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ABSTRACT In this paper, a neural network-based lip reading system is proposed. The system is lexicon-

free and uses purely visual cues. With only a limited number of visemes as classes to recognise, the system

is designed to lip read sentences covering a wide range of vocabulary and to recognise words that may

not be included in system training. The system has been testified on the challenging BBC Lip Reading

Sentences 2 (LRS2) benchmark dataset. Compared with the state-of-the-art works in lip reading sentences,

the system has achieved a significantly improved performance with 15% lower word error rate. In addition,

experiments with videos of varying illumination have shown that the proposed model has a good robustness

to varying levels of lighting. The main contributions of this paper are: 1) The classification of visemes in

continuous speech using a specially designed transformer with a unique topology; 2) The use of visemes

as a classification schema for lip reading sentences; and 3) The conversion of visemes to words using

perplexity analysis. All the contributions serve to enhance the accuracy of lip reading sentences. The paper

also provides an essential survey of the research area.

INDEX TERMS deep learning, lip reading, neural networks, perplexity analysis, speech recognition.

I. INTRODUCTION

T
HE task of automated lip reading has attracted a lot of re-

search attention in recent years and many breakthroughs

have been made in the area with a variety of machine

learning-based approaches having been implemented [1] [2].

Automated lip reading can be done both with and without

the assistance of audio [3] and when performed without the

presence of audio, it is often referred to as visual speech

recognition [4].

The most recent approaches to automated lip reading are

deep learning-based and they largely focus on decoding long

speech segments in the form of words and sentences using

either words or ASCII characters as the classes to recognise

[5] [6] [7] [8] [9] [10]. Lip reading systems that are designed

to classify words often use individual words as the classifica-

tion schema where every word is treated as a class. In recent

years, very good accuracies have been achieved for word-

based classification on some of the most challenging audio-

visual datasets for words, such as LRW [7] and LRW-1000

[48].

Contrastingly, however, lip reading sentences have not

succeeded in attaining accuracies as good as word-based

approaches. It still remains an ongoing challenging task to

automatically lip reading people uttering sentences which

cover a wide range of vocabulary and contain words that may

not have appeared in the training phase while using the fewest

classes possible. The main obstacles to lip reading sentences

are:

• Lip reading systems that use words or ASCII characters

as classes can only predict words that the systems have

been trained to predict because in the case of using words

as a class, the word needs to be encoded as a class and

presented in the training phase; while in the case of

ASCII characters, the prediction of words is based on

combinations of characters having been presented in the

training phase as patterns.

• The models must be trained to cover a wide range of

vocabulary which requires a significant number of pa-

rameters in the models to be optimised and a significant

volume of training data to be used.

• They often require curriculum learning-based strategies

[28] [29] which involve further pre-processing, whereby

the videos of individuals speaking in the training data

have to be clipped so that the models can be trained on

single word examples initially, with the length of the

sentences being gradually incremented.
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This paper focuses on improving the accuracy of lip

reading sentences and this is achieved by using visemes as a

very limited number of classes for classification, a specially

designed deep learning model with its own network topology

for classifying visemes, and a conversion of recognised

visemes to possible words using perplexity analysis.

Using visemes for lip reading sentences has some unique

advantages. The use of visemes as classes in comparison to the

use of either words or ASCII characters as classes requires an

overall smaller number of classes which alleviates bottleneck

in the computation. In addition, using visemes does not require

pre-trained lexicons, meaning that a viseme-based lip reading

system can be used to classify words that have not presented

in the training phase, and they can be generalised to different

languages because many different languages share the same

visemes.

On the other hand, there are some specific issues to be

considered when designing a viseme-based lip reading system

for sentences. The general classification performance for

individual segmented visemes has been less satisfactory in

comparison to the classification of words due to the fact that

visemes tend to have a shorter duration than words. This

results in there being less temporal information available to

distinguish between different classes, as well as there being

more visual ambiguity when it comes to class recognition [25].

One possible way to address this problem is to significantly

increase the training data available to enhance the system’s

ability to distinguish between classes, and this is why a high

volume of training videos have been utilised. Moreover, there

is a direct conversion of recognised ASCII characters to

possible words in a one-to-one mapping relationship, whereas

this one-to-one mapping relationship does not exist when

using visemes, because one set of visemes can map to multiple

different sounds or phonemes. This also means that once

visemes have been classified, there is still the need to perform

a viseme-to-word conversion. This approach also helps to

distinguish between homopheme words or words that look the

same when spoken but sound different [11], a phenomenon

that exists because of the one-to-many mapping relationship

between visemes and phonemes.

The proposed automated lip reading system contains a

component to classify spoken visemes from people speaking

in silent videos, and a component to perform viseme-to-word

conversions using perplexity analysis [12]. The proposed

model also has a good robustness to varying levels of lighting.

The rest of the paper is organised as follows: First in

Section II, the different classification schema for automated

lip reading are discussed along with their advantages and

limitations. Then in Section III, details of all the components

that make up the whole lip reading system including pre-

processing, visual feature extraction, viseme classification

and word detection are given. In Section IV, the classification

results for the overall lip reading system are discussed and

compared followed by concluding remarks given in Section V

along with suggestions for further research.

II. LITERATURE REVIEW

Automated lip reading systems initially focused on classifying

isolated speech segments in the form of digits and letters

[13] [14] [15] [16] [17], and then eventually moved on to

longer speech segments in the form of words. The success

of automated lip reading was previously constrained by the

available training data, as initially, the only audio-visual

datasets available were those with isolated speech segments,

i.e., digits, alphabet and words [18] [19] [20]. Subsequently

every speech segment was treated as a class to recognise.

Thanks in part to the availability of larger audio-visual

datasets with continuous speech, later lip reading systems

have focused on classifying entire sentences utilising a wider

range of vocabulary and so have opted for ASCII-based class

systems [5] [6] [7] [8] [9] [10]. Sentences are spelt using

ASCII characters as opposed to including a class for every

single word, which allows for the use of fewer classes and

avoids the creation of computational bottleneck [31]. ASCII

characters also allow for the modelling of natural language due

to the conditional probability relationships that exist between

ASCII characters making it easier to predict characters and

words.

Very good accuracies have been attained in some of the

most recent neural network-based lip reading systems that are

trained to classify individual words on word-based lip reading

datasets like LRW [7] and LRW-1000 [48]. LRW is a very

taxing dataset since it consists of more than 1000 speakers

with large variations in head pose and illumination. LRW-1000

is an even more tricky Mandarin lip reading dataset, due to its

large variations in scale, resolution and background clutter.

Notable performances have been recorded for lip reading

systems that predict entire sentences, such as those predicting

phrases from the GRID [49] and OuluVS [50] datasets.

However, sentences in datasets like GRID and OuluVS are

simple, repetitive and follow standard sequences unlike those

contained within the LRS2 corpus which are more random

and varied. A summary of the most recent state-of-the-art lip

reading models and their performances is given in Table 1.

