
Lipid-based vectors for siRNA delivery

Shubiao Zhang1,2, Defu Zhi2, and Leaf Huang1

1Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North 
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

2SEAC-ME Key Laboratory of Biotechnology and Bio-resources Utilization, College of Life 
Science, Dalian Nationalities University, Dalian 116600, China

Abstract

siRNA therapeutics has developed rapidly and already there are clinical trials ongoing or planned; 

however, the delivery of siRNA into cells, tissues or organs remains to be a major obstacle. Lipid-

based vectors hold the most promising position among non-viral vectors, as they have a similar 

structure to cell or organelle membranes. But when used in the form of liposomes, these vectors 

have shown some problems. Therefore, either the nature of lipids themselves or forms used should 

be improved. As a novel class of lipid like materials, lipidoids have the advantages of easy 

synthesis and the ability for delivering siRNA to obtain excellent silencing activity. However, the 

toxicities of lipidoids have not been thoroughly studied. pH responsive lipids have also gained 

great attention recently, though some of the amine-based lipids are not novel in terms of chemical 

structures. More complex self-assembly structures, such as LPD (LPH) and LCP, may provide a 

good solution to siRNA delivery. They have demonstrated controlled particle morphology and size 

and siRNA delivery activity for both in vitro and in vivo.
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Introduction

RNA interference (RNAi) was discovered by Fire et al. (1998) who demonstrated that 

double-stranded RNA is much more effective at producing interference than either strand 

individually and that interference occurs at the post-transcriptional level. It has been 

recognized as ‘one of the most exciting discoveries in biology in the last couple of years’ 

(Jana, 2004). The potent gene silencing in a sequence specific manner has caused it to attract 

much attention for applications to biosciences and medicines (John, 2007; Karagiannis, 

2005; Geisbert, 2010; Pan, 2011). RNAi is a naturally occurring process that mediates 
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sequence specific inhibition of gene expression through the activation of a protein complex 

called RNA-induced silencing complex (RISC). RNAs in RISC are small duplex molecules 

termed siRNAs (21–23nt) produced through the cleavage of long dsRNAs (Zamore, 2000). 

The RISC cleaves the target mRNA at a sequence-specific position, guided by the antisense 

strand of the siRNA. It has been recognized that the siRNA strand incorporated into RISC is 

recycled, thus repeatedly down-regulating gene expression with only a small amount of 

siRNA. The entire process occurs within the cytoplasm of the cell, thus circumventing the 

need for nuclear delivery and alleviating concerns over the direct modification of the host 

genome. Therefore, researchers have paid considerable attention for its potential to down-

regulate genes for therapies (Tan, 2011). This is especially the case for the ‘undrugable 

targets’.

Though siRNAs have advantages over the long dsRNAs, such as being easily prepared by 

chemical methods and easily handled during biological assays, they still exhibit the 

problems of poor membrane permeability and nuclease resistance which limit their 

applicability to therapeutic use. Therefore, RNAi therapeutics requires suitable delivery 

vehicles for both in vitro and in vivo applications (Perkel, 2009). The success of RNAi 

critically depends on suitable delivery vectors that have the high efficiency transfer of 

siRNA to target cells, as well as a favourable safety profile. An ideal vehicle for cancer 

therapy should meet at least four major criteria: the evasion of the mononuclear phagocytic 

system (MPS), extravasation from the blood circulation into the tumor, diffusion through the 

extracellular matrix to bind with tumor cells, and escape from the endosome to release the 

cargo siRNA into the cytoplasm (Whitehead, 2009; Wang, 2012).

Broadly, the vectors are classified mainly into two categories: viral and non-viral (Liu, 

2002). The successful application of siRNA, is largely dependent on the development of a 

delivery vehicle which should be administered efficiently, safely, and repeatedly, if needed. 

Viral systems usually give high transfection efficiencies, but safety concerns from potential 

mutation, recombination, oncogenic effect and high cost greatly limit their therapeutic 

applications. In contrast, non-viral vectors are believed to cause fewer safety problems due 

to their relative simplicity. Lipids have long been known to be the most promising vectors, as 

they are amphiphilic molecules that spontaneously assemble into micelles or bilayers. An 

extensive range of lipids for the delivery of siRNA have been developed, though nonspecific 

cytotoxicity associated with cationic liposomes has been observed (Farhood, 1992; 

Romoren, 2004; Scales, 2006).

