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LIOUVILLIAN FIRST INTEGRALS
OF DIFFERENTIAL EQUATIONS

MICHAEL F. SINGER

Abstract. Liouvillian functions are functions that are built up from rational
functions using exponentiation, integration, and algebraic functions. We show
that if a system of differential equations has a generic solution that satisfies a
liouvillian relation, that is, there is a liouvillian function of several variables
vanishing on the curve defined by this solution, then the system has a liouvil-
lian first integral, that is a nonconstant liouvillian function that is constant on
solution curves in some nonempty open set. We can refine this result in special
cases to show that the first integral must be of a very special form. For exam-
ple, we can show that if the system dx/dz = P(x, y), dy/dz = Q(x, y) has
a solution (x(z), y(z)) satisfying a liouvillian relation then either x(z) and
y(z) are algebraically dependent or the system has a liouvillian first integral of
the form F(x, y) = J RQdx - RPdy where R = exp(/ U dx + V dy) and
U and V rational functions of x and y . We can also reprove an old result of
Ritt stating that a second order linear differential equation has a nonconstant
solution satisfying a liouvillian relation if and only if all of its solutions are
liouvillian.

1. Introduction

In elementary courses on differential equations we consider systems of the
form

¿x Ul \— = P(x,y),

where P and Q are polynomials in C(x, y), C being the complex numbers.
We learn that although we cannot always explicitly solve this system, we are oc-
casionally able to find first integrals, that is nonconstant functions F(x, y), an-
alytic on some nonempty open set in C2, that are constant on solution curves in
this set. To do this we consider the differential form Q(x, y)dx - P(x, y)dy.
If dP/dx = -dQ/dy , then F(x, y) = / Qdx - P dy will be a first integral.
If dP/dx ^ -dQ/dy, we are taught ad hoc methods to find an integrating
factor, that is a function R(x,y) such that d(RP)/dx = -d(RQ)/dy. In
case we can find such a function R, F(x, y) = ¡RQdx - RPdy will be a
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674 M. F. SINGER

first integral. For example, if (dQ/dx + dP/dy)/P is independent of y , then
R = exp(J(dQ/dx + dP/dy)/Pdx will be an integrating factor. A natural
question arises: When does the system ( 1 ) have a first integral that can be ex-
pressed in terms of the functions known to a calculus student (that is those
functions that can be built up using integration, exponentiation, and algebraic
operations from the rational functions; see §2 for a precise definition of these
functions—the liouvillian functions) and how does one find such an integral?
To answer the first part of this question, we show in this paper the following

Theorem 1. Let P(x, y) and Q(x, y) be polynomials in two variables and let
(x(t), y(t)) be a solution of (I) which is analytic on some nonempty open set
cf c C. If there exists a nonzero liouvillian function F(x, y) analytic on some
open set in C2 containing & = {(x(z), y(z))\z £ cf} and vanishing on 9,
then either there is a nonzero polynomial G such that G(x(z), y(z)) = 0 or the
differential form Q(x ,y)dx- P(x, y) dy has an integrating factor of the form

(2) R(x, y) = exp
r(x,y)
/        U(x,y)dx+ V(x,y)dy

J(Xn . Vn)

r(x,y)

'{xo,yo)

where U and V are rational functions with dU/dy -dV/dx so that this latter
line integral is well defined.

We will deduce the following corollary.

Corollary. The system of differential equations (1) has a liouvillian first integral
if and only if the differential form Q(x, y)dx - P(x, y) dy has an integrating
factor of the form (2), in which case

fx,y)
F(x ,y)= R(x, y)Q(x ,y)dx- R(x, y)P(x, y) dy

J{x0,yo)

is a liouvillian first integral.

Note that (1) may have a liouvillian first integral without having noncon-
stant liouvillian solutions. An example of this is the system dx/dz — xy -
x2, dy/dz = y2 which has the liouvillian first integral y - exp(y/x) [ROS69].
In contrast to this we reprove the following result of Ritt [RITT27] or [RITT48].

Theorem 2. Let y(z) be a nonzero solution of y" + p(z)y' + q(z)y = 0, where
p(z) and q(z) are liouvillian functions of z, and assume that y(z), p(z),
and q(z) are analytic on some open set cf. If there is a nonzero liouvillian
function F of three variables analytic on some open set % in C3 containing
& = {(z,p(z), q(z))\z £ cf} and vanishing on 3?, then y(z) is a liouvillian
function of z.

As a corollary we have the following result concerning liouvillian first inte-
grals. By a liouvillian first integral of an «th order differential equation, we
mean a nonzero liouvillian function F of n variables analytic in a nonempty
open subset % of C" suchthat F(z, y(z), y'(z), ... , y("_1)(z)) is constant
for any solution y(z) of the differential equation whenever (z ,y(z),y'(z), ... ,
y("-»(z)) is in %.

Corollary. Let p(z) and q(z) be liouvillian functions. If L(y) = y" + p(z)y' +
q(z)y = 0 has a liouvillian first integral then all solutions of L(y) - 0 are
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LIOUVILLIAN FIRST INTEGRALS 675

liouvillian. If L(y) = 0 has a nonzero liouvillian solution, then this equation has
a liouvillian first integral.

The rest of this paper is organized as follows. In §2, we give a formal defini-
tion of a liouvillian function, liouvillian relation, and liouvillian first integral.
We show that if a system of differential equations has a sufficiently generic so-
lution that satisfies a liouvillian relation, then the system has a liouvillian first
integral (Proposition 2.1). We also derive an algebraic consequence (Proposi-
tion 2.2) of such an event. Proposition 2.2 will be the main technical tool of
this paper. Section 3 is devoted to liouvillian first integrals of planar vector
fields, a proof of Theorem 1 and its corollary, and a discussion of algorithmic
considerations. Section 4 is devoted to liouvillian first integrals of linear differ-
ential equations and a proof of Theorem 2 and its corollary. In the appendix
we give a proof of a theorem of Darboux that is used in this paper. I would
like to thank the referee for extensive comments, corrections, and suggestions
regarding both the content and style of earlier versions of this paper.

