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Abstract

The Periodic Safmann-Delbrück (PSD) model, an extension of the Safmann-Delbrück model 

developed to describe the effects of periodic boundary conditions on the diffusion constants of 

lipids and proteins obtained from simulation, is tested using the coarse-grained Martini and all-

atom CHARMM36 (C36) force fields. Simulations of pure Martini 

dipalmitoylphosphatidylcholine (DPPC) bilayers and those with one embedded gramicidin A (gA) 

dimer or one gA monomer with sizes ranging from 512 to 2048 lipids support the PSD model. 

Underestimates of D∞ (the value of the diffusion constant for an infinite system) from the 512 

lipid system are 35% for DPPC, 45% for the gA monomer, and 70% for the gA dimer. Simulations 

of all-atom DPPC and dioleoylphosphatidylcholine (DOPC) bilayers yield diffusion constants not 

far from experiment. However, the PSD model predicts that diffusion constants at the sizes of the 

simulation should underestimate experiment by approximately a factor of 3 for DPPC and 2 for 

DOPC. This likely implies a deficiency in the C36 force field. A Bayesian-based method for 

extrapolating diffusion constants of lipids and proteins in membranes obtained from simulation to 

infinite system size is provided.
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1. INTRODUCTION

Molecular dynamics (MD) simulations are typically carried out in periodic boundary 

conditions (PBC). This technique, wherein the primary cell is replicated and particles can 

pass freely between cells, affords the possibility of modeling bulk fluids or molecular 

assemblies such as membranes with a computationally feasible number of particles. It is 

intuitively obvious that behavior associated with wavelengths longer than the primary cell 

might be perturbed by PBC. Translational diffusion is a well-known example of dynamics 

extending multiple molecular lengths, and the effects of PBC in simulations of fluid flow 

around spheres and infinite cylinders was first presented in 1959 by Hasimoto,1 though not 

in the context of simulations. More recently Dunweg and Kremer2 and Yeh and Hummer3 

published similar predictions in the specific context of simulations for the calculation of 

diffusion coefficients run under PBC in homogeneous 3D systems. This PBC correction is 

easy to calculate and relatively small (10–20%) for self-diffusion in systems of several 

hundred molecules. However, as recently estimated by Camley et al.4 using a hydrodynamic 

approach based on the Saffman-Delbrück (SD) model,5 the PBC artifact for membrane 

systems is much more serious. Assuming that the force field (FF) for the simulation is close 

to correct, calculated lateral diffusion constants (DPBC) of membrane spanning proteins will 

underestimate experiment by factors of 3–10 for system sizes presently possible with all-

atom MD. Vögele and Hummer6 have explicitly demonstrated a dramatic system size 

dependence for the diffusion constant of a carbon nanotube in a 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) bilayer using coarse-grained simulations over a wide 

range of box lengths. Conversely, the length and height dimensions of the simulation cell are 

predicted to require increases of 10 to 100-fold to attain diffusion constants comparable to 

the infinite system size value (D∞).

Camley et al. also developed expressions for D∞ and DPBC for a cylinder spanning only a 

single leaflet, as appropriate for modeling monotopic peptides and proteins, and possibly 

lipids; the interleaflet friction, not present in the original SD model, is the required 

additional parameter. The case of lipids is germane for both practical and theoretical reasons. 

Statistical errors in diffusion constants calculated for lipids in simulation are significantly 

smaller than those of proteins because their relative populations in the bilayer are so much 

larger. Hence, lipid diffusion constants are superior targets for comparing with experiment 
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when developing force fields (FF), and it is thereby critical to describe PBC artifacts 

accurately. Turning to theory, the Saffman-Delbrück model has been largely accepted for 

large proteins for decades,7–9 though there remains controversy for some systems.10–12 The 

application of the SD model to lipids is more tenuous because it presumes the validity of 

hydrodynamic theories down to the scale of the individual molecules comprising the fluid. It 

has been argued, for example, that the chain length dependence of lipid diffusion constants 

are inconsistent with SD.7, 13 However, the original SD model was developed for membrane 

spanning cylinders and does not include interleaflet friction, so a reevaluation in light of the 

half-cylinder formula of Camley et al. is warranted.

While the results of some Martini CG simulations are included in Camley et al., that study 

was primarily theoretical. This study presents results from coarse-grained simulations of 

gramicidin A (gA) dimers and monomers in dipalmitoylphosphatidylcholine (DPPC) 

bilayers using the Martini model, and pure DPPC bilayers, and all-atom simulations of 

DPPC and dioleoylphosphatidylcholine (DOPC) using the CHARMM36 (C36) force field.14 

The CG simulations allow a critical consistency check of the hydrodynamic model: whether 

size dependent diffusion constants for membrane spanning (gA dimer) and monotopic (gA 

monomers) cylinders of equal radii and pure DPPC can be described with the same 

membrane viscosity and interleaflet friction. The size dependence of the diffusion constants 

from all-atom simulations of DPPC and DOPC is also compared with the model to examine 

trends and to estimate hydrodynamic parameters. The simulations allow an investigation of 

the effects of bound solvent. Just as bound water adds to the effective hydrodynamic radii of 

proteins in aqueous solution,15 it is necessary to consider the possibility that bound lipids 

can increase the effective radii of membrane proteins and peptides; the simulations of 

Niemela at al.16 strongly suggest the presence of such bound lipids. This could be 

particularly important for peptides and smaller proteins, where the relative increase in radii 

is greater.

This study also considers the very practical question for the effect of ensemble, pressure, and 

temperature controls on calculated diffusion constants. Specifically, while most methods of 

pressure and temperature control in simulations have been shown to rigorously correspond 

with the associated statistical mechanical ensemble, this is not that case for transport 

properties; i.e., transport properties such as diffusion can only be rigorously obtained from 

simulation in the microcanonical (constant particle number, volume, and energy, or NVE) 

ensemble.17 Given that nearly all membrane simulations are carried out at constant pressure 

and temperature, it is relevant to determine whether the differences with NVE are 

unacceptably large. Additionally, most MD programs periodically remove center of mass 

(COM) translation and rotation to offset energy leakage arising from numerical errors. This 

effect is examined by comparing diffusion constants evaluated with explicit Ewald 

summation17 of electrostatic forces (where COM removal is not required) and the 

computationally more efficient Particle Mesh Ewald (PME)18 (where COM removal is 

standard).

By way of outline, the Method section reviews the hydrodynamic model and describes the 

simulation protocols. The Results and Discussion contains three subsections: 3.1, a 

comparison of self-diffusion constants obtained from simulations of DPPC bilayers carried 
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out with different programs and ensembles; 3.2, a comparison of diffusion constants from 

coarse-grained and all-atom simulations with the hydrodynamic model; and 3.3, a 

comparison of the diffusion constants of DPPC and DOPC from C36 all-atom lipid 

parameter set and experiment. Avenues for FF improvement and general strategies for 

extrapolation to obtain D∞ are then discussed. The Appendix provides a Bayesian analysis 

method to estimate D∞ and to set bounds on extrapolated diffusion constants.

2. METHODS

2.1. Review of Theory.

The treatment of PBC in Camley et al. is developed within the framework of the Saffman-

Delbrück model, which predicts that the diffusion constant of a small membrane spanning 

cylinder of radius R in an infinite flat membrane suspended in an infinite bulk fluid is

D =
kBT
4πηm

ln
ηm

η f R − γ =
kBT

4πhηm
b ln

hηm
b

η f R − γ (1)

where ηm is the membrane surface viscosity, ηf is the bulk viscosity of the surrounding 

fluid, kB is Boltzmann’s constant, T is the temperature, and γ is Euler’s constant.5 The 

surface viscosity ηm may be thought of as a product of the membrane height h and an 

effective lipid bulk viscosity; the SD equation is often written in terms of (RHS side of Eq 

(1)). The critical physical parameter is the Saffman-Delbrück length LSD = ηm/2ηf, which 

demarks the crossover point between 2D-like hydrodynamics in the membrane (at short 

scales) and 3D-like hydrodynamics in the membrane (at long scales). Because LSD ranges 

from 100 nm9 to microns19 (depending on the system) and typical cell-sizes for all-atom 

simulations of membranes are about 10 nm, it is easy to surmise that PBC artifacts could be 

serious.

