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Abstract: Glioblastoma (GBM) is the most lethal primary brain tumor. With limited therapeutic
options, novel therapies are desperately needed. Recent studies have shown that GBM acquires
large amounts of lipids for rapid growth through activation of sterol regulatory element-binding
protein 1 (SREBP-1), a master transcription factor that regulates fatty acid and cholesterol synthesis,
and cholesterol uptake. Interestingly, GBM cells divert substantial quantities of lipids into lipid
droplets (LDs), a specific storage organelle for neutral lipids, to prevent lipotoxicity by increasing the
expression of diacylglycerol acyltransferase 1 (DGAT1) and sterol-O-acyltransferase 1 (SOAT1), which
convert excess fatty acids and cholesterol to triacylglycerol and cholesteryl esters, respectively. In
this review, we will summarize recent progress on our understanding of lipid metabolism regulation
in GBM to promote tumor growth and discuss novel strategies to specifically induce lipotoxicity to
tumor cells through disrupting lipid storage, a promising new avenue for treating GBM.

Keywords: glioblastoma; fatty acids; cholesterol; lipid droplets; SREBP-1; DGAT1; SOAT1;
lipotoxicity

1. Introduction

Fatty acids and cholesterol are two essential lipids that constitute the basic structure of
cellular membranes [1]. Their derivatives can act as important signaling molecules to regu-
late cellular function [2]. However, dysregulation of fatty acid and cholesterol metabolism
can cause various metabolic diseases, i.e., obesity, fatty liver, atherosclerosis, neutral lipid
storage disease (NLSD), and cholesterol storage disease (CESD) [3,4]. Increasing evidence
shows that lipid alterations also accelerate neurodegenerative disease progression by pro-
moting oligomerization of pathogenic proteins and brain inflammation [5,6]. In recent
years, following extensive investigation on energy metabolism [7], the role of abnormal
lipid metabolism in cancer cells has rapidly received increasing attention [1,8–10]. New
observations indicate addictive de novo lipid synthesis in various types of cancers [1].
Thus, targeting lipid synthesis has become a promising new direction for cancer ther-
apy, as demonstrated by the many preclinical tumor models and Phase I/II clinical trials
(Table 1) [1,9].

Glioblastoma (GBM) is the most lethal primary brain tumor [11]. Unfortunately, there
has not been significant progress to improve GBM outcome over the past two decades
despite extensive clinical testing [12]. Recent studies show that GBM needs abundant
lipids for rapid growth [13–16], but accumulation of intracellular lipids, especially free fatty
acids and cholesterol, can cause lipotoxicity [17,18]. How GBM cells protect themselves
against excess lipid accumulation and lipotoxicity is an intriguing question. Our recent
studies demonstrated that GBM cells prevent lipotoxicity and maintain tumor growth
by dynamically storing excess lipids into lipid droplets (LDs), a specific lipid storage
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organelle [19–22]. In this review, we will summarize recent progress on our understanding
of lipid metabolism regulation in GBM to maintain cellular homeostasis and tumor growth
via coordination of lipid synthesis, uptake and storage processes, and will discuss a new
strategy to target GBM involving disruption of lipid storage specifically in tumor cells.

2. Standard GBM Therapy

GBM is a WHO grade IV glioma, with a median survival post-diagnosis of only
approximately 15 months despite extensive treatments [23]. GBM represents more than 60%
of all brain tumors in adults and occurs in 2–3 cases per 100,000 individuals in Europe and
North America [24]. Approximately 90% of GBM cases occur as primary tumors that have
wild-type isocitrate dehydrogenase (IDH) and less than three months of clinical symptoms
before diagnosis, while less than 5% of all cases are secondary tumors with IDH mutations,
progressing from WHO grade II/III gliomas and with better prognosis [12,25–27]. The
standard treatment for GBM is to first perform maximal surgical resection, followed by
concomitant radiotherapy and alkylating agent Temozolomide (TMZ) for 6 weeks, and
then continuation of TMZ alone every 4 weeks for six cycles of maintenance treatment [28].
Unfortunately, this treatment is only effective for a few months and almost all GBM tumors
unavoidably recur after treatment [29]. The 5-year survival for patients with GBM is only
around 6.8% in the United States [30].

In the clinic, except for TMZ, only Bevacizumab, a humanized monoclonal antibody
against vascular endothelial growth factor (VEGF), has been approved by the FDA for the
treatment of recurrent GBM and not for newly diagnosed GBM [31,32]. It is effective at
reducing symptoms and improving the quality of life only for a short time [25]. However,
Bevacizumab has no combinatory effect with TMZ and radiotherapy [25]. Moreover, it
reduces the uptake of TMZ, fails to increase the overall survival, and has significant side
effects such as hypertension, venous thrombosis, and infections [25].

Current investigations for new approaches targeting GBM have centered on molec-
ularly targeted therapies, immunotherapy, and brain-targeted drug delivery [33]. For
example, 57% of GBM cases show evidence of amplification or gain of function mutation of
EGFR (EGFRvIII) [34]. Unfortunately, results from clinical trials for monoclonal antibodies
and tyrosine kinase inhibitors (TKI) targeting EGFR have been disappointing, with no
therapeutic benefit or being no better than TMZ [12,35]. Moreover, although 61% [36] to
88% [37] of GBM patients have tumors expressing PD-L1, clinical trials inhibiting PD-L1 or
PD1 have also shown disappointing results [38]. Collectively, the failure to make significant
progress in targeting GBM indicates that more efforts are needed to understand the biology
of GBM, which is foundational to identify effective approaches antagonizing GBM.