2. Liouvillian relations and first integrals
We begin this section with the formal definition of a liouvillian function.

This is given in the setting of differential algebra (cf. [KOL73 or KAP57]).
Let (k, A) denote a differential field of characteristic zero with a given set of
commuting derivations A = {a,} (all differential fields in this paper will be
assumed to have commuting sets of derivations). A differential field (M, A)
is a liouvillian extension of (K, A) if there is a tower of fields k = Ko c
Kx c • • • C Km - M where each K, = AT,_i(r,) with either (i) ot¡ £ K¡_x for
all S £ A, or (ii) ÔU/U £ 7ÂT,_i for all S £ A, or (iii) r, is algebraic over
Ki_x. We say that k = K0 c ■■• c Km - M is the defining tower of M and
define the length of the defining tower to be the integer m. The constants of
(k, A), that is, all those elements annihilated by all S in A, will be denoted by
C(k, A). Let k = C(yx, ... ,yn), where yx, ... ,yn are indeterminates and
let A = {d/dyx, ... , d/dyn}. Let (M, A) be a liouvillian extension of (k, A)
such that the field of constants of (M, A) = C. One can see by induction that
each element of M represents a function analytic on a dense open set on C"
(in fact, any differential field finitely generated over Q is isomorphic to a field
of functions meromorphic in some domain [SEI58, SEI69], but what we need
is easier to prove). We call such a function a liouvillian function of n variables.
Note that it can happen that an element of M can represent a function that is
analytic on a larger set than the t¡ 's. For example, sin(A/y1) is analytic on all
of C and lies in C(yi, y/yl, e\p(y/yl)). We remark that if C(yx, ... ,y„) =
Ko c ••• c Kmo = Mo and Cd, ■■■ , yn) = K0 c ■■■ c K'm¡ = Mx are
liouvillian extensions of C(yi, ... , y„) with C(Mq , A) = C(MX, A) = C, then
the compositum M = MoMx is also a liouvillian extension of C(yi, ... ,yn).
To see this just consider the tower K0 C • • • c Kmo c KmoK[ c • • ■ C KmoK'mi =
MqMx - M. Furthermore, C(M, A) = C. To see this, note that this field
is finitely generated over C by elements each of which is analytic on a dense
open set. Therefore, there is a nonempty open set in which all the elements
of M are meromorphic. Therefore the only constants are in C. This implies
that given a finite number of liouvillian functions of n variables, there exists a
liouvillian extension M of C(yi, ... ,y„) containing all of them and satisfying
C(Af,A) = C.
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676 M. F. SINGER

In what follows we will consider systems of differential equations of the form

dyi     f < v
-7- = /i(yi, ...,yn)az

W ...

^f = fn(yx,...,yn)dz

where the f are liouvillian functions analytic on some domain (= a connected,
nonempty, open set) %o c C. Let (k, A) be the differential extension of
C(yi,... ,y„) generated by the f and their partial derivatives of all orders
with A = {d/dy¡} . Note that every element of k can be written as the quotient
of elements in k that are analytic in ^o ■ In other words, k is the quotient
field of ß?(%o) nk, where ß^(^o) is the ring of analytic functions on %fo •
Let y~i(z), ..., y„(z) be a solution of (3) analytic in some domain cf0cC
and assume % = {(7i(z) » •• • > yn(z))\z e ^0} c &o • we shall also make the
following assumption regarding this solution: each element G in A: is analytic
and not identically zero on a nonempty open dense subset cfß of 5o. We
shall refer to this as the basic assumption for y,(z), ... , y„(z). This basic
assumption is easily verified in two situations which we now describe. First,
let us assume that the f appearing in (3) are polynomials in the y; with
coefficients in C ; this will be the situation in Theorem 1. Let yx(z), ... , yn(z)
be a solution analytic in some nonempty open set cfo C C. In this case we
let k = C(yi, ... , yn). If yx(z), ... , y„(z) are algebraically independent over
C, then this solution satisfies the basic assumption. To see this, note that
no nonzero polynomial with complex coefficients can vanish identically on % ■
Therefore each rational function in k is analytic and nonzero on an open dense
subset of Z/o. Second, let f„ = 1 (so y„ can be assumed to be z) and let
fi, ... , fn-i be polynomials whose coefficients are liouvillian functions of one
variable y„ ; this will be the situation in Theorem 2. Let (ko, {d/dy„}) be the
differential field generated by these coefficients and let k = ko(yx, ... , y„_(). If
yx(z), ... , y„_i(z) are algebraically independent over ko and form a solution
of (3), then one can see as above that this solution satisfies the basic assumption.

We say that y~i(z), ... , yn(z) satisfy a liouvillian relation if there is a li-
ouvillian function F(yx, ... , y„), analytic on some open subset of C" con-
taining 2?, such that F\$ = 0. Notice that we do not insist that the ele-
ments, generating a defining liouvillian tower containing F, be defined in a
neighborhood of 3?, but only that F be. By the above remarks, we may as-
sume that F belongs to a liouvillian extension M of k with C(M, A) = C.
Clearly, if yx(z), ... , yn(z) are algebraically dependent over C, then they sat-
isfy a liouvillian relation. We say that a nonconstant function G(yx, ... , yn),
analytic on some nonempty open subset í¿ of C" is a first integral of (3)
if, for any solution yx(z), ... , yn(z) defined on an open set cfo C C" with
^o = {(yx(z), ... , y„(z))|z e cfo} C %, there exists a complex number c such
that C7|g>0 = c. This latter condition is equivalent to the fact that DG = 0 on
% where D = ¿~^f(yx, ... , yn)d/dy¡. Note that D defines a derivation on
k as well as on any differential extension of this field.  The next proposition
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shows that for a solution of (3) satisfying the basic assumption, the existence of
a liouvillian relation implies the existence of a liouvillian first integral for (3).

Proposition 2.1. Let yx(z), ... , y„(z) be a solution of (3) analytic on some
domain tf0cC and let S?o = {(yx(z), ... ,yn(z))\z e <%}. Assume that
yx(z), ... , yn(z) satisfy the basic assumption and satisfy a liouvillian relation.
Then there exists a liouvillian extension M of (k, {d/dyx, ... , d/dy„}) such
that:

(i) There exists an open set cf c cfo and an open set ^ c ^o c C" containing
3? = {(yx(z), ... , y„(z))|z € cf} such that the elements of M are meromorphic
in %.

