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	e biosynthesis pathway of eicosanoids derived from arachidonic acid, such as prostaglandins and leukotrienes, relates to the
pathophysiology of diabetes mellitus (DM). A better understanding of how lipid mediators modulate the in
ammatory process
may help recognize key factors underlying the progression of diabetes complications. Our review presents recent knowledge about
eicosanoid synthesis and signaling in DM-related complications, and discusses eicosanoid-related target therapeutics.

1. Introduction

Eicosanoids are biologically active lipid mediators that regu-
late in
ammation [1] and that include prostaglandins (PGs),
prostacyclins, thromboxanes (TX), leukotrienes (LT), and
lipoxins (LX) (Figure 1) [2–4]. 	ey may amplify or reduce
in
ammation, which coordinates cytokine production, anti-
body formation, cell proliferation and migration, and anti-
gen presentation [2, 5, 6]. To prevent great tissue damage,
eicosanoids also control the in
ammatory resolution and tis-
sue repair process [7, 8]. Imbalances in eicosanoid synthesis
have been reported to drive chronic in
ammation [1, 9],
which deregulates signaling pathways and/or cellular events
leading to abnormal immune functions [6, 10]. In partic-
ular, circulating and local mediators, such as eicosanoids,
interleukin- (IL-) 1�, tumor necrosis factor- (TNF-) �, IL-6,
IL-8, macrophage migration inhibitory factor (MIF), and
free radicals, create a state of low-chronic in
ammation in
diabetic patients [5, 10, 11]. In
ammation may lead to dia-
betes progression, including damage to the kidneys (diabetic
nephropathy), eyes (diabetic retinopathy), nerves (diabetic
neuropathy), and cardiovascular system [12] (Figure 2).

In this review, we summarize the role of eicosanoids on
the pathogenesis and progression of diabetes. In addition, we
review drugs used to treat diabetic complications by acting

on compounds of the eicosanoid pathway and speculate on
possible future targets to treat diabetes complications.

2. The Role of Eicosanoids in Diabetes

	e level of in
ammation severity in diabetes is associ-
ated with hemoglobin A1 levels [13]. Increased PGE2 levels
are related to dysfunction in insulin-regulated glycogen
synthesis and gluconeogenesis in the liver [14, 15]. 12- as
well as 15-hydroxyeicosatetraenoic acid (HETE) increases
in
ammatory cytokine expression, such as IL-6, TNF-�, and
MCP-1, inducing chronic in
ammation and the in�ltration
of in
ammatory cells in adipose tissue [16–18]. In addition,
12-lipoxygenase (LOX) metabolites impair insulin action in
adipocytes and can downregulate glucose transport, both of
which may lead to insulin resistance [18, 19]. Nimesulide
and metformin improved acute in
ammation and impaired
glucosemetabolism [20], suggesting that impairing functions
of prostaglandin synthesis are mediated by altered glucose
levels [21].

2.1. Diabetic Nephropathy. Diabetic nephropathy is themajor
cause of diabetes-related death [22]. Renal disorders associ-
ated with diabetic nephropathy consist of modi�cations in
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Figure 1: Eicosanoid synthesis pathways. A�er cell stimulation, arachidonic acid (AA) can bemetabolized by three enzymes: cyclooxygenase
(COX), lipoxygenase (LOX), and cytochrome P450 (CYP 450). COX catalyzes AA in (prostaglandin) PGG2 and PGH2, and these are
converted into PGD2, PGE2, PGF2�, PG12, TXA1, and TXA2. 	e LOX pathway catalyzes AA into hydroxyeicosatetraenoic acids (HETEs)
and diverse hydroperoxyeicosatetraenoic acids (HPETEs).	is pathway involves four enzymes: 5-LOX, 8-LOX, 12-LOX, and 15-LOX. 5-LOX
interacts with a 5-LOX-activating protein (FLAP), enhancing the interaction of 5-LOX to AA. LTA4 hydrolases convert LTA4 into LTB4, and
LTC4 synthase can convert LTA4 to LTC4, whereupon it is then metabolized to LTD4 and LTE4. 5-LOX synthetizes LXA4 and LXB4 using
15-HETE.	e pathway of CYP-450 leads to the conversion of HETEs, including 16-, 17-, 18-, 19-, and 20-HETE and epoxyeicosatrienoic acids
(EETs): 5,6-, 8,9-, 11,12-, and 14,15-EET.

renal hemodynamics, glomerular hypertrophy,mesangial cell
proliferation, matrix accumulation, and proteinuria [23]. In
normal conditions, PGE2 is the major PG in the kidneys
and acts in renal physiology, glomerular �ltration, and renin
release [24, 25]. PGE2 activates kidney EP receptors, such as
EP1, EP2, EP3, and EP4 in the collecting duct (except for
EP2 whose mRNA has been localized to the outer and inner
medulla of the kidney and EP4 which can also be expressed
in the glomerulus) [25, 26]. Interactions between resident
renal cells and macrophages change the microenvironment
to a proin
ammatory state, contributing to tissue damage
and scarring [27, 28]. Macrophages and T cells in�ltrate
the glomeruli and interstitium, contributing to chronic renal
failure in diabetic patients [27, 29–31].