Other alternative classification schemas for neural network-

based lip reading include phonemes which have been used in

audio and acoustic speech recognition systems [21]. Assael

et al. [10] used a neural network architecture consisting of

a spatial-temporal convolutional neural network(CNN) and

a Long-Short Term Memory Network (LSTM) to classify

sequences of phonemes from silent videos where phonemes

were then mapped to words using a Finite-state transducer

[31]. However, with phonemes, there is still the one-to-many

mapping problem where different phonemes map to the same

viseme thus producing identical lip movements.

To the best of our knowledge, there is no lip reading sen-

tences system that has decoded entire sequences of visemes,

although there has been a lot of work on classifying individual

segmented visemes in the form of images or groups of image

frames [23] [24] [25] [26]. If visemes are to be classified, they

should be classified in the context of continuous speech in

order to perform viseme classification in real-time. There is
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TABLE 1: Different approaches to automated lip reading.

Year Reference Feature Extractor Classifier Database Recognition Task Class Accuracy Result(%)

2017
Chung and
Zisserman [51]

CNN LSTM+attention OuluVS2 [50] Phrases ASCII 91.10 [51]

2017
Chung and
Zisserman [51]

CNN LSTM+attention MV-LRS [6] Sentences ASCII 43.60 [51]

2017 Chung et al. [6] CNN LSTM+attention LRW [7] Words ASCII 76.20 [6]

2017 Chung et al. [6] CNN LSTM+attention GRID [49] Phrases ASCII 97.00 [6]

2017 Chung et al. [6] CNN LSTM+attention LRS2 [6] Sentences ASCII 49.80 [6]

2017 Petridis et al. [52] Autoencoder LSTM OuluVS2 [50] Phrases ASCII 84.50 [52]

2017 Petridis et al. [53] Autoencoder Bi-LSTM OuluVS2 [50] Phrases ASCII 91.80 [53]

2017 Petridis et al. [54] Autoencoder Bi-LSTM OuluVS2 [50] Phrases ASCII 94.70 [54]

2017
Stafylakis and
Tzimiropoulos [5]

3D-CNN+ResNet Bi-LSTM LRW [7] Words Words 83.00 [5]

2018 Afouras et al. [8] 3D-CNN+ResNet
Bi-LSTM+

Language Model
LRS2 [6] Sentences ASCII 37.80 [8]

2018 Afouras et al. [8] 3D-CNN+ResNet Depthwise CNN LRS2 [6] Sentences ASCII 45.00 [8]

2018 Afouras et al. [8] 3D-CNN+ResNet
Attention encoder+
Language Model

LRS2 [6] Sentences ASCII 50.00 [8]

2018 Fung and Mak [55] 3D-CNN Bi-LSTM OuluVS2 [50] Phrases Phrases 87.60 [55]

2018 Petridis et al. [56] 3D-CNN+ResNet Bi-GRU LRW [7] Words Words 82.00 [56]

2018 Petridis et al. [57] Autoencoder Bi-LSTM AV Digits [57] Phrases Phrases 69.70 [57]

2018 Petridis et al. [57] Autoencoder Bi-LSTM AV Digits [57] Digits Digits 68.00 [57]

2018 Wand et al. [58] Feed-forward LSTM GRID [49] Phrases Words 84.70 [58]

2018 Xu et al. [59] 3D-CNN+highway Bi-GRU+Attention GRID [49] Phrases ASCII 97.10 [59]

2018 Mattos et al. [64] CNN GRID [49] Visemes Visemes 64.80 [64]

2018 Oliveira et al. [25] CNN GRID [49] Visemes Visemes 67.3 [25]

2019
Shillingford et
al. [10]

3D-CNN

Bi-LSTM+
Finite-state
transducer

LSVSR [10] Sentences Phonemes 59.10 [10]

2019
Shillingford et
al. [10]

3D-CNN

Bi-LSTM+
Finite-state
transducer

LRS3-TED [63] Sentences Phonemes 44.90 [10]

2019 Wang [60] 3D-CNN Bi-Conv-LSTM LRW [7] Words Words 83.34 [60]

2019 Wang [60] 3D-CNN Bi-Conv-LSTM LRW-1000 [48] Words Words 36.91 [60]

2020 Weng [61] 3D-CNN Bi-LSTM LRW [7] Words Words 84.11 [61]

2020 Martinez et al. [62] 3D-CNN+ResNet Temporal CNN LRW [7] Words Words 85.30 [62]

2020 Martinez et al. [62] 3D-CNN+ResNet Temporal CNN LRW-1000 [48] Words Words 41.40 [62]

one paper about an LSTM that takes visemes as an input and

predicts the words that were spoken by individuals from a

limited dataset with some satisfactory results [27], though the

individual visemes were already known.

In addition to being treated as individual segments, visemes

can also be modelled in the form of clusters like "visual

words" where groups of visemes that make up a word can

be segmented. Whilst approximately 50% of the words in

the English language share identical viseme clusters, there

are words that have unique visemes and can be classified

when performing automated lip reading using solely visual

information. For words that share visemes, clusters of visemes

in combination would need to be analysed to determine which

combination is most linguistically probable. This is the basis

for the lip reading sentence system proposed in this paper

based entirely on visual cues.

No official standard convention for defining precise visemes

or even the precise total number of visemes exists and dif-

ferent approaches to viseme classification have used varying

numbers of visemes as part of their conventions with different

phoneme-to-viseme mappings [30] [31] [32] [33] [34] [35].

All the different conventions consist of consonant visemes,

vowel visemes and one silent viseme; but Lee and Yook’s

mapping convention of [30] appears to be the most favoured

for speech classification and it is the one that has been utilised

for this paper. However, it is accepted that there are multiple

phonemes that are visually identical on any given speaker [36]

[37].

The different automated lip reading approaches summarised

in Table 1 indicate many challenges still hindering the success

of automated lip reading systems. One of these challenges

is the lack of temporal information required to distinguish

between segments of speech which is why some of the

approaches tasked to classify shorter segments, such as

visemes and digits, have not attained as good accuracies as

those tasked to classify words. This problem however can

be compensated for by increasing the training data available

and when a small limited number of speech segments are

to be classified, such as in the case of digits or visemes, the

performance of such systems can be enhanced by generating

as much training data as possible to train the networks.

To apply such an approach is not feasible for the case of

words where the number of possible words that can be spoken

is unlimited so it is necessary to use a discrete class system to

cover general speech such as in the case of ASCII characters.

However, the use of ASCII characters in lip reading relies on

the conditional dependence relationship that exists between

the characters, and ASCII symbols are not always phonetic
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because of silent letters and digraphs, so to train a network

to decode speech in real time requires training to have been

done on an extensive range of vocabulary.

