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potential targets in cancer
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Abstract 

Reprogramming of lipid metabolism is a newly recognized hallmark of malignancy. Increased lipid uptake, storage 

and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. Lipids constitute the basic struc-

ture of membranes and also function as signaling molecules and energy sources. Sterol regulatory element-binding 

proteins (SREBPs), a family of membrane-bound transcription factors in the endoplasmic reticulum, play a central role 

in the regulation of lipid metabolism. Recent studies have revealed that SREBPs are highly up-regulated in various 

cancers and promote tumor growth. SREBP cleavage-activating protein is a key transporter in the trafficking and 

activation of SREBPs as well as a critical glucose sensor, thus linking glucose metabolism and de novo lipid synthesis. 

Targeting altered lipid metabolic pathways has become a promising anti-cancer strategy. This review summarizes 

recent progress in our understanding of lipid metabolism regulation in malignancy, and highlights potential molecu-

lar targets and their inhibitors for cancer treatment.
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Background
Lipids, also known as fats, comprise thousands of dif-

ferent types of molecules, including phospholipids, fatty 

acids, triglycerides, sphingolipids, cholesterol, and cho-

lesteryl esters. Lipids are widely distributed in cellular 

organelles and are critical components of all membranes 

[1–6]. In addition to their role as structural components, 

lipids in membranes also serve important functions of 

different organelles. Lipids could function as second 

messengers to transduce signals within cells, and serve 

as important energy sources when nutrients are limited 

[7–10]. Dysregulation of lipid metabolism contributes to 

the progression of various metabolic diseases, including 

cardiovascular diseases, obesity, hepatic steatosis, and 

diabetes [11–16].

Mammalian cells acquire lipids through two mecha-

nisms, i.e., de novo synthesis and uptake. Accumulating 

evidence has demonstrated that lipid metabolism is sub-

stantially reprogrammed in cancers [17–22]. Lipogenesis 

is strongly up-regulated in human cancers to satisfy the 

demands of increased membrane biogenesis [7, 8, 21, 23]. 

Lipid uptake and storage are also elevated in malignant 

tumors [24–33]. Sterol regulatory element-binding pro-

teins (SREBPs) are key transcription factors that regulate 

the expression of genes involved in lipid synthesis and 

uptake, and play a central role in lipid metabolism under 

both physiological and pathological conditions (Fig.  1). 

Dysregulation of SREBPs occurs in various metabolic 

syndromes and cancers [34–46]. Targeting the pathways 

regulating lipid metabolism has become a novel anti-can-

cer strategy. In this review, we summarize the recent pro-

gress in lipid metabolic regulation in malignancies, and 

discuss molecular targets for novel cancer therapy.

Nutrient sources for lipid synthesis

Glucose is the major substrate for de novo lipid synthe-

sis (Fig.  1). It is converted to pyruvate through glyco-

lysis, and enters mitochondria to form citrate, which is 

then released into the cytoplasm to serve as a precursor 

for the synthesis of both fatty acids and cholesterol [47, 

48]. Multiple glucose transporters as well as a series of 

enzymes that regulate glycolysis and lipid synthesis are 

strongly up-regulated in cancer cells [20, 21, 28, 49–54]. 
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Glucose also participates in the hexosamine biosynthe-

sis pathway to generate essential metabolites for the gly-

cosylation of numerous proteins and lipids [55–57]. In 

this way, glycosylation is linked to the regulation of lipid 

metabolism [55, 58].

Glutamine could also be used for energy production 

and lipid synthesis via the tricarboxylic acid cycle in 

mitochondria [59–62]. Glutamine is the most abun-

dant amino acid in the blood and tissues [63, 64]. It 

is a major nitrogen donor essential for tumor growth. 