During in
ammation, macrophages release IL-1B and
TNF-�, inducing endothelial cell permeability, altering
glomerular hemodynamics, and decreasing PGE2 production
by mesangial cells [32]. Normal levels of PGE2 suppress 	1
immune responses [33] and downregulate TNF-� production
and upregulate IL-10 production through EP2 and EP4
receptor signaling, ending nonspeci�c in
ammation [33–35].
	rough an IL-10-dependent mechanism, PGE2 regulates IL-
12 secretion by selectively inhibiting IL-12p70 production
and stimulating IL-12p40 release [36, 37]. However, PGE2 is

reduced in diabetic nephropathy, and this plays an essential
role in the evolution of diabetic renal injury, strengthen-
ing the conclusion that in
ammatory mechanisms have a
signi�cant role in both diabetic nephropathy development
and progression [38–40]. Knockout podocyte-speci�c mice
are protected against diabetes-induced nephropathy and
albuminuria, showing the importance of COX-2 metabolites
in the establishment of diabetic nephropathy [41].

2.2. Diabetic Retinopathy. Estimates done between 2005 and
2008 suggest that 28.5% of diabetics over the age of 40
in the United States had diabetic retinopathy and vision-
threatening problems [42]. Low-grade chronic in
ammation
has been implicated in the pathogenesis of diabetic retinopa-
thy [43]. 	e retina of diabetic individuals has a particular
lipid pro�le [44]. COX-2 increases in the retina of diabetic
animals, which contributes to abnormal production of PG
[45].

5-LO-derived 5-HETE is the major proin
ammatory
eicosanoid, being �ve times higher in the vitreous of diabetics
versus nondiabetics patients [46]. Mice null for the 5-LO
gene demonstrated a minor in
ammatory reaction [47–49].
Mice de�cient in 5-LO had signi�cantly less degeneration
of retinal capillaries induced by diabetes, less superoxide
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Figure 2: Eicosanoid compounds a�ect di�erent organs in diabetes complications. Diabetic nephropathy, one of the most common
complications in diabetes, shows low PGE2 levels and altered glomerular hemodynamics. 	is dilates arteries and increases microvascular
permeability. In normal conditions PGE2 downregulates TNF-� production and upregulates IL-10 production through EP2 and EP4
receptor signaling. However, a proin
ammatory environment leads to cell permeabilization, low concentrations of PGE2, and mesangial cell
proliferation. Diabetic retinopathy is another common complication in diabetes. In diabetes, the environment in the retina has a particular
lipid pro�le, with higher COX-2 and abnormal production of PG. LTA4 and LTB4 are enhanced in addition to IL-8. Diabetic peripheral
neuropathy is correlated with high COX-2 and PGE2. In a diabetic’s cardiovascular system, PGE2 has an important role in microvascular
permeability, and 12-HETE and 20-HETE lower the activity of endothelial progenitor cell (EPC) function.

generation, and less nuclear factor (NF)-kB expression [50].
	erefore, the generation of LTs could contribute to chronic
in
ammation and retinopathy in diabetes [51].

In addition, a hyperglycemic environment causes the
release of 5-LO metabolites, LTA4 and LTB4. Retinas from
both nondiabetic and diabetic mice are unable to produce
LT or 5-LO mRNA. However, it was demonstrated that
transcellular delivery of LTA4, from bone marrow-derived
cells to retinal cells, results in the generation of LTB4/LTC4
[52]. LTC4 induces vascular permeability a�er binding with
the retinal microvascular endothelial cells, and LTB4 coordi-
nates proin
ammatory pathways and superoxide generation,
which may contribute to endothelial cell death and capillary
degeneration, in turn contributing to chronic in
ammation
and diabetic retinopathy development [53].

2.3. Diabetic Peripheral Neuropathy. Estimates suggest 50%
of diabetic patients have diabetic peripheral neuropathy,
which a�ects the sensorimotor and autonomic parts of
the peripheral nervous system [54–56]. Few studies describe
the involvement of the eicosanoid pathway in DPN. In
streptozotocin-induced rats, the intrathecal administration
of COX-2 inhibitors, but not of COX-1 or COX-3 inhibitors,
had an antihyperalgesic e�ect, supporting the importance of
spinal COX-2 in DPN [57]. Pain may be attributed to the

action of PGE2 on peripheral sensory neurons and on central
sites within the spinal cord and the brain [58].