Since the first description of successful in vitro transfection with a cationic lipid by Felgner 

et al in 1987 (Felgner, 1987), numerous cationic lipids have been synthesized and used for 

delivery of nucleic acids into cells during the last 25 years (Adrian, 2010; Mével, 2010; Tao, 

2010; Guo, 2011; Sparks, 2012). Cationic lipids were first used in the form of liposomes, as 

they could improve the gene delivery efficacy owing to their typical bilayer structure when 

forming lipoplexes with nucleic acids. Some helper lipids (co-lipids) such as cholesterol, 

dioleylphosphatidyl choline (DOPC) or dioleylphosphatidyl ethanolamine (DOPE), typically 

neutral lipids (Zuhorn, 2005), are often employed with cationic lipids. They play a very 

important role during the formation of lipoplexes by combining cationic liposomes and 

siRNA, as they could determine the morphology of lipoplex. Many reviews (Zabner, 1997; 
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Woodle, 2001; Zabner, 2002; Zhang, 2004) discussing cationic liposomes for plasmid DNA 

delivery are available. It seems that cationic lipids combined with co-lipids could not meet 

the requirements of siRNA delivery in spite of the fact that a large amount of compounds 

have been explored.

A brief overview of lipid based liposomes related to siRNA delivery

Since the pioneer work in the late 1980s, a large amount of papers have been published on 

the delivery of genetic materials via liposomes (Malone, 1989). There are a number of 

commercially available cationic liposome/lipid based systems, such as DOTAP, Lipofectin, 

RNAifect, Oligofectamine, Lipofectamine and TransIT TKO (Omidi, 2003; Gilmore, 2004; 

Khan, 2004; Judge, 2005; Morrissey, 2005; Pirollo, 2007). One of the earliest lipoplexes 

developed for nucleic acid delivery is the commercially-available Lipofectin (Felgner, 1987). 

This formulation of cationic liposomes, assembled from a mixture of N -[1-(2,3-

dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) and DOPE, 

demonstrated successful transfection with mRNA for a broad range of cell lines (Malone, 

1989). The formulation has also shown successful transfection with siRNA for human cell 

lines (Beale, 2003). DOTAP (N-[1-(2,3-dioleoyloxy)]-N,N,N -trimethyl ammonium 

propane) and Oligofectamine were some of the first lipid formulations to be used for the in 
vivo delivery of siRNA and effective gene silencing of tumor necrosis factor α (TNF-α) and 

β-catenin in mice (Sorensen, 2003; Verma, 2003). Fluorescein-labeled siRNA was injected 

into adult mice to investigate cationic liposome-mediated intravenous and intraperitoneal 

delivery. The results showed that DOTAP containing liposomes can deliver siRNA into 

various cell types. Unlike in mouse cells, these siRNA can activate the nonspecific pathway 

in human freshly isolated monocytes to produce TNF-α and IL-6 (Sioud, 2003). Sorensen et 

al. (2003) also used cationic DOTAP liposomes to inject siRNA against TNF-α resulting in a 

suppression of the lethal reaction to lipopolysaccharide (LPS) injections in a mouse model 

of sepsis. Additionally, successful silencing of a marker gene (GFP) in liver cells after 

intravenous injection of liposomes was reported. Flynn et al. (2004) used Lipofectamine to 

deliver IL12-p40siRNA to target the expression of IL12-p40 in a model of LPS-induced 

inflammation. Significant reduction of immune reaction in treated animals was obtained, 

presumably via reduced IL12 production in peritoneal macrophages.

Many other non-commercial cationic lipids are being investigated for promising uses both in 
vitro and in vivo. For example, Khoury et al. (2006) demonstrated cationic lipid 2-(3-[Bis-

(3-amino-propyl)-amino]-propylamino)-N-ditetradecylcarbamoylme-thylacetamide 

(RPR209120) combined with DOPE can efficiently deliver siRNA designed to silence TNF-

α in collagen-induced arthritis. Similarly, Sato et al. (2007) indicated that a galactosylated 

liposome/siRNA complex could induce silencing of endogenous hepatic gene expression 

with no observed liver toxicity. Grinstaff and co-workers connected nucleosides with alkyl 

chains to create nucleoside lipids for gene (Chabaud, 2006) and siRNA (Ceballos, 2009) 

delivery in a human liver cell line. The unique feature of this concept is that the system has 

been designed to be charge-reversible (Tan, 2011). Akinc et al. (2008) designed and 

synthesized a large amount of compounds called lipidoids which could show promising 

applications in the future. One method for improving the efficiency of transfection is to link 

lipophilic siRNA to lipid moieties (e.g. derivatives of cholesterol, lithocholic acid or lauric 
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acid). The lipid moieties are covalently linked to the 5′-ends of the RNAs using 

phosphoramidite chemistry. It was found that siRNA with a modified sense strand down-

regulated β-galactosidase expression to a higher extent than either siRNA with a modified 

antisense strand or two modified strands (Lorenz, 2004).