Glutamine transporters, such as SLC1A5 (also known 

as ASCT2), are up-regulated in various cancers [65, 

66]. After entering cells, glutamine can be converted 

to glutamate and α-ketoglutarate in the mitochondria, 

and generate ATP through oxidative phosphorylation 

[59–61, 67, 68]. Under conditions of hypoxia or defec-

tive mitochondria, glutamine-derived α-ketoglutarate 

is converted to citrate through reductive carboxylation 

and thereby contributes to de novo lipid synthesis [34, 

69–71]. Acetate can also serve as a substrate for lipid 

synthesis after it is converted to acetyl-CoA in the cyto-

plasm [72–74].
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Fig. 1 Regulation of lipid metabolism in cancer cells. In cancer cells, glucose uptake and glycolysis are markedly up-regulated by RTKs via the 

PI3K/Akt/mTOR signaling pathway, generating large amounts of pyruvate. Pyruvate is converted to lactate and it also enters the mitochondria, 

where it forms citrate, which is transported by SLC25A1 from the mitochondria into the cytoplasm, where the citrate serves as a precursor for 

de novo synthesis of fatty acids and cholesterol. Glutamine can also enter into mitochondria and participate in energy production and lipid 

synthesis. Acetate is converted to acetyl-CoA by the ACSS2 enzyme, serving as another source of lipid synthesis. Glucose participates in the HBP 

to form glycans that will be added to proteins during glycosylation. Oncogenic EGFR signaling increases N-glycosylation of SCAP, which activates 

SREBP-1 and -2 [55, 58], which ultimately up-regulate expression of enzymes in lipogenesis pathways and expression of LDLR. The enzyme 

up-regulation promotes fatty acid and cholesterol synthesis, while the LDLR up-regulation increases cholesterol uptake [40]. The microRNA 

miRNA-29 regulates the SCAP/SREBP pathway via a novel negative feedback loop [101]. The transporter CD36 brings fatty acids into cancer cells. 

When cellular fatty acids and cholesterol are in excess, they can be converted to TG and CE by the enzymes DGAT1/2 and SOAT1/ACAT1, forming 

LDs. When present in excess, cholesterol can be converted to 22- or 27-hydroxycholesterol, which activate LXR to up-regulate ABCA1 expression, 

promoting cholesterol efflux. ABCA1 ATP-binding cassette transporters A, ACC  acetyl-CoA carboxylase, ACLY ATP citrate lyase, ACSS2 acetyl-CoA 

synthetase 2, DGAT1/2 diacylglycerol O-acyltransferase 1/2, FAs fatty acids, FASN fatty acid synthase, HBP hexosamine biosynthesis pathway, HMGCR  

3-hydroxy-3-methylglutaryl-CoA reductase, HMGCS 3-hydroxy-3-methylglutaryl-CoA synthase, LD lipid droplet, LDLR low-density lipoprotein 

receptor, LXR liver X receptor, RTKs oncogenic tyrosine kinase receptors, SCAP SREBP cleavage-activating protein, SCD1 stearoyl-CoA desaturase 1, 

SLC25A1 solute carrier family 25 member 1, SOAT1 (also known as ACAT1) sterol O-acyltransferase, SREBPs sterol regulatory element-binding proteins, 

TG/CE triglycerides/cholesteryl esters
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De novo lipid synthesis

Key regulators of lipogenesis—SREBPs, acetyl-CoA 

carboxylase (ACC), fatty acid synthase (FASN), and 

stearoyl-CoA desaturase 1 (SCD1) [27, 75–81]—are sig-

nificantly up-regulated in various human cancers [20, 

21, 28, 49–51]. Below we detail the roles of these pro-

teins and discuss their potential as molecular targets in 

cancer treatment.

SCAP/SREBPs

SREBPs are a family of basic-helix-loop-helix leucine 

zipper transcription factors that regulate de novo syn-

thesis of fatty acids and cholesterol as well as choles-

terol uptake [11, 12, 82]. Mammalian cells express 

three SREBP proteins, SREBP-1a, -1c and -2, which are 

encoded by two genes, SREBF1 and SREBF2. SREBF1 

encodes SREBP-1a and -1c proteins via alternative 

transcriptional start sites. �e SREBP-1a protein is 

~ 24 amino acids longer than -1c at its  NH2-terminus, 

and has stronger transcriptional activity. SREBP-1a 

regulates fatty acid and cholesterol synthesis as well 

as cholesterol uptake, whereas SREBP-1c mainly con-

trols fatty acid synthesis [83–86]. SREBF2 encodes the 

SREBP-2 protein, and plays a major role in the regula-

tion of cholesterol synthesis and uptake [87–92].