2.4. Diabetic Cardiovascular System. Impaired endothelial
function is described in diabetes [59–61]. COX-2 expression
and dilator prostaglandin synthesis increase in the coronary
arterioles of diabetic patients [62]. Venous smooth muscle
cells express more COX-2 and release more PGE2 when
stimulated by a mix of in
ammatory cytokines [63]. PGE2
causes pyrexia, hyperalgesia, and arterial dilation [58, 64].
PGE2 may act as a mediator of active in
ammation, pro-
moting �rst local vasodilatation, then the recruitment and
activation of neutrophils, macrophages, and mast cells [65–
68]. Deregulation of PGE2 synthesis leads to a wide range
of pathological conditions [69]. In a normal cardiovascular
system, PG12 acts as a potent vasodilator and TXA2 as a
vasoconstrictor [70, 71].	e presence of both PGI2 andTXA2
maintains the normal physiology of the circulatory system
[72]. In addition, themyocardiumof diabetic and healthy rats
does not di�er in PG12 and PGE2 [73].

CYP-450-derived eicosanoids 12-HETE and 20-HETE,
along with other in
ammatory components in diabetic
patients, lower the activity of endothelial progenitor cell
function. Diabetic vascular complications are associated with
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Table 1: Eicosanoid compounds as targets for drug development to control diabetes progression.

Drug Target Condition Consideration Reference

Celecoxibe COX-2 inhibitor Diabetes nephropathy
Female patients received higher dose of PGs
vasodilator to maintain blood vessel function than
male patients.

[74]

Aspirin
Nonselective
COX inhibitor

Diabetes retinopathy
Delay in development of retinal microaneurysms
in DR.

[75]

Celecoxibe COX-2 inhibitor Diabetes retinopathy Reduction of vascular leakage. [76]

Latanoprost
PGF2�
agonist

Diabetes retinopathy Reduces the diameter of dilated retinal arterioles. [77]

Ketorolac tromethamine
Nonselective
COX inhibitor

Diabetes retinopathy

Patients with suspected or visible �brovascular
proliferation demonstrated a reduction in IL-8
and platelet-derived growth factor levels in
vitreous humor.

[78]

reduced vascular regenerative potential and nonfunctional
endothelial progenitor cell [79].

In sum, imbalanced levels of eicosanoids can induce
modi�cation of the microenvironment in the kidneys, eyes,
nerves, and cardiovascular system and contribute to the
progression of diabetes pathogenesis. Eicosanoid compounds
have been studied as targets for drug development to control
diabetes progression (Table 1).	us, we reviewed drugs based
on lipid mediators that are involved in diabetes complica-
tions.

3. Lipid Mediators in Modulation of
Diabetes Complications

When celecoxib, a COX-2 inhibitor, was administered as
therapy for diabetic nephropathy in a type 1 diabetes
(T1DM) population, COX-2-dependent factors neutralized
the angiotensin II e�ect in the renalmicrocirculation; further,
this e�ect was greater in women with uncomplicated T1DM
than inmen [74].	ese gender di�erences could be explained
by higher plasma prostanoid found in female animals, an
e�ect that may be estrogen mediated [80–83].

Lower modi�ed levels of PGE2 relate to changes in the
kidney microenvironment and the progression of diabetic
nephropathy; thus, PGE2 and its action are also important
targets for drug development [84]. 	e PGE2-EP4 path-
way contributes to the progression of tubule interstitial
�brosis, and the chronic administration of EP4-agonist in
mice, exacerbated in
ammation via IL-6, and consequently
albuminuria and �brosis [85]. Additionally, EP4-agonist
mediates hyper�ltration in the glomerulus in the early
stages of diabetes [86, 87]. Diabetes in
ammatory state and
chemokine production also increased when mice (T1DM
model) were treatedwith anEP4 agonist [85] and upregulated
the development of immune responses 	1 and 	17 [88].
On the other hand, EP receptor antagonists inhibited 	1
and 	17 response [89, 90]. In summary, the activation of
the EP4 receptor exacerbates albuminuria levels, in
amma-
tion, and �brosis. COX-2 inhibition reduces albuminuria in
renal disease in rats [91]. Recently, using PGE1 in diabetic

nephropathy patients in di�erent disease stages decreased
proteinuria and albuminuria [92].

