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Abstract

There has been a quantum leap in the performance of automated lip reading recently

due to the application of neural network sequence models trained on a very large corpus

of aligned text and face videos. However, this advance has only been demonstrated for

frontal or near frontal faces, and so the question remains: can lips be read in profile to

the same standard?

The objective of this paper is to answer that question. We make three contributions:

first, we obtain a new large aligned training corpus that contains profile faces, and select

these using a face pose regressor network; second, we propose a curriculum learning

procedure that is able to extend SyncNet [10] (a network to synchronize face movements

and speech) progressively from frontal to profile faces; third, we demonstrate lip reading

in profile for unseen videos.

The trained model is evaluated on a held out test set, and is also shown to far surpass

the state of the art on the OuluVS2 multi-view benchmark.

1 Introduction

Lip reading (or visual speech recognition) is the ability to understand speech using only

visual information. As with many perception tasks, machine based lip reading has seen

a tremendous increase in performance due to the availability of large scale datasets and

the application of neural network based models using deep learning. Lip reading examples

include word spotting in continuous speech [9], phrase recognition [3], and sentence level

transcribing of continuous speech [8].

However, these recent works have only considered frontal or near-frontal faces, most

probably for two reasons: first availabity: most video material has mainly near-frontal faces;

and second technological: until recently, profile face detectors and profile landmark detectors

were far inferior to their frontal counterparts. In this paper we extend lip reading to profile

faces. We are able to do this, in part, because of the availability of a new generation of

ConvNet based object category detectors such as [18, 20].

We then ask the question “Can lips be read in profile to the same standard as those in

frontal views?”. We might expect the answer to be ‘no’, since profile views contain less

information – the teeth and tongue cannot be seen to the same extent, for example. We

investigate this question by generating a new dataset containing copious faces in profile to

train and test on, and use this to train a multi-view lip reading network for continuous speech
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at the sentence level. We also evaluate the network on a recently released public benchmark

dataset for multi-view lip reading [2].

Why are profiles important for lip reading? First, a machine that can lip read opens up a

host of applications: ‘dictating’ instructions or messages to a phone in a noisy environment;

reading conversations at a distance; or reading archival video without sound. Not having

profiles limits this applicability. Second, and quite tantalising, it will become possible to

know what HAL lip read in the film ‘2001: A Space Odyssey’ (where the conversation is in

profile view).

In detail, we make the following contributions: (i) we obtain a new large aligned cor-

pus, MV-LRS, that contains profile faces selected using a face pose regressor network (Sec-

tion 2); (ii) we propose a curriculum learning procedure that is able to extend SyncNet [10]

progressively from frontal to profile faces (Section 3); and (iii) we train a single sequence-

to-sequence model that is able to decode visual sequences across all views, and demonstrate

lip reading in profile for unseen videos (Section 5). SyncNet is an essential component of

the system: it is used both in building the dataset (for synchronization and for active speaker

detection), and it provides the features for the sequence-to-sequence model. Previously [10]

it had been applied only on frontal faces, and the extension to profiles here is a necessary,

but challenging, step.

The performance of the trained model far exceeds the existing methods on the multi-

view test set, and is also shown to surpass the state of the art on the OuluVS2 multi-view

benchmark.

1.1 Related works

Research on automatic lip reading has a long history. A large portion of the work has

been based on hand-crafted methods, and a comprehensive survey of these methods is given

in [28]. We will not review these in detail here.

There have been phenomenal improvements to the performance of lip reading models in

recent months, benefitting from advances in deep learning [15, 24], and the ability to obtain

and process large scale datasets. These works have shown promising results on transcribing

phrases [3] and sentences [8] into words, and have exceeded human performance on their

respective datasets.

However, for the most part, existing work has only considered frontal or near-frontal

views. The only notable exceptions are the works on the small OuluVS2 multi-view lip

reading dataset [2], such as Saitoh et al. [22] and Lee et al. [16], where the task is to classify

visual sequences into one of the 10 phrases in the dataset (e.g. ‘hello’ and ‘thank you’). To

a large part, this concentration on frontal faces is due to the lack of large-scale datasets that

contain profile faces, as is evident in Table 1 which compares existing lip reading datasets.

Name Type View Vocab # Utterances

OuluVS2 [2] Fixed phrases 0◦ - 90◦ 10 3,640

GRID [11] Phrases 0◦ 51 33,000

LRW [9] Words 0◦ - 30◦ † 500 500,000

LRS [8] Sentences 0◦ - 30◦ † 17,428 118,116

MV-LRS Sentences 0◦ - 90◦ † 14,960 74,564

Table 1: Comparison of existing datasets. 0◦ indicates frontal faces, and † indicates that

angles are approximate.
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2 Dataset collection

We propose a multi-stage strategy to automatically collect a large scale dataset for multi-

view lip reading. The dataset is based on the Lip Reading Sentences dataset (LRS) [8], but

it contains videos of talking faces covering all views, from frontal to profile.