SREBPs are synthesized as inactive precursors 

that interact with SREBP  cleavage-activating protein 

(SCAP), a polytopic transmembrane protein that binds 

to the insulin-induced gene protein (Insig), which 

is anchored to the endoplasmic reticulum (ER). �e 

resulting Insig/SCAP/SREBP complex is retained in 

the ER [93–95]. Dissociation of SCAP from Insig, fol-

lowed by a conformational change in SCAP, activates 

SREBP transcriptional activity. Conformational change 

in SCAP exposes a specific motif that allows SCAP to 

bind to Sec23/24 proteins, generating COPII-mediated 

translocation vesicles. SCAP mediates the entry of 

SREBPs into COPII vesicles that transport the SCAP/

SREBP complex from the ER to the Golgi. In the Golgi, 

site 1 and 2 proteases (S1P and S2P) sequentially cleave 

SREBPs to release their N-terminal domains, which 

enter the nucleus and activate the transcription of 

genes involved in lipid synthesis and uptake (Fig. 1) [11, 

12, 87, 88, 95, 96]. �is process is negatively regulated 

by ER sterols, which are able to bind to SCAP or Insig 

and enhance their association, leading to the reten-

tion of SCAP/SREBP in the ER and reduction of SREBP 

activation [97–100]. Our research group recently 

showed that microRNA-29 (miR-29) participates in the 

negative feedback control of the SCAP/SREBP sign-

aling pathway. We found that SREBP-1 up-regulates 

miR-29 transcription, and the microRNA binds to the 

3′-untranslated region of SCAP and SREBP-1 tran-

scripts and inhibit their translation [101, 102].

SCAP N‑glycosylation

A recent series of studies in our laboratory showed that 

glucose could activate SCAP/SREBP trafficking and 

activation (Fig.  2) [55, 103, 104]. We tested the effects 

of glucose intermediate metabolites on different meta-

bolic pathways, including glycolysis, oxidative phospho-

rylation, and hexosamine synthesis for glycosylation. We 

found that only N-acetylglucosamine (GlcNAc), an inter-

mediate in the hexosamine biosynthesis pathway, acti-

vates SREBPs when glucose supply is limited. We found 

that inhibiting N-glycosylation, but not O-glycosylation, 

abolished glucose-mediated SCAP up-regulation and 

SREBP activation, indicating that glucose-mediated 

N-glycosylation of SCAP is essential for SCAP/SREBP 

trafficking and activation. �ese findings also demon-

strated a coordinated molecular regulation mechanism 

that links glucose availability and the rate of de novo lipid 

synthesis (Fig. 2) [55, 58, 105].
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Fig. 2 SCAP N-glycosylation is essential for SREBP trafficking and 

activation. SREBP activation is repressed by the ER-resident protein 

Insig, which binds to SCAP to prevent SREBP translocation and 

nuclear activation. The Nobel Prize-winning laboratories of Brown 

and Goldstein revealed that sterols modulate Insig interaction with 

SCAP to retain the SCAP/SREBP complex in the ER and inhibit SREBP 

[273, 274]. Our recent work has shown that glucose-mediated 

N-glycosylation stabilizes SCAP and promotes its dissociation from 

Insig, triggering the trafficking of the SCAP/SREBP complex from 

the ER to the Golgi, where SREBPs are cleaved to release their 

transcriptionally active N-terminal fragments to activate lipogenesis 

for tumor growth [55]. We further showed that EGFR signaling 

enhances glucose intake and thereby promotes SCAP N-glycosylation 

and SREBP activation
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SREBP activation in malignancy

�e importance of SREBPs in cancer has begun to be rec-

ognized. Our group discovered that SREBP-1 is markedly 

up-regulated in glioblastoma [34, 106–108], the most 

common primary brain tumor and one of the most lethal 

cancers [34, 109–113]. Glioblastomas depend strongly 

on lipogenesis for rapid growth when they express the 

amplified tyrosine kinase receptor called epidermal 

growth factor receptor (EGFR) or its constitutively active 

mutant form EGFRvIII. �is mutant lacks a portion of 

the extracellular ligand-binding domain [34, 106, 108, 

111, 114, 115]. EGFR/EGFRvIII promotes lipid synthesis 

by activating SREBP-1 via PI3K/Akt signaling [12, 34, 87]. 