Treating diabetic rats with 50mg/Kg of aspirin plus
2mg/Kg of meloxicam (a COX-2 inhibitor) reduced leuko-
cyte adhesion and suppression of the blood-retinal barrier
breakdown.	is combined dose also reduced retinal ICAM-1
expression, and aspirin alone reduced the expression of C11a,
CD11b, and CD18. Together, aspirin and meloxicam reduced
the level of TNF-� [93]. Among diabetic patients, 330mg
of aspirin signi�cantly slowed the development of retinal
microaneurysms in diabetic retinopathy [75]. Another con-
trolled trial showed that celecoxib reduced vascular leakage
in diabetic patients with diabetic retinopathy [76].

Topical administration of nonsteroidal anti-in
amma-
tory drugs (NSAIDs) compared to nontopical administration
minimizes systemic exposure to the drug, such that topical
NSAIDs can help enhance intraocular penetration. Diabetic
patients exhibited elevated plasma IL-8 and elevated vitreous
PGE2 and IL-8 [78, 94]. Exposure to PGE2 induces IL-8 gene
transcription in human T cells [95]. 	e binding of IL-1�,
TNF-�, and IFN-� also stimulates human retinal pigment
epithelial cells to express IL-8 [96]. One study provides direct
clinical evidence that topical ocular ketorolac tromethamine
(0.45% NSAID) reduces vitreous IL-8 in patients with prolif-
erative diabetic retinopathy [97].

One study found that latanoprost (a PGF2� agonist) used
topically signi�cantly reduced dilation of retinal arterioles in
type I diabetes patients with diabetic retinopathy, whereas
topical diclofenac had no signi�cant e�ect [77]. In diabetic
rats, celecoxib lowered the synthesis of PGE2 in the retina
(a result attributed to selective COX-2 inhibition, since
COX-1 inhibitor did not have this e�ect) [98]. In addition,
another COX inhibitor, nepafenac, inhibits increased retinal
PG production and leukocyte adhesion in the retinal vessels
of diabetes-induced rats [51].

In peripheral arterial diseases, the goal of treatment is to
improve symptoms and prevent cardiovascular events [99].
Beraprost sodium is an analogue active PG12 with antiplatelet
and vasodilating properties [100, 101]. Oral administration of
beraprost sodium to diabetic patients improved sensations
described as burning/hot, electric, sharp, achy, and tingling
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[100]. Beraprost improves symptoms by dilating peripheral
vessels and increasing blood 
ow to the skin [102], and it can
also improve painful peripheral neuropathy over a period of
8 weeks [103].

4. Future Perspectives on Eicosanoids

Components of the eicosanoid pathway have a fundamental
role in the development of in
ammation. As seen in this
review, several studies have established that they partici-
pate in the progression of diabetes and its complications.
Eicosanoids may act as pro- or anti-in
ammatory. Currently,
PG agonist and COX-1 and/or COX-2 inhibitors are the most
promising tools to control diabetes complications, showing
good results and promise for the future. Future studies should
aim to unveil the function of speci�c receptors and enzymes
acting inmore speci�c targets available only in certain organs,
such as the kidneys, eyes, vessels, or nerves.
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G. P. Püschel, “Aggravation by prostaglandin E2 of interleukin-
6-dependent insulin resistance in hepatocytes,”Hepatology, vol.
50, no. 3, pp. 781–790, 2009.

[16] Y. Wen, J. Gu, S. K. Chakrabarti et al., “	e role of 12/15-
lipoxygenase in the expression of interleukin-6 and tumor
necrosis factor-� in macrophages,” Endocrinology, vol. 148, no.
3, pp. 1313–1322, 2007.

[17] Y. Wen, J. Gu, G. E. Vandenho�, X. Liu, and J. L. Nadler, “Role
of 12/15-lipoxygenase in the expression of MCP-1 in mouse
macrophages,” 
e American Journal of Physiology—Heart and
Circulatory Physiology, vol. 294, no. 4, pp. H1933–H1938, 2008.

[18] S. K. Chakrabarti, B. K. Cole, Y. Wen, S. R. Keller, and J. L.
Nadler, “12/15-Lipoxygenase products induce in
ammation and
impair insulin signaling in 3t3-l1 adipocytes,”Obesity, vol. 17, no.
9, pp. 1657–1663, 2009.

[19] E. Alpert, A. Gruzman, H. Totary, N. Kaiser, R. Reich, and
S. Sasson, “A natural protective mechanism against hypergly-
caemia in vascular endothelial and smooth-muscle cells: role
of glucose and 12-hydroxyeicosatetraenoic acid,” Biochemical
Journal, vol. 362, part 2, pp. 413–422, 2002.
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