(ii) If k = Ko c ■ ■ ■ c Km = M is the defining tower of M, then any
element of Km-X is analytic and not identically zero on an open dense subset of
&. Therefore, the map sending G(yx, ... ,yn)£ Km_x to G(yx(z), ... , yn(z))
defines an isomorphism tp of Km-X onto a differential field of functions of one
variable meromorphic in cf such that d(tp(G))/dz = Y,<P(aG/dyi)q>(fi).

(hi) There is a W £ M such that DW = 0 while dW/dy¡ ^ 0 for some j.
Proof. Let Sf be the set of triples (cf' ,1¿' ,F') where cf1 is a nonempty
subdomain of cf such that £" = {(yx(z),..., yn(z))\z £ cf'} cf cC", ^'
a subdomain of %, F' is a liouvillian function, analytic and not identically zero
on W and F'\g, = 0. Since y,(z), ... , y„(z) satisfy a liouvillian relation,
S? is not empty. Select an element (cf", f¿", F") in £? such that F" belongs
to a tower of minimal length and denote this tower by k — Ko c • • • c Km .
Let M = Km. We are now considering the functions in k as functions on
í¿" and the y, as functions on cf" . We will first verify that these restricted
functions still satisfy the basic assumption. Let G £ k and write G - Gx/G2,
where Gx and G2 are in k and analytic in % • If G2 vanishes on a nonempty
open subset of &" = {(yx(z), ... , y„(z))|z e if'} c ^b> then by the identity
theorem, G2 vanishes on all of &o ■ This contradicts the fact that the basic
assumption holds for cfo and %. Therefore, G is analytic on a dense open
subset of 'S". In a similar manner, one can show that G is not identically
zero on &" and so the restricted functions satisfy the basic assumption. We
therefore may assume that cf" = cfo and %" = í¿o ■ Note that this implies
that n > 0. We shall now show that (i) and (ii) hold for K¡ by induction on
I. Assume that there exists a domain rf¡-X c cfo and a domain &/_i c %
containing ^-_i = {(yx(z), ... ,y„(z))|z 6 ¿f¡-i} such that any element of
AT,-1 is meromorphic on ^_ i and analytic and not identically zero on an open
dense subset of ^_ i . Furthermore, assume that AT¿_ [ is the quotient field of
^(^_i) n Ki-i . We wish to show that there are domains cf¡ c cf¡-X and
% c 1/i-i satisfying similar properties with respect to K¡ (except if i — m,
in which case we will not guarantee that elements are nonzero or analytic on a
dense open subset of &m - &').

First assume that K¡ = K¡-X(t) where t is transcendental over K¡-X and
dt/dyj £ K¡-X for j = 1,... , n. For each j, there exists an open subset
f¿i of %-X such that dt/dyj is analytic in y i and í¿> n £¿_j is dense in
£/_i . Furthermore, some dt/dyj is nonzero in %i n£)_i. ^ = f)"=i %' is
a nonzero open set intersecting ^_i . t is analytic on a dense open subset of
C", so let p £ % be a point where t is analytic such that for some e > 0,
the e-ball B centered at P is contained in f/ and ßn5j-_i   is not empty.
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Since each dt/dyj is analytic in B and d2t/dyjdyk = d2t/dykdyj, t can
be defined to be analytic in all of B [KRA82, Lemma 6.3.4, p. 234]. Let the
domain <f¡ c rf¡-X be chosen such that £} = {(yx(z), ... , y„(z))|z e cf¡} is
contained in B. We let ^• = B. t cannot be identically zero on 3?¡ by the
minimality of N. We now consider the functions of AT,_i as being restricted to
9¿i . As above, one can show that each G in K¡-X is analytic and not identically
zero on a dense open subset of ^ . Let p(t) - arf H-Y ao £ AT,_1[r]. p(t)
will be meromorphic on ^ and analytic on a dense open subset of ^ . If
i < m and p(t) were zero on a nonempty open subset of ^ , then we would
contradict the minimality of m . If G = p(t)/q(t) with p(t), q(t) £ t?,-_i[î] , a
similar argument shows that G is meromorphic in ^ and analytic on a dense
open subset of ^ and nonzero there if i < m . Finally, since t is analytic in
%, Ki is the quotient field of &(%) n K¡.

If Tí, = 7C¿_i(í) with dt/dyj/t £ 7i/_i for each j and t is transcendental
over 7£,_i, we proceed as follows. Let Sj = dt/dyj. Note that dSj/dy¡ -
dsi/dyj for all 1 < i, j < n, so we can find a function v such that dv/dyj = Sj
as above and let / = exp(v). Arguing as above gives us the conclusion in this
case as well.

Finally assume that K¡ = K¡-X(t) with t algebraic over K¡-X. Let P(t) =
tr + ar-Xtr~x H-+ Oq be the minimum polynomial of t over K¡_x . Using
the induction hypothesis, we can assume that there is an open set %> such
that the a, are analytic in "2/P and %> n^_! is dense in 5}_i . Let D be the
discriminant of F [LANG65, Chapter 5, §10]. D is a polynomial in the a¡ with
constant coefficients so it will be analytic in %>. Since P(t) is irreducible, D
does not vanish identically on %p [LANG65, Chapter 5, § 10, Proposition 4] and
since D £ 7£,_i it does not vanish identically on ^_) . Therefore there exists
a domain <f¡ c cf¡-X such that £} = {(yx(z),... , y„(z)\z £ cff} c ^ , where
%i is a component of {(yx, ... , yn) £ %fP\D(yx, ... , y„) ¿ 0} intersecting
ífi-1  nontrivially.   t is analytic in 2^ . Any element G in K¡ is of the form
G = èr_iFH-l-¿o for some b¡ in ÄT;_i and we can argue as above to conclude
(i) and (ii) for K¡. Finally to see that the substitution of y,(z), ... , yn(z) for
yx, ... , yn defines an isomorphism tp of Km_x onto a differential field K
of meromorphic functions, note that d(tp(G))/dz = Yj(P(dG/dyj)tp(f¡). This
latter formula is just the chain rule.

Note that in the course of the proof, we may have changed the determination
of the tj (for example, by extending past a branch cut). This will not effect
the function defining the liouvillian relation since there will always remain a
nonempty open set on which all the functions will agree with their original
determinations.