�e nuclei of human glioblastoma cells display elevated 

levels of SREBP-1 [34], suggesting that the SCAP/SREBP 

complex may escape the tight repression of Insig, lead-

ing to high SREBP activation. Other groups have found 

elevated SREBP-1 in various cancers, and SREBP-1 levels 

in various cell lines are regulated by PI3K/Akt signaling 

and mTORC1 [116–122]. How SREBP-1 is activated in 

cancer cells is not entirely understood and requires fur-

ther investigation.

Inhibiting SREBPs at the genetic level or with pharma-

cological agents significantly suppresses tumor growth 

and induces cancer cell death, making SREBPs promising 

therapeutic targets [28, 34, 123–137]. However, directly 

inhibiting SREBPs is challenging, as transcription fac-

tors often make poor drug targets. A more promising 

approach is to inhibit SREBP translocation from the 

ER to the Golgi. Along this line, fatostatin, betulin and 

PF-429242 have been shown to inhibit SREBP activa-

tion and have promising anti-tumor effects in pre-clinical 

studies [126–131].

SREBP-2 is up-regulated in prostate cancer [37, 138]. 

SREBP-2 regulates 3-hydroxy-3-methylglutaryl-CoA 

(HMG-CoA) reductase, the rate-limiting enzyme for 

cholesterol synthesis. Inhibiting SREBP-2 has been 

explored as an anti-cancer therapy [139–144]. Statins are 

inhibitors of HMG-CoA reductase and are widely used 

to reduce circulating cholesterol levels. �e anti-cancer 

effects of statins have been tested for various types of 

cancers, both pre-clinically and in patients [140, 142, 143, 

145]. However, inhibition of cholesterol synthesis can 

lead to feedback activation of SREBPs, making the anti-

cancer effects of statins less effective [144]. �us, combi-

nation therapies that simultaneously inhibit cholesterol 

synthesis and SREBP activation are being developed [146, 

147].

SLC25A1

A critical step for glucose-mediated de novo lipid syn-

thesis is the release of citrate from mitochondria into the 

cytoplasm. Solute carrier family 25 member 1 (SLC25A1), 

also referred to as citrate carrier (CIC), functions as a key 

transporter to export citrate from mitochondria to the 

cytoplasm, providing a key precursor for both fatty acid 

and cholesterol synthesis [148, 149] (Fig. 1). SLC25A1 is 

regulated by SREBP-1 [150] and plays an important role 

in inflammation and tumor growth [151, 152]. In lung 

cancer cells, SLC25A1 is up-regulated by mutant p53 

[151]. �ese findings, though preliminary, suggest that 

specific inhibitors of SLC25A1 may have anti-tumor 

effects.

ACLY

ATP citrate lyase (ACLY) converts cytoplasmic citrate 

to acetyl-CoA, a precursor of lipid synthesis (Fig.  1) 

[153–155] and a substrate for protein acetylation [153]. 

ACLY is a downstream target of SREBPs [156–158], and 

is up-regulated in many cancers, including glioblastoma, 

colorectal cancer, breast cancer, non-small cell lung can-

cer, and hepatocellular carcinoma [159–161]. Inhibiting 

ACLY at the genetic level or pharmacologically signifi-

cantly suppresses tumor growth [162–164]. �e ACLY 

inhibitor SB-204990 strongly inhibits tumor growth in 

mice with lung, prostate or ovarian cancer xenografts 

[162, 165]. �ese results suggest that ACLY may serve as 

an attractive anti-cancer target [155].

ACSS2

Acetate is converted to acetyl-CoA by acetyl-CoA syn-

thetases (ACSSs), making acetate an important molecule 

for lipid synthesis and histone acetylation [7]. In mam-

malian cells, ACSS isoforms 1 and 3 localize to the mito-

chondria, whereas isoform 2 is found in the cytoplasm 

and nucleus [166]. Isoform 2 expression is regulated 

by SREBPs [167]. When each isoform was genetically 

knocked down in HepG2 cells, only ACSS2 down-reg-

ulation dramatically suppressed acetate-mediated lipid 

synthesis and histone modification [72]. In fact, ACSS2 

expression correlates inversely with overall survival in 

patients with triple-negative breast cancer, liver cancer, 

glioma or lung cancer [72, 73, 168, 169]. Studies with 

patient-derived glioblastoma xenografts have shown 

that acetate contributes to acetyl-CoA synthesis in 

tumors [73]. Indeed, cancer cells rely mainly on acetate 

as a carbon source for fatty acid synthesis under hypoxic 

conditions [74]. Knocking down ACSS2 suppresses pro-

liferation of several cancer cell lines as well as growth of 

xenograft tumors [74, 170–173]. ACSS2 also participates 

in autophagy when glucose supply is limited: it triggers 

histone acetylation in the promoter regions of autophagy 

genes, enhancing their expression [174, 175].
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ACCs