Now consider a periodic simulation cell consisting of the same cylinder in a bilayer with 

edge length L and water layers each of thickness H above and below (hence, if the bilayer 

thickness is 4 nm, the height of the cell is 4 nm + 2H). The diffusion constant in the periodic 

system is denoted DPBC; that of the infinite system (L → ∞, H → ∞) is D∞. Using the 

immersed boundary method,20 the preceding diffusion constants for a membrane spanning 

cylinder are

DPBC =
kBT

2L2 ∑k ≠ 0
1

ηmk2 + 2η f ktanh kH
e−k2β2R2/2 (2a)

D∞ =
kBT

2 ∫ d2k
2π 2

1
ηmk2 + 2η f k

e−k2β2R2/2 (2b)
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where β = 0.828494. (This value of β is chosen to reproduce accurately the generalization of 

the Eq. (1) to arbitrary values of R/LSD developed by Hughes, Pailthorpe, and White,21 and 

Petrov and Schwille.22) The extension of Eqs. (2) to a single leaflet spanning cylinder 

requires one more parameter, the intermonolayer friction b:

DPBC =
kBT

2L2 ∑k ≠ 0
A k

A k 2 −   B k 2e−k2β2R2/2 (3a)

D∞ =
kBT

2 ∫ d2k
2π 2

A k
A k 2 −   B k 2e−k2β2R2/2 (3b)

A k =   ηmonok2 + η f kcoth 2Hk + b

  =   ηmonok2 + η f k + b;   H ∞

B k =   b + η f k csch 2Hk

  =   b;   H ∞

where ηmono =   ηm/2 is the monolayer surface viscosity.

For notational simplicity, Eqs. (2a) and (3a) are denoted the Periodic Saffman-Delbrück 
(PSD) model, even though they are more general than the original. https://

diffusion.lobos.nih.gov provides a web-interface that evaluates DPBC and D∞ for individual 

sets of parameters. See ref. 4 for complete derivations, and especially Section VI for a 

discussion of the limitations of the model. Vögele and Hummer6 present an analytic 

approximation for the error due to PBC in membrane systems that neglects protein size and 

assumes L >> H; in the appropriate regimes they obtain good agreement with Eqs. (2).

The PSD model, as in the original work of Saffman and Delbrück, assumes a perfectly flat 

membrane and homogeneous Newtonian fluids (membrane and solvent) surrounding the 

diffusing body. Out-of-plane membrane deformations and/or in-plane membrane 

inhomogeneities (e.g. other proteins or lipid domains) are not considered. Vögele and 

Hummer6 showed in their Martini simulations that the effect of undulations on the diffusion 

constant is relatively small, as predicted theoretically.23–25
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In recent work, various groups have begun to simulate the self-diffusion of proteins and/or 

lipids in protein laden membranes via Martini.26–29 Unfortunately, the influence of PBC on 

very crowded membranes is less clear. At low protein concentrations, self-diffusion is 

expected to be influenced primarily by enhancing the effective viscosity of the membrane 

relative to that of the pure lipid bilayer,30–31 in analogy to the Einstein viscosity of a fluid 

particulate suspension in 3D.32 Continuum level simulations33 suggest that this picture is 

valid up to protein area fractions of ~10%, which implies that the PSD equations will be 

useful in the description of modestly concentrated protein decorated bilayers (assuming that 

appropriate effective membrane viscosities are used in the equations). However, direct 

protein-protein interactions become important at higher concentrations and may eventually 

overwhelm naive hydrodynamic considerations.34–35 Given the preceding complexities, it 

would be advisable to carry out simulations at several system sizes to at least test for PBC 

effects.

As shown in Fig. 1 for R = 3 nm and LSD = 160 nm, Eq. (2a) predicts that DPBC < D∞ for all 

practical system sizes in all-atom simulations; it is only when both L and H are significantly 

larger than LSD that a simulation reliably yields D∞. Remarkably, increasing L while 

holding H constant eventually changes the sign of the error (i.e., DPBC > D∞). This result 

implies that a simulation could, in principle, yield DPBC = D∞ at small H; however, such a 

system would not correctly model a free standing bilayer. Table 1 presents diffusion 

constants calculated from Eqs. (2) for representative system sizes for all-atom simulations 

for LSD = 160 nm (the value used to generate Fig. 1) and LSD = 78 nm (an estimate from 

protein diffusion measurements in a black lipid film8). Underestimates are approximately a 

factor of 3 for the single helix transmembrane peptide WALP23 and factor of 10 for the 

protein galactose transferase (GltT). As discussed in ref. 4, PBC errors are smaller for the 

CG model because system sizes are larger and the membrane viscosity (and consequently 

LSD) are smaller; however, they can still be substantial. (The absolute errors of the CG 

model relative to experiment are severe due to the underestimation of membrane viscosity 

and can completely overshadow the effects of PBC.)

2.2. Coarse-grained simulations.

All coarse-grain (CG) simulations were performed using the Martini model,36–39 with the 

“common” parameter set of de Jong et al..40 The topology for gramicidin (gA) monomer and 

dimer was derived from the gA crystal structure (PDB ID 1JNO)41 using martinize v2.2 (see 

www.cgmartini.nl/) with ElNeDyn22.37–39, 42 Backbone bead types were reassigned based 

on gA’s β6.3-helixes structure and the number of hydrogen-bonds in the gA crystal structure 

backbone. The ethanolamine groups (ETA) and formyl groups (FOR) were modeled with P2 

and sN0 beads, respectively.

Simulations were carried out in both GROMACS (4.6.7)43 and CHARMM44 to test the 

sensitivity of results to different methods of temperature and pressure control. Beginning 

with the GROMACS set, pure DPPC bilayers were assembled with 512, 1024, 2048, 4096, 

8192, and 32768 lipids with an equal number of lipids in each monolayer. Gramicidin A 

dimer simulations were assembled with one dimer in 512, 1024, or 2048 lipids; gA 

monomer simulations were of the same size except six additional DPPC lipids were added to 
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the monolayer-free leaflet. Figure 2 shows the small and large gA systems. All simulations 

were hydrated with ~33 CG waters (corresponding to ~132 water molecules) per lipid and 

set-up using the bilayer builder insane,45 except for the 8192 and 32768 pure DPPC lipid 

systems which were constructed from four 2048 and 8192 lipids systems after 20 μs of 

simulation. Initial systems were energy-minimized (steepest descent, 500 steps) and 

simulated for 22 ns using short time step 1–10 fs and weak coupling (WC), also known as 

the Berendsen barostat.46 For production simulations a time step of 20 fs was used for the 

simulations with gA and 40 fs for the pure DPPC simulations. Lennard−Jones (LJ) 

interactions were shifted between 0.9 and 1.2 nm, Coulomb interactions were screened by a 

relative permittivity constant εr = 15 and shifted to zero between 0 and 1.2 nm. The 

temperature was maintained at 323 K using the velocity rescaling thermostat with a 

relaxation time constant τT = 1.0 ps.47 A semi-isotropic pressure-coupling scheme was used, 

with a compressibility of 3·10−4 bar−1, and pressure kept at 1 bar using either weak 

coupling46 with a relaxation time constant τp = 3.0 ps or the Parrinello−Rahman barostat48 

with a relaxation time constant τp = 5.0 ps, as indicated (see Table 2). The center of mass 

motion was removed separately for the bilayer and solvent phase every 100 steps and frames 

saved for analysis every 30000 steps.