PEGylation is a successful way to improve pharmacokinetics of siRNA in vivo and to form 

‘stealth’ liposomes (SL). PEGylated liposomes are a clinically approved delivery system for 

doxorubicin, and therefore represent a viable option for delivering siRNA in humans 

(Zimmermann, 2006). When dipalmitoylphosphatidylcholine (DPPC), 

dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidylethanolamine-

polyethyleneglycol2000 (DPPE-PEG2000) were combined to prepare DPPG:DPPC:DPPE-

PEG2000 SL, entrapped siRNA targeting enhanced green fluorescent protein (EGFP) did 

not silence gene expression of HeLa-cells stably expressing EGFP. However, preliminary 

flow cytometry and confocal microscopy data showed that the SL siRNA formulation 

increased uptake of siRNA into vesicular compartments of HeLa cells in a concentration-

dependent manner that could be augmented by exogenous sPLA2. SL can also be used to 

apply target siRNA to inflamed tissue for silencing cytokine expression in rheumatoid 

arthritis (Foged, 2007).

Even after many years of research, lipoplex still needs to be improved in terms of both 

stability and toxicity to cells. Though the stability and delivery efficiency of lipoplex can be 

enhanced by increasing the ratio of cationic lipid to siRNA, it can also lead to an increase in 

cytotoxicity (Ozpolat, 2010). Some solutions have been suggested. For example, pentavalent 

cationic lipoplexes have been used for siRNA delivery. These multivalent lipids exhibited 

not only a higher silencing efficiency than monovalent lipids, but also a lower cytotoxicity 

by minimizing the amount of lipids required for complex formation (Bouxsein, 2007).

Though cationic liposome-mediated RNAi has become popular in recent years, not all 

responses are positive. The large proportion of ‘unused’ RNA molecules could become toxic 

for cells or trigger a response that could change cell metabolism (Barreau, 2006). Clearly, 

our understanding of liposome delivery of siRNA is still evolving, and more research is 

needed. Given more research, especially regarding experiments done in vivo, liposome 

delivery may be developed into a promising tool for therapeutic application of siRNA (Li, 

2006a). For this reason, we will focus on two promising classes of lipids: lipidoids and pH 

responsive lipids. To overcome the drawbacks of lipoplex, researchers have assembled 

different nanostructures such as lipid-protamine-DNA (LPD), lipid-calcium-phosphate 

(LCP), solid lipid nanoparticles (SLN) and stable nucleic acid-lipid particles (SNALP) based 

on lipids. We will illustrate examples of these self-assembled structures. The aim is to build 

a bridge between lipids and controlled assemblies for facilitating the use of lipids for siRNA 

delivery.

pH-responsive cationic lipids

pH-responsive lipids for efficient drug/gene delivery have attracted increasing attention in 

the past decade. Tertiary amines have long been used for the delivery of genes, but have been 

found to have more uses regarding response to the pH of cells. For example, Spelios (2007) 
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synthesized cationic lipids by using bis-(2-dimethylaminoethane) and mono-(2-

dimethylaminoethane) as head groups through the linkage of a carbamate bond (Figure 1). 

The bis-heads lipids were more ionizable than mono-head ones; the pH-expandable polar 

head-groups and greater intramolecular distance between the hydrophobic chains formed 

assemblies that resulted in high transfection activity. Efficient binding and compaction of 

pDNA, increased acyl chain fluidity, and high molecular elasticity all contributed to the high 

transfection activity. However, the authors did not mention any effects of carbamate on the 

physicochemical properties and transfection efficiency, as carbamate itself is a pH dependent 

group. When incorporating a carbamate group into the linker, it may be assumed that the pH 

decrease will act as a trigger, disconnecting the hydrophobic and hydrophilic portions of the 

lipoplex, releasing DNA after entering endosomes within the cell (Liu, 2005a). We 

synthesized carbamate-linked cationic lipids for liposome-mediated gene delivery, which 

proved to have good gene transfection properties in different cell lines. As they are 

chemically stable and biodegradable, many cationic lipids of this kind have been synthesized 

(Liu, 2005a; Liu, 2005b; Liu, 2008; Zhao, 2011). To maintain the balance between serum 

stability and transfection efficiency, Chan et al. (2012a, 2012b) have designed and 

synthesized a hydrolysable acid-labile PEG-lipid (HPEG-lipid, PEG MW 2000). This PEG-

lipid was stable at physiological pH, but was cleaved at a low pH; the HPEG-lipid was stable 

at a neutral pH for more than 24 h, but degraded completely within 1 h at pH 4, leading to 

particle aggregation. HPEG-lipoplexes showed lower toxicity and enhanced transfection in 

comparison to lipoplexes stabilized with pH-stable PEG-lipids. Live-cell images showed that 

both pH-sensitive and pH-stable PEG-lipoplexes were internalized to quantitatively similar 

particle distributions within the first 2 h of incubation. Thus, the increased transfection of the 

HPEG-lipoplexes can be attributed to efficient endosomal escape, enabled by the novel 

HPEG-lipid.