Following the conversion of citrate and acetate to 

acetyl-CoA, the ACC enzymes catalyze ATP-dependent 

carboxylation of acetyl-CoA, generating malonyl-CoA 

for fatty acid synthesis (Fig. 1). Two ACC isoforms have 

been identified in mammalian cells, ACC-alpha (also 

termed ACC1) and ACC-beta (also known as ACC2) 

[176, 177]. ACC is up-regulated in several human 

cancers, including glioblastoma and head and neck 

squamous cell carcinoma [34, 178]. Inhibiting ACCs 

significantly reduces fatty acid synthesis and suppresses 

tumor growth in various xenograft models [179–186]. 

�e ACC inhibitors TOFA, soraphen A and ND646 

have shown significant anti-tumor effects in xenograft 

tumor models (Table 1) [179–184].

FASN

Fatty acid synthase (FASN), a key lipogenic enzyme cata-

lyzing the last step in de novo biogenesis of fatty acids, 

has been studied extensively in various cancers [21, 

187–191]. �e early-generation FASN inhibitors C75, 

cerulenin and orlistat (Table  1) have been studied pre-

clinically, but their pharmacology and side effects limited 

their potential for clinical use [34, 179, 188–203]. �e 

later-generation inhibitor TVB-2640 has entered clinical 

trials in patients with solid tumors (Table 1) [21, 191, 204, 

205].

SCD1

Stearoyl-CoA desaturase (SCD) is an ER-resident integral 

membrane protein that catalyzes the formation of the 

mono-unsaturated fatty acids oleic acid (18:1) or palmi-

toleic acid (16:1) from stearoyl-(18:0) or palmitoyl-CoA 

Table 1 Representative targets within the lipid metabolism pathway for anti-cancer drug development

ACCs acetyl-CoA carboxylases, ACLY ATP citrate lyase, CD36 cluster of di�erentiation 36, also known as fatty acid translocase (FAT), CPT1 carnitine palmitoyltransferase 

1, FASN fatty acid synthase, GBM glioblastoma multiforme, LDLR low-density lipoprotein receptor, LXR liver X receptor, SCAP SREBP cleavage-activating protein, SREBPs 

sterol regulatory element-binding proteins

Target protein Inhibitor Type of cancer Preclinical model Clinical trial References

SCAP – GBM Xenografts – [55]

SREBPs Fatostatin, betulin, PF-429242, 
xanthohumol

GBM, prostate, liver, skin, 
melanoma, colorectal, bile 
duct, pancreatic, and breast 
cancer

Xenografts – [28, 125–138]

ACCs TOFA, soraphen A, ND-646 Lung, ovarian cancer, head 
and neck squamous cell 
carcinoma

Xenografts – [179–185]

ACLY SB-204990, bempedoic acid, 
BMS303141

Lung, prostate, and ovarian 
cancer

Xenografts – [152, 162, 165]

FASN Cerulenin Ovarian cancer, breast cancer Xenografts – [179, 194–196]

C75 Breast, GBM, renal, and meso-
thelioma cancer

Xenografts – [34, 179, 188, 197–203]

TVB-2640 Solid malignant tumors – Phase I Clinicaltrials.gov 
(NCT02223247), 
[191]

TVB-3166 Lung, ovary, and pancreatic 
cancer

Xenografts – [264]

C93 Ovarian and lung cancer Xenografts – [265, 266]

C247 Breast cancer – [267]

Orlistat Prostate cancer and mela-
noma

Xenografts – [192, 193]

Triclosan Breast cancer Xenografts – [268, 269]

LDLR – GBM – – [27, 219]

SCD1 BZ36, A939572, MF-438 Prostate, renal cancer Xenografts – [124, 212–215, 270]

LXR GW3965, LXR-623 GBM Xenografts – [27, 238, 239]

SR9243 Prostate cancer Xenografts [242]

SOAT1 (or ACAT1) K604, ATR-101, avasimibe GBM, prostate and pancreatic 
cancer

Xenografts – [28, 230–232]

CPT1 Etomoxir, perhexiline Leukemia, prostate and breast 
cancer

Xenografts, transgenic mice – [248–250, 271, 272]

CD36 Anti-CD36 antibodies Oral cancer Xenografts – [24–26]
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(16:0) [206, 207]. �ere are 5 SCD genes (SCD1-5). 