We can now prove (hi). Let tp : KM_X —* K be the isomorphism described in
(ii), where K is a field of functions meromorphic in cf and let M — Km_x(t)
where either t is algebraic over Km^x or t is transcendental over Km_x and
dt/dyj £ Km-X for j = 1, ... , m or dt/dyj/t £ Km_x for j = 1, ... , m.
We first note that, under our assumption of minimality, / cannot be algebraic
over Km-X . If it were, let F £ M be the element defining the liouvillian
relation and let P(Y) - Yr + ar-XYr~x + • • • + an be the minimal polynomial
of F over Km-X . Since ao ^ 0 in Km-X , an is analytic and nonzero on a
dense open subset of S. Since P(F) = 0 and F y = 0, we have ao\& = 0, a
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contradiction. Therefore t is transcendental over Km-X and we must deal with
two cases. First assume that dt/dyj £ Km_x for f — I, ... , m - I. We may
assume that F £ Km-X[t]. We can clearly extend tp to a homomorphism on
Km-X[t]. Since tp(F) = 0, we have that tp(t) is algebraic over K. Therefore,
the Corollary to Theorem 1 of [ROS76] implies that there is an element u of K
suchthat tp(t)-u is a constant. Let U £ Km_x satisfy <p(U) = u. We then have
that 0 = d(tp(t - U))/dz = £ <p(d(t - U)ldyj)tp(fj) = tp(\Zd(t - U)/dyj • fj).
Let W = t - U. Since tp is an isomorphism on Km-X, DW £ Km_x and
tp(DW) = 0, we have that DW = 0. If dW/dy¡ = 0 for all ;', then W
would be in C. This would imply that t would be algebraic over Km-X a
contradiction.

Now assume that dt/dyj/t £ Km_x for j = 1, ... , n. Note that the
dt/dyt/t are analytic and nonzero on some dense open subset of S, so t
will be nonzero on a dense open subset of S. Therefore, <p(t) ̂  0. Again
we can assume that F £ Km-X[t] and conclude that tp(t) is algebraic over K.
By the Corollary of Theorem 1 of [ROS76], we can conclude that there exists
an integer r such that tp(tr) £K. Let U £ Km-X satisfy tp(tr/U) = 1 and
let W = f/U. One can see that DW/W e 7v"„_, and tp(DW/W) = 0, so
DW = 0. If a W/dyj = 0 for j = 1,..., n, then W would be a constant
and t would be algebraic over Km_x , a contradiction.

Note that the above proposition begins with an analytic hypothesis (the ex-
istence of a liouvillian relation) and ends with an algebraic conclusion (the
existence of a liouvillian extension M of k and an element W £ E such
that DW = 0 while dW/dyj / 0 for some j). In what follows, we start
with this latter statement as our hypotheses and use algebraic considerations to
prove our theorems. The conclusions in the above result can be restated in the
following way. We start with a differential field (k, A), where A = {<?,-} is a
set of commuting derivations and we let D be some Ai-linear combination of a
finite subset of A. We concluded that there is liouvillian extension (M, A) of
(k, A) such that C(k, A) = C(M, A) and such that there is a W in M such
that DW — 0 while SW ^ 0 for some S £ A. This latter condition can be
restated as C(M, A) is a proper subset of C(M, {A}). The next proposition
starts with this as the hypothesis and draws some algebraic conclusions. It is
our main technical tool and says that if there exists a liouvillian first integral,
then there exist liouvillian functions ux(yx, ... , y„), ... , un(yx , ... , y„) such
that F(yi, ... , y„) - jux dyx -l-+ undy„ is a liouvillian first integral. The
usefulness of the proposition lies in the fact that we may take the w, to lie in a
liouvillian extension A of k satisfying C(k, A) = C(N, A) = C(N, {£)}) and
that ôjUj = ôjUi. The condition on the constants and the latter integrability
conditions will be the key to the results of §§3 and 4.

Proposition 2.2. Let (M, A) be a liouvillian extension of the differential field
(k,A) with C(M,A) = C(k,A). Let D = fxôx + ■■■ + fnôn with f £ k,
Ó, £ A, and assume that C(k, A) = C(k, {D}). If C(M, A) is a proper subset
of C(M, {D}), then there exists a liouvillian extension (N, A) of (k, A) such
that

(i) C(k,A) = C(N,A) = C(N,{D}),
(ii) there exist u¡ £ N, not all zero, such that fxux + ■ ■ ■ + f„un = 0 and

S¡Uj = ojU¡ for 1 < /, j < n .
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Proof. Let (M, A) be a liouvillian extension of (k, A) of smallest transcen-
dence degree over k such that the hypotheses of the proposition are satisfied.
Note that M is not algebraic over k. If it were, then there would exist an
element u, algebraic over k such that Du = 0, while ou ^ 0 for some
Ô £ A. We would then have, by Lemma 5.2 of [KAP57], that u is algebraic
over C(k, {D}). Since C(k, {D}) = C(k,A), we would have Su = 0 for
all f5 e A, a contradiction. Therefore M is algebraic over N(t), where N is
a liouvillian extension of k, t is transcendental over A, and either St £ N
for all ô £ A or St/t £ N for all ô £ A. We may further assume that N
is algebraically closed in M. Let u be an element of M such that Du = 0
and ou ^ 0 for some ô £ A. « is the root of an irreducible polynomial
Yr + br-XYr~x +■■■ + bo with b, £ N(t). If öbi = 0 for all ô £ A and
1 < i < r — 1, then Su = 0 for all S £ A. Similarly if Db¡ ^ 0 for some
/, we would have Du ^ 0. Therefore we may assume that there exists an ele-
ment u £ N(t) such that Du - 0 and Su ^ 0 for some ô £ A. Note that by
minimality C(N, {D}) = C(N, A) = C(k,A).

Assume that St £ N for all S £ A. This implies that Dt £ N. Since there
exists a u £ N(t) such that Du = 0, we have by Proposition 1.2 of [RISCH69]
that there are elements a £ N and c £ N(t) such that Dc = 0 and t = a + c.
Note that ôc - St - ôa £ N for all S £ A. Furthermore if ôc = 0 for all
S £ A, then c £ N. Since t £ A, we must have ôc ^ 0 for some ô £ A. Let
Ui = ¿¡c. We then have ^fiuj = Y^f°ic = Dc = 0. Since the <5, commute,
we have <5jU¡ — Sj(o¡c) = o¡(Sjc) — o¡Uj .