3. Lipid Metabolism Regulation in GBM
3.1. Lipogenesis

Glucose is the main source for lipid production through the de novo synthesis path-
way [1]. Glucose through glycolysis generates pyruvate that is converted to acetyl-CoA in
the mitochondria by the pyruvate dehydrogenase (PDH) [1,39]. Condensation of acetyl-
CoA with oxaloacetate (OAA) forms citrate, which is then released into the cytosol by the
SLC25A1 transporter and converted back to acetyl-CoA by ATP-citrate lyase (ACLY). Acetyl-
CoA then serves as a precursor for fatty acid and cholesterol synthesis [1,40] (Figure 1). In
addition, acetyl-CoA synthetase 2 (ACSS2) can convert cytosolic acetate to acetyl-CoA for
de novo fatty acid and cholesterol synthesis (Figure 1) to promote tumor growth [1]. ACSS2
is upregulated in GBM [41] and in hepatocellular carcinoma (HCC), myeloma, prostate,
and bladder cancers [42]. Furthermore, acetyl-CoA is also involved in epigenetic regulation
as it enters into the nucleus to modify histone proteins by direct acetylation [43].
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Figure 1. Lipid metabolism reprogramming in cancer cells. (1) Combined elevation of glucose and 
glutamine consumption promotes lipogenesis by activating the SREBP/SCAP pathway. Glucose 
produces N-glycans through HBP (Hexosamine Biosynthesis Pathway), which stabilizes SCAP 
(SREBP-cleavage activating protein) through N-linked glycosylation of its luminal loops (1 and 7). 
Glutamine enters the mitochondria and ammonia (NH3) is released by GLS (glutaminase). NH3 is 
protonated and converted to NH4+, which directly binds to the aspartate D428 and Serine S326/330 
in the core of the SCAP transmembrane domains, forming stable hydrogen bonds. This binding 
triggers a dramatic conformation change in SCAP, leading to its dissociation from Insig (insulin-
induced gene), an endoplasmic reticulum (ER)-resident protein. Subsequently, SCAP escorts SREBP 
(sterol regulatory element-binding protein) to the Golgi, where it is cleaved by two enzymes S1P 
(site 1 protease) and S2P (site 2 protease) to release its active N-terminal fragment. Finally, the N-
terminal domain goes into the nucleus, binds to the SRE (sterol regulatory element) motif located in 
the promoters of gene involved in lipogenesis to activate their transcription and promote de novo 
lipid synthesis and tumor growth. (2) Glucose is the main source for lipid synthesis. Glucose via 
glycolysis breaks down into pyruvate, which enters the mitochondria and is converted to acetyl-

Figure 1. Lipid metabolism reprogramming in cancer cells. (1) Combined elevation of glucose and
glutamine consumption promotes lipogenesis by activating the SREBP/SCAP pathway. Glucose
produces N-glycans through HBP (Hexosamine Biosynthesis Pathway), which stabilizes SCAP
(SREBP-cleavage activating protein) through N-linked glycosylation of its luminal loops (1 and 7).
Glutamine enters the mitochondria and ammonia (NH3) is released by GLS (glutaminase). NH3 is
protonated and converted to NH4+, which directly binds to the aspartate D428 and Serine S326/330 in
the core of the SCAP transmembrane domains, forming stable hydrogen bonds. This binding triggers
a dramatic conformation change in SCAP, leading to its dissociation from Insig (insulin-induced
gene), an endoplasmic reticulum (ER)-resident protein. Subsequently, SCAP escorts SREBP (sterol
regulatory element-binding protein) to the Golgi, where it is cleaved by two enzymes S1P (site 1
protease) and S2P (site 2 protease) to release its active N-terminal fragment. Finally, the N-terminal
domain goes into the nucleus, binds to the SRE (sterol regulatory element) motif located in the
promoters of gene involved in lipogenesis to activate their transcription and promote de novo lipid
synthesis and tumor growth. (2) Glucose is the main source for lipid synthesis. Glucose via glycolysis
breaks down into pyruvate, which enters the mitochondria and is converted to acetyl-CoA by PDH
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(pyruvate dehydrogenase), followed by condensation with OAA (oxaloacetate) to form citrate to
enter the TCA cycle (tricarboxylic acid cycle). Citrate is released to the cytosol via its mitochondria
transporter, SLC25A1. Citrate is then cleaved to acetyl-CoA by ACLY (ATP citrate lyase), which
serves as a precursor for fatty acid and cholesterol biosynthesis catalyzed by a series of enzymes
that are the main transcriptional targets of SREBPs, as shown in the Figure. In addition, cytosol
acetate can be converted to acetyl-CoA for lipid synthesis by ACCS2 (acetyl-CoA synthetase 2).
Besides that, acetyl-CoA is also the substrate for the acetylation of histones, which is involved in
epigenetic regulation. Moreover, glutamine through glutaminolysis contributes as an anaplerotic
substrate to replenish tricarboxylic acid (TCA) cycle intermediates. Glutamate, the product of the
first step of glutaminolysis, is converted to α-KG (α-ketoglutaric acid) and then enters into the TCA
cycle. (3) SREBPs upregulates the expression of LDLR (low-density lipoprotein receptor), which
binds to LDL and transports it into cells through the endocytosis process. LDL is then hydrolyzed
in the lysosomes and cholesterol is released, promoting tumor growth. (4) Excess fatty acids and
cholesterol are converted to TAG (triacylglycerol) and CE (cholesteryl ester) by DGAT1 (diacylglycerol
O-acyltransferase 1) and sterol O acyl-transferase 1 (SOAT1) to form LDs (lipid droplets) and prevent
toxicity from high lipid levels. Under conditions of nutrient deficiency, LDs are hydrolyzed by
autophagy to release free fatty acids and cholesterol for tumor survival.