Whereas the LRS dataset consists of videos taken from mainly broadcast news, we

choose a wider range of programs including dramas and factual programs where people

engage in conversations with one another, and are therefore more likely to be pictured from

the side.

The data preparation pipeline is closely related to [9], and includes the following stages:

(i) detect all faces and combine these into face tracks; (ii) temporally align the audio with

the subtitles on TV; (iii) correct the audio-to-video synchronisation. This in turn provides

the time alignment between the visual face sequence and the words spoken; and, (iv) deter-

mine which face is speaking the words (active speaker detection). The first two stages are

described in more detail below. Stages (iii) and (iv) employ SyncNet, and these are described

in section 3.

2.1 Face tracking

CNN face detector based on the Single Shot MultiBox Detector (SSD) [18] is used to detect

face appearances in the individual frames. Unlike the HOG-based detector [14] used by

previous works, the SSD detects faces from all angles, and shows a more robust performance

whilst being faster to run.

The shot boundaries are determined by comparing color histograms across consecutive

frames [17]. Within each shot, face tracks are generated from face detections based on their

positions, as featured-based trackers such as KLT [19] often fail when there are extreme

changes in viewpoints.

2.2 Channel alignment

The goal is to find the time alignment between the visual face sequence and the words in the

subtitle. This is done in two stages: (1) aligning audio to text; (2) aligning video to audio.

Audio to text alignment. TV subtitles are not always in sync with the words being spoken,

as they are often typed live. As done in previous works [9], the Penn Forced Aligner [26]

is used to align the subtitle to the audio speech; and the force-aligned subtitles are double-

checked against a transcript given by a commercial speech recognition software.

Audio to video alignment. On broadcast television, the lip-sync (audio-to-video synchroni-

sation) errors of up to a few hundred milliseconds are common, due to transmission delays,

etc. This would result in time offsets between the aligned word and the visual face sequence.

The lip-sync error is corrected using SyncNet, described in section 3.

2.3 Facial pose estimation

In order to faciliate the testing of the multi-view model, we divide the data into five pose

categories based on the yaw-rotation of the face: (1) left profile; (2) left three-quarter; (3)

frontal; (4) right three-quarter; (5) right profile. This is done using a ResNet-based pose

regressor, trained on the CASIA-WebFace dataset [25]. The network has been trained to
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classify cropped face images into one of the above five categories. Examples belonging to

each class are given in Figure 1.

Figure 1: Face detections examples from the MV-LRS dataset. Top row: left profile; 2nd

row: left three-quarter; 3rd row: frontal; 4th row: right three-quarter; Bottom row: right

profile.

2.4 Data statistics

Set Dates # Sentences Vocab

Train 01/2010 - 12/2015 67,793 14,440

Val 01/2016 - 02/2016 2,352 4,330

Test 03/2016 - 09/2016 4,429 4,375

All 74,574 14,960

Table 2: The Multi-View Lip Reading Sentences (MV-LRS) dataset. Division of training,

validation and test data; and the number of utterances and vocabulary size of each partition.

The videos are divided into train, validation and test sets according to date, and in partic-

ular, the dates used for the split are the same as the LRS dataset [8]. This is so that the users

of the dataset can co-train on the larger LRS dataset, as some of the videos may overlap.

3 Multi-view SyncNet

The SyncNet architecture proposed in [10] is used for three purposes in this paper: first,

to synchronize the audio and lip motion in the video sequence; second, for active speaker

detection; and third to generate the features for the sequence-to-sequence model. The first

and second are used in the dataset construction of Section 2.

In this section, we first review the SyncNet of [10], and then extend SyncNet from the

(originally) frontal to the profile faces required for this paper, using a curriculum learning

strategy described in Section 3.2.
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3.1 SyncNet review

SyncNet learns a joint embedding between the sound and the mouth motions from unla-

belled data. The network consists of two asymmetric streams for audio and video, which are

described below.

Audio representation. The input audio data is MFCC values. The features are computed at

a sampling rate of 100Hz, giving 20 time steps for a 0.2-second input signal.

Video representation. The original SyncNet ingests five precisely aligned lip images, given

that the facial landmarks are clearly visible from the front; however, the landmarks are not

well-defined in the multi-view case. Here, the multi-view SyncNet takes a larger image

region (the whole face bounding box), and hence a larger image resolution of 224×224.

layer   support   # filts

Key

pool1 3x3                  
conv1  7x7     96

pool2 3x3
conv2  3x3      256

224x224x5

conv3 3x3    512

conv4 3x3    512

pool5 3x3 
conv5 3x3        512

fc6 6x6        4096

fc7 1x1        256

conv1  3x3     96

pool2 1x3
conv2  3x3      256

conv3 3x3    512

conv4 3x3    512

pool5 3x3 
conv5 3x3        512

fc6 5x4       4096

fc7 1x1        256contrastive loss

13x20x1

FULL FACE

Figure 2: Multi-view SyncNet architecture.

