A defini- 

tive test would be welcome. Likewise, an experimental or 

computational technique for the determination of Lyapunov 

exponents, or a stochastic analog of these exponents from a 

time series alone, would be welcome. Although formal em- 

bedding techniques, using time-delay coordinates, are effec- 

tive in problems involving only a few variables, a useful 

computational many-body analog is badly needed, as are also 

laboratory experiments. 
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