Now assume that ôt/t £ N for all ô £ A. We then have that Dt/t £ N.
Since there is an element u £ N(t), u £ N, such that Du = 0, Proposition
1.2 of [RISCH69] implies that there are a £ N, c £ N(t) such that Dc = 0
and a nonzero integer n such that t" = ca. Note that Sc/c = nôt/t-ôa/a £ u
for all ô £ A. Furthermore, if ôc — 0 for all ô £ A, then c would lie in A,
contradicting the fact that t £ N. Let w, = ¿¡c/c. We then have J2fui = 0
and SiUj — o¡u¡.

3. Planar vector fields
To prove Theorem 1 and its Corollary we will use the results of §2 when

n = 2. We will use the variables x and y instead of yx and y2 and let
k = C(x, y). We will be able to deduce Theorem 1 from the following purely
algebraic results.

Lemma 3.1. Let K be a differential field of characteristic zero with derivation
D and K(t) a differential extension with the same field of constants such that
Dt £ K. For any a, b in K, any solution of

(4) DU + aU = b,

in K(t) is of the form Uo + Uxt for some Uq, Ux in K.
Proof. By comparing partial fraction decompositions of a, b, and U, we see
that any solution of (4) is in K[t]. If Uo + Uxt-\-tUnt" is such a solution with
n > 2, then, equating powers of /, we have DUn + aU„ — 0 and nU„Dt +
DU„-X + aUn-X — 0. Multiplying this latter equation by U~x allows us to
conclude that D(U~xUn-X) = -nDt. This implies that t £ K, a contradiction.
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Lemma 3.2. Let (k, {ôx, ô2}) be a differential field of characteristic zero, A a
liouvillian extension of k with C(N, {ôx, S2}) = C(k, {ôx, ô2}) and P and
Q elements of N. Assume that

(i)   C(N, {ôx, ô2}) = C(N, {D}) where D = Pôx + Qô2 ;
(ii)   PU + QV = 0, ô2U = ôx V has only the trivial solution U = V = 0 in

A;
(iii)   PU + QV = -(ÔXP + Ô2Q),ô2U = ôxV has a solution in N.
Then there exists C/n, F0 in k satisfying PUo + QV0 - -(ôxP + ô2Q) and

ô2Uq = ôxVo .
Proof. We proceed by induction on the transcendence degree of A over k.
We may therefore assume (by taking traces if necessary) that there exist U and
V in k(t) satisfying the equations in (iii) where k is an algebraic extension of
k, and either ôxt,ô2t£k or ôxt/t, ô2t/t £ k . We will first show that we can
find C/n and V0 in k satisfying the equations in (iii).

First assume that Sxt/t and St/t are in k. Expanding U and V in de-
creasing powers of t, we have U = U„t" + Un-Xt"~x -\-  and V = Vmtm +
Vm-Xtm~x + ■■■ , with the U¡ and V, in k. Comparing powers of t, we can
conclude that FC/n + QVo = -(ôxP + ô2Q). Comparing the coefficient of t° in
ô2U and ôxV we see that ô2Uo = ôxVo .

Now assume that ôxt and ô2t are in k . We therefore have Dt £ k . Apply-
ing Si to PU+QV = -(ôxP+ô2Q) allows us to conclude that DU+aU = b for
some a, b in k . Lemma 3.1 implies that U = Uo + Uxt for some C/n, Ux £ k .
Similarly, we can show that V = V0 + Vx t for some V0, Vx in k . Comparing
powers of / in the equations in (iii), we conclude that PUX + QVX - 0 and
ô2Ux = ôxVx, so by (ii), Ux = Vx = 0. Therefore U = C/n and V = V0 are in
k.

Given a solution of the equations in (iii) in k , we can take traces with respect
to k and conclude that there exist C/n and Vq in k satisfying the conclusion
of the proposition.

Proposition 3.3. Let (k , {Sx, S2}) be a differential field of characteristic zero
and let P, Q £ k. Let D = Pôx + Qô2 and assume that C(k, {ôx, ô2}) =
C(k, {D}). If there exists a liouvillian extension (M, [ôx, S2}) of k such that
C(k, {ôx, ô2}) — C(M, {ôx, ô2}) and such that C(M, [ôx, ô2}) is a proper
subset of C(M, {D}), then there exist elements U and V in k such that:

PU + QV= -(ÔXP + Ô2Q),
U Ô2U = ÔXV.

Proof. By Proposition 2.2, there exists a liouvillian extension (A, {ôx, ô2}) of
(k, {ôx, ô2}) such that C(k, {ôx, ô2}) = C(N, {ôx, ô2}) = C(N, {D}) and
nonzero elements ux and u2 in A such that Pux +Qu2 = 0 and ô2ux = ôxu2.
Furthermore we shall assume that A has the smallest transcendence degree over
k of all such extensions. Letting R = ux/Q,we see that DR = -(ôxP+ô2Q)R.
Let U - ôxR/R and V = ô2R/R. If A is algebraic over k , then replacing U
and F by a constant multiple of their traces, allows us to reach the conclusion
of the proposition. Therefore assume that A is algebraic over K(t), where
either ôxt, ô2t £ K or ôxt/t, ô2t/t £ K, t is transcendental over K, and K is
algebraic closed in A. We will show that U and V are in K.
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Assume that ôxt,ô2t £ K . We then have that Dt £ K. Since DR/R £ K,
Theorem 2 of [ROS76] implies that R £ K. Therefore U = ôxR/R and
V = Ô2R/R are in K. Now assume that ôxt/t, ô2t/t £ K. Since Dt/t and
DR/R £ K, Theorem 2 of [ROS76] implies that R"tm £ K for some integers
n and m, n ^ 0. Therefore U = ôxR/R and V = ô2R/R are in K.

By the minimality in the choice of K , K satisfies the hypotheses of Lemma
3.2. We therefore can conclude that there exists U and V in K satisfying (5)
above.