Based on their previous study of multivalent cationic lipids (MVLn, n = 2 to 5) (Ewert, 

2002; Ahmad, 2005; Bouxsein, 2007), Shirazi et al. (2011) put a disulfide bond spacer 

between the headgroup and lipophilic tails of MVLn lipids to give a series of degradable 

vectors (CMVLn) for gene delivery. This spacer would respond to the reducing milieu of the 

cytoplasm and be cleaved to decrease lipid toxicity. Among these degradable lipids, CMVL4 

and CMVL5 (Figure 2) showed transfection efficiency comparable to MVL5 and some 

commercial transfection reagents while also having lower toxicity to cells. These results 

demonstrated that degradable disulfide spacers may be used to reduce the cytotoxicity of 

synthetic nonviral gene delivery carriers without compromising their transfection efficiency. 

Although the disulfide bond incorporated into cationic lipids for pH-based response is not a 

novel idea (Jiang, 2010), there is still a relatively positive impact on the decreased toxicity 

elicited. This research therefore appears to be very promising opportunity for further lipid 

design utilizing disulfide bonds for enhancing the performance of siRNA delivery vectors. 

For example, a new series of cholesterol-disulfide lipids bearing cholesterol and a variety of 

head groups via disulfide and carbonate bond linkages have been synthesized. The results 

demonstrated low cytotoxicity, strong pDNA binding affinity, high transfection, particularly 

high intracellular uptake capability, and specific cellular localization of pDNA at the 

periphery of cell nuclei for newly prepared CHOSS lipids (Figure 3) (Sheng, 2011).
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Based on the work of pH-responsive lipids for gene delivery Semple et al. (2010) 

synthesized a series of pH-responsive lipid molecules that contain ionizable amine-based 

head groups, which could efficiently formulate nucleic acids at a low pH and maintain a 

neutral or low cationic surface charge density at pH 7.4. By maintaining this surface charge 

density, the amine head group provides a longer half-life in circulation and reduces 

nonspecific cytotoxicity. Once reaching the acidic environment of the endosome, the head 

group should become protonated and positively charged so as to be available for ion pairing 

with the negatively charged endosomal lipids. The best-performing lipid, DLin-KC2-DMA 

(Figure 4), containing two cis double bonds per hydrocarbon chain, a tertiary amine head 

group and a ketal-ring linker, was formulated into SNALP. This lipid was shown to be well-

tolerated in both rodents and non-human primates, exhibiting in vivo activity at siRNA doses 

as low as 0.01 mg/kg in rodents, as well as the silencing of a therapeutically significant gene 

(TTR) in nonhuman primates. Lipids showing pH-responsive ability are successful both in 
vitro and in vivo; their low toxicity and low dose of siRNA in the formulations may lead 

them to clinical success.

Lipidoids

Akinc (2008) synthesized a library of over 1200 lipid-like materials through the conjugate 

addition of an amine to an acrylate or acrylamide, termed lipidoids (Figure 5). Depending on 

the number of addition sites in the amino monomer, lipidoids can be formed 1 to 7 tails. The 

advantage of this method is the one-step synthetic scheme which enables the straightforward 

parallel generation of large libraries of delivery materials. The safety and efficacy of 

lipidoids were evaluated for siRNA delivery performance in three animal models: mice, rats 

and nonhuman primates. Therapeutic efficacy was observed in vivo in liver, lung and 

peritoneal macrophages. The author concluded that certain design criteria were necessary for 

creating future intracellular delivery agents, including (i) amide linkages, (ii) more than two 

alkyl tails, (iii) tail length in the range of 8–12 carbons and, (iv) a secondary amine. The 

study suggests that these materials may have broad utility for both local and systemic 

delivery of RNA therapeutics.

Based on one of the novel lipid-like materials, 98N12-5(1) (Figure 6), the group obtained a 

final optimized formulation (LNP01). LNP01 has a lipid composition of 

98N12-5(1):cholesterol:PEG lipid = 42:48:10 (mol:mol:mol), total lipid:siRNA = ~7.5:1 

(wt:wt), C14 alkyl chain length on the PEG lipid, and a particle size of roughly 50–60 nm. It 

has been used successfully to silence multiple (>10) genes in several species (i.e. mouse, rat, 

hamster, and monkey). The lead formulation developed was liver targeted (>90% injected 

dose distributes to liver) and can induce fully reversible, long-duration gene silencing 

without a loss of activity following repeat administration (Akinc, 2009). Huang et al. (2009) 

used these lipidoids to deliver CLDN3 siRNA in 3 different ovarian cancer models. Their 

results suggested intratumoral injection of lipidoid/CLDN3 siRNA into OVCAR-3 

xenografts resulted in dramatic silencing of CLDN3, significant reduction in cell 

proliferation, reduction in tumor growth, and a significant increase in the number of 

apoptotic cells. Furthermore, intraperitoneal injection of lipidoid-formulated CLDN3 siRNA 

resulted in a substantial reduction in tumor burden in MISIIR/Tag transgenic mice and mice 

bearing tumors derived from mouse ovarian surface epithelial cells. Toxicity was not 
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observed after multiple i.p. injections and treatment of mice with nonimmunostimulatory 2′-

OMe modified CLDN3 siRNA was as effective in suppressing tumor growth as unmodified 

siRNA. This method may provide a therapeutic solution to ovarian cancer.