De novo fatty acid synthesis is commonly observed in the liver, adipose tissue, and
lactating breast, and normal cells usually assimilate fatty acid through the uptake of extra-
cellular lipids [44]. However, actively proliferating cells, such as cancer cells and effector
T cells, increase their fatty acid synthesis, uptake, and oxidation (FAO) for the synthesis
of structural lipids and energy expenditure [9,45]. Expression of the enzymes controlling
de novo fatty acid synthesis, such as ACLY, ACSS2, acetyl-CoA carboxylases (ACC), fatty
acid synthase (FASN), and stearoyl-CoA desaturase 1 (SCD1), and mitochondria citrate
transporter SLC25A1, is mainly regulated by sterol regulatory element-binding protein 1
(SREBP-1), a master transcription factor that regulates fatty acid and cholesterol synthesis
(Figure 1) [13–15,46,47]. Inhibitors targeting these enzymes have been developed for the
treatment of a broad type of cancers (Table 1) [9]. Carnitine palmitoyltransferase 1 (CPT1),
the rate-limiting enzyme involved in mitochondrial fatty acid oxidation, which allows fatty
acyl-CoA to enter into the mitochondria matrix from the cytosol, is also an important target
of lipid metabolism for cancer therapy [48,49].

Like in most cancers, metabolism is reprogrammed in GBM and plays an important
role during tumor initiation and progression, with increased glycolysis, altered nucleotide
metabolism, and glutamine addiction [50,51]. We were the first to report that fatty acid
synthesis is highly elevated in GBM to promote rapid tumor growth [1,13–15]. We found
that the oncogenic EGFR/PI3K/AKT pathway increases fatty acid synthesis by stimulat-
ing the activation of SREBP-1 [14,39]. Inactivating SREBP-1 pharmacologically with its
inhibitor Fatostatin or by shRNA knockdown significantly suppresses GBM tumor growth
in vitro and in vivo [14,19,52]. Directly targeting FASN, a downstream transcriptional
target of SREBP-1 and a key enzyme in controlling de novo fatty acid synthesis, with its
inhibitor C75 effectively suppresses GBM growth [14]. Moreover, inhibiting fatty acid
and cholesterol synthesis with the AMP-activated protein kinase (AMPK) agonist AICAR
(5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) also reduces GBM growth in a
xenograft mouse model [13,16]. Furthermore, our studies revealed that a small non-coding
RNA, miR-29, mediates a negative feedback loop to control SREBP expression and lipogen-
esis [53,54]. SREBP-1 transcriptionally upregulates pre-miR-29 expression, while mature
miR-29 can inversely inhibit SREBP-1 expression via binding to the 3′-untranslational re-
gion (3-UTR) of SREBP-1 mRNA to induce its degradation and suppress SREBP translation.
Delivering miR-29 to GBM cells significantly suppresses tumorigenesis in orthotopic mouse
model by inhibiting SREBP-1 and lipogenesis [53,54]. Collectively, these data demonstrate
that inhibiting lipogenesis is a promising new direction for GBM therapy.

Interestingly, a recent study reports that the brain metastasis from seven breast cell
lines that harbor PI3K activation is dependent on the SREBF1 gene that encodes the SREBP-



Biomedicines 2022, 10, 1943 5 of 25

1 protein [55]. A significant inhibition of metastatic brain is observed in SREBF1 knockout
breast cancer cell lines [55], demonstrating the importance of SREBP-1 in brain metastasis
from breast cancers. Whether other types of brain metastatic cell lines have a similar
SREBF1 dependency needs further investigation. In addition, directly targeting SREBP-1
downstream targets should be tested in these cell lines to determine whether fatty acid or
cholesterol synthesis play major roles for breast cancer brain metastasis.

3.2. SREBP Activation, Connecting Glucose and Glutamine to Lipid Synthesis

GBM growth consumes large amounts of glucose and amino acids [56], but the mech-
anism by which tumor cells sense their levels to trigger lipid synthesis has been left
unanswered for a long time. Our most recent study identified that glucose and glutamine
coordinate to activate SREBP-1 to trigger de novo lipid synthesis in GBM and various other
cancer cells [57]. The SREBP family includes three isoforms, SREBP-1a, -1c, and -2 [58–60].
SREBP-1c mainly regulates the expression of genes controlling fatty acid synthesis, while
SREBP-2 regulates cholesterol synthesis and uptake, and SREBP-1a, which has the highest
transcriptional activity, regulates all three processes [1,61–63]. SREBPs are synthesized
as ~125 kD inactive precursors, which are spatially restrained in the endoplasmic retic-
ulum (ER) membrane and are activated through a tightly controlled ER–Golgi–nucleus
translocation process [59,62]. SREBPs bind to SREBP-cleavage activating protein (SCAP),
which further binds to COPII-coated vesicles to move from the ER to the Golgi [62,64].
In the Golgi, SREBPs are sequentially cleaved by site-1 and -2 proteases to release their
N-terminal forms (~65 kD) that then enter the nucleus to activate lipogenic gene expres-
sion [65–69]. Interestingly, SCAP/SREBP trafficking is inhibited by an ER-resident protein,
insulin-inducible gene protein (Insig), which includes two isoforms, Insig-1 and -2 [70,71].
Insig binds to SCAP to retain the SCAP/SREBP complex in the ER (Figure 1) [59,64].
Cholesterol or 25-hydroxycholesterol (25-HC) can bind to SCAP or Insig to further enhance
their association, which represents a negative feedback loop to modulate SREBP activation
(Figure 1) [70,72,73].