Lip reading systems tasked for predicting sentences from

sentence datasets such as GRID and OuluVS have been more

fruitful in terms of accuracy compared with those tasked

to recognise sentences from more challenging datasets like

LRS2. One of the main reasons that a dataset like LRS2 is so

difficult is because it contains sentences that randomly cover

a vocabulary of over 40,000 words, which is very different

to the circumstances of the datasets GRID and OuluVS that

contain repetitive sentences following a standard sequence,

and that only cover a small range of vocabulary. Lip reading

systems that use ASCII characters as classes are designed to

predict words as combinations of ASCII characters and so

to recognise any set of words, such words will need to have

appeared in the training phase. As of present an ASCII-based

lip reading systems are not be able to decode words that have

not presented in training. The low accuracy of lip reading

systems designed for lip reading sentences can be explained

by the inability to generalize to a wide range of vocabulary

whilst using a limited number of classes.

Training ASCII-based lip reading systems to generalise to

a wide range of vocabulary remains an ongoing obstacle to

tackle. One alternative to having a lip reading system designed

for decoding speech that covers a given vocabulary range is

to recognise lip movements and map them to possible words

because there are distinct number of visemes that can be

uttered by someone speaking. However, because of the one-

to-many mapping relationship that exists between visemes

and phonemes, one would still need to determine which

combination of words have been uttered.

III. METHODOLOGY

Given a silent video of a talking face, the objective here is

to predict the sentences being spoken by extracting their

lip movements. In this Section, an overall architecture is

proposed for decoding visual speech illustrated in Figure

1. The entire process consists of different stages, starting

off with a Data Preprocessing stage where the region of

interest is extracted from the videos using facial landmark

detection to provide the input to the Visual Frontend. The

components of the overall architecture include: a spatial-

temporal visual frontend that inputs a sequence of images

of loosely cropped lip regions, and outputs one feature vector

per frame; a sequence processing module known as the viseme

classifier that inputs the sequence of per-frame feature vectors

and outputs a sequence of visemes, and finally a module that

matches visemes to words and predicts the uttered sentence

using perplexity analysis. The performance of the system is

evaluated by comparing the sentences predicted by the lip

reading system to the ground truth of the spoken sentences

and measuring the edit distance. In the following Sections,

details of the systems components are discussed.

A. ARCHITECTURE

The overall system used for decoding speech consists of two

separate neural network architectures used to perform two

different tasks. The first architecture is used for the task

of viseme classification and consists of a spatial-temporal

visual frontend in tandem with an attention-based transformer

and the predicted visemes provide the input of the next

architecture. The second architecture, also an attention-based

transformer, is used to predict the spoken words given the

uttered visemes using a calculated metric called perplexity.

As illustrated in Figure 2, each of these modules are briefly

described along with the overall framework for the lip

reading system. Both the viseme classifier and the word

detector consist of common blocks including fully connected

layers, self-attention layers and feed-forward layers and the

breakdown of these three blocks is given in Figure 3.

The attention-transformer structure used in [40] has been

changed to fit visemes, and this will be discussed in III-E.

Unlike [40], there is no embedding layer, and the Decoder has

been altered with the final softmax layer trained on visemes

instead of ASCII characters.

B. DATA

The dataset used in this research is the BBC LRS2 dataset [6].

It consists of approximately 46,000 videos covering over 2

million word instances and a vocabulary range of over 40,000

words. The video with the longest duration has a length of

180 frames with every video have frame rate of 25 frames per

second. The dataset contains sentences of up to 100 ASCII

characters from BBC videos, with a range of facial poses from

frontal to profile. The dataset is extremely difficult due to

the variety of viewpoints, lighting conditions, genres and the

number of speakers.

Table 2 gives a breakdown of the different sections of the

BBC LRS2 data with statistics of how many sentences there

are, the number of word instances, the vocabulary range and

the ratio of profile to frontal videos in that particular section

of the corpus.

TABLE 2: Statistics of BBC LRS2 dataset.

Split Utterances
Word

Instances
Vocabulary

Frontal/Profile

Split (%)

Train 45839 329180 17660 64.8:35.2

Test 1243 6660 1697 63.5:36.5

C. DATA PRE-PROCESSING

All the videos are pre-processed according to the stages given

in Figure 4. Videos consist of images with red, green and blue

pixel values and resolution 160 pixels by 160 pixels; with

a frame rate of 25 frames/second. Videos are first sampled

into image frames, then once the videos are sampled, facial

landmarks need to be located as the speaking person’s lips are

the region of interest and feature input to the visual frontend.

The Single Shot MultiBox Detector (SSD) [46], a CNN-based

detector, is used for detecting face appearances within the

individual frames and to recognise facial landmarks according

to the iBug [47] landmark convention of 68 landmarks, and it
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FIGURE 1: The components of the overall lip reading system.
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FIGURE 2: The breakdown stages of how sentences are predicted from silent videos.
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FIGURE 3: The different transformer components with the fully connected layer on the left, self-attention in the middle and

feed-forward on the right.
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FIGURE 4: The stages of video image pre-processing.

can be used on faces pointing at different angles. Landmarks

are applied according to the stages shown in Figure 5 with the

face detected shown on the left, the face being tracked in the

middle and where facial landmarks are detected on the right.

The video frames are then converted to greyscale, scaled,

and then centrally cropped around the boundary of the facial

landmarks resulting in reduced image dimensions of 112 ×
112× T dimensions (where T corresponds to the number of

image frames). Data augmentation in the form of horizontal

flipping, removal of random frames [38], [39], and random

shifts of up to ±5 pixels in the spatial dimension and ±2
frames in the temporal dimension respectively, respectively,

are also applied. At the end, pixels are normalized with respect

to the overall mean and variance of every pixel in each frame.

FIGURE 5: The three substages of Facial Landmark Extrac-

tion with face detection on the left, face tracking in the middle

and facial landmark detection on the right.

Pre-processing is needed in order to ensure that the ap-

propriate region of interest (ROI) can be extracted as the

input to the neural network with resolution 112× 112 pixels

that contains the lips. The ROI must also undergo greyscale

conversion and z-score normalization. The facial landmark

detection described earlier has already been performed on

every single video contained within the BBC LRS2 corpus.

Some of the pre-processing steps described in Figure 4 may

not be necessary for this corpus, as the 112 × 112 set of

pixels can be extracted through central cropping of the original

image frames with 160×160 pixels. The entire pre-processing

process would however be a necessity for a lip reading system

that can be generalized to other real-time applications.

D. VISUAL FRONTEND

The spatial-temporal visual front-end is based on [39]. The

network applies a spatial-temporal (3D) convolution on the

input image sequence, with a filter width of five frames,

followed by a 2D ResNet that gradually decreases the spatial

dimensions with depth. For an input sequence of T ×H ×W

frames, the output is a T ×
H

32
×

W

32
× 512 tensor (i.e., the

temporal resolution is preserved) and it is then average-pooled

over the spatial dimensions, yielding a 512-dimensional

feature vector for every input video frame. Details of the

architecture for the Visual Frontend are given in Table 3. The

trained network used in [8] has been applied in this work.