After the first library of lipidoids was proved effective for delivery of siRNA, Love (2010) 

made an epoxide-derived lipidoid library through combinatorial synthesis (Figure 7). A 

formulation has been identified that enabled siRNA-directed liver gene silencing in mice at 

doses below 0.01 mg/kg. After a single injection, this formulation was shown to specifically 

inhibit expression of five hepatic genes simultaneously. The potential of this formulation 

was further validated in nonhuman primates, where high levels of knockdown of the 

clinically relevant gene transthyretin were observed at doses as low as 0.03 mg/kg. Further, 

they synthesized materials of lipid-like tails and feature appendages containing hydroxyl, 

carbamate, ether, or amine functional groups as well as variations in alkyl chain length and 

branching (Figure 8). The relationship between lipid chemical modification and delivery 

performance in vitro was studied using a luciferase reporter system in HeLa cells to show 

the impact of the functional group depending on the overall amine content and tail number 

of the delivery vectors (Mahon, 2010).

More recently, binary combinations of these ionizable, lipid-like materials have been used to 

synergistically achieve gene silencing (Whitehead, 2011). They found that ineffective, 

individual lipid-like materials could be formulated together in a single delivery vehicle to 

induce near-complete knockdown of firefly luciferase and factor VII in HeLa cells and in 

mice, respectively. Among the 3,780 formulations that were made through 630 binary pairs 

of 36 synthetic lipidoids, the combinations of 86N15–98O13 were chosen as representatives 

to demonstrate the synergistic action by mediated cellular uptake and endosomal escape. 

The data indicated that formulating lipid-like materials in combination can significantly 

improve siRNA delivery outcomes while also increasing the material space available for 

therapeutic development. Research demonstrates the binary formulation strategy could be an 

important technique for siRNA or other nucleic acid delivery.

Hybrid siRNA delivery systems based on lipids

Since cationic lipids were successfully used for the delivery of nucleic acids, researchers 

have been designing and synthesizing a large amount of new compounds (Arpicco, 2004; 

Bianco, 2005). However, they do not function well in terms of transfection efficiency, 

leading to the development of hybrid delivery systems based on lipids. At first, helper lipids 

were incorporated in the systems to yield high transfection efficiency through controlling the 

morphology (Ma, 2007) of lipoplex and destabilizing the endosome membrane (Farhood, 

1995). Later, various lipid-based nano-assemblies including LPD (Li, 2006b), LCP (Li, 

2010), SNALP (Heyes, 2005; Morrissey, 2005), and SLN, were produced through the 

combined use of lipids, proteins, polymers, inorganic particles and other materials. These 

nano-assemblies are believed to be much more uniform in size than lipoplex and have the 

ability to escape from clearance to enter into targeted cells. Hence, more of these assemblies 

are entering the clinical trial phase.

Zhang et al. Page 7

J Drug Target. Author manuscript; available in PMC 2016 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LPD (LPH)

Gao (1996) discovered that several cationic polymers with high molecular weights, such as 

poly(L-lysine) and protamine, can enhance the transfection efficiency of some cationic 

liposomes by 2–28-fold in a number of cell lines in vitro. This discovery was based on a 

report that some polycations, such as polylysine, histone, and protamine, can effectively 

condense DNA to about 30–100 nm in diameter (Wagner, 1991). It was then found that the 

condensation agent protamine sulfate USP was superior to poly-L-lysine and other types of 

protamine (Sorgi, 1997). At the same, LPD was used to transfer DNA in vivo. The optimal 

dose was approximately 50 mg per mouse at which a concentration of approximately 20 ng 

luciferase protein per milligram extracted tissue protein could be detected in the lung (Li, 

1997).

Based on the study of DNA delivery by using LPD, the formulation was extended for the 

delivery of siRNA. AS-ODN or siRNA against human survivin was mixed with a carrier 

DNA (calf thymus DNA) before complexing with protamine. The resulting particles were 

coated with cationic liposomes, consisting of DOTAP and cholesterol, to obtain LPD 

nanoparticles. Finally, ligand targeting and steric stabilizing components were incorporated 

into the preformed LPD nanoparticles using DSPE-PEG-anisamide. It was found that tumor 

cell delivery and antisense activity of PEGylated nanoparticles were sequence dependent and 

rely on the presence of the anisamide ligand. The uptake of oligonucleotide in targeted, 

PEGylated nanoparticles could be completed by excess free ligand. The results suggest that 

the ligand-targeted and sterically-stabilized nanoparticles can provide a selective delivery of 

AS-ODN and siRNA into lung cancer cells, down-regulate survivin, and sensitize the cells to 

anticancer drugs (cisplatin) (Li, 2006b; Li, 2006c).