The key step activating the SCAP/Insig dissociation for subsequent SREBP translo-
cation has just been elucidated in a recent study by Cheng et al. [57]. Our previous study
showed that glucose stimulates SREBP activation and lipogenesis by promoting SCAP
N-glycosylation and stability [46,74–76]. Unexpectedly, our most recent study shows
that when glutamine is removed from the medium, glucose alone is unable to activate
SREBPs and lipogenesis, even with low cholesterol levels and in the presence of SCAP
N-glycosylation [57]. We uncovered an unprecedented role of ammonia, which is released
by glutaminolysis and acts as a key activator of the dissociation of N-glycosylated SCAP
from Insig by inducing dramatic conformational changes in the SCAP transmembrane
domain through interaction via hydrogen bonds with the side chains of three residues, i.e.,
aspartate D428, serine S326 and S330, eventually leading to SREBP activation and lipid
synthesis (Figure 1) [57]. We further unveiled the competitive role of 25-HC that blocks
ammonia binding to SCAP, thereby keeping SCAP bound to Insig and suppressing SREBP
activation. Blocking ammonia binding to SCAP by mutating D428 to alanine (D428A)
dramatically suppressed both GBM and lung cancer growth in orthotopic xenograft mod-
els. In addition, we provided further physiological evidence for a connection between
glutaminolysis and lipogenesis by showing the molecular link between glutaminase (GLS)
expression and SREBP-1 activation in human lung cancer and glioma tissues. Moreover, the
study demonstrated that the activation of SREBPs and lipogenesis by glutamine/ammonia
in concert with glucose also occurs in melanoma, liver and breast cancer cells in addition
to lung cancer and GBM cells, suggesting that this is a common mechanism at play in a
wide range of cancer types [57]. Thus, this study revealed the essential role of ammonia in
the regulation of SCAP/Insig dissociation, SREBP activation and lipid metabolism, and
identified SCAP as a critical sensor connecting glutamine, glucose, and lipid metabolism
to promote tumor growth (Figure 1) [57]. The study also suggests that targeting the key
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molecular link between glutaminolysis, glucose and lipid metabolism might be a promising
strategy for treating malignancies and metabolic syndromes.

3.3. Membrane Phospholipid Remodeling

Phospholipids (PLs) constitute the main membrane structure as they form lipid bilay-
ers through their amphiphilic characteristics [77]. Elevated fatty acid synthesis promotes
PL formation and membrane expansion to facilitate rapid tumor growth [1,78,79]. The
composition of the fatty acid chains in PLs is not static, but is dynamically remodeled
through the coordinated activities of phospholipase A (PLA) and lysophosphatidylcholine
acyltransferases (LPCATs) [80]. PLA removes an esterified fatty acid from the sn-2 position
of PLs to convert them to lysophosphatidylipids, while LPCATs add back fatty acids to
lysophosphatidylipids, thereby remaking PLs [81,82]. Thus, fatty acid chains in membrane
PLs are modified by these two enzymes to adjust to the dynamic alterations of the cellular
environment [82]. The LPCAT family contains four members (LPCAT1-4) [83,84]. LPCAT1
mainly regulates the incorporation of saturated fatty acids into lysophosphatidylcholine
(LPC) to form PLs, thereby increasing the levels of saturated PLs. Interestingly, LPCAT1
has been shown to be upregulated in various cancers, including GBM [85], HCC [86], clear
cell renal cell cancer [87], esophageal squamous cell carcinoma (ESCC) [88], gastric [89],
and breast cancer [90]. Its upregulation regulates oncogenic EGFR signaling in GBM by
affecting EGFR and its constitutively active mutant EGFRvIII protein stability [85]. Target-
ing LPCAT1 effectively suppresses GBM [85] and ESCC growth [88]. LPCAT1 elevation
across cancer types suggests that the increase in membrane saturated PL levels might
prevent lipid peroxidation and ferroptosis in cancer cells, thereby facilitating tumor growth.
LPCAT3 regulates the incorporation of polyunsaturated fatty acids, such as arachidonic
acid, thereby increasing membrane fluidity and flexibility [84]. LPCAT3 has been shown to
be a major player to facilitate lipid peroxidation and ferroptosis via increasing membrane
polyunsaturated PL level [91–94]. Nevertheless, there has no study clearly demonstrating
the expression levels of LPCPAT3 in tumor tissues and its role in tumorigenesis.

3.4. Cholesterol Uptake

Cholesterol, which is an indispensable lipid molecule for maintaining cell viability [95],
is inserted between phospholipid molecules to control membrane integrity and fluidity [96],
and accounts for 30–40% of membrane lipids in the plasma membrane [97–100]. Cholesterol
is esterified with fatty acids to convert to neutral cholesteryl esters (CE), which are carried
by low-density lipoprotein (LDL) to circulate in the bloodstream and be absorbed by
different tissues [101]. LDL is endocytosed into cells as mediated by the LDL receptor
(LDLR) and is then delivered to the lysosomes, where LDL is broken down by lysosomal
lipases to release free cholesterol, which then egresses from the lysosomes for maintenance
and expansion of the plasma membrane but also of the membranes of all cellular organelles
such as the mitochondria and endoplasmic reticulum (ER) (Figure 1) [15,102–106].

Recent studies from our group showed that GBM cells acquire abundant cholesterol
for rapid growth by elevating LDL uptake [15]. GBM increases the expression of the LDL
receptor (LDLR), which enhances LDL absorption to provide sufficient cholesterol [15]. We
further showed that EGFR signaling activates SREBP-1 to upregulate LDLR expression
and promote cholesterol uptake for GBM growth [15]. Inducing LDLR degradation by
increasing expression of its E3 ligase Idol (inducible degrader of LDLR) with the LXR
agonist GW3965 inhibits GBM growth [15]. Therefore, limiting LDL/cholesterol uptake
appears as a promising new direction for GBM therapy.