Architecture. Both streams in SyncNet are based on the standard VGG-M [6] architecture.

The modified network shares the underlying layer structure of the original SyncNet, but the

visual stream has slightly different filter sizes to accommodate the larger input size. The

layer configurations are shown in Figure 2.

Figure 3: Sampling strategy for training SyncNet.

Training protocol. We use a curriculum learning strategy described in Section 3.2; other-

wise the training protocol follows that of [10] – positive audio-video pairs are taken from

corresponding frames in validated facetracks, and negative audio-video pairs are generated

by randomly selecting non-corresponding frames from the same face track. The sampling

strategy is shown in Figure 3. The two-stream network is trained with a contrastive loss
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to minimise the distance between features for positive pairs, and maximise the distance for

negatives.

3.2 Curriculum learning

The training of the original SyncNet used the assumption that the majority of faces in the

dataset are speaking. Whilst this may be the case for the news programmes it was trained

on (Figure 4 left), this assumption cannot be used to bootstrap the multi-view model as there

would be too much noise (in the form of non-speaking faces) for the network to learn relevant

information. For example in a scene such as Figure 4 right, only one of these faces would

be speaking at any one point. To circumvent this problem, we start with the frontal SyncNet

trained on the news programmes, and adopt a curriculum learning approach that gradually

increases the working angle of the active speaker detection system.

Figure 4: Left: Still image from ‘BBC News’; Right: Still image from ‘The One Show’.

Stage 1. Frontal view. The first stage is to determine speaking and non-speaking face

sequences for the frontal faces (view 3 from Section 2.3). Facial landmarks are determined

using the regression-tree based method of [13]. The landmarks are used to align and crop the

lip region; active speaker detection is performed on all tracks using the frontal-only SyncNet

on the aligned lip images. The new network is trained on the active speaker images using the

full face image (instead of the aligned lips).

Stage 2. Three-quarter view. The network trained in Stage 1 is used to determine the active

speaker on the three-quarter view (views 2 and 4) face tracks. The speaking tracks from these

views are added to the training data; and the synchronisation network is re-trained.

Stage 3. Profile view. As before, the network in Stage 2 is used to perform speaker detection

on the profile view (views 1 and 5) tracks. The speaking tracks are added to the training data

and the network is re-trained.

Evaluation. We report Equal Error Rates on the labelled validation set in Table 3. The

data is in the same format as used in training – the correct audio-video pairs for positives,

and artificially shifted audio for negatives. Note that not every 0.2-second sample contains

discriminative information even within a labelled segment of speech (e.g. the person might

be taking a breath), but it nonetheless illustrates the performance gained from the curriculum

training.

Discussion. Using this method, we are able to train a two-stream network that learns an

embedding of the audio and the lip motion, and provides a robust method of correcting the

lip-sync error, and determining the active speaker in multi-speaker scenes.

The method does not require any annotation of the training data and allows almost any

web video to be used as training data, so the cost of obtaining the training data is minimal.
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MV SyncNet SyncNet

Frontal 13.6% 13.2%

Three-quarter 14.8% 17.1%

Profile 16.2% 21.7%

Table 3: Equal Error Rates on the validation set, using single 0.2-second samples. Lower

is better.

As shown in [10], the visual stream of this network generates excellent features for the

task of lip reading – on the LRW [9] and OuluVS2 [2] datasets, single-layer classifiers trained

on the SyncNet features have outperformed networks trained end-to-end on the task. This is

presumably because the SyncNet is trained on a near-infinite amount of audio-visual data,

whereas this is not feasible for lip reading.

4 MV-WAS Architecture
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Figure 5: MV-WAS architecture.

The Multi-view Watch, Attend and Spell (MV-WAS) model is based on the WAS model

of [8], without the second attention mechanism and the audio encoder. The network config-

uration is shown in Figure 5. The model consists of two key modules: the image encoder

and the character decoder, described in the following paragraphs:

Image encoder. The image encoder consists of the convolutional part that generates image

features for every input timestep, and the recurrent part that produces the fixed-dimensional

state vector and a set of output vectors.

The convolutional layer configurations are based on the VGG-M model [6], as it is

memory-efficient and fast to train compared to deeper model such as VGG-16 [23] and

ResNet [12], whilst still showing good classification performance on ImageNet [21].

To prevent overfitting and for computational efficiency, the convolutional layer weights

(conv1 to conv5) are fixed to that of the multi-view SyncNet. Memory-efficiency is important

here as a large number of images (# timesteps × batch size) must be passed through the

ConvNet at every iteration, and in particular the input images are significantly larger than

that used by the original WAS network [8].
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The encoder LSTM network ingests the output features produced by the ConvNet at

every timestep, and generates a fixed-dimensional state vector at the end of the sequence,

and an output vector at every timestep, to be read by the attention decoder.