The systemic in vivo study using the ligand targeted, PEGylated LPD formulation showed 

significant increase in cellular uptake via the specific receptor-mediated pathway. It was 

estimated that both LPD-PEG and LPD-PEG-AA could deliver a large fraction of the 

injected dose per gram of organ weight. Nonspecific reticuloendothelial system (RES) 

uptake causes the majority of losses of the administered dose. This targeted formulation also 

demonstrated a strong gene-silencing effect mediated by RNAi. Data showed that the 

surface-modified LPD delivered siRNA predominantly to the tumor after intravenous 

administration. The formulation provided an advantage of high tumor targeting and low RES 

uptake, which implied its potential for RNAi-based tumor therapy (Li, 2006c).

Further, LPD formulation was used to target metastasis model tumors with sigma receptor–

expressing murine melanoma cells, B16F10. The lung metastasis model was established by 

intravenous (IV) injection of the B16F10 cells into C57BL/6 mice. In B16F10 melanoma 

cells targeted nanoparticles (NP) showed a 4-fold increase in delivery efficiency compared to 

non-targeted NP. Simultaneous silencing of three oncogenes in the metastatic nodules was 

obtained using siRNA against MDM2, c-myc, and vascular endothelial growth factor 

(VEGF) co-formulated in the targeted LPD. Two consecutive IV injections of siRNA in the 

targeted NP significantly reduced the lung metastasis (~70–80%) at a relatively low dose 

(0.45 mg/kg), whereas free siRNA and the non-targeted nanoparticles showed little effect. 

The targeted NP formulation prolonged the mean survival time of the animals by 30%, 

compared to the untreated controls. At the therapeutic dose, the targeted NP showed little 
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local and systemic immunotoxicity and did not decrease the body weight or damage the 

major organs (Li, 2008a). In the subsequent study (Li, 2008b), the dose was decreased to 

0.15 mg/kg, and resulted in 70–80% gene silencing in the whole lung metastasis. The 

toxicity of the NP formulations was evaluated by their induction of the proinflammatory 

cytokines (IL6, IL12, TNF, IFN-α). None of the NP formulations were immunotoxic. 

Additionally, no body weight decrease was observed for any of the mice treated with the 

formulations.

The formulations were improved by the replacement of calf thymus DNA with hyaluronic 

acid. In this procedure, protamine and a mixture of siRNA and hyaluronic acid were mixed 

to prepare a negatively charged complex. Then, cationic liposomes were added to coat the 

complex with lipids via charge-charge interaction to prepare the LPH NP. LPH was further 

modified by DSPE-PEG or DSPE-PEG-anisamide using the postinsertion method. The 

particle size, zeta potential, and siRNA encapsulation efficiency of the formulation were 

approximately 115 nm, +25 mV and 90%, respectively. LPH silenced 80% of luciferase 

activity in the metastatic B16F10 tumor in the lung after a single IV injection (0.15 mg 

siRNA/kg), nearly the same amount as the corresponding LPD formulation. However, the 

targeted LPH showed very little immunotoxicity in a wide dose range (0.15–1.2 mg siRNA/

kg), while the LPD (liposome-protamine-DNA nanoparticle) had a relatively narrow 

therapeutic window (0.15–0.45 mg/kg). The ED50 for the luciferase silencing in the B16F10 

melanoma model was 75 μg/kg in siRNA, but the induction of both IL-6 and IL-12 cytokines 

by LPH was significantly lower than that of the corresponding LPD formulation (Chono, 

2008; Gao, 2009). Later, the LPH formulation was modified with tumor-targeting, single-

chain antibody fragment (scFv) for systemic delivery of siRNA and microRNA (miRNA) 

into experimental lung metastasis of murine B16F10 melanoma. The siRNAs delivered by 

the scFv targeted nanoparticles efficiently down-regulated the target genes (c-Myc/MDM2/

VEGF) in the lung metastasis. Two daily IV injections of the combined siRNAs in the scFv-

targeted nanoparticles significantly reduced the tumor load in the lung. In this study, it was 

first reported that miR-34a and siRNA were co-formulated in scFv-targeted nanoparticles to 

obtain an enhanced anticancer effect (Chen, 2010c).

The replacement of DOTAP with DSGLA (a nonglycerol based cationic lipid which contains 

both a guanidinium and a lysine residue as the cationic headgroup) in LPD caused an 

increase in efficiency of the down-regulation of pERK in H460 cells. A synergistic cell-

killing effect in promoting cellular apoptosis was also observed with DSGLA in the 

formulation. The fluorescently labeled siRNA was efficiently delivered into the cytoplasm of 

H460 xenograft tumor by the LPD-PEG-AA containing either DOTAP or DSGLA 4 h after 

IV injection. Three daily injections (0.6 mg/kg each) of siRNA could effectively silence the 

epidermal growth factor receptor (EGFR) in the tumor, but the formulation containing 

DSGLA induced more cellular apoptosis. Hence, a significant improvement in tumor growth 

inhibition has been observed after dosing with LPD-PEG-AA containing DSGLA (Chen, 

2009).