3.5. Lipid storage and Energy Homeostasis

Excess free fatty acids and cholesterol can cause lipotoxicity, leading to cell death when
the levels are uncontrolled [107,108]. In the human body, excess fatty acids and cholesterol
are sequestered into the adipocytes of fat tissues within specialized organelles known as
lipid droplets (LDs) after being converted to triacylglycerol (TAG) and cholesteryl esters
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(CE) (Figure 1) [109]. Interestingly, in 2016, Geng et al. reported for the first time that LDs
are highly prevalent in human GBM tumor tissues, while not observed in normal brain
tissues [19,20]. Using transmission electronic microscopy, they clearly showed that LDs are
present in the cytosol of GBM tumor cells. In following studies, the group demonstrated
that when glucose level decreases, GBM cells mobilize LD-stored fatty acids into the
mitochondria, a process mediated by autophagy for beta-oxidation and energy production,
which maintain energy homeostasis and GBM survival [21]. Thus, LDs serve two functions
in GBM. First, they act as a lipotoxicity-preventing organelle, buffering excess fatty acids
and cholesterol [17,22]. Second, they also serve as an energy reservoir, providing fuel to
maintain energy homeostasis when glucose levels are reduced [21]. Thus, targeting LD
formation could be a promising new approach for GBM therapy, which is discussed in the
sections below.

4. The Basics of LDs
4.1. LD Formation

LDs are organelles containing a core of neutral lipids, mainly TAG and CE, which is
covered by a monolayer of phospholipids [4,109–112]. LDs exist in almost all organisms,
from bacteria, yeast, and plants to mammals [113]. Mammalian LDs were first described
in 1886 with improvement in microscopy technology but were ignored for more than a
century [114]. In the 1990s, the discovery of perilipin, the first LD membrane protein to be
identified, and that of Chanarin–Dorfman Syndrome, the first genetic LD disorder [114],
incited scientists to begin exploring the characteristics of LDs and their roles in metabolic
diseases. Nevertheless, despite major advances in recent years, the mechanism of LD
formation is still unclear [109]. Three hypotheses have been advanced to explain LD for-
mation, and the “budding model” is the most widely accepted [115]. The first step in LD
biogenesis is the synthesis of TAG and CE derived from fatty acids and cholesterol in the
ER, which are catalyzed by diacylglycerol acyltransferases (DGAT1 and DGAT2) and sterol
O-acyltransferases (SOAT1 and SOAT2), also named acyl-CoA:cholesterol acyltransferases
(ACAT1 and ACAT2) [109]. As the concentration of TAG and CE increases in the interspace
between the bilayer leaflets of the ER membrane, the neutral lipids eventually bud from
the ER membrane when the surface tension reaches a critical point and get covered with
a phospholipid monolayer derived from the ER two leaflets [109,116–118]. This budding
process is facilitated by multiple ER proteins, such as the fat-storage-inducing transmem-
brane (FIT) proteins and Seipin [109,119–124]. Because of the instability of the phospholipid
monolayer, perilipin traffics from the ER to the surface of LDs to reduce the membrane
surface tension. It is still unclear whether LDs bud from ER randomly or from preferential
sites. Finally, LDs grow and mature through droplet-to-droplet fusion or lipid synthesis on
the LD surface [109,124–128].

4.2. LD Size and Composition

The most predominant features of LDs are their heterogeneity and diversity. The
number, size, and composition of LDs vary widely between cells or even within the same
cell depending on different conditions [109,112,129–131]. Only one LD with a diameter
often >100 µm is found in most adipocytes, whereas a greater number of LDs are found in
non-adipocyte cells and are usually <1 µm in diameter [132,133]. However, the size and
number of LDs change dramatically under pathophysiological conditions. For example,
during the progression of non-alcoholic steatohepatitis (NASH), the increased number
and size of LDs in hepatocytes causes the activation of hepatic stellate cells, leading to
inflammation and liver fibrosis [134]. Interestingly, LDs are loaded with excess oleic acid
and cholesterol in adrenal and liver cells, and two subpopulations of LDs, i.e., TG-rich and
CE-rich LDs, are found in the cytosol and coated with different members of the perilipin
family [135]. Translation inhibitors only induce formation of CE-rich LDs in 3Y1 cells by
an unknown mechanism [136]. The preferential lipid composition of LDs and how it is
established needs further investigation.
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4.3. LD Interaction and Proteomes

LDs are cytoplasmic organelles that tightly communicate with other cellular organelles,
such as the ER, mitochondria, peroxisomes, Golgi apparatus, and lysosomes [137]. LDs
extensively form membrane contact sites to exchange materials such as lipids, metabolites,
and ions with other organelles [109,138,139], as well as to regulate organelle division, traf-
ficking, and inheritance [109,140,141]. Dysregulation of LD contact site proteins are found
in many genetic, infectious, and metabolic diseases [137]. Recently, LDs were found to re-
side also in the cell nucleus and were termed “nuclear LDs (nLD)” [142–145]. Although the
mechanism of nLD formation is still unclear, their function in gene transcription regulation
has been described in yeast [146], hepatic cell lines [147], and primary hepatocytes [148].

Because of the extensive contact of LDs with other organelles, purification by opti-
mized fractionation approaches still contain contaminants from other associated organelles,
especially the ER [149], which has hampered the identification of the profile of LD pro-
teomes. However, the recent development of the proximity labeling strategy enables
high-confidence cataloguing of LD proteomes, which are composed of 100–150 proteins
in mammalian cells [112,150]. These proteins are categorized into several distinct func-
tional classes, involving structure maintenance, lipid metabolism, signaling, and membrane
trafficking [4]. They can also be classified into two classes according to differences in
trafficking pathways, i.e., class I LD proteins that are first inserted into the ER through
hydrophobic hairpins and then traffic to the surface of LDs through membrane bridges,
and class II LD proteins that are synthesized in the cytosol and inserted into LDs through a
lipid anchor or amphipathic α-helices [109,112]. LD protein degradation is mediated by
the ubiquitin-dependent pathway or the autophagic pathway [112].