The second set of pure-lipid CG simulations was performed in CHARMM using a domain 

decomposition scheme49 (for speed enhancement) and an update50 to run Martini without 

modification. NPT and NVE simulations of pure DPPC bilayers with 512 and 2048 lipids 

and with initial water heights of H=4.85 nm and H=9.70 nm, reported in Camley et al.4 were 

extended for the present study (see Table 2 for trajectory lengths). Pressure (1 atm) and 

temperature (323 K) were controlled for NPT simulations with the Hoover barostat51 and 

Nosé thermostat.52 The center of mass motion was removed from NPT systems as a whole 

(combined bilayer and water) every 100 steps. COM motion was not removed from NVE 

systems (there was no drift). Both NPT and NVE simulations used a time step of 20 fs, and 

coordinates were saved for analysis every 1000 steps.

2.3. All-atom simulations.

Simulations using CHARMM were carried out using in-house computers and are described 

first, followed by those on Anton. The lipids and water were described by CHARMM36 

(C36)14 and modified TIP3P53–54, respectively.

For simulations carried out with CHARMM44 the extended system barostat51 and 

thermostat52 were employed for NPT simulations and all but one NVT simulation. In this 

implementation, the pressure tensor is fully anisotropic and requires a tetragonal prism 

simulation unit cell, where x = y by constraint, with the bilayer normal vector aligned with 

the z axis; the cell height and the xy area are coupled to separate pistons (the same protocols 

were used for the CHARMM CG simulations). The NPT ensemble was generally used, 

except for several DPPC simulations that used NVE and NVT ensembles. One NVT 

simulation utilized Langevin dynamics with a collision frequency of 1 ps−1 to explore the 

effects of such a temperature control method on translational diffusion. The all-atom 

CHARMM simulations were run with recent (c39b2 and later) versions of the program that 

include a domain decomposition scheme49 for the pairwise non-bond calculation; the 
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particle-particle Ewald simulations could not use this scheme. The electrostatic term was 

computed via Ewald methods; the particle-mesh Ewald18 used a real space cutoff of 12 Å, a 

κ value of 0.32, and ca. 1 grid point per Å in each direction for the mesh. For the particle-

particle Ewald, a κ value of 0.34 was used, with k-space replicas of 3,3,5 in x,y,z, a 

maximum k2 setting of 50, and with the same 12 Å real space cutoff. The van der Waals 

dispersion term used an LJ functional form with a force-switching function over the interval 

of 8 to 12 Å, with a 1 fs integration time step. Endpoints from previously published 

simulations of 72 DPPC and DOPC lipids were used as initial conditions and to build 

systems of 144 and 288 lipids.

All but two of the all-atom systems contained approximately 30 waters/lipid (H ≈1.5 nm), a 

level considered at “full hydration” as measured by structural properties such as surface area 

and melting point.55,56 To allay concerns that this hydration level is insufficient for capturing 

the hydrodynamics of lipid diffusion, the following simulations of bilayers with 288 DPPC 

were generated: 3 replicates (110 ns each) with 15.2 waters/lipid (H = 0.73 nm), and 1 

replicate of 420 ns with 60.8 waters/lipid (H=2.87 nm). Because the PSD model predicts a 

negligible difference in diffusion constants for these values of H (at L = 9.5 nm), a 

substantial difference would indicate that testing with additional waters is required.

Trajectories of 72, 144, and 288 DPPC and 288 DOPC were extended on the Anton super 

computer.57 Each Anton trajectory was initialized with positions and velocities of the 

CHARMM trajectory at 50 ns. A tetragonal unit cell with x and y dimensions set to the same 

length and independent of the z-dimension was maintained. The temperature was maintained 

at 298 K for DOPC and 323 K for DPPC by the Nosé thermostat. A total pressure of 1 atm 

was maintained by the Martyna-Tobias-Klein barostat58 with semi-isotropic scaling applied 

every 100 time steps. Long-range interactions were evaluated every time step for simulations 

run with CHARMM and every other time step for those run on Anton. Table 3 lists the 

trajectory lengths used for calculating diffusion constants (these values do not include the 

initial 10–20 ns deleted for equilibration).

2.4. Determination of the diffusion constant.

The COM motion of the bilayer was removed prior to computation of the mean-squared 

displacement (msd) for each lipid as a function of time. The msd for each lipid was 

computed via a difference correlation function using the x and y components of the lipid 

COM, after both the removal of image centering artifacts, and the bilayer COM correction. 

A Fortran90 program was used to compute 2D diffusion constants from the slopes of 

<msd>LIPIDS vs time, for 10 ns < t < (ti – 10)/2; ti is the analysis time interval (ns), and the 

lower cutoff removes subdiffusive dynamics which is somewhat more prominent for all-

atom than CG simulations (see Fig. 3).

Standard errors were estimated from replicates for the following simulations: GROMACS 

gA, the CHARMM CG 512 DPPC with 23.9 waters/lipid, the particle-particle Ewald, and 

the 288 DPPC with 15.2 waters/lipid. Block averages were used for the rest, based on an 

analysis as a function of the number of blocks for trends in the standard error, and upon 

agreement of <D> from the blocks with D obtained by fitting all of the available data. For 

CG models, the 10 μs CHARMM simulations used five blocks of 2 μs, while the 40 μs 
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GROMACS simulations used ten blocks of 4 μs. All atom systems of 200 ns or more used 4 

or 5 blocks, which were often comparable; if they were not, the standard error was taken 

based on the agreement of <D> with D, as noted. For the shorter simulations (less than 200 

ns), only three blocks were used to determine the standard error; these systems had 648 

lipids, and the larger number of particles compensated for the shorter time blocks.

3. RESULTS AND DISCUSSION

3.1. Comparison of Methodology for Simulated Lipid Diffusion Constants.

This subsection focuses on the sensitivity of diffusion constants to simulation methods, and 

later subsections compare them with theory and experiment. The CG results are considered 

first because the precision of the diffusion constants (se of 0.5–1%) is higher than for the all-

atom (5–10%). Table 2 lists D, their standard errors (se), and system information for DPPC 

based on the Martini FF using CHARMM and GROMACS; Table 3 provides the same for 

DPPC and DOPC from all-atom simulations based on the CHARMM36 force field using 

CHARMM and Anton.

As noted in the Introduction, simulations run at NVE without PME provide the most 

rigorous comparison with hydrodynamic theory. Hence, the 4 NVE simulations carried out 

in CHARMM reported in Table 2 serve as references for the CG systems. When compared 

with the 4 NPT simulations, the differences in D are approximately 2 se or less (the 95% 

confidence interval, or CI, is approximately D ± 2 se). A paired t-test yields p=0.13; i.e., the 

differences among the diffusion constants from NVE and NPT are not statistically 

significant.

Pressure was controlled for Martini simulations with GROMACS using either Parrinello-

Rahman (PR) or weak coupling (WC). Diffusion constants for PR and CHARMM are well 

within statistical error of 0.15 × 10−7 cm2/s for N=512, but PR is a statistically significant 

5% lower than CHARMM for N=2048. D for WC are 7% lower than CHARMM for both N. 

These results indicate that NPT simulations using GROMACS with WC can be expected to 

provide correct trends in diffusion constants, but that PR is preferable for quantitative 

estimates.

Turning to the all-atom simulations, all electrostatic energies were evaluated using PME for 

all but one set, which employed direct Ewald summation (where COM drift is absent and 

therefore does not need to be removed). Three replicates totaling 500 ns were carried out 

using CHARMM for N = 288, labeled NVE (Ewald) in Table 3; the 95% CI (in units of 10−7 

cm2/s) is 2.1–2.9. The 95% CI from CHARMM simulations at NVE with PME (1.7–2.3), 

and NPT with PME (1.9–2.1), and a simulation run on Anton at NPT with PME (2.2–2.4) 

indicate reasonable statistical equivalence among the set. The weighted average diffusion 

constant, 2.3 ± 0.1 × 10−7 cm2/s, thereby provides an improved estimate for this system.