Proof of Theorem 1. The hypotheses of Theorem 1 imply that the solution
(x(z),y(z)) satisfies a liouvillian relation. As we have noted following the def-
inition of the basic assumption, if x(z) and y(z) are not algebraically depen-
dent over C (that is, there is no nonzero polynomial G such that G(x(z) ,y(z))
= 0), then (x(z), y(z)) satisfies the basic assumption. Therefore, Proposition
2.1 implies that (1) has a liouvillian first integral. In particular the hypothe-
ses of Proposition 3.3 are satisfied where k = C(x, y) and ôx = d/dx and
ô2 = d/dy . We can conclude that there exist U and V in k = C(x, y) such
that (5) holds. Letting

fx,y)
R(x,y) = exp   /        U(x, y)dx + V(x, y)dy   ,

J(xo,y<i)
we see that d(RP)/dx = -d(RQ)/dy so the conclusion of Theorem 1 is valid.

Proof of the corollary to Theorem 1. As we have already noted, the existence of
an integrating factor of the form (2) guarantees a liouvillian first integral.

Conversely, assume that ( 1 ) has a liouvillian first integral F analytic on some
open nonempty subset % of C2. If for any solution (x(z), y(z)) passing
through this open set there is a polynomial G such that G(x(z), y(z)) = 0,
then there exist an infinite number of algebraic solution curves. Darboux's
Theorem (see the appendix) implies that there is a first integral of the form
F(X, Y) = n"=i G"', where the G¡ are polynomials in x and y with constant
coefficients. F will then satisfy PdF/dx + QdF/dy = 0, so R = (dF/dx)/Q
will be an integrating factor. Since R £ C(x, y), it clearly can be written in the
form (2). Now assume that some solution curve in % of (1) is not algebraic
and that (1) has a liouvillian first integral. The conclusion of the corollary then
follows from Theorem 1.

We now turn to the problem of finding liouvillian first integrals. Theorem 1
tells us what to look for to find liouvillian first integrals for equations (1), but
we are far from a decision procedure. We are even unable to give a complete
procedure to decide if (1) has a rational first integral, i.e., if there exists a
W £ C(x, y) such that DW = 0. In [PRSI83] we reduced this latter problem
to the following problem:
,,.,        Give D as above, effectively find an integer A so that if G is

irreducible in C[x, y] and G divides DG, then deg G < N.
We know from the corollary to Darboux's Theorem in the appendix that such
an A exists. In [PRSI83], we also reduced the problem of finding elementary
first integrals of (1) (i.e., first integrals expressible in terms of exponentials,
logarithms and algebraic functions), to the above problem (6). We are unable
to do this for liouvillian first integrals.   We are able to make the following
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reduction. If R is of the form (2), then (by applying d/dx to (5)) U will
satisfy

(7) DU + Q(P/Q)xU = -Q[(Px + Qy)/Q]x,
where the subscripts denote partial differentiation. A similar equation for V
can be found. The problem of finding a liouvillian first integral for (1) can be
reduced to algorithmically solving the following problem.

,ox        Given D as above and a, b £ C(x, y), find all solutions U £
[ '        C(x,y) of DU + aU = b.

The special case when b — 0 arose in [PRSI83] and we were able to reduce
(8) in that special case to the problem (6). We are unable to make a similar
reduction in the general case. Of course, under special assumptions (7) can
be solved. For example if (Px + Qy)/P is independent of y, then we may
let U = (Px + Qy)/Q and V = 0 to find an integrating factor (cf. [BODI77,
p. 43]). When F = 1 and Q = (df(x)/dx)/f(x) or Q = ydf(x)/dx with
f(x) £ C(x), an algorithm to solve (8) is given in [RISCH69].

4. Linear differential equations

As in §3, we will combine purely algebraic considerations with Propositions
2.1 and 2.2 to prove Theorem 2 and its corollary. Let ko be an ordinary
differential field with derivation D and let L(y) = D(")y + a„_iF>("_1)y + • • • +
aoy = 0 be a linear differential equation with coefficients in ko . We formally
construct a differential field k with n + 1 derivations A= {ô-X, ôo, ... , ôn-X}
in the following manner. Let k = ko(y0, yx, ... , yn-X) where we consider
y0, ... , y„-1 as algebraically independent indeterminates. We let ô-x agree
with D on ko and extend it to k by setting <5_i(y,) = 0 for i = 0, ... , n-\ .
For j = 0, ... , n - 1, we let Sj be zero on ko and ôj(y,) = 1 if i = j and 0
otherwise. We extend D to k (and use the same letter to denote this extension)
by setting D = <5_, +yxô0 + ■ ■ ■+yn-\ôn-2 + (-an-Xyn-X-a0yo)ôn-i ■ Note
that ö(n)yo + a„_iD("-1)yo + • ■ • + anyo = 0, so we have an element yo in k
satisfying L(y) — 0. Theorem 2 follows from Proposition 4.2 below which
depends in Proposition 2.2 and the following lemma. Recall that the adjoint
L*(z) of L(y) is defined as [POOLE60], p. 38.

L*(z) = (-l)nD^z + (-\)n-lD(n-l\a„-iz) + ■■■- D(axz) + anz.

Lemma 4.1. Let (K, A) be as above and let (F, A) be an extension of (K, A)
containing elements u¡, -I < i < n - I, such that

(i)   «_i + y0u0 + ■ ■ ■ + yn-Xun-2 + (-a„_iy„_i-a0yo)un-X =0,
(ii)   o¡Uj = ôjUi, -1 < /, j < n - 1.

Then un-X satisfies L*(un-X) = 0 where L*(z) is the adjoint of L(y).
Proof. Let A be the n x n matrix

r 0        1      0   •■■        0    "
0       0      1    • ■■        0

0       0
L-a0   -ai

1
-a„-u
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and let B be the (n + 1) x (n + 1) matrix

un-X)T and
r

Let U and Y be the (n + 1) x 1 column vectors (u-X, ...
(l,y0, ... ,y„_i)r. Note that D((yQ, yx, ... , yn-\)T) = A(y0, ... , yn-X)
and that this is just the matrix form of L(y) = 0. By (i), we have (BY, U) = 0,
where ( , ) is the usual inner product. Applying o¡ to this latter equation
we have 0 = o¡((BY, U)) = (o¡(BY), U) + (BY, 6¡(U)). We shall calculate
each of these terms separately. For i = 0, ... , n — 1, S¡ annihilates the en-
tries of B, so we have S¡(BY) = B(6¡Y). By (ii), we have that ¿¡(U) =
(<5_iU¿, ... , ön-iUi)T. Therefore, for i = 0, ... , n - 1, 0 = S¡((BY, U)) -
(B(S¡Y), U) + (BY, (S-iUi, ... , Sn-iUi)T) = (Ô.Y, BTU) +Dut = (BTU)i+2 +
Du i. We therefore have the relation

D
u0

W/i-l

= -AJ
«o

Lw„-iJ
From this latter equation one can easily calculate that L*(u„-X) = 0.