5. Inhibiting LD Formation for GBM Therapy

LDs had been reported to be abundant in many cancer types, although not in every
subtype [111]. In the early 1960s, LDs were found in the mammary carcinoma of a fe-
male patient [151] and abundantly in more than 100 cases of malignant lymphoma [152].
However, few people realized the importance of LDs in cancer research at that time. LDs
have now been suggested to be involved in all processes of cancer development, including
initiation, promotion, and progression [111]. The hypotheses regarding LD function in
cancer cells are numerous, i.e., promoting tumor proliferation [153–155], driving epithelial–
mesenchymal transition (EMT) [115,156,157], mediating radio-resistance [158,159] and
chemo-resistance [160–163], maintaining cancer cell stemness [164–166], and avoiding im-
mune destruction [167–169]. Nevertheless, these hypotheses need to be experimentally
validated.

Our group reported for the first time that human patients with glioma exhibit LDs in
large numbers that correlated with GBM progression and poor survival [19]. Our studies
suggested that targeting SOAT1 and DGAT1 could be a promising new strategy for GBM
therapy as neutral lipid synthesis catalyzed by SOAT1 and DGAT1 initiates the formation
of LDs in GBM

5.1. Targeting SOAT1 to Disrupt Cholesterol Homeostasis for GBM Therapy

Cholesterol is an essential lipid, but excess cholesterol is toxic to cells; thus, the intra-
cellular cholesterol levels need to be precisely balanced [1,20]. Cholesterol homeostasis
is regulated through a complex network, including uptake, biosynthesis, efflux, storage,
and trafficking [1,96,170]. Disrupting this network could trigger toxicity for cells. The ER
is the key cellular organelle that senses changes in cholesterol levels. A previous study
using Chinese hamster ovary (CHO) cells as a model showed that even a low 5% increase
in ER cholesterol can trigger a feedback reaction that blocks SREBPs from trafficking to the
Golgi and being activated, which slows down cholesterol synthesis and uptake in order to
maintain cholesterol homeostasis [58,171]. Intracellular cholesterol levels can also be re-
duced by promoting cholesterol efflux through the ATP-binding cassette (ABC) transporter
superfamily, including the ABC subfamily A 1 (ABCA1) and ABC subfamily G (ABCG)
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1, 5, and 8 members in a cell-type dependent manner [96,172,173]. Our previous study
showed that promoting cholesterol efflux and at the same time reducing cholesterol uptake
by activating the liver X receptor (LXR) inhibits GBM growth by disturbing cholesterol
balance [15].

Another strategy developed by cells to overcome lipotoxicity from excess cholesterol
is to convert free cholesterol to CE in the ER and then store CE in LDs, a process controlled
by SOATs [174,175]. SOATs belong to the membrane-bound O-acyltransferase (MBOAT)
superfamily [176] and include two isoenzymes, i.e., SOAT1 and SOAT2. SOAT1 is mainly
located in the ER and has been detected in most cell types and tissues, while SOAT2
is expressed predominantly in fetal liver and intestine cells and at low levels in other
tissues [177–179]. SOATs, especially SOAT1, have long been studied as a therapeutic
target for atherosclerosis and Alzheimer’s disease due to their importance in cholesterol
metabolism [179,180].

In recent years, SOAT1 has started to gain significant consideration in the cancer
field as accumulating evidence suggests that SOAT1 is a novel and promising drug target
in many cancer types. Yue et al. reported that inhibition of cholesterol esterification
by the SOAT1 inhibitors Avasimibe and Sandoz 58-035 suppresses prostate cancer cell
proliferation and tumor growth in vivo [181]. Other groups also reported that SOAT1 is
upregulated in prostate cancer tissues and is associated with earlier recurrence [182,183],
and genetic inhibition of SOAT1 leads to the suppression of tumor growth in mice [182].
In hepatocellular carcinoma, SOAT1 is highly expressed in tumor tissues, and inhibition
of SOAT1 by Avasimibe significantly inhibits tumor growth in vivo [184–187]. SOAT1
has also been shown to play an important role in pancreatic, colorectal, gastric, and lung
cancers [188–191]. A novel SOAT1 inhibitor, Nevanimibe, also known as ATR-101, has been
tested in a Phase I study in advanced adrenocortical carcinoma, although it showed only
limited efficacy (Table 1) [192].

Our group discovered that SOAT1 expression is highly upregulated in tumor tissues
from GBM patients, while SOAT2 is undetectable in tumor tissues [19,20]. Genetic or
pharmacological inhibition of SOAT1 suppresses cholesterol storage and LD/CE formation,
causing an increase in ER cholesterol, which suppresses SREBP-1 activation and reduces
fatty acid synthesis, leading to suppression of GBM growth in vitro and in an orthotopic
mouse model (Figure 2) [19,20]. As development of clinically effective pharmacological
SREBP-1 inhibitors has failed in the past decades [193], indirect inhibition of SREBP-1 such
as inhibition of SOAT1 may be an alternative strategy. Recently, high expression of SOAT1
was also found in glioma-associated macrophages, suggesting that inhibition of SOAT1
might also trigger an immune response to GBM cells [194]. One of the current challenges
for SOAT1 inhibition in the clinic is that most SOAT1 inhibitors were manufactured as
candidate drugs to treat atherosclerosis; thus, it is still unknown whether they could cross
the blood–brain barrier (BBB). Therefore, development of novel SOAT1 inhibitors that
could efficiently cross the BBB are worth developing and testing.