The preceding results indicate that simulations using CHARMM or Anton carried at NPT 

using extended system methods for temperature and pressure control and PME for 

summation of electrostatics provide an acceptable alternative to NVE with Ewald 

summation.
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Table 3 includes the diffusion constants for simulations with H = 0.73 nm (15.2 waters/

lipid), and H = 2.87 nm (60.8 waters/lipid). The results are close to those at H=1.46 nm 

(30.4 waters/lipid). This is consistent with the observation that there approximately 8 

“structural waters” (a thickness of approximately 0.4 nm) for DPPC,56 and that the PSD 

model predicts a negligible change in D in this range of H. Hence, the hydration levels are 

likely not a confounding factor in this study.

One of the all-atom simulations of N = 288 run with CHARMM does not group with the 

rest. D = 1.5 ± 0.1 × 10−7 cm2/s for NVT (LD), which is approximately 35% lower than the 

weighted average value of 2.3 ± 0.1 × 10−7 cm2/s for the others. Here the temperature was 

maintained using Langevin Dynamics with a collision frequency of 1 ps−1. It is not 

surprising that the additional damping reduces the diffusion constant, and this effect should 

be considered when comparing results from different programs with each other and with 

experiment.

3.2. Coarse-Grained Simulations

3.2.1. Comparison with the Periodic Saffman-Delbrück model.—Table 4 lists 

diffusion constants for gramicidin A (gA) dimers and monomers, and lipids from CG 

simulations at three different values of L. The diffusion constants for lipids in the monomer 

mixtures all differ by less than 1% from those of the pure systems (see Table 3), and they are 

within a standard error of each other. Diffusion constants for lipids in the dimer systems are 

slightly lower than in the pure systems (3.5%, 1.7%, and 1.1% for N = 512, 1024, and 2048, 

respectively). These differences indicate some perturbation to the behavior of lipids close to 

the gA.

The evaluation of the PSD model was carried out for three sets of parameter values (Table 

5). For Sets I and II the hydrodynamic parameters ηm, ηf and b obtained for the Martini 

model of DPPC at 323 K by den Otter and Shkulipa59 were used without modification. The 

radius of DPPC for Set I was based on the well calibrated surface area/lipid of 0.63 nm2;45 

R=1.0 nm for gA is from Nielsen et al.,60 which is also consistent from radial lipid densities 

obtained from MD simulations of gA in assorted bilayers.61 Hence, there was no fitting for 

Set I. It is evident from Fig. 4 (top) that the Set I parameters capture the trends of all three 

systems and provide qualitative agreement for DPPC, but yield poor agreement for the gA 

monomer and dimers.

Sets II and III involved fitting using the diffusion constants from simulations carried out 

with the PR integrator; diffusion constants from WC simulations are included in Fig. 4, but 

were not used for the fits. Fitting for Set II (Fig. 4, middle) considers a change in the 

hydrodynamic radii for DPPC and gA. It is well known experimentally, by comparing 

diffusion/sedimentation to partial specific volumes for globular proteins in solution, that a 

layer of bound water must be included when estimating a hydrodynamic radius;15 the 

occupancy of this hydration layer does not need to be 100% because of screening.62 The 

slightly lower average diffusion constants of DPPC in the mixtures with gA dimers also 

imply some interaction of peptide and lipid, and the need to increase the effective 

hydrodynamic radius of each species. Consequently, R for both DPPC and gA was allowed 

to vary independently for the fitting of Set II, with an upper bound of the increase set to the 
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diameter of DPPC, 0.9 nm. The new radii are listed in Table 5, and the substantial 

improvement in agreement between simulation and the model is shown in the middle panel 

of Fig. 4. Set III attempts to model the confinement of water near the bilayer surface by 

allowing variation in ηf and R. Interestingly, the effective radius of DPPC equals the value 

from Set I, based on surface area. In effect, the slight increase in lipid friction can be 

modeled by a small increase in R or ηf for DPPC. The effective radius of gA is also smaller 

for Set III than Set II, but is still approximately a lipid radius larger than Set I.

The present modeling focused on the simulations carried out with the PR integrator. Hence, 

the agreement of diffusion constants from the WC simulations with the parameters in Table 

5 is only semi-quantitative. Excellent agreement may be obtained by increasing the 

viscosities (ηm = 1.26 × 10−8 P·cm and ηf = 0.016 P) while maintaining b and R to the 

values in Table 5, Set I (fit not shown). This is to be expected from the damping intrinsic to 

the WC method.

3.2.2. Extrapolating to infinite system size.—The results presented so far clearly 

demonstrate the extent of PBC effects for even a coarse-grained model, where the Saffman-

Delbrück lengths (see Table 5) are not dramatically larger than the simulation cells (Table 2). 

As illustrated by Fig. 1 (for all-atom simulations), in the absence of a hydrodynamic model 

it is virtually impossible to predict the infinite size value D∞ of an object diffusing in a 

bilayer from a simulation. This situation is hence qualitatively different from estimating 

diffusion constants in a homogenous system: while a model can be used to extrapolate to 

infinite size,3 it is possible in practice to keep increasing the size of a cubic box to obtain the 

limiting value. (This is not always to case for non-cubic boxes as elaborated by Vögele and 

Hummer.6) However, the good agreement of the PSD model and the simulation data for Sets 

II and III of Table 5 and Fig. 4 supports the notion that the diffusion constants can be 

extrapolated to infinite size provided values for ηm, b, ηf , and R are available. The results 

are listed in the last rows of Table 5. As expected from the Saffman-Delbrück lengths, the 

PBC corrections are not very large for largest box size (L = 25.2 nm) listed in Table 3: 22%, 

29%, and 39% for DPPC, gA monomer, and gA dimer, respectively.

For the present case, the extrapolation was easily carried out because values of ηm, b, and ηf 

for DPPC were provided by den Otter and Shkulipa.59 Nevertheless, a substantial adjustment 

to R for gA is critical, and a small adjustment to ηf improves the fits slightly. While the 

viscosity for pure solvent is easy to obtain from simulation, estimating ηm and b is not 

routine. Hence, it is necessary to consider the errors in the extrapolation.

The Appendix presents a Bayesian method using a single measured (simulated) value of 

DPBC, system size, the hydrodynamic parameters, and their uncertainties, and provides 

examples of how the uncertainties effect the predictions of D∞ for a membrane spanning 

peptide. Here the methodology is applied to the diffusion constants of Martini DPPC from 

the NVE simulations of 512 and 2048 lipids, using web-based interface provided in the link 

https://diffusion.lobos.nih.gov/bayes.html. Uncertainties in D are set to those obtained in the 

simulations, and to 2% for H and L (see Table 2). The hydrodynamic parameters are those 

for Set I in Table 5, with uncertainties of 5% for ηm and ηf, 25% for R, and 100% for b. For 

convenience, diffusion constants are reported in units of 10−7 cm2/s, and the 95% confidence 
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interval (CI) follows in parentheses. The extrapolations for N=512 and 2048 yield D∞ = 12.7 

(12.4–13.1) and 12.3 (12.1–12.6), respectively. R = 0.49 (0.39–0.61) nm and 0.51 (0.40–

0.66) for N=512 and 2048, respectively. This increase from 0.45 might be expected because 

the parameters for Set I in Table 5 yield D∞ = 13.1; the increased hydrodynamic radius leads 

to a slightly lower diffusion constant. The D∞ and R calculated here are similar to those of 

Set II of Table 5, which were obtained from a fit of the Martini NPT simulations of DPPC 

and gA dimers and monomers.