Character decoder. The decoder module uses a LSTM transducer [4, 5, 7] to produce a

probability distribution over the next character conditioned on the inputs and the previous

characters, one character at a time. This transducer is based on the implementation of [5]

and will not be repeated here in detail.

Implementation details. Our implementation is based on the TensorFlow library [1] and

trained on a NVIDIA GeForce GTX 1080 GPU. The network is trained with dropout, and a

batch size of 64 was used.

5 Experiments

5.1 Evaluation on MV-LRS

Figure 6: Example video frames from sentences in the MV-LRS dataset.

Training. The MV-WAS model is trained using the curriculum learning approach described

in [8], where the model starts to learn from easier, single-word examples and gradually

move to longer sentences. This results in faster training and less overfitting. A single multi-

view model is trained (as opposed to separate models for every viewpoint) given that the

viewpoint may change within a sentence (as shown in Figure 6), and the amount of data for

each viewpoint would be insufficient for training in any case.

We compare performance to the WAS model [8]. This model is pre-trained on the LRS

dataset, and we fine-tune the LSTM layers on the multi-view dataset until the validation error

stops improving. This is done so that the language model (implicitly learnt in the decoder)

adapts to the new corpus that consists of videos from previously unseen genres (e.g. dramas).

Evaluation protocol. The performance measures used are consistent with that used in

related works [3, 8] – we report the Character Error Rate (CER), the Word Error Rate (WER)

and the unigram BLEU measure.

Decoding. The decoding is performed with a beam size of 4.

Viewpoint MV-WAS WAS [8]

CER WER BLEU† CER WER BLEU†

Frontal 46.5% 56.4% 49.3 45.5% 56.1% 50.4%

Three-quarter 50.4% 59.2% 46.1 55.4% 65.2% 42.5

Profile 54.4% 62.8% 42.5 74.2% 82.6% 26.6

Table 4: Results on the MV-LRS dataset. Lower is better for CER and WER; higher is better

for BLEU. †Unigram BLEU with brevity penalty.

Results. Performance measures for all viewpoints are given in Table 4. The profile perfor-

mance of the MV-WAS model far exceeds the frontal-only WAS model fine-tuned on our
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dataset, and also shows a significant improvement for three-quarter faces. The performance

of our model on frontal videos is comparable to that of the frontal-only WAS model. Table 5

gives examples of successfully read sentences.

AND IF YOU LOOK AROUND THE WORLD NOW

BUT BEHIND THE SCENES THERE IS ANOTHER

DESPITE THIS STRONG GESTURE OF PEACE

TENS OF MILLIONS OF CHILDREN ARE LEFT BEHIND

OUR RELATIONSHIP WITH THE REST OF THE WORLD

Table 5: Examples of unseen sentences in profile-view that MV-WAS correctly predicts. The

examples are best seen in video format. Please see the online examples.

5.2 Evaluation on OuluVS2

We evaluate the MV-WAS model on the OuluVS2 dataset [2]. The dataset consists of 52

subjects uttering 10 phrases (e.g. ‘thank you’, ‘hello’, etc.), and has been widely as a bench-

mark. Here, we assess on a speaker-independent experiment, where 12 specified subjects are

reserved for testing.

Training. We use the sequence-to-sequence model pre-trained on the MV-LRS dataset, and

fine-tune the LSTM layers on the training portion of the OuluVS2 data. Unlike previous

works [16, 22, 27] that use separate models trained for each viewpoint, we only train a

single model to classify the phrases at all angles.

Decoding. The decoding is performed with a beam size of 1.

Results. As can be seen in Table 6 our method achieves a strong performance, and sets the

new state-of-the-art for the multi-view task.

Method Frontal 30◦ 45◦ 60◦ Profile

Zhou et al. [27] 73.0% 75.0% 76.0% 75.0% 70.0%

Lee et al. [16] 81.1% 80.0% 76.9% 69.2% 82.2%

Saitoh et al. [22] 85.6% 79.7% 80.8% 83.3% 80.3%

MV-WAS (ours) 91.1% 90.8% 90.0% 90.0% 88.9%

Table 6: Classification accuracy on OuluVS2 Short Phrases. Higher is better.

6 Conclusion

We can give a qualified answer to the question posed in the introduction: “Yes, it is possible

to read lips in profile, but the standard is inferior to reading frontal faces”.

We plan now to increase the size of the dataset further to see if the availablity of more

training data will be of benefit. Also, it will be interesting to investigate how deep learning

has learnt to select relevant information for each view, and whether different architectures,

e.g. increasing capacity, will improve performance.
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