5.2. Targeting DGAT1 to Disrupt Fatty Acid Homeostasis for GBM Therapy

Fatty acids (FAs) are not only essential components of the membrane phospholipids
but also serve as energy source through mitochondria-mediated β-oxidation [195]. Nev-
ertheless, excess free fatty acid can impair cellular homeostasis and disrupts tissue func-
tion [107]. In 2003, Listenberger et al. reported that excess accumulation of palmitic acid
(C16:0 saturated fatty acid) induces apoptosis in cultured CHO cells, while oleic acid
(C18:1 monounsaturated fatty acid) supplementation leads to TAG accumulation [196].
Moreover, oleic acid rescues palmitate-induced apoptosis by channeling palmitate into TG
pools, away from pathways leading to apoptosis. They suggested that palmitate-induced
apoptosis in CHO cells occurs though a mechanism involving an increase in reactive oxy-
gen species (ROS) and ceramide. The same year, another group reported that saturated
fatty acids induce apoptosis in breast cancer cells through triggering cardiolipin turnover
in mitochondria and cytochrome c release [197]. Interestingly, other studies reported
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that ceramide-mediated apoptosis could be prevented by generating acyl-ceramide and
sequestrating it in LDs [198,199].
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Figure 2. Targeting SOAT1 to disrupt cholesterol homeostasis for GBM therapy. (A) SOAT1 catalyzes
the esterification of cholesterol to store excess free cholesterol into LDs, and thus is involved in main-
taining cellular cholesterol homeostasis. Cholesterol negatively regulates SCAP/SREBP trafficking
and SREBP activation. Cholesterol reduction in the ER activates SCAP dissociation from Insig, result-
ing in SREBP translocation and activation to promote lipogenesis. (B) Inhibition of SOAT1 reduces CE
formation, which in turn results in the accumulation of cholesterol in the ER membrane, subsequently
leading to the SCAP/SREBP complex remaining in the ER and to reduction of lipogenesis, along with
enhanced ER stress, resulting in tumor suppression.

DGATs convert excessive free FAs into TAG that are stored in LDs [17,22]. In humans,
there are two DGAT enzymes, DGAT1 and DGAT2, which are members of two different
gene families and differ in their tissue distribution [200,201]. DGAT1 is highly expressed in
the small intestine and DGAT2 is mainly expressed in liver and adipose tissues [202,203].
Loss of function mutations in DGAT1 were identified in patients with congenital diarrheal
disorders [204] and protein-losing enteropathy [205]. DGAT2 knockout mice died soon
after birth [206], while DGAT1 knockout mice only showed less TAG in liver and mammary
glands [207]. Both DGAT1 and DGAT2 are located in the ER membrane and DGAT2 is a
class I LD protein [109]. The two enzymes also have non-canonical acyltransferase activities
with different substrate preference [201].
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Our recent study demonstrated that targeting DGAT1 to block TAG synthesis causes
severe FA metabolism dysregulation in GBM cells, leading to mitochondria damage and
ROS production that trigger tumor cell apoptosis (Figure 3) [17,22]. We found that DGAT1
is overexpressed in tumor tissues from GBM patients and genetic or pharmacological
inhibition of DGAT1, but not DGAT2, suppresses LD/TAG formation and reduces GBM
tumor growth (Figure 3) [17]. Interestingly, inhibition of DGAT1 and DGAT2 is required to
block LD/TAG formation and induce cell death in HepG2 cells [17]. It is still unclear why
DGAT1 and DGAT2 behave differently in various cell types and which transcription factor
regulates their expression in cancer cells. In addition, our study showed that the DGAT1
inhibitor A922500 dramatically suppresses GBM tumor growth in a subcutaneous mouse
model (Table 1) [17]. Thus, it will be worthwhile to test if it effectively crosses the BBB.
Targeting DGAT1 to block FA storage and disrupt homeostasis emerges as a promising new
direction for GBM therapy. Furthermore, many publications have shown that DGAT1 is a
better target than DGAT2 for cancer therapy [157,208–213].
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converted to acyl-CoAs, which are the substrates for phospholipid (PL) synthesis and produce energy
via entering into mitochondria to undergo β-oxidation and oxidative phosphorylation. Excessive
acyl-CoA is stored in LDs as catalyzed by DGAT1 in tumor cells. (2) Right: Inhibiting DGAT1
causes an imbalance of fatty acid catabolism, leading to cell death. Inhibiting DGAT1 forces more
acyl-CoAs to enter the mitochondria through carnitine palmitate transferase 1 (CPT1) for β-oxidation,
leading to high levels of reactive oxygen species (ROS), which trigger apoptosis and ferroptosis to kill
tumor cells. Moreover, the profile of PLs is altered upon DGAT1 inhibition, contributing to further
cellular stress.

6. Other Targets in LDs

Gene expression analysis shows that hypoxia-inducible lipid droplet associated
(HILPDA), one of the LD-associated proteins, is highly expressed in bladder, colon, kid-
ney, lung, pancreas, and uterine cancers as well as in GBM [214]. HILPDA increases LD
accumulation by inhibiting TG hydrolysis by the adipose triglyceride lipase (ATGL) and
stimulating TG synthesis via DGAT1 [210,215]. Mao et al. reported that HILPDA overex-
pression induced by hypoxia contributed to Bevacizumab resistance in GBM [216]. It may
be a potential novel therapeutic target for GBM. Analysis of The Cancer Genome Atlas
(TCGA) database shows that CGI-58, a co-activator of ATGL that stimulates TAG lipolysis
and decreases LD numbers [217], is overexpressed in GBM and cervical cancer. Shi et al.
reported that CGI-58 is upregulated in endometrial cancer and high CGI-58 expression was
a poor prognostic marker for endometrial cancer [218]. However, a recent study showed
that CGI-58 is a tumor suppressor, inducing cell cycle arrest in the G1 phase and causing
growth retardation in a panel of prostate cancer cells [219]. The function of CGI-58 in GBM
and whether it can affect tumor growth in GBM need to be explored further.

7. Conclusions and Future Directions

It is only recently that more scientists have realized the importance of lipid metabolism
reprogramming in cancer cells. Our recent reports unveiled that lipid rewiring is a hallmark
of GBM [1,22]. Drugs targeting lipid metabolism pathways such as de novo synthesis,
uptake, storage, and catabolism are now being actively developed for cancer therapy,
including therapy based on LD formation and regulation. Resolving the structures of
SOAT1 [220–222] and DGAT1 [223,224] certainly will accelerate the discovery of potent
inhibitors targeting these two enzymes for GBM therapy. Another alternative option is to de-
velop new brain-targeted drug delivery systems based on nanoparticles to transfer effective
drugs to the brain, possibly reducing the unexpected side effects due to offsite targeting.