3.3. All-Atom Simulations.

3.3.1. Comparison with the Periodic Saffman-Delbrück model.—The expense of 

all-atom simulations severely limits a comparison of size dependence because the range of L 
is small and the statistical errors are high. Nevertheless, the trajectories generated on Anton 

provide an opportunity because all are at least a μs. An added complication of the analysis is 

that, in contrast to Martini DPPC, independent values of ηm and b are not available. This 

problem was circumvented by using ηm as a fitting parameter; because the diffusion 

constant is relatively insensitive to b (see Section 3.3.2), b was set to 107 P/cm.63 Fig. 5 plots 

the diffusion constants for DPPC and DOPC, and the results of fits to ηm for the PSD model 

(see Figure caption and Table 6 for details). The trend for DPPC is clearly captured by the 

PSD model (Fig. 5, solid line), but the level of agreement with simulation for N=648 (L ≈ 15 

nm) is poor. It is possible that the relatively large correction for bilayer center of mass 

diffusion for the N = 72 and 144 systems has confounded the modeling. For this reason 

fitting was carried out using only the values at N=288 (dotted line), where the relative 

corrections for bilayer COM diffusion were lower. This leads to agreement of the model and 

simulation for N=648. Only a single Anton-based result at N = 288 (L ≈ 10 nm) is available 

for DOPC; a fit of this point also leads to agreement with the N = 648 point for this lipid.

As in the preceding subsection, extrapolations were carried out using the Bayesian analysis 

from individual values of Dsim. Because ηm and b were not obtained independently, their 

uncertainties were increased to 500% following the logic of case B of the Appendix. The 

uncertainties were set to 2% for H and L, 5% ηf (an independent value is available), and 

25% for R, as in the previous subsection. The values of D∞ from the Bayesian fits (last row 

of Table 6) are close to the single point fits (5% for DPPC and 9% for DOPC), and the 95% 

CI bound them. However, the large range of the CI highlights the need for independent 

estimates of ηm and b.

3.3.2. Comparison of simulated lipid diffusion constants and experiment.—
Diffusion constants from a variety of all-atom simulations of DPPC and DOPC have already 

been presented in Table 3 and Fig. 5. This subsection considers the extent of their agreement 

with experiment (Dexp).

There are two approaches for comparing diffusion data from simulation to experiment using 

the PSD model. The first extrapolates simulated values to L,   H ∞ using Eq. (3b), as 

already done for the Martini (Tables 5) and all-atom (Table 6) simulations. Using the 

Bayesian estimates from Table 6, D∞ = 4.8−6.6 × 10−7 cm2/s for DPPC, and D∞ = 2.0−2.7 
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× 10−7 cm2/s for DOPC. From the values of Dexp listed in Table 7, D∞ is too large by a 

factor of more than 3 for DPPC, and more than 2 for DOPC. These differences are well 

beyond the statistical error of the simulated quantities. It should be noted that there is 

considerable variation in the experimental values for diffusion constants of lipids, 

particularly DPPC where numerous measurements using bulky spin probes were published 

in the 1970s.66–67 These are in the range 3–5 × 10−8 cm2/s, and are typically lower than 

values obtained more recently.68 In contrast, measurements in black lipid membranes69 

yielded approximately 1 × 10−7 cm2/s. However, in all cases these values are substantially 

lower than either obtained directly from simulation, or extrapolated to infinite system size.

The second approach is to obtain ηm and related quantities from experiment, and insert them 

into Eq (3a) to calculate the expected diffusion constant for the system size of the 

simulation; this, in effect, sets a target for the simulation. Sources for ηm could be a direct 

measurement, or, as is more common, an estimate using Dexp and the Saffman-Delbrück 

model or one its extensions. The analysis below focuses on N=288 (L ≈ 10 nm).

Table 7 indicates that the simulated diffusion constants for DPPC are approximately 35% 

higher than experiment, and are quite close to experiment for DOPC. Dsim for DPPC 

obtained from the simulation with Langevin dynamics for temperature control (see Table 3) 

equals experiment. As is already clear from the preceding estimate, these results are 

fortuitous.

Given the general unavailability of ηm and b for most fluid phase homogenous lipid bilayers, 

values of ηm were determined from Eq. (3b) by setting D∞ = Dexp for 3 fixed values of b, 

and the viscosity of pure water at the temperature of the experiment. These physical 

parameters and the size information (Table 3) yield DPBC listed in the column of Table 7. 

Assuming that both the hydrodynamic model and the FF are close to correct, these results 

indicate that D for DPPC and DOPC should underestimate experiment by nearly a factor of 

3 for simulations of 288 lipids. The conclusion is relatively insensitive to the interleaflet 

friction; i.e., varying b by an order of magnitude in each direction while maintaining Dexp as 

a target leads to a less than 25% variation in DPBC for the two lipids.

As is evident from Fig. 6, the PSD model implies an effective “variational principle” for 

diffusion constants obtained from all-atom simulations using system sizes presently 

possible: they are invariably lower than the infinite size value. Hence, if the methodology 

(particularly the FF) is correct, simulated diffusion constants are expected to underestimate 
experiment. Conversely, if simulated diffusion constants are close to or larger than 

experiment, something is incorrect with the methodology.

Hence, both routes of analysis yield the same conclusion. Extrapolating Dsim to infinite size 

yields diffusion constants 2–3 times larger than Dexp. Extrapolating Dexp to the system sizes 

of the simulation indicates that Dsim should be 3–4 times smaller than obtained. These 

results imply a problem with the simulation methodology.
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It is not unreasonable to suspect the FF. C36, used for all of the all-atom simulations 

presented here, was primarily developed using equilibrium properties including lipid surface 

areas, area compressibilities, and NMR order parameters.14, 72 More recent validations have 

included mechanical properties such as bending constants and spontaneous curvatures for 

planar,65, 73 and inverse hexagonal74 phases. Agreement with the preceding experiments is 

excellent, and independent comparisons of C36 with other lipid FF are very favorable.75–76 

Hence, the relative balance of forces between the membrane surface and interior is arguably 

well captured by C36, at least for equilibrium properties. Dynamical properties such as 13C 

and 31P NMR T1 relaxation times of DPPC for C36 also agree well with experiment,14, 77 

but these measurements mostly probe rotational diffusion of individual lipids at the 

frequencies examined, and not translational diffusion. The viscosity of alkanes was 

evaluated when developing C27r,78 a precursor to C36, and agreement with experiment was 

very good. However, the viscosity of the alkanes comprising the membrane interior is quite 

low compared to the effective membrane bulk viscosity and is not the primary determinant 

of lipid diffusion.

There is in fact, a well-known error associated with the C36 FF: the use of TIP353 water 

model, which was slightly modified to the TIP3P54 version run in most simulations with the 

CHARMM FFs. The adaption of Ewald summation removed an artifact in TIP3P associated 

with a cutoff on the electrostatic forces,79 but further reduced the already too-low viscosity. 

The viscosity of TIP3P is lower than experiment by a factor of 2–3, depending on the 

temperature.64 However, replacing the experimental viscosity for that of TIP3P water 

(second block of results for each lipid in Table 7) has a negligible effect on DPBC and only a 

slightly larger one (10–17%) on. Hence, the FF errors inferred here are only indirectly 

related to the bulk viscosity for TIP3P water. It is likely that the interactions at the water/

lipid interface have a stronger influence on the lipid diffusion constant, and that replacing 

the water model will improve agreement with experiment.

Given that it will not be possible to obtain diffusion constants from all-atom simulations 

without substantial PBC effects for the foreseeable future, what are the options? First, the 

system size should be clearly specified when reporting diffusion constants obtained from 

simulation. Simulations at several different values of L and H would also provide a measure 

of robustness, assurance that the hydrodynamic regime has been entered, and provide data 

for extracting hydrodynamic parameters.

Next, the value (with a confidence interval) for infinite size should be included for more 

quantitative studies, even when not comparing with experiment. For example, from the 

analysis in Section 3.2.2, D∞ = 12–13 × 10−7 cm2/s for DPPC at 323 K in the Martini 

coarse-grained model. Likewise, D∞ = 4.8−6.6 × 10−7 cm2/s for the C36 all-atom FF DPPC. 

A comparison of these two values removes the effects of PBC and allows a more focused 

view on the underlying physics of the models.