TABLE 3: Details of spatial-temporal network for visual front-

end.

Layer Type Filter Output Dimensions

3D Convolution [5× 7× 7, 64]/(1,2,2) 180× 56× 56× 64
3D Max Pooling (1,2,2) 180× 28× 28× 64

Residual 2D Convolution [3× 3, 64]× 2/(1, 1) 180× 28× 28× 64
Residual 2D Convolution [3× 3, 64]× 2/(1, 1) 180× 28× 28× 64
Residual 2D Convolution [3× 3, 128]× 2/(2, 2) 180× 14× 14× 128
Residual 2D Convolution [3× 3, 128]× 2/(1, 1) 180× 14× 14× 128
Residual 2D Convolution [3× 3, 256]× 2/(2, 2) 180× 7× 7× 256
Residual 2D Convolution [3× 3, 256]× 2/(1, 1) 180× 7× 7× 256
Residual 2D Convolution [3× 3, 512]× 2/(2, 2) 180× 4× 4× 512
Residual 2D Convolution [3× 3, 512]× 2/(1, 1) 180× 4× 4× 512

E. VISEME CLASSIFIER

Lip reading datasets consist of labels in the form of subtitles.

These subtitles are strings of words that need to be converted

to sequences of visemes to provide labels for the viseme

classifier. The conversion is performed in two stages: first,

they are mapped to phonemes using the Carnegie Mellon

Pronouncing Dictionary [41], and then the phonemes are

mapped to visemes according to Lee and Yook’s approach

[30]. Table 4 shows the mapping. The attention transformer

which predicts the spoken visemes from a person speaking

in a silent video uses 17 classes in total; these include the

13 visemes, a space character, start of sentence (SoS), end of

sentence (EoS) and a character for padding. All the defined

classes are listed in Table 5. All videos are padded to 180

characters.

The Transformer [40] model has an encoder-decoder struc-

ture with multi-head attention layers used as building blocks.

The encoder used is a stack of self-attention layers, where

the input tensor serves as the attention queries, keys and

values at the same time. The decoder here consists of 3 fully

connected layer blocks structured as shown in Figure 6; and

each fully connected layer blocks consists of a dense layer,

batch normalisation, rectilinear unit function and a dropout

layer of probability 0.1. The dense layer within the middle

fully connected layers consists of 2048 nodes while the dense

layers within the first and last fully connected layer blocks
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only contain 1024 nodes. The decoder produces character

probabilities which are directly matched to the ground truth

labels and trained with a cross-entropy loss. The encoder

follows the base model of [40] with 6 layers, model size 512,

8 attention heads and dropout with probability 0.1.

TABLE 4: Viseme-to-Phoneme Mappings.

Viseme Class Viseme Type Phonemes Set

p consonant b, p, m

t consonant d, t, s, z, th, dh

k consonant g, k, n, ng, l, y, hh

ch consonant jh, ch, sh, zh

f consonant f, v

w consonant r, w

iy vowel iy, ih

ey vowel eh, ey, ae

aa vowel aa, aw, ay, ah

ah vowel ah

ao vowel ao, oy, ow

uh vowel uh, uw

er vowel er

s silent character sil

TABLE 5: Classes used by Viseme Classifier.

[pad], AA, AH, AO, CH, ER, EY, F, IY, K, P, T, UH, W, <sos>, <eos>, [space]

Self-Attention

Feed-Forward

Possible Visemes

Fully Connected

Layer (1024 nodes)

Fully Connected

Layer (2048 nodes)

Fully Connected

Layer (1024 nodes)

Linear, Softmax

Viseme

Probabilities

×6

Encoder

Decoder

FIGURE 6: The architecture of transformer for the Viseme

Classifier.

However, it should be noted that the decoder utilised in this

work follows a completely different structure from that of [8]

for the following reasons:

1) There are no embeddings;

2) The predicted labels from the previous timestep are not

fed into the decoder as it is assumed that visemes do not

have the conditional probability relationship that ASCII

characters have. This means that no teacher forcing is

used whereby the ground truth of the previous decoding

step has to be supplied as the input to the decoder.; and

3) It is only the decoder and dense layer that differ, so the

trained weights from [8] have been used and applied to

both the visual frontend and encoder, where only the

decoder layers and dense layers are trained.

Because the encoder has an identical topology to that used

by [8], the trained weights from their model have been applied

to here and it is only the decoder and the final softmax layer

in Figure 6 that are to be trained. During the training phase,

the Adam optimiser [44] is used with default parameters and

initial learning rate 10−3, reducing it on plateau down to 10−4

and all operations are implemented in TensorFlow and trained

on a single GeForce GTX 1080 Ti GPU with 11GB memory.

F. WORD DETECTOR

The outputted visemes from the viseme classifier need to

be further converted to meaningful sentences or strings of

words. Every word in a sentence contains a set of visemes

and therefore can be mapped to a cluster of visemes, such

that a cluster of visemes is a set of visemes which make up

a word. Once visemes have been classified, the viseme-to-

word conversion process needs to be performed. Because a

cluster of visemes can map to several different words, the

combination of the words that were uttered by the speaker still

needs to be deciphered. The solution to the problem is to select

the most likely combination of words. The general procedure

for converting visemes to words with different stages is given

in Figure 7.

Recognized
Visemes

Word
Detector

Decoded
Sentences

Word
Lookup

Perplexity
Calculations

FIGURE 7: The components of the Word Detector.

The first stage of the Word Detection is the World Lookup

stage. Every single cluster of visemes needs to be mapped

to a set of words containing those visemes according to the

mapping given by the Carnegie Mellon Pronouncing (CMU)

Dictionary. However, if there are clusters where no match is

found, a cluster in the dictionary that most closely resembles it

is used instead and the words mapping to that cluster are used.

The resemblance is determined using Levenshtein distance

[22] and the cluster in the CMU dictionary with the smallest

value is chosen.
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Once the word lookup stage is performed, the next stage of

Word Detection is the Perplexity Calculations. The different

possible choices of words that map to the visemes are com-

bined, and perplexity iterations are performed to determine

which combination of words is most likely to correspond to

the uttered sentence, given the visemes recognised. Naturally,

the sentence that is most grammatically correct will have

the highest likelihood [45] and perplexity is one metric that

can be used to compare sentences to determine which is

most grammatically sound. The rationale behind perplexity

is discussed later with an even more detailed description

about how perplexity analysis is used to convert viseme

to words. In this paper the following rules are used when

predicting sentences and they are based on determining which

combinations of words have the greatest likelihood according

to probabilistic information theory:

1) If a viseme sequence has only 1 cluster matching to one

word, that one word is selected as the output.

2) If a viseme sequence has only 1 cluster matching to

several words, that word with largest expectation is

selected as the output.