Many questions remain regarding lipid metabolism regulation in GBM. Which tran-
scription factors regulate the expression of SOAT1 and DGAT1? How GBM cells balance
lipid synthesis, lipid storage, and lipolysis? Could potent SREBP-1 inhibitors be developed
and tested clinically for cancer therapy? Are LDs playing a role in therapy resistance
and tumor recurrence? Are there other targets regulating the formation of LDs in GBM
as there are over 100 proteins locating or interacting with LDs [112,150]? Could other
proteins in addition to DGAT1 and SOAT1 serve as druggable targets for cancer therapy?
Addressing these questions certainly will provide new insights into the understanding of
lipid metabolism in GBM and will help to develop novel therapeutic approaches.
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Table 1. Molecular targets and inhibitors in the lipid metabolism pathway for cancer therapy.

Target Inhibitors Types of Cancer Preclinical Evidence Clinical Trials References

SREBPs Fatostatin, Betulin, PF-429242,
dipyridamole

GBM, breast, uterine, prostate,
liver, lung,
kidney, pancreatic and colon

Xenografts [1,19,225–235]

ACLY SB-201076, Hydroxycitric acid,
Bempedoic acid, BMS-303141, SB-204990, Lung, prostate Xenografts [1,236,237]

ACCs ND-646, ND-654, soraphen A, TOFA Lung, liver, breast Xenografts,
DEN-injured rats [17,156,238–244]

FASN TVB-2640, C75, cerulenin, orlistat Lung, colon, breast, GBM,
astrocytoma, prostate, uterine Xenografts

NCT03808558
NCT02223247
NCT02980029
NCT03179904
NCT05118776
NCT03032484

[185,187,192,245–249]

SCD1 A939572, MF-438, CAY10566
MK-8245

Lung, pancreatic, kidney, GBM,
ovarian

Xenograft,
Pdx1Cre; LSL-KrasG12D mouse

NCT00972322
(type 2 diabetes) [164,250–256]

ACSS2 Tetrazoles, Pyridine Derivatives [257,258]
SLC25A1 CTPi2, BTA, CNASB [259,260]

CPT1A Etomoxir, Perhexiline, ST1326 GBM, breast, leukemia, prostate,
colon

Xenografts,
Transgenic mice [261–268]

DGAT1 A922500, AZD3988,
PF-04620110 GBM, liver, uterine, prostate Xenografts [17,156,242–244,269]

SOAT1 Avasimibe, ATR-101, K604, Liver, colon, GBM, kidney P53-deficient mice, AOM/DSS-treated
and ApcMin/+ mice, xenografts NCT01898715 [185,187,192,246,247]
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Abbreviations

3-UTR 3′-untranslational region
25-HC 25-hydroxycholesterol
α-KG α-ketoglutaric acid
ABC ATP-binding cassette
ABCA1 ATP-binding cassette subfamily A member 1
ACAT acyl-CoA: cholesterol acyltransferase
ACC acetyl-CoA carboxylases
ACLY ATP-citrate lyase
ACSL long-chain acyl-CoA synthetase
ACSS2 acetyl-CoA synthetase 2
AICAR 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside
AKT protein kinase B
AMPK AMP-activated protein kinase
ASCT2 alanine/serine/cysteine-preferring transporter 2
ATGL adipose triglyceride lipase
BBB blood–brain barrier
COPII coat protein complex II
CPT1 carnitine palmitoyltransferase 1
CE cholesteryl esters
CESD cholesterol storage disease
DGAT1 diacylglycerol acyltransferase 1
EGFR epidermal growth factor receptor
EMT epithelial–mesenchymal transition
ER endoplasmic reticulum
ESCC esophageal squamous cell carcinoma
FAs fatty acids
FAO fatty acid oxidation
FASN fatty acid synthase
FDPS farnesyldiphosphate synthase
FIT fat-storage-inducing transmembrane
GBM glioblastoma
GLS glutaminase
Gluts glucose transporters
HBP hexosamine biosynthesis pathway
HCC hepatocellular carcinoma
HMGCS hydroxymethylglutaryl-CoA synthase
HMGCR hydroxymethylglutaryl-CoA reductase
HILPDA hypoxia-inducible lipid droplet associated
Insig insulin-inducible gene protein
IDH isocitrate dehydrogenase
LDs lipid droplets
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LDL low-density lipoprotein
LDLR LDL receptor
IDOL inducible degrader of LDLR
LPC lysophosphatidylcholine
LPCATs lysophosphatidylcholine acyltransferases
LXR liver X receptor
MBOAT membrane-bound O-acyltransferase
MCTs monocarboxylate transporters
NASH non-alcoholic steatohepatitis
NLSD neutral lipid storage disease
OAA oxaloacetate
PD1 programmed cell death protein 1
PDH pyruvate dehydrogenase
PD-L1 programmed death-ligand 1
PI3K phosphoinositide 3-kinases
PLs phospholipids
PLA phospholipase A
ROS reactive oxygen species
S1P site 1 protease
S2P site 2 protease
SCAP SREBP-cleavage activating protein
SCD1 stearoyl-CoA desaturase 1
SLC25A1 tricarboxylate transport protein, mitochondrial
SOAT1 sterol-O-acyltransferase 1
SQLE squalene monooxygenase
SRE sterol regulatory element
SREBF1 sterol regulatory element binding transcription factor 1
SREBP sterol regulatory element-binding protein
TAG triacylglycerol
TCA cycle tricarboxylic acid cycle
TCGA the cancer genome atlas
TKI tyrosine kinase inhibitors
TMZ temozolomide
VEGF vascular endothelial growth factor
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