As already discussed in Section 3.2.2, a more direct assessment of the hydrodynamic 

properties of bilayers through simulations might be carried out by calculating the surface 

viscosity and interleaflet friction directly using techniques such as those proposed by den 

Otter and Shkulipa.59 For all-atom studies, the value of could also be obtained from Eqs. 
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(2b) or (3b) and compared with experiment. Potential target data for ηm may be obtained in 

Honerkamp-Smith et al.,80 Petrov and Schwille,22 Camley and Brown,63 Dimova et al.,81 

and Camley et al..82

4. CONCLUSIONS

As a precursor to the main results of this study, both coarse-grained and all-atom simulations 

of DPPC bilayers demonstrated that diffusion constants from NVE and NPT simulations are 

very similar, provided that a high-quality extended system method is used to maintain 

temperature and pressure. It is possible that longer simulations will reveal statistically 

significant differences among the simulations (e.g., NVE vs NPT, CHARMM vs Anton), but 

the differences are, practically speaking, small. The weak-coupling algorithm tends to 

reduce diffusion constants slightly (Table 2). Temperature control using Langevin dynamics 

leads to more severe reductions (Table 3).

The preceding results enabled a simulation-based analysis of the Periodic Saffman-Delbrück 

(PSD) model using different simulation programs and methods. Coarse-grained and all-atom 

MD simulations of pure lipids at different cell lengths L (and mostly constant heights) show 

clearly that the calculated diffusion constants of lipids in bilayers contain a significant 

periodic boundary effect (Tables 2 and 3, and Figs. 4 and 5), as do simulations of gramicidin 

A (gA) dimers and monomers in DPPC bilayers (Table 4 and Fig. 4). As also shown in Fig. 

4, the PSD model provides very good fits to the gA dimer and monomer systems in DPPC, 

as well as pure DPPC, provided that the hydrodynamic radii of these species are adjusted to 

take into account “solvent binding” (Table 5, Set II), or the solvent viscosity is increased to 

model water binding at the membrane surface (Table 5, Set III).

The PBC effects predicted by the PSD model are substantial for all-atom simulations with 

system sizes presently accessible. Diffusion constants of medium-sized membrane proteins 

in fluid phase bilayers are expected to be underestimated by factors of 5–10 (Table 1 and 

Fig. 1), and lipids by a factor of 3–4 (Table 7 and Fig. 6), assuming that the simulation 

methodology (especially the force field) is correct. Demonstrating agreement with PSD 

model is difficult for all-atom systems given the range of sizes that can be studied and the 

large statistical errors of diffusion constants from trajectories on the 100 ns time scale. 

Nevertheless, the μs simulations presented here clearly indicate a strong PBC effect in the 5–

10 nm range for L (Table 3 and Fig. 5), and qualitative agreement with the PSD model; long 

simulations at larger L will be required for a more satisfactory test of the model. Simulations 

at fixed L (9.5 nm) showed the expected lack of dependence for 3 values of H (Table 3). 

Much larger values of H (not presently practical with all-atom MD) will be required to test 

thoroughly the dependence on this variable.

Given the preceding results it is essential to consider the effects of PBC when comparing the 

results of all-atom simulations and experiment. Hence, the diffusion constants obtained here 

for systems of 288 DPPC and DOPC from the CHARMM36 FF are disquieting because they 

are so close to experiment. If all of the components of the FF and the PSD model were 

correct, the simulated diffusion constant of DPPC would have been a factor of 4 lower than 

observed and that of DOPC a factor of 3 lower. Clearly the value of the diffusion constant 
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should be included as a target for future development of lipid FF, but the effects of finite 

system sizes must not be ignored. Experimental values of membrane surface viscosities and 

interleaflet friction may also provide valuable targets for simulation.

The substantial periodic boundary condition errors in diffusion constants for membrane 

lipids and proteins in coarse-grained and especially all-atom studies make it especially 

important that estimates of D∞ are reported along with the simulated values. The estimate 

can be involved: independent determination of the membrane surface viscosity ηm and 

interleaflet friction b, and simulations at multiple values of L and H. Or it can be quite 

simple: a single point determination of the surface viscosity and a reasonable assumption for 

b. The Bayesian analysis presented in the Appendix allows the assignment of confidence 

intervals for the extrapolated values. Conversely, the absence of an estimate of D∞ and its 

confidence interval substantially diminish the value of a simulated diffusion constant.

Acknowledgements

We thank Klaus Gawrisch, Wouter den Otter, Gerhard Hummer, Edward Lyman, John Howell, Martin Karplus, 
John Nagle, and Stephanie Tristram-Nagle for helpful discussions, and John Legato for assistance with establishing 
the diffusion website. This research was supported by the Intramural Research Program of the NIH, National Heart, 
Lung and Blood Institute, and by the National Science Foundation (Grants No. CHE-1465162 and ACI-1440689), 
and used the high-performance computational capabilities at the National Institutes of Health, Bethesda, MD 
(NHLBI LoBoS and Biowulf clusters). Anton computer time was provided by the National Center for Multiscale 
Modeling of Biological Systems (MMBioS) through Grant P41GM103712-S1 from the National Institutes of 
Health and the Pittsburgh Supercomputing Center (PSC). The Anton machine at PSC was generously made 
available by D.E. Shaw Research. Additionally, computer access was granted from SURFsara (www.surfsara.nl) 
through The Netherlands Organization for Scientific Research (NWO).

Appendix. Extrapolation of simulated diffusion constants

Review of Theory.

The diffusion constant of a protein or lipid at infinite system size, D∞, is the appropriate 

quantity to compare with experiment or different simulations. From Eqs. (2b) and (3b), it is 

evident that D∞ can be obtained from the membrane surface viscosity ηm, the viscosity of 

the external fluid ηf, the hydrodynamic radius of the inclusion, R, and (for lipids and 

monotopic peptides) the interleaflet friction b; i.e., the diffusion constant calculated directly 

from the simulation, Dsim, is not, in principle, required. Unfortunately, ηm and b are difficult 

to calculate, and have only been obtained directly from simulation for a few systems;59, 83 

even R is difficult to set a priori because of partially bound solvent lipids and water. This 

Appendix shows how these parameters can be extracted from Dsim using Bayesian statistics, 

and discusses the uncertainties and errors associated with extrapolating a single diffusion 

constant to the infinite system limit.

The Bayesian inference in this case utilizes the limited direct information (a single simulated 

diffusion constant, Dsim), and the confidence in the expected ranges of the parameters ηm, 

ηf, b, R (for notational convenience these parameters are denoted by the single symbol θ). 

Formally, the parameters θ are expected to be observed with prior probability q(θ). The goal 

is to compute the posterior distribution of these parameters; i.e., the probability of these 
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parameters given the observation Dsim: p(θ Dsim). By Bayes’ theorem, 

p θ|Dsim ∝ p(Dsim θ)q θ . Here, p(Dsim θ) is the likelihood that Dsim would be observed if the 

true parameters were θ. For simplicity p(Dsim θ) is assumed to be a normal distribution with 

mean DPBC θ  given by Eq. (2a) or (3a) as appropriate for the parameters θ, and standard 

deviation σD. Computing p θ|Dsim  analytically is not possible because the dependence in 

DPBC θ  is complex. Therefore, a simple Monte Carlo rejection method was used to estimate 

p θ|Dsim .84 The procedure is:

1. Generate a proposed set of parameters θprop according to the prior distributions 

q(θ);

2. Compute DPBC θ ;

3.
Accept this parameter set with probability exp 

− DPBC θ − Dsim 2

2σD
2 .

After many iterations of steps (1) to (3) (200,000 was used here), the distribution of accepted 

parameters yields an estimate of the posterior probability p θ|Dsim . This method is one of 

the simplest possible, and could be accelerated in many ways,84 but is sufficient for this 

application.