Another formulation is the use of N,N-distearyl-N-methyl-N-2-(N′-arginyl) aminoethyl 

ammonium chloride (DSAA) liposome to coat the polyplex cores for delivering a c-Myc 

siRNA into the cytoplasm of B16F10 murine melanoma cells. Significant tumor growth 
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inhibition was observed with nanoparticles composed of DSAA with DOTAP. Three daily 

injections of c-Myc siRNA formulated in this way could impair tumor growth, with an ED50 

of about 0.55 mg/kg. Additionally, it was found that the targeted DSAA nanoparticles 

containing c-Myc siRNA sensitized B16F10 cells to paclitaxel (Taxol), caused a complete 

inhibition of tumor growth for 1 week. Treatments of c-Myc siRNA in the targeted 

nanoparticles containing DSAA also showed significant inhibition on the growth of MDA-

MB-435 tumor (Chen, 2010b).

Two formulations, LPD and LPD-II (anionic liposome formulation), were used for systemic 

co-delivery of doxorubicin (Dox) and a therapeutic siRNA to multiple drug resistance 

(MDR) tumors. The results showed that both multifunctional nanoparticle formulations 

could deliver Dox and siRNA to MDR tumors simultaneously. Though siRNA and Dox 

delivered by targeted LPD and LPD-II showed similar apoptosis inductions and therapeutic 

efficacies, LPD nanoparticles containing DSAA induced more toxicity compared with LPD-

II nanoparticles. Compared with the LPD nanoparticles, the LPD-II nanoparticles could also 

carry more Dox in the formulation. Therefore, LPD-II nanoparticles with higher entrapment 

efficiency of Dox and a lower toxicity profile may show a larger therapeutic window and a 

greater potential for clinical application for cancer therapy (Chen, 2010a).

The LPD (including LPH) formulations are more successful than other formulations (e.g. 

lipoplexes). The differences in the components of the delivery systems highlight this 

success. Cationic lipids and protamine can interact with negatively charged siRNA to form 

liposome-coated nanoparticles. The introduction of PEG provides surface steric stabilization 

to prevent the aggregation of the resulting complex with serum components. A large amount 

of PEG could be grafted to the NP surface as the result of the improved stability of the lipid 

bilayer due to charge-charge interaction with the core. The thick PEG layer at the NP surface 

gives the ability of the NP to evade RES (Li, 2009). The anisamide ligands are attached to 

the distal end of the PEG chain to increase cellular target. Cationic lipids are also necessary 

for endosome lysis and intracellular release of siRNA. The mechanism of the endosome 

membrane destabilization is most likely due to the formation of ion pair complex between 

the cationic lipids in the nanoparticles and the negatively charged anionic lipids in the 

endosome membrane. The versatile choice of lipids and polymers (such as protamine and 

hyaluronic acid), the co-delivery of siRNA, and chemodrugs are attractive features of this 

type of formulation to create solutions for the delivery of siRNA.

LCP

Although LPD showed success in delivering siRNA after IV injection, improvements were 

needed to address the low siRNA release efficiency and moderate toxicity. It has been shown 

that the release of siRNA into the cytoplasm is variable depending on the cell. To improve 

the cargo release in the target cells, the core of the nanoparticle of LPD was replaced with a 

biodegradable and acid-sensitive calcium phosphate (CaP) nanoprecipitate to give a new 

delivery formulation, LCP. The calcium phosphate core is acid sensitive; therefore, LCP 

disassembles at a low pH in the endosome, causing an osmotic pressure increase, endosome 

swelling and rupture to release the entrapped siRNA (Li, 2010). The increase of intracellular 

Ca2+ concentration shown by using a calcium specific dye, Fura-2, demonstrates the 

Zhang et al. Page 10

J Drug Target. Author manuscript; available in PMC 2016 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanism. The anisamide modified LCP silenced about 70% and 50% of luciferase activity 

for H-460 tumor cells in culture and those grown in a xenograft model, respectively. The 

new LCP formulation improved the in vitro silencing effect 40-fold compared to the 

previous LPD formulation, while maintaining a negligible immunotoxicity. After a single IV 

injection of anti-luciferase siRNA (0.12 mg siRNA/kg) formulated in targeted a LCP 

formulation (exhibiting a 40 nm particle size, a +25 mV zeta-potential, and 91% siRNA 

encapsulation efficiency), luciferase activity in metastatic B16F10 tumor-loaded lungs was 

decreased by 78% in C57BL/6 mice.