Humans contain the SCD homologs SCD1 and SCD5, but 

the function of SCD5 remains unknown [208–210]. �e 

mono-unsaturated products of SCD1 are key substrates 

in the formation of membrane phospholipids, choles-

teryl esters and triglycerides, making SCD1 a promising 

anti-cancer target [75, 211]. �e SCD1 inhibitors BZ36, 

A939572 and MF-438 have shown anti-tumor effects in 

pre-clinical xenograft models (Table 1) [212–215].

Lipid uptake

CD36

In addition to de novo synthesis, lipid uptake from the 

exogenous environment is another important route 

through which cells acquire fatty acids. CD36 transports 

fatty acids into the cell [216, 217], and plays a critical role 

in cancer cell growth, metastasis and the epithelial-mes-

enchymal transition [24–26]. An anti-CD36 antibody has 

shown significant anti-metastatic efficacy in oral cancer 

xenograft models [25].

LDLR

Cholesterol is an essential structural component of cell 

membranes [2, 218]. Cholesterol could be synthesized by 

cells de novo or through internalizing low-density lipo-

protein (LDL). LDL binds to the membrane-bound LDL 

receptor (LDLR) and is internalized, after which it enters 

lysosomes, where free cholesterol is released [11, 76]. 

LDLR is up-regulated in glioblastoma via EGFR/PI3K/

Akt/SREBP-1 signaling [27], and plays an important role 

in tumor growth [27, 76, 219]. LDLR has not been inves-

tigated as an anti-cancer target.

Lipid storage/lipid droplets

SOAT1/ACAT1

When cellular lipids are in excess, they are converted 

to triglycerides and cholesteryl esters in the ER, form-

ing lipid droplets [220–222]. �ese droplets have been 

observed in various types of tumor, including glioblas-

toma, renal clear cell carcinoma, and cancers of the 

prostate, colon or pancreas [29–33]. Diglyceride acyl-

transferase 1/2 (DGAT1/2) could synthesize triglyceride 

from diacylglycerol and acyl-CoA (Fig. 1) [223, 224]. So 

far, the role of  triglycerides in cancer cells has not been 

explored.

Cholesteryl esters are abundant in tumor tissue, while 

they are usually undetectable in normal tissue [225–

229]. Sterol O-acyltransferase 1 (SOAT1), also known 

as acyl-CoA acyltransferase 1 (ACAT1), converts cho-

lesterol to cholesteryl esters for storage in lipid droplets 

(Fig. 1). �is enzyme is highly expressed in glioblastomas 

and in cancer of the prostate or pancreas; its expres-

sion level correlates inversely with patient survival [28, 

29, 230–235]. Genetically silencing SOAT1/ACAT1 or 

blocking its activity using the inhibitors K604, ATR-101 

or avasimibe effectively suppresses tumor growth in sev-

eral cancer xenograft models [28, 230–232]. �ese results 

suggest that targeting SOAT1 and cholesteryl ester syn-

thesis may be a promising anti-cancer strategy.

Cholesterol e�ux

LXR/ABCA1

Cholesterol homeostasis is critical for maintaining cel-

lular function, and is regulated by de novo synthesis, 

uptake, storage, and efflux [11, 76]. Increases in choles-

terol levels can trigger feedback inhibition of cholesterol 

biosynthesis or conversion of cholesterol into cholesteryl 

esters stored in lipid droplets. Levels of 22- or 27-hydrox-

ycholesterol can also increase, and these molecules 

bind to and activate the liver X receptor, which turns on 

expression of ATP-binding cassette proteins A1 (ABCA1) 