As an example, consider the diffusion of a 1 nm radius transmembrane protein in DPPC in 

Martini at 323 K. For a system with L = 20 nm, H = 5 nm, Eq. 2a predicts that DPBC = 4.45 

× 10−7 cm2/s, and D∞ = 7.40× 10−7 cm2/s by Eq. 2b. If the simulation has statistical errors 

of 1% (σD = 0.044 cm2/s) it would not be surprising if Dsim= 4.4 × 10−7 cm2/s. The 

measurement will now be analyzed in two different ways: A) with the knowledge of the 

Martini DPPC viscosities at 323 K, and B) only knowing the rough order of magnitude of 

these numbers. The convention used the text will be used here as well: D is expressed in 

units of 10−7 cm2/s and followed by the 95% confidence intervals (CI) in parenthesis.

A) From Den Otter and Shkulipa, 59 ηm = 1.2 × 10−8 Poise cm, and ηf = 0.007 Poise (the 

values used in much of the text). Allowing for some small errors in these values, the priors 

are chosen to be log-normal with means given by the measured viscosities and standard 

deviations of 5% of the mean. R is assumed to have a log-normal distribution with mean 1 

nm, but standard deviation 25% of its mean; here the uncertainty arises from the possibility 

that the hydrodynamic radius could be slightly different from the geometric radius because 

of the local boundary conditions. Fig. A1 shows the resulting posterior distributions from a 

run of n = 200,000 iterations. Unsurprisingly, the predicted D∞ = 7.35 (7.16, 7.54) is tightly 

bounded and only slightly lower than the correct answer of 7.40. It is lower because the 

hypothetical simulated diffusion constant was set to be slightly lower than DPBC. R also 

remains close to the assumed value of 1 nm. However, setting Dsim = 4.0 (from 4.4) yields 

D∞ = 7.29 (6.57, 7.93), and the average value R = 1.5 nm. Hence, high precision estimates 

of the parameters increase the predictive value of the simulation (plots not shown).
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Figure A1. 
Posterior distributions for the infinite system D and the parameters of the model, with tightly 

constrained membrane viscosity and water viscosity (case A). Extrapolating from a single 

measured diffusion coefficient to infinite system diffusion coefficient is very accurate in this 

case, and the posterior accurately picks out the correct hydrodynamic radius (R). Histograms 

are normalized to integrate to one, and the dashed line indicates the prior distribution for 

each quantity.

B) If the Martini viscosities were not available, one might still have a sense of the broad 

range of the viscosity. For this second example, the mean of ηm is set to 4 × 10−8 Poise cm 

(almost 4 times the previous mean) and standard deviation to 500% of the mean (a very wide 

variation).
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Figure A2. 
Posterior distributions for the infinite system D and the parameters of the model, with 

loosely constrained membrane viscosity and water viscosity (case B). Extrapolating from a 

single measured diffusion coefficient to infinite system diffusion coefficient allows only 

rough accuracy here, but the posterior correctly picks out a reasonable membrane viscosity. 

However, no additional information is gained on the inclusion radius. Histograms are 

normalized to integrate to one, and the dashed line indicates the prior distribution for each 

quantity. (Note that because the priors are broader, many fewer proposed parameters are 

accepted, and these histograms are noisier than those in Fig. A1, even though both come 

from Monte Carlo runs of n = 200,000 iterations).

The water viscosity is set to 0.01 Poise, with a 50% uncertainty (water viscosities are known 

to vary less from system to system than membrane viscosities). The assumptions pertaining 

to R remain unchanged from case A. As shown in Fig A2, these priors yield D∞ = 6.86 

(5.59–8.15). While the 95% CI still brackets the true value, there is significantly more 

uncertainty than the statistical error in Dsim (1%). Nevertheless, this corresponds to a 

remarkable improvement over the 500% uncertainty in the viscosity initially assumed.

The approach that outlined here has been generalized to allow variation of system length and 

height, and the interleaflet friction, as required to treat monotopic proteins or lipids (see 

example in the main text). The following link provides a web-based implementation of the 

approach https://diffusion.lobos.nih.gov/bayes.html.
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Figure 1. 

The relative error in diffusion constants DPBC for a membrane spanning cylinder with radius 

R = 3 nm in a simulation box with length L and half-water layer thickness H, and Saffman-

Delbrück length LSD = 160 nm. This value of LSD is consistent with the experimental 

diffusion data for proteins determined by Poolman and coworkers.9 The typical range in nm 

for all-atom simulation (10 < L < 20; 1.5 < H < 3) is shown with yellow dotted lines. The 

zero error contour, where   DPBC = D∞, is a thick blue line.
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Figure 2. 
Coarse-grained systems of gA monomer (top) and gA dimer (bottom) in DPPC bilayers. The 

dimer systems have 512 (left) and 2048 (right) lipids; the monomer systems contain 6 

additional lipids in the lower leaflets. An approximately 13 nm layer of water between 

periodic images is not depicted to conserve space. Coloring for the beads is: chain gray, 

glycerol turquoise, phosphate olive green, choline dark blue, gA backbone salmon, gA 

sidechain yellow.
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Figure 3. 
Log-log plots of mean squared displacement vs time for selected coarse-gained and all-atom 

simulations. The linear fit for longer time is extrapolated to short time to highlight the 

subdiffusive regime for the two models.
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Figure 4. 
Diffusion constants from Martini simulations (symbols) and the PSD model predictions 

(dotted lines) for gramicidin A dimers, monomers, and DPPC vs. L with the parameters 

listed in Table 5 for each Set. Diffusion constants from simulations carried out with weak 

coupling (WC) were not used for any fitting. Error bars show standard errors; they are 

comparable to the symbols for the lipids.

Venable et al. Page 27

J Phys Chem B. Author manuscript; available in PMC 2019 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Diffusion constants from all-atom simulations carried out with Anton and CHARMM for 

DPPC at 323 K and DOPC at 298 K. The solid line shows the PSD model predictions based 

on ηm determined by a fit to the diffusion constants from Anton simulations with N = 72 (L 
= 4.66 nm), 144 (L = 6.60 nm), and 288 (L = 9.60 nm); the dotted lines show PSD model 

results based only N=288 (L = 9.96 nm). See Table 6 for all fit parameters.
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Figure 6. 

The relative error in diffusion constants DPBC for a membrane spanning cylinder with radius 

R = 0.45 nm in a simulation box with length L and half-water layer thickness H, and 

Saffman-Delbrück length LSD = 146 nm (ηm=1.6 × 10−7 P·cm, ηf = 0.00547 P, T=323, b = 1 

× 10−7 P/cm). The appendix of ref. 4 contains the analogous plot for the Martini model.
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Table 1.

D∞ and DPBC (in units of 10−7 cm2/s) for three proteins for H=2 nm and L=15 nm, and two values of LSD.

LSD = 160 nm
a

LSD = 78 nm
b

Protein Radius (nm) D∞ DPBC D∞
DPBC,c

WALP23 0.5 0.605 0.222 1.25 0.519

LacY 2.0 0.467 0.087 0.93 0.203

GltT 4.0 0.398 0.029 0.77 0.068

a)ηm = 3.2 × 10−7 P·cm and T=293;

b)ηm = 1.5 × 10−7 P·cm and T=323;

c)
These entries correct a small error in Table 1 of ref 4, where L and H for the CG example were also used for the all-atom estimates.
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Table 2.

Diffusion constants and standard errors (in parentheses) for coarse-grained Martini simulations of DPPC at 

323 K for assorted lipid number (N), number of water beads per lipid (NW), length of simulation box (L), half-

height of water layer (H), and trajectory lengths (Trun). Trajectories were carried out with CHARMM (CHM) 

and GROMACS (GMX) in two different ensembles: NVE and NPT. Temperature and pressure were 

maintained using standard extended system techniques (see Methods) for CHARMM, and either Parrinello-

Rahman (PR) or weak coupling (WC) in GROMACS.