3) If a viseme sequence has more than 1 cluster, the words

matching to the first two clusters are combined in every

possible combination for the first iteration.

a) The combinations with the lowest 50 perplexity

scores are kept.

b) These combinations are in turn combined with the

words matching to the next viseme cluster.

c) The combinations with the lowest 50 perplexity

scores are kept and the iterations continue for the

remaining clusters of the sequence until the end

of the sequence is reached.

The selection of the lowest 50 perplexity scores at each

iteration is based on an implementation of a local beam

search with width 50. In practice, it would be computationally

expensive to do an exhaustive search so a beam search has

been implemented to reduce the computational overhead, and

the beam width is an arbitrary figure chosen as a compromise

between accuracy and computational efficiency.

Eqs. 1 to 4 below describe the probabilistic relationship

between the observed visemes and the words spoken; where

V is the spoken sequence of viseme clusters, vi corresponds

to every ith cluster, WC represents any given combination of

words and wi corresponds to every ith word within the string

of words. The string of words W̌ that is to be selected will

be the combination that has the maximum likelihood given

the identity of the viseme clusters for every combination C

that falls within the set of combinations C∗. The sequence

of visemes clusters given in Eq. 1 maps to any possible

combination of words as given in Eq. 2, and the solution

to predicting the sentence spoken is the combination of

words given the recognised visemes which has the greatest

probability as expressed in Eqs. 3 and 4.

V = (v1, v2, ..., vN ) =
N
∑

i=1

vi (1)

WC = (w1, w2, ..., wN )C =
N
∑

i=1

wi (2)

W̌ == arg max
CǫC∗

[P (W |V )]C (3)

w̌1, w̌2, ..., w̌N = arg max
CǫC∗

[P (w1, w2, ..., wN |v1, v2, ..., vN )]C

(4)

If the identity of observed visemes is known, the probability

of the viseme sequence in Eq. 1 is equal to 1, resulting in the

expression in Eq. 5. The choice of words predicted according

to Eq. 4 gets reduced to the expression given in Eq. 6.

P (v1, v2, , vN ) = 1 (5)

w̌1, w̌2, ..., w̌N = arg max
CǫC∗

[P (w1, w2, ..., wN )]C (6)

Eqs. 7 to 10 below describe the relationship between the

perplexity PP , entropy H and probability P (w1, w2, ..., wN )
of a particular sequence of N words (w1, w2, ..., wN ). The

word detector consists of a trained attention-based transformer

for calculating PP expressed as the exponentiation of H in

Eq. 7. The per-word entropy Ĥ is related to the probability

P (w1, w2, ..., wN ) of words (w1, w2, ..., wN ) belonging to

a vocabulary set W , and is calculated as a summation over

all possible sequences of words. If the source is ergodic, the

expression for Ĥ in Eq. 8 gets reduced to that in Eq. 9. The

value of P (w1, w2, ..., wN ) resulting in the choice of words

selected as the output for Eq. 6 also results in the minimisation

of entropy in Eq. 9, further resulting in the minimisation of

perplexity given in Eq. 10.

PP = eH (7)

Ĥ = − lim
N→∞

1

N

∑

w1,w2,...wN

P (w1, w2, ..., wN ) lnP (w1, w2, ..., wN )

(8)

Ĥ = −
1

N
lnP (w1, w2, ..., wN ) (9)

PP = P (w1, w2, ..., wN )−
1

N (10)

A language model, i.e., a probability distribution over

sequences of words, can be measured on the basis of the

entropy of its output from the field of information theory [43].

Perplexity is a measure of the quality of a language model,

because a good language model will generate sequences of

words with a larger probability of occurrence resulting in a

smaller perplexity.

The Transformer model used for the word detector is the

pre-trained Generative Pre-Training (GPT) Transformer [42]

- a multi-layer decoder and a variant of the transformer used

in [40]. It consists of repeated blocks of multi-headed self-

attention followed by position-wise feedforward layers. The

architecture is typically used for sentence prediction; however,
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the architecture itself here is not used for direct classification,

rather its purpose is for perplexity calculations that are

required for word selection where visemes are converted

to words. Visemes from the previous step are sequentially

matched to words and the most probable sentence is chosen

according to that with the minimum perplexity score. The

perplexity score is calculated by taking the exponentiation

of the cross-entropy loss when the GPT is evaluated on a

sentence and like in [27], a beam width of 50 has been used.

G. SYSTEMS PERFORMANCE MEASURES

The measures that have been used to evaluate the lip reading

sentence system are edit distance-based metrics and are

computed by calculating the normalized edit distance between

the ground truth and a predicted sentence. Metrics reported in

this paper include Viseme Error Rate (VER), Character Error

Rate (CER), Word Error Rates (WER) and Sentence Accuracy

Rate (SAR).

Error rate metrics used for evaluating accuracy are given

by calculating the overall edit distance. In determining mis-

classifications, one has to compare the decoded speech to the

actual speech. The equation for calculating Error Rate (ER) is

given in Eq. 11 with N being the total number of characters in

the ground truth, S being the number of characters substituted

for wrong classifications, I being the number of characters

inserted for those not picked up and D being the number of

deletions being made for decoded characters that should not

be present. CER, WER and VER are all calculated this way

with the expressions given in Eqs. 12, 13 and 14 where C, W

and V correspond to characters, words and visemes.

ER =
S +D + I

N
(11)

CER =
CS + CD + CI

CN
(12)

WER =
WS +WD +WI

WN
(13)

V ER =
VS + VD + VI

VN
(14)

SAR is a binary metric as expressed in Eq. 15, where the

value is 1 if the predicted sentence PP is equal to the ground

truth PT , otherwise it would take the value of 0:

SAR =

{

1, PP = PT

0, PP 6= PT

(15)

H. ILLUMINATION

To test the proposed lip reading system’s robustness to changes

in lighting, the overall architecture, once trained, has been

evaluated on videos from the testing set under levels of

illumination. Illumination has been applied by varying the

pixel brightness. It is after the video sampling stage of the

pre-processing described in III-C that illumination is applied

to the image frames. The overall process is described in Figure

8.

Image
Frames

Pixel
Normalisation

Gamma
Correction

Pixel
Renormalisation

Corrected
Image

Frames

FIGURE 8: Stages for applying illumination.

Image frames of videos from the dataset consist of red, blue

and green pixel components with numerical values ranging

from minimum intensity 0 to maximum intensity 255. Pixel

normalisation is the first stage of the procedure and this

involves minimum-maximum normalisation of all pixel values

where pixel values are mapped from the range [0,255] to [0,1].

Once this is done, a gamma correction is applied where pixel

values are corrected according to Eq. 16, where I is a matrix

of pixels, γ is scalar value and O is the resulting matrix of

pixels after the gamma correction has been applied:

O = I1/γ (16)

Values of γ that are less than 1.0 will cause images to

darken whereas values of γ that are greater than 1.0 cause

images to brighten. Figure 9 gives examples of images with

the standard image (γ = 1.0) on the left, the darkened image

in the middle (γ = 0.5) and the brightened image on the right

(γ = 1.5). The gamma corrections applied in this paper have

utilised γ values ranging from 0.5 to 1.5.