and G1 (ABCG1) [236]. Both proteins are plasma mem-

brane-bound transporters that promote cholesterol 

export and thereby reduce intracellular cholesterol lev-

els [237]. Synthetic liver X receptor agonists GW3965 

and T0901317 significantly inhibit tumor growth in 

animal models of glioblastoma, breast cancer or pros-

tate cancer [7, 27]. Activation of the liver X receptor by 

GW3965 up-regulates a ubiquitin ligase E3 that degrades 

LDLR [27, 62, 238]. �e highly brain-penetrant liver X 

receptor agonist LXR-623 selectively kills glioblastoma 

cells and prolongs survival of glioblastoma-bearing mice 

[239].  �erefore, the combination of increasing choles-

terol efflux by activating the liver X receptor and decreas-

ing cholesterol uptake may be a promising anti-cancer 

strategy.

Activation of liver X receptor up-regulates transcrip-

tion of glycolysis genes, such as those encoding PFK2 

and GCK1, as well as of lipogenesis genes, such as those 

encoding SREBP-1c, FASN, and SCD [240, 241]. Con-

versely, inhibiting the liver X receptor using the inverse 

agonist SR9243 downregulates expression of PFK2 and 

SREBP-1c, thereby inhibiting glycolysis and fatty acid 

synthesis as well as suppressing xenograft tumor growth 

[242]. �ese results suggest that developing antagonists 

against liver X receptors may be a new anti-cancer direc-

tion. However, such an approach can be effective only if 

the liver X receptor shows high transcriptional activity 

in human tumors, which has not been clearly demon-

strated yet. Moreover, inhibiting liver X receptors alone 

may be insufficient for reducing glycolysis and lipogen-

esis in human tumors, since these metabolic programs 

are up-regulated by multiple oncogenic signaling path-

ways [243–245]. Regardless, efforts to inhibit cancer 

growth by using liver X receptor agonists to activate cho-

lesterol efflux can be undermined by the concomitant 
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up-regulation of glycolysis and lipogenesis. It may be 

more effective to simultaneously enhance cholesterol 

efflux and inhibit glycolysis and lipogenesis.

Fatty acid oxidation

CPT1

Fatty acids are an important energy source for cell 

growth and survival when nutrients are limiting. Carni-

tine palmitoyltransferase I (CPT1) converts fatty acids 

to acylcarnitines, which are shuttled into mitochondria, 

where they undergo β-oxidation and produce energy 

[21]. Fatty acid β-oxidation plays a critical role in tumor 

growth [246, 247], and the CPT1 inhibitors etomoxir and 

perhexiline have been tested for anti-cancer effects in 

various animal models [248–250].

Lipid peroxidation and cell death

Lipids, particularly polyunsaturated fatty acids, are sus-

ceptible to oxidation by oxygen  free radicals, leading to 

lipid peroxidation that is harmful to cells and tissues 

[251–253]. Lipid peroxides are associated with many 

pathological states, including inflammation, neuro-

degenerative disease, cancer, and ocular and kidney 

degeneration [253, 254]. Lipid peroxidation triggers 

the propagation of lipid reactive oxygen species that 

can significantly alter the physical properties of cellular 

membranes, or degrade into reactive compounds that 

cross-link DNA or proteins, exerting further toxic effects 

[253, 255, 256]. Extensive lipid peroxidation can result 

in ferroptosis, a regulated form of iron-dependent, non-

apoptotic cell death [255, 257]. Inducing ferroptosis may 

be an anti-cancer strategy [257–259]. For example, dis-

rupting the repair of oxidative damage to bio-membranes 

by inhibiting the antioxidant enzyme glutathione peroxi-

dase 4 (GPX4) could induce ferroptosis [257, 259–262]. 

�is has emerged as an active area of research that may 

lead to new anti-cancer approaches, particularly against 

metabolically active tumors.

Summary

Extensive studies have provided strong evidence for 

reprogramming of lipid metabolism in cancer [27, 34, 55]. 

A variety of lipid synthesis inhibitors have shown prom-

ising anti-cancer effects in preclinical studies and early 

phases of clinical trials [7, 29, 55, 263]. However, major 

barriers exists in developing cancer treatment by target-

ing altered lipid metabolism, mostly due to incomplete 

understanding of the mechanisms that regulate lipid syn-

thesis, storage, utilization and efflux in cancer cells.
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