N NW L
(nm)

H
(nm)

Program ensemble Trun
(μs)

D (10−7/cm2/s)

512 23.9 12.70 4.85 CHM NVE 50 8.62 (0.12)

4.85 CHM NPT 50 8.91 (0.15)

48.9 9.70 CHM NVE 10 8.69 (0.15)

9.70 CHM NPT 10 8.78 (0.17)

33.3 12.73 6.46 GMX NPT (PR) 40 8.64 (0.14)

6.46 GMX NPT (WC) 40 8.08 (0.09)

1024 31.9 17.99 6.18 GMX NPT (PR) 40 8.85 (0.07)

17.99 6.18 GMX NPT (WC) 40 8.51 (0.08)

2048 23.9 25.40 4.85 CHM NVE 10 9.81 (0.06)

4.85 CHM NPT 10 9.79 (0.07)

49.6 9.70 CHM NVE 10 9.63 (0.10)

9.70 CHM NPT 10 9.97 (0.26)

32.0 6.22 GMX NPT (PR) 40 9.26 (0.10)

6.22 GMX NPT (WC) 40 9.08 (0.08)

4096 31.9 35.92 6.19 GMX NPT (WC) 40 9.30 (0.05)

8192 30.7 50.80 5.98 GMX NPT (WC) 40 9.72 (0.11)

32768 30.7 101.60 6.00 GMX NPT (WC) 40 10.50 (0.12)
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Table 3.

Diffusion constants and standard errors (in parentheses) from all-atom simulations of DPPC at 323 K and 

DOPC at 298 K for different lipid number (N), number of waters per lipid (NW), length of simulation box (L), 

half-height of water layer (H), and trajectory lengths (Trun). Trajectories were carried out with CHARMM 

(CHM) and Anton in three different ensembles: NVE, NVT, and NPT. Temperature and pressure were 

maintained using standard extended system techniques (see Methods), with the exception of the system 

denoted “NVT (LD)”, where Langevin Dynamics was used. Electrostatic interactions were calculated with 

Particle Mesh Ewald (PME), unless specifically indicated.

Lipid N NW L
(nm)

H
(nm)

Program ensemble Trun
(μs)

D (10−7/cm2/s)

DPPC 72 30.4 4.76 1.45 CHM NPT 0.40 1.7 (0.20)

4.66 1.52 Anton NPT 7.60 1.2 (0.06)

144 6.73 1.46 CHM NPT 0.40 1.7 (0.07)

6.60 1.52 Anton NPT 4.00 1.4 (0.12)

288 9.52 1.46 CHM NVE(Ewald) 0.50 2.5 (0.19)

CHM NVE 0.20 2.0 (0.10)

CHM NVT 0.20 2.0 (0.28)

CHM NVT (LD) 0.15 1.5 (0.10)

9.60 1.43 Anton NPT 1.00 2.3 (0.05)

15.2 9.49 0.73 CHM NPT 0.30 1.9 (0.12)

30.4 9.53 1.46 CHM NPT 0.40 2.0 (0.07)

60.8 9.52 2.87 CHM NPT 0.40 2.1 (0.11)

648 30.4 14.29 1.46 CHM NPT 0.10 2.6 (0.21)

DOPC 288 33.5 9.96 1.40 CHM NPT 0.40 0.93 (0.08)

9.96 1.40 Anton NPT 1.00 0.89 (0.02)

648 14.94 1.41 CHM NPT 0.15 1.01 (0.04)

J Phys Chem B. Author manuscript; available in PMC 2019 January 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Venable et al. Page 33

Table 4.

Diffusion constants and standard errors (in parentheses) for Martini simulations of gramicidin A (gA) dimers 

and monomers in bilayers with different numbers (N) of DPPC, number of water beads per lipid (NW), length 

of simulation box (L), half-height of water layer (H), and trajectory lengths (Trun). The last column lists the 

diffusion constants for the lipids in the simulation cell. Trajectories carried out with GROMACS at NPT using 

Parrinello-Rahman for temperature and pressure control.

peptide N
(DPPC)

NW L
(nm)

H
(nm)

D (peptide)
(10−7 cm2/s)

Trun
(μs)

D (DPPC)
(10−7 cm2/s)

gA dimer 512 38.7 12.84 7.36 1.83 (0.32) 180 8.34 (0.06)

1024 31.9 18.09 6.12 2.97 (0.35) 180 8.70 (0.05)

2048 33.3 25.52 6.41 3.27 (0.80) 180 9.16 (0.04)

gA monomer 518 38.2 12.86 7.34 3.79 (0.76) 180 8.56 (0.10)

1030 31.7 18.10 6.11 4.05 (1.1) 180 8.86 (0.08)

2054 33.2 25.54 6.41 4.54 (1.6) 180 9.17 (0.03)
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Table 5.

Parameters for fitting diffusion constants from coarse-grained simulations to the Periodic Saffman-Delbrück 

model: membrane surface viscosity (ηm), leaflet friction (b), fluid bulk viscosity (ηf), hydrodynamic radius 

(R) of gA monomers and dimers, and the Saffman-Delbruck length (LSD). The last 3 rows list D∞ (units of 

10−7 cm2/s) for each species calculated from Eqs (2b) and (3b). These extrapolations are discussed further in 

Section 3.2.2.

Parameter Set I Set II Set III

ηm (10−8 P·cm) 1.2 1.2 1.2

b (105 P/cm) 2.4 2.4 2.4

ηf (P) 0.007 0.007 0.0139

R (DPPC) (nm) 0.45 0.53 0.45

R (gA) (nm) 1.0 1.72 1.46

LSD (nm) 8.57 8.57 4.32

D∞
 (DPPC) 13.12 12.27 11.08

D∞
 (gA monomer) 9.19 6.95 5.86

D∞
 (gA dimer) 7.40 5.99 4.74
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Table 6.

Fitted value of ηm and extrapolated D∞ (units of 10−7 cm2/s) for 2 extrapolations from diffusion constants 

obtained from of all-atom simulations on Anton for 3 systems (N=72, 144, and 288) or only 1 (N=288); values 

of b, ηf and R fixed. The last row lists D∞ with 95% confidence intervals from the Bayesian method described 

in the Appendix.

Parameter DPPC DOPC

number of systems fit 3 1 1

b (107 P/cm)
a 1 1 1

ηf (P)
0.00252

b
0.00252

b
0.00311

c

R (lipid) (nm) 0.45 0.45 0.47c

ηm (10−8 P·cm) 4.4 3.4 8.9

LSD (nm) 87 67 143

D∞
 from fits 4.8 5.8 2.4

D∞
 from Bayesian 5.5 (4.8–6.6) 2.2 (2.0–2.7)

a)
ref. 63 and references therein;

b)
ref. 64, the viscosity of TIP3P water at 323 K;

c)
ref. 64, the viscosity of TIP3P water at 293 K;

d)
ref. 65.
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Table 7.

Comparison of simulated diffusion constants for DPPC and DOPC for N = 288 with DPBC (model), the 

extrapolation of the experimental diffusion constant to the system size of the simulation, for a range of 

hydrodynamic parameters that yield the experimental value at infinite system size, D∞ (model).

Lipid Dexp

(10−7 cm2/s)
Dsim

(10−7 cm2/s)

ηm

(10−7 P·cm)
ηf
(P)

b
(107 P/cm)

D∞ (model)
(10−7 cm2/s)

DPBC (model)
(10−7 cm2/s)

DPPC 1.5
a 2.3 (0.1) 1.90

0.00547
c 0.1 1.50 0.640

(323 K) 1.60 0.00547 1.0 1.51 0.584

1.45 0.00547 10.0 1.50 0.502

1.90
0.00252

d 0.1 1.65 0.641

1.60 0.00252 1.0 1.69 0.586

1.45 0.00252 10.0 1.69 0.503

DOPC 0.825
b 0.90 (0.28) 3.34

0.00890
c 0.1 0.824 0.354

(298 K) 2.83 0.00890 1.0 0.825 0.333

2.49 0.00890 10.0 0.824 0.287

3.34
0.00311

d 0.1 0.927 0.355

2.85 0.00311 1.0 0.941 0.332

2.49 0.00311 10.0 0.962 0.288

a)
ref. 70;

b)
ref. 68;

c)
ref. 71;

d)
ref. 64
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