FIGURE 9: Images under varying illumination with standard

image on the left, darkened image in the middle and bright-

ened image on the right.

After applying the gamma correction, pixels undergo re-

normalisation where all pixels values are mapped back from

from the range [0,1] to the range [0,255].

IV. EXPERIMENTS AND RESULTS

For training and evaluation of the viseme classifier, the BBC

LRS2 dataset described in III-B has been used with 45839

sentences for training and 1243 sentences for testing. All

components of the model are evaluated on the LRS2 test set.

The metrics reported include VER, CER, WER, SAR and the

total overall training time.

The viseme classifier was trained for a total of 2000 epochs

and it was at the point that the validation loss started to become

saturated, and when no further convergence was recorded that

the model was evaluated. Plots for the loss and VER for both

training and validation are given in Figures 10 and 11.

The results are summarized in Table 6. As shown in the

Table, the overall WER of 35.4% is a reduction of almost 15%

compared to the 50% achieved in a previous state-of-the-art
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model trained and evaluated on the same dataset; and thus,

improvement on the overall word accuracy to 64.6%. The

accuracy by visemes was also very high with a VER of only

4.6%. The confusion matrices by both visemes and ASCII

characters are given in Figures 12 and 13, respectively.

Table 7 gives the performance metrics for how the proposed

lip reading system and Afouras et al’s model [8] performed

when videos in the validation set were subjected to different

levels of illumination, applied to in accordance with III-H. It

can be seen that the proposed lip reading system is generally

robust to varying levels of illumination, like that of Afouras et

al [8] and this is expected given that videos in the BBC LRS2

corpus were recorded in varying lighting conditions.

FIGURE 10: Loss curve for training and validation.

FIGURE 11: VER curve for training and validation.

TABLE 6: The performance results of lip reading sentences.

Validation

Samples
Parameters VER(%) CER(%) WER(%) SAR(%)

CPU

Time

1243 4,748,305 4.6 23.1 35.4 33.4 37 hours

TABLE 7: The performance of proposed system under

varying illumination.

Gamma
Visual Lip Reading System Afouras et al.

VER(%) WER(%) SAR(%) CER(%) WER(%) SAR(%)

0.5 5.4 41.5 21.8 35.8 53.9 18.4

0.8 5.0 37.9 28.5 33.9 51.0 20.3

0.9 4.7 35.7 32.7 33.7 50.9 20.6

1 4.6 35.4 33.4 33.7 50.8 20.8

1.1 4.7 35.6 32.9 33.7 50.8 20.2

1.2 4.9 37.4 29.4 34.1 51.4 20.6

1.5 5.3 40.5 23.7 36.2 51.4 20.2

FIGURE 12: Confusion matrix for classification of visemes.

FIGURE 13: Confusion matrix for classification of ASCII

characters.
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In order to attain a good overall accuracy for classification

of words, both the viseme classification performance and the

viseme-to-word conversion performance need to be good. The

VER is very low and any misclassifications that have occurred

during the validation phase appeared to be influenced by the

class imbalance of visemes present in the training data. When

visemes are misclassified, they are most likely to be decoded

as one of "AH", "K" or "T" because such visemes appear most

frequently in training data and obscure classes such as "AA"

and "CH" are the most likely to be misclassified.

Table 8 gives examples of sentences from the BBC

LRS2 dataset along with the decoded visemes, the word

combinations that were outputted at each iteration of the

perplexity calculations, and the viseme clusters corresponding

to each predicted word. Table 9 gives the full details of how

those sentences were decoded by listing their corresponding

visemes, the predicted visemes, the decoded sentences and

their corresponding metric performance results.

A stratified sampling strategy was used to select the most

frequently appearing 154 words in the BBC LRS2 training set

that begin with each letter of the alphabet. For the selected

154 words, a comparison of the accuracy in terms of ratio of

how many times a word was correctly decoded to how many

times it appeared in the testing phase has been presented in

Figures 14 and 15. Figure 14 shows the word accuracy for

Afouras et al.’s model and Figure 15 shows the accuracy for

this lip reading system. A better word precision is noticeable

in Figure 15.

It should be noted that, whilst the VER was low, the WER

was still high although it has been significantly improved

compared to other existing works. To further reduce the

error rate, the viseme-to-word conversion would need to be

optimised. Many misclassifications have been caused by the

presence of local optima during the implementation of the

local beam search, whereby at each iteration of the viseme

sequence during the perplexity calculation stage, the words

that make up the ground truth are not included within the

top 50 results. A large beam with would invariably result in

a greater conversion rate, but at the expense of using more

computational overhead and an exhaustive search would not

even be viable. Further work needs to be done to ensure that

the global optimum combinatorial solution is selected more

frequently during the Perplexity Calculation stage to further

improve on word accuracy.
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FIGURE 14: Word confusion matrix for Afouras et al’s model.

FIGURE 15: Word confusion matrix for this lip reading system.
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TABLE 8: Examples of perplexity calculations for sentences from the test set.

Actual Subtitle Predicted Visemes Decoded Subtitle Perplexity Word Correspondence

I

CAN’T

PUT

IT

ANY

PLAINER

THAN

THAT

(’AH’),

(’K’, ’EY’,’K’,’T’),

(’P’,’AH’,’T’),

(’IY’,’T’),

(’EY’,’K’,’IY’),

(’P’,’K’,’EY’,’K’,’ER’),

(’T’,’EY’,’K’),

(’T’,’EY’,’T’)

(’a nouns’, 161.9), ("i can’t", 184.3), (’uh nouns’, 204.3), ...

(’a nouns but’, 182.5), (’uh nouns but’, 200.9), ("i can’t but", 223.3), ...

(’a nouns but it’, 120.6), (’uh nouns but it’, 125.0), ...

("i can’t bite it any", 181.8), ("i can’t buss it any", 242.2), ...

("i can’t bite it any plainer", 130.8), ("i can’t buss it any plainer", 183.4), ...

("i can’t bite it any plainer than", 87.4), ...

("i can’t bite it any plainer than that", 57.7), ...

Result: i can’t bite it any plainer than that

(’AH’): i

(’K’, ’EY’,’K’,’T’): can’t

(’P’,’AH’,’T’): bite

(’IY’,’T’): it

(’EY’,’K’,’IY’): any

(’P’,’K’,’EY’,’K’,’ER’): plainer

(’T’,’EY’,’K’): than

(’T’,’EY’,’T’): that

WHEN

THERE

ISN’T

MUCH

ELSE

IN

THE

GARDEN

[’W’,’EY’,’K’),

(’T’,’EY’,’W’),

(’IY’,’T’,’AH’,’K’,’T’),

(’P’,’AH’,’CH’),

(’EY’,’K’,’T’),

(’IY’,’K’),

(’T’,’AH’),

(’K’,’AA’,’W’,’T’,’AH’,’K’)

(’when there’, 121.0), ("when they’re", 216.4), (’whack their’, 220.6), ...