Later, the first generation of LCP was improved by using an anionic lipid, dioleoyl 

phosphatydic acid (DOPA), as the inner leaflet lipid to coat the nano-size CaP cores. A 

suitable neutral or cationic lipid was used as the outer leaflet lipid to form an asymmetric 

lipid bilayer structure which was verified by the measurement of NP zeta potential. 

PEGylation of NP was accomplished by including a PEG-phospholipid conjugate, with or 

without a targeting ligand, anisamide, in the outer leaflet lipid mixture. The resulting LCP-II 

had a size of about 25–30 nm in diameter and contained a hollow core, as revealed by TEM 

imaging. The sub-cellular distribution studied in the sigma receptor positive human H460 

lung cancer cells indicated that LCP-II could release more cargo to the cytoplasm than the 

previous LPD formulation, leading to a significant (~40 fold in vitro and ~4 fold in vivo) 

improvement in siRNA delivery. However, a bio-distribution study showed that LCP-II 

required more PEGylation for RES evasion than the previous LPD, probably due to 

increased surface curvature in LCP-II (Li, 2012). In a therapeutic experiment, siRNA against 

MDM2, c-myc, and VEGF co-formulated in the targeted LCP-II resulted in simultaneous 

silencing of the respective oncogenes in metastatic nodules. Treatment with siRNA in the 

targeted NP significantly reduced lung metastases (~70–80%) at a relatively low dose (0.36 

mg/kg). Moreover, this targeted LCP-II NP significantly prolonged the mean survival time 

of the animals by 27.8% compared to the control group without showing any toxicity at the 

therapeutic dose (Yang, 2012).

Conclusion

Lipids are promising and versatile carriers because they can be custom-designed with 

specifically funtional properties which allow for protection of the siRNA, steric stabilization, 

targeting, membrane destabilization and triggered drug release (Foged, 2012). Although the 

cationic lipid-based delivery systems have demonstrated the potential of siRNA as future 

human medicines, they still need more development effort (Oh, 2009). Lipid-based 

liposomes used to deliver siRNA do not have optimal encapsulation efficiency; that is, many 

siRNA molecules stay freely in solutions. If we want to decrease the amount of free siRNA, 

the number of liposomes will need to be increased to cause additional toxicity both in vitro 
and in vivo. The other challenge that remains is the control of morphologies and sizes of 

lipoplexes. Therefore, though as low as 0.01 mg/kg of siRNA dose could silence genes 

efficiently, it was very difficult to advance these formulations into clinical trials. Perhaps the 

controlled assembly of lipids into biodegradable cores with well defined morphology and 

size, such as in the cases of LPD and LCP, could provide a real solution to the problem, 

though relatively high siRNA dose (0.12 or 0.15 mg/kg) is required in mice. To date, most 

studies address proof-of-concept but do not investigate any possible toxicity of the applied 
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siRNA formulations. Lipidic carriers are not only able to increase immune reactions, but can 

also possess intrinsic immunostimulatory activity (Foged, 2012). Several recent papers have 

described an unspecific interferon response after administration of lipid-formulated siRNA 

molecules to mice (Hornung, 2005; Juliano, 2008). With the progress of lipids based 

systems for delivering siRNA, more and more biological side-effects may reveal; the safety 

profiles of cationic lipids and lipid-based delivery systems must be further investigated. This 

is especially true for the lipidoids.

The structure of cationic lipids is known to affect transfection efficiency and toxicity of 

cationic lipid-based delivery systems (Lv, 2006). Therefore, novel lipids with high 

transfection efficiency and low toxicity are highly pursued in research. Although lipids with 

pH sensitive groups are believed to improve nucleic acid delivery (Schroeder, 2009), over 20 

years of research has been completed, and a large amount of compounds has been designed 

and synthesized, barriers still remain. From our point of view, lipids (such as lipidoids), 

newly developed and with very low toxicity, should be incorporated into controlled 

assemblies with polymer (e.g. protamine), inorganic (e.g. calcium phosphate), any other 

available cores to impart specific performance functionality.
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Figure 1. 
Chemical structures of lipids with bis-(2-dimethylaminoethane) and mono-(2-

dimethylaminoethane) as head groups.
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Figure 2. 
Chemical structures of CMVL4 and CMVL5.
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Figure 3. 
Chemical structures of CHOSS-4N.
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Figure 4. 
Chemical structure of DLin-KC2-DMA.

Zhang et al. Page 21

J Drug Target. Author manuscript; available in PMC 2016 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Synthesis schematic of lipidoids by the conjugate addition of amine to α,β-unsaturated 

carbonyl compounds.
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Figure 6. 
Chemical structure of 98N12-5(1).
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Figure 7. 
Synthesis schematic of lipidoids by the conjugate addition of amine to epoxides.
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Figure 8. 
Synthesis schematic of lipidoids by the conjugate addition of amine to lipid-like tails 

containing hydroxyl, carbamate, ether, or amine functional groups.
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