Propositon 4.2. Let (k, A) be as above with ax = 0 and n — 2. Assume that
C(k, A) = C(ko, A). If there is a liouvillian extension (M, A) of (k, A) such
that C(k,A) = C(M, A) ¿ C(M, {D}), then all solutions of L(y) = 0 are
liouvillian over k.
Proof. The assumptions imply that L(y) =y"-r-a0y and therefore that L*(z) =
z"-|-aoz . Proposition 2.2 implies that there is a liouvillian extension (A, A) of
(k, A) such that C(A, A) = C(A, {£>}) = C(k, A) and elements U-X, Uo, ux
in A, not all zero, such that

(9) w_i + u0yx +ux(-a0y0) = 0,

and ôiUj = ôjUj for -1 < /', j < 1. Lemma 4.1 implies that D2ux +üqUX = 0.
We shall show that ux is algebraic over K. Proceeding by induction on the
transcendence degree of A ove£ k , we may assume that A is algebraic over
k(t) where o¡t £ k or o¡t/t £ k for /' = -1, 0 or 1 and k is algebraic over
k.

We first assume that o¡t/t £ k for ¿ = -1,0 or 1. Note that since ax - 0,
we have that the Wronskian determinant of any two solutions of L(y) = 0 is
constant. Therefore D(ux/y0) = c/y\ € K- Since Dt/t £ K, Theorem 2 of
[ROS76] implies that ux is algebraic over k .

Now assume that S¡t £ k for i = -1,0 and 1. Since D(ux/yo) £ k,
Theorem 2 of [ROS76] implies that there are constants cx and c2, not both
zero, such that cx(ux/y0) + c2t £ K. If c2 - 0, then ux £ k , so we may assume
that c2 í 0 (and therefore that cx / 0). We shall show how this leads to a
contradiction. Replacing / by ct + a for suitable a £ k and constant c, we
may assume that Dt = 1/y2. Therefore there exist v~x, Vo, and vx in k such
that ôjVj = ôjVi, -1 < i, j < 1, and

(10) v-i +yxv0-a0yovx = -¡.
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Applying ôx to (10), we have

0 = ôxv_x +vo + yxôxv0-aoyoôxvx
= ô-Xvx + v0 + yoô0vx -aoôxvx
= Dvx + vo.

Therefore Dvx - -v0 . Applying ¿o to (10), we similarly conclude that Dv0 =
aoVX - 2/y\ . Therefore D2vx + üqVX = 2/y^ . Letting w = vx/y0 £ k , we find
that (\Dwyl)' — \/y\. Therefore \Dwy\ and t differ by a constant. Since
\Dwy2 £ k, we have a contradiction.

We therefore conclude that ux is algebraic over k . If ux and y o are linearly
independent then k contains the Picard-Vessiot extension of ko corresponding
to L(y) = 0. Since the transcendence degree of k over ko is 2, we can conclude
that the connected component of the identity of the galois group of L(y) = 0
is solvable [KOL73, p. 373], and so all solutions of L(y) = 0 are liouvillian.
To complete the proof, we shall show that the assumption that ux and y o are
linearly dependent leads to a contradiction. We first note that by applying ôx
to (9), we can conclude that Dux = -uo. Therefore if ux = cyo for some
constant c, we have (again from (9)) that

(11) u_x-c(Dyo)2-aocy2o = 0.

Since ¿oW-i = ô-XUo = ô-X(cDy) = 0 and ôxU-X = ô^xux = ô_x(cyo) — 0, we
have that U-X is algebraic over C(k, {ôo, ôx}) — ko. We must have c ^ 0
(otherwise U-X — uq = ux = 0), so (11) implies that yo and Z)yn = yx are
algebraically dependent over ko, a contradiction.

Proof of Theorem 2. Let ko be a liouvillian extension of the complex numbers
containing p and q . If necessary, we can adjoin eJ p to ko and replace y by
eJ py in L(y) to assume that L(y) = y" + aoy. This modification on L(y)
does not affect the validity of our hypotheses. If y and dy/dz are algebraically
dependent over ko, then L(y) = 0 has a solution in an extension of k0 of
transcendence degree 1 over ko . Corollary 3 of [SIN76] implies that L(y) = 0
will have a nonzero liouvillian solution. Since L(y) has order 2, all solutions
are then liouvillian.

We may therefore assume that y and dy/dz are algebraically independent
over ko . Note that yx =y,y2 = dy/dz, y3 = z satisfy

dy\     „        dy2 dy3
-j- = y2,    -j— = -aoyi,    -j— = i •dz dz dz

We may think of üq as a function of y3. Let ko be the differential extension
of C(y3) generated by an and let k = ko(yx, y2). As we have noted following
the definition of the basic assumption, the algebraic independence of yx and
y2 implies the basic assumption. Proposition 2.1 implies that the hypotheses of
Proposition 4.2 are satisfied. Therefore Proposition 4.2 implies that Theorem
2 is true.

Proof of the corollary to Theorem 2. The first part of the corollary is an imme-
diate consequence of Theorem 2. To see that the second part holds, let y(z) be
a nonzero liouvillian solution of L(y) = 0. Letting u(z) = y'(z)/y(z), we can
write L(y) = Lx(L2(y)), where L2(y) = y'-u(z)y and Lx(y) - y'-v(z)y for
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some liouvillian function v . Any solution of L(y) = 0 satisfies L2(y) = ceJ v
for some constant c. Therefore, F(z, y, y') = e~ ■> v(y' - u(x)y) is a liouvil-
lian first integral.

The corollary of Theorem 2 implies that the problem of finding liouvillian
first integrals of a second order homogeneous linear differential equation is
equivalent to finding nonzero liouvillian solutions of this equation. Kovacic
[KOV86] has given an algorithm that solves this latter problem.