("when they’re isn’t", 69.9), ("wreck there isn’t", 88.9), ...

("when there isn’t much else", 52.5), ...

("when there isn’t much else in", 60.9), ...

("when there isn’t much else in the", 41.9), ...

("when there isn’t much else in the garden", 60.3), ...

Result: when there isn’t much else in the garden

[’W’,’EY’,’K’): when

(’T’,’EY’,’W’): there

(’IY’,’T’,’AH’,’K’,’T’): isn’t

(’P’,’AH’,’CH’): much

(’EY’,’K’,’T’): else

(’IY’,’K’): in

(’T’,’AH’): the

(’K’,’AA’,’W’,’T’,’AH’,’K’):garden

SORT

OF

SECOND

HALF

OF

OCTOBER

(’T’,’AO’,’W’,’T’),

(’AH’,’F’),

(’T’,’EY’,’K’,’AH’,’K’,’T’),

(’K’,’EY’,’F’),

(’AH’,’F’),

(’AA’,’K’,’T’,’AO’,’P’,’ER’)

(’sort of’, 1.2), (’source of’, 1.5), (’doors of’, 25.0), (’sword of’, 28.3), ...

(’sort of second’, 55.3), (’sort of talent’, 81.1), (’source of talent’, 89.3), ...

(’sort of tennent naff’, 147.4), (’sort of second half’, 158.6), ...

(’sort of second half of’, 60.4), ("zorz i’ve tennent naff i’ve", 132.7), ...

(’sort of second half of october’, 229.1), ...

Result: sort of second half of october

(’T’,’AO’,’W’,’T’): sort

(’AH’,’F’): of

(’T’,’EY’,’K’,’AH’,’K’,’T’): second

(’K’,’EY’,’F’): half

(’AH’,’F’): of

(’AA’,’K’,’T’,’AO’,’P’,’ER’): october

BUT

BEFORE

I

DO

(’W’,’AH’,’T’),

(’P’,’IY’,’F’,’AO’,’W’),

(’AH’),

(’T’,’UH’)

(’right before’, 188.2), (’ride before’, 309.3), (’rise before’, 319.8), ...

(’right before i’, 41.2), (’ride before i’, 69.1), (’ries before i’, 81.2), ...

(’right before i do’, 55.9), (’ride before i do’, 78.6), ...

Result: right before i do

(’W’,’AH’,’T’): right

(’P’,’IY’,’F’,’AO’,’W’): before

(’AH’): i

(’T’,’UH’): do

AS

A

RESULT

OF

SMOKING

(’IY’,’T’),

(’AH’),

(’W’,’IY’,’T’,’AH’,’K’,’T’),

(’AH’,’F’),

(’T’,’P’,’AO’,’K’,’IY’,’K’)

(’is a’, 14.4), (’eat a’, 39.7), (’ease a’, 56.6), ("e.’s a", 132.8), ...

("e’s a whittle’s", 157.6), ("e’s i. whittle’s", 191.8),...

(’is a result of’, 40.0), ("e’s i. whittle’s i’ve", 106.4), ...

(’is a result of smoking’, 135.4), ("e’s a whittle’s i’ve smolin", 190.9), ...

Result: is a result of smoking

(’IY’,’T’): is

(’AH’): a

(’W’,’IY’,’T’,’AH’,’K’,’T’): result

(’AH’,’F’): of

(’T’,’P’,’AO’,’K’,’IY’,’K’): smoking

PRETTY

ON

THE

OUTSIDE

(’W’,’W’,’IY’,’T’,’IY’),

(’AA’,’K’),

(’T’,’AH’),

(’EY’,’T’,’T’,’AH’,’T’)

(’wheatie on’, 169.2), (’reidy on’, 296.3), (’riedy on’, 349.9), ...

(’weedy on the’, 29.4), (’reedy on the’, 31.8), (’witty on the’, 56.7), ...

(’witty on the outside’, 45.3), (’weedy on the outside’, 52.2), ...

Result: witty on the outside

(’W’,’W’,’IY’,’T’,’IY’): witty

(’AA’,’K’): on

(’T’,’AH’): the

(’EY’,’T’,’T’,’AH’,’T’): outside

EVEN

BEFORE

SHE

ENTERED

THE

WATER

(’T’,’AH’,’IY’,’K’),

(’P’,’IY’,’F’,’AO’,’W’),

(’CH’,’IY’),

(’EY’,’K’,’T’,’ER’,’T’),

(’AH’),

(’W’,’AO’,’T’,’ER’)

(’dying before’, 346.6), (’sighing before’, 368.7), ...

(’sighing before she’, 64.1), (’dying before she’, 77.1), ...

(’sighing before she answered’, 35.3), ...

(’sighing before she answered a’, 85.4), ...

(’dying before she entered a water’, 190.5), ...

Result: dying before she entered a water

(’T’,’AH’,’IY’,’K’): dying

(’P’,’IY’,’F’,’AO’,’W’): before

(’CH’,’IY’): she

(’EY’,’K’,’T’,’ER’,’T’): entered

(’AH’): a

(’W’,’AO’,’T’,’ER’): water

LIKE

HUNDREDS

OF

THOUSANDS

OF

PEOPLE DO

EVERY

YEAR

(’K’,’AH’,’K’),

(’K’,’AH’,’K’,’T’,’W’,’AH’,’T’,’T’),

(’AH’,’F’),

(’T’,’EY’,’T’,’AH’,’K’,’T’,’T’),

(’AH’,’F’),

(’P’,’IY’,’P’,’AH’,’K’,’K’,’T’,’UH’),

(’EY’,’F’,’ER’,’IY’),

(’K’,’IY’,’W’)

(’nine hundreds’, 1831.3), (’lysne hundreds’, 2486.6), ...

(’nine hundreds of’, 62.7), (’cul hundreds of’, 113.9), ...

(’nine hundreds of thousands’, 49.2), ...

(’nine hundreds of thousands of’, 20.8), ...

(’nine hundreds of thousands of peopled’, 72.3), ...

(’nine hundreds of thousands of peopled every’, 103.8), ...

(’nine hundreds of thousands of peoples every year’, 65.4), ...

Result: nine hundreds of thousands of peoples every year

(’K’,’AH’,’K’): nine

(’K’,’AH’,’K’,’T’,’W’,’AH’,’T’,’T’): hundreds

(’AH’,’F’): of

(’T’,’EY’,’T’,’AH’,’K’,’T’,’T’): thousands

(’AH’,’F’): of

(’P’,’IY’,’P’,’AH’,’K’,’K’,’T’,’UH’): peoples

(’EY’,’F’,’ER’,’IY’): every

(’K’,’IY’,’W’) year
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TABLE 9: Examples of how sentences from the test set were decoded.

Actual Subtitle Corresponding Visemes Predicted Visemes Decoded Subtitle VER(%) CER(%) WER(%) SAR(%)

I CAN’T

PUT IT

ANY

PLAINER

THAN THAT

[(’AH’),(’K’,’EY’,’K’,’T’),

(’P’,’UH’, ’T’),(’IY’,’T’),

(’EY’,’K’,’IY’),

(’P’,’K’,’EY’, ’K’,’ER’),

(’T’,’EY’,’K’),(’T’,’EY’,’T’)]

(’AH’),(’K’, ’EY’,’K’,’T’),

(’P’,’AH’,’T’),(’IY’,’T’),

(’EY’,’K’,’IY’),

(’P’,’K’,’EY’,’K’,’ER’),

(’T’,’EY’,’K’),(’T’,’EY’,’T’)

I CAN’T

BITE IT

ANY

PLAINER

THAN THAT

3.1 8.3 12.5 0.0

WHEN THERE

ISN’T

MUCH ELSE

IN THE

GARDEN

(’W’,’EY’,’K’),(’T’,’EY’,’W’),

(’IY’,’T’,’AH’,’K’,’T’),

(’P’,’AH’,’CH’),(’EY’,’K’,’T’),

(’IY’,’K’),(’T’,’AH’),

(’K’,’AA’,’W’,’T’,’AH’,’K’)

[’W’,’EY’,’K’),(’T’,’EY’,’W’),

(’IY’,’T’,’AH’,’K’,’T’),

(’P’,’AH’,’CH’),(’EY’,’K’,’T’),

(’IY’,’K’),(’T’,’AH’),

(’K’,’AA’,’W’,’T’,’AH’,’K’)

WHEN THERE

ISN’T

MUCH ELSE

IN THE

GARDEN

0.0 0.0 0.0 100.0

SORT OF

SECOND

HALF

OF

OCTOBER

(’T’,’AO’,’W’,’T’),(’AH’,’F’),

(’T’,’EY’,’K’,’AH’,’K’,’T’),

(’K’,’EY’,’F’),

(’AH’,’F’),

(’AA’,’K’,’T’,’AO’,’P’,’ER’)

(’T’,’AO’,’W’,’T’),(’AH’,’F’),

(’T’,’EY’,’K’,’AH’,’K’,’T’),

(’K’,’EY’,’F’),

(’AH’,’F’),

(’AA’,’K’,’T’,’AO’,’P’,’ER’)

SORT OF

SECOND

HALF

OF

OCTOBER

0.0 0.0 0.0 100.0

BUT

BEFORE

I DO

[(’P’,’AH’,’T’),

(’P’,’IY’,’F’,’AO’,’W’),

(’AH’),(’T’,’UH’)]

(’W’,’AH’,’T’),

(’P’,’IY’,’F’,’AO’,’W’),

(’AH’),(’T’,’UH’)

RIGHT

BEFORE

I DO
6.7 26.7 25.0 0.0

AS A

RESULT

OF

SMOKING

(’EY’,’T’),(’AH’),

(’W’,’IY’,’T’,’AH’,’K’,’T’),

(’AH’,’F’),

(’T’,’P’,’AO’,’K’,’IY’,’K’)

(’IY’,’T’),(’AH’),

(’W’,’IY’,’T’,’AH’,’K’,’T’),

(’AH’,’F’),

(’T’,’P’,’AO’,’K’,’IY’,’K’)

IS A

RESULT

OF

SMOKING

4.5 4.5 20.0 0.0

PRETTY ON

THE OUTSIDE

(’P’,’W’,’IY’,’T’,’IY’),(’AA’,’K’),

(’T’,’AH’),(’EY’,’T’,’T’,’AH’,’T’)

(’W’,’W’,’IY’,’T’,’IY’),(’AA’,’K’),

(’T’,’AH’),(’EY’,’T’,’T’,’AH’,’T’)

WITTY ON

THE OUTSIDE
5.6 14.3 25.0 0.0

EVEN

BEFORE

SHE ENTERED

THE WATER

(’IY’,’F’,’IY’,’K’)

(’P’,’IY’,’F’,’AO’,’W’),

(’CH’,’IY’),(’EY’,’K’,’T’,’ER’,’T’),

(’T’,’AH’),(’W’,’AO’,’T’,’ER’)

(’T’,’AH’,’IY’,’K’),

(’P’,’IY’,’F’,’AO’,’W’),

(’CH’,’IY’),(’EY’,’K’,’T’,’ER’,’T’),

(’AH’),(’W’,’AO’,’T’,’ER’)

DYING

BEFORE

SHE ENTERED

A WATER

10.7 21.2 33.3 0.0

LIKE

HUNDREDS

OF

THOUSANDS

OF

PEOPLE DO

EVERY YEAR

(’K’,’AH’,’K’),

(’K’,’AH’,’K’,’T’,’W’,’AH’,’T’,’T’),

(’AH’,’F’),

(’T’,’EY’,’T’,’AH’,’K’,’T’,’T’),

(’AH’,’F’),

(’P’,’IY’,’P’,’AH’,’K’),(’T’,’UH’),

(’EY’,’F’,’ER’,’IY’),(’K’,’IY’,’W’)

(’K’,’AH’,’K’),

(’K’,’AH’,’K’,’T’,’W’,’AH’,’T’,’T’),

(’AH’,’F’),

(’T’,’EY’,’T’,’AH’,’K’,’T’,’T’),

(’AH’,’F’),

(’P’,’IY’,’P’,’AH’,’K’,’K’,’T’,’UH’),

(’EY’,’F’,’ER’,’IY’),(’K’,’IY’,’W’)

NINE

HUNDREDS

OF

THOUSANDS

OF

PEOPLES

EVERY YEAR

2.2 10.0 33.3 0.0
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V. CONCLUSION

A neural network-based lip reading system has been developed

to predict sentences covering a wide range of vocabulary in

silent videos from people speaking. The system is lexicon-

free, uses only visual cues represented by visemes of a

limited number of distinct lip movements, and is robust to

different levels of lighting. Verified on the BBC LRS2 data

set, the system has demonstrated a significant improvement

on classification accuracy of words compared to the state-of-

the-art works.

Future research includes investigating a more suitable

neural network architecture in order to enable the system

to have a good generalisation capability with a higher ratio of

the number of training samples to the number of test samples.

In addition, an efficient conversion of visemes to words is

crucial when using visemes as classification scheme for lip

reading sentences. As shown in the experiments, although the

classification accuracy of visemes achieved by the proposed

system was very high (over 95%), the classification accuracy

of words was significantly dropped after the conversion

(65.5%). As such, it is important to explore any other possible

approaches for the conversion. For perplexity analysis-based

conversion, different global optimisation methods need to be

considered while also limiting the computational overhead

required.
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