Appendix

We give here a proof of Darboux's Theorem that was alluded to in the proof
of the corollary to Theorem 1. The original (weaker) version is described in
[INCE56, pp. 29-32]. The present result occurs (in a stronger form) in [JOU79,
Theorem 3.3, p. 102 and Lemma 3.53, p. 112]. Our proof, although ultimately
in a spirit similar to [JOU79], only relies on [ROS76] and elementary facts
about the resultant. We hope this will make it more accessible to workers in the
field of integration in finite terms.

We first prove the following lemma. Let P and Q be polynomials in C[x, y]
and consider the derivation D = Pd/dx + Qd/dy . We say that (x0, yo) £ C2
is a nonsingular point of D if F(xn, yo) ^ 0 or Q(xq , yo) ¥=■ 0.

Lemma A.l. Let D be as above and (xn,yo) a nonsingular point of D. Let Hx
and H2 be polynomials such that Hx divides DHX, H2 divides DH2, Hx(xo, yo)
= H2(xo, yo) = 0 and Hx irreducible. Then Hx divides H2.
Proof. Let us assume that F(xo, yo) ^ 0. The case Q(xo, yo) ^ 0 is similar.
Let R(x) be the resultant of Hx and H2 with respect to y. We may write
R(x) = A0HX + BoH2 for some A0,B0 £ C[x, y]. Note R(x0) = 0. DR =
PR' = (DA0)HX + (DB0)H2 + A0DHX +B0DH2 = AXHX +BXH2 for some Ax, Bx
in C[x, y], since Hx divides DHX and H2 divides DH2 . Since F(xo, yo) #
0, we have R'(x0) = 0. Applying D again, we get (DP)R' + P2R" = A2HX +
B2H2 for some A2, B2 in C[x, y]. This equation implies that R"(xq) = 0.
Continuing in this way we have iv(n)(x0) = 0 for all n , so 7?(x) = 0. Therefore
Hx and H2 have a common factor, so Hx divides H2.

One should think of this lemma as an algebraic counterpart of the uniqueness
of solutions of differential equations. It implies that, at a nonsingular point, the
vector field Pd/dx+Qd/dy has at most one solution that is an algebraic curve.

Darboux's Theorem. Let P,Q £ C[x, y] and let D = Pd/dx + Qd/dy. If
Gx, ... , Gm are relatively prime irreducible polynomials in C[x, y] such that
G i divides DG¡ for i = \, ... , m, then either m < [d(d + l)/2] + 2 where
d - max(deg F, deg Q) or there exist integers n¡ not all zero such that Dw = 0
where w = fT¿=i G? ■ ̂ n the latter case, if G is any irreducible polynomial such
that G divides DG, then either there exists cx, c2 in C, not both zero such that
G divides c, T[i€l G?'-c2 T[jeJ Gj"j where I = {i\n¡ > 0} and J = [j\n¡ < 0},
or G divides GCD(F, Q).
Proof. Let Gx, ... ,Gm be as above and assume that m > [d(d + l)/2] + 2.
The polynomials DG¡/G¡ all have degree less than or equal to d + (degC7, - 1)
- deg G¡ = d — 1. The vector space of polynomials of degree at most d - 1
has dimension d(d + l)/2 so there exist C-linearly independent vectors (r¡),
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(Si) £ Cm such that ¿Zri(DGi/Gi) = ¿js^DGi/Gi) = 0. Let k = {w £
C(x, y)\Dw = 0} and let K = C(x, y). We shall use the notation and results
of §1 of [ROS76]. Let œx = £ij_(dG,/t7,) and a>2 = £s¿(«/G//Gi), where we
consider cox, co2 £ QK/k. Let D = (\/P)D. Note that Dx(œx) = Dx(oj2) =
Dx (dx) = 0. Since tr. deg .kK < 2, dim* ilK/k < 2 . Proposition 6 of [ROS76]
implies that there are cx, c2, c3 in k such that 0 = cx dx + c2cox + c$(û2 =
d(cxx) + YKWi + c-$s¿)(dG,/Gi). Let tx, ... , tn be a basis for the Q-vector
space spanned by {c2r¡ + c3s/} and let c2r, + c35, = (l/N)J2Pijtj where p¡j
are integers, not all pu = 0. Let Fj = T[?=i GfJ. We then have 0 = d(cxx) +
Y,{tj/N)(dFj/Fj). Proposition 4 of [ROS76] then implies that Fx, ... , Fn are
algebraic over k . This implies that DF, = DF¡ = 0. Since some /?,; ^ 0, say
pxx t¿ 0, w = Fx satisfies the conclusion of the first part of the theorem.

Now let G be an irreducible polynomial such that G divides dG and let
F = UieiGT and H = HjejG"jJ. We shall assume that G does not divide
GCD(F, Q) and show that there are cx, c2 in C such that G divides cxF -
c2H. If we replace D by (1/GCD(F, Q))D, we can assume GCD(F, Q) = 1
and preserve the facts that Dw = 0 and G divides DG. If H = 0 implies that
G = 0, then G divides H and we have the final conclusion of the theorem.
Therefore we may assume that G = H = 0 has only a finite number of solutions.
Furthermore, since GCD(F, Q) - 1, F = Q = 0 has only a finite number of
solutions. Therefore, there exists a point (xo, yo) such that G(xo, yo) = 0,
#(*o, yo) ^ 0 and either F(x0, y0) ^ 0 or C2(x0, y0) ¥= 0. Let cx = H(x0, yo)
and c2 = F(xo, yo) and let S(x, y) = cxF -c2H. Since D(S/H) - 0, we have
HDS - SDH = 0. Since S and H have no common factors, 5" divides DS.
Applying Lemma A.l, allows us to conclude the G divides S.

Corollary. Let D be as above. Either there are at most a finite number of irre-
ducible polynomials G such that G divides DG or there is a nonzero rational
function W such that DW = 0. In any case, there is an integer N, depending
on D, such that if G is an irreducible polynomial and G divides DG, then
deg/< A.

Note that A does not only depend on the degrees of F and Q but may also
depend on the coefficients of F and Q. For example, if D - (n + l)x(d/dx) +
ny(d/dy), then for G = x" - yn+x , G divides DG.
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