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Abstract

Background: We present a lipidomics analysis of human Parkinson’s disease tissues. We have focused on the primary visual
cortex, a region that is devoid of pathological changes and Lewy bodies; and two additional regions, the amygdala and
anterior cingulate cortex which contain Lewy bodies at different disease stages but do not have as severe degeneration as
the substantia nigra.

Methodology/Principal Findings: Using liquid chromatography mass spectrometry lipidomics techniques for an initial
screen of 200 lipid species, significant changes in 79 sphingolipid, glycerophospholipid and cholesterol species were
detected in the visual cortex of Parkinson’s disease patients (n = 10) compared to controls (n = 10) as assessed by two-sided
unpaired t-test (p-value ,0.05). False discovery rate analysis confirmed that 73 of these 79 lipid species were significantly
changed in the visual cortex (q-value ,0.05). By contrast, changes in 17 and 12 lipid species were identified in the
Parkinson’s disease amygdala and anterior cingulate cortex, respectively, compared to controls; none of which remained
significant after false discovery rate analysis. Using gas chromatography mass spectrometry techniques, 6 out of 7 oxysterols
analysed from both non-enzymatic and enzymatic pathways were also selectively increased in the Parkinson’s disease visual
cortex. Many of these changes in visual cortex lipids were correlated with relevant changes in the expression of genes
involved in lipid metabolism and an oxidative stress response as determined by quantitative polymerase chain reaction
techniques.

Conclusions/Significance: The data indicate that changes in lipid metabolism occur in the Parkinson’s disease visual cortex
in the absence of obvious pathology. This suggests that normalization of lipid metabolism and/or oxidative stress status in
the visual cortex may represent a novel route for treatment of non-motor symptoms, such as visual hallucinations, that are
experienced by a majority of Parkinson’s disease patients.
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Introduction

Parkinson’s disease (PD) is an idiopathic neurodegenerative

movement disorder with a prevalence of approximately 1–2% of

the population over 65 years increasing to 3–5% in people over 85

years old [1,2]. Pathologically, PD classically presents with specific

loss of dopaminergic neurons in the substantia nigra pars

compacta (SN) and Lewy body formation [3]. Lewy bodies are

composed of aggregated proteins including alpha-synuclein (a-syn)

and other components including lipids [4,5]. According to the

Braak PD staging scheme, selective structures of the brainstem,

temporal mesocortex and neocortex become progressively in-

volved over time, with severe destruction of the SN and

involvement of the amygdala (AMY) by stage 4, and the anterior

cingulate cortex (ACC) affected by stage 5 [6,7]. The occipital

cortex is pathologically spared in PD [3,6,8]. The attractiveness of

the Braak staging scheme is that it explains many of non-motor

symptoms in PD [8], although there is controversy over this

concept [9,10].
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Non-motor clinical symptoms of PD refer to a combination of

sleep disturbances, autonomic dysfunction, sensory complica-

tions, olfactory deficits, and neuropsychiatric problems. Of these

neuropsychiatric symptoms, visual hallucinations (VH) are one of

the most common. In a recent 20 year follow-up study, VH were

present at a prevalence of 74% in idiopathic PD patients [11].

Other studies of shorter follow-up duration have indicated VH

prevalence in the range of ,50 to 75% [12–15]. Although VH

were initially suggested to be a complication of treatment, it is

now thought that changes in neural circuits underlie the

dysfunction of visual pathways [16]. Structural MRI studies have

shown that PD patients with VH present with grey matter

atrophy of the occipito-parietal and hippocampal regions of the

brain [17–19]. In addition to this, PET and functional MRI

studies have demonstrated reduced activation of the ventral/

lateral visual association cortices and the primary visual cortex

(VC) in particular [20–23]. To date, there is no evidence of

pathology in the VC of PD patients [7], even though dysfunction

of this region is associated with VH. This implies that metabolic

changes in the VC could contribute to the dysfunction of visual

perception in PD.

Maintenance of lipid homeostasis is increasingly recognized as a

crucial factor for normal neuronal function. There are several

reasons to suspect that modulation of cerebral lipid metabolism or

transport may be linked to PD. These include the findings that a-

syn is a lipid binding protein and that it deposits with lipids

associated with Lewy bodies and neuromelanin in PD tissues

[4,5,24]. Genetic deletion of a-syn in mice results in increased

levels of cerebral cholesterol, cholesteryl esters and triacylglycerols

[25], whereas changes in multiple classes of phospholipids were

detected in old (but not young) transgenic mice expressing human

a-syn [26]. Recent studies also suggest that the association of a-syn

with oxidized lipid metabolites can lead to mitochondrial

dysfunction in PD [27]. Other studies have suggested changes in

cerebral cholesterol, oxysterols, and cholesterol hydroperoxides

may be related to PD progression [28–30] and it has been

established that mutations in the GBA gene, that encodes

glucocerebrosidase, confer increased risk for PD [31,32]. Taken

together, these studies suggest that changes in cerebral lipid

homeostasis may contribute to neurodegenerative pathways in PD

and possibly also to deficits in the VC that currently have no

known pathological basis.

Lipidomics is as a powerful research tool that can be utilised to

investigate lipid pathways that play important roles in cell biology

and in specific disease processes. Lipidomics approaches have

therefore been used to investigate lipid metabolism at the cellular

level, in animal studies and increasingly in the human pathophys-

iological context [33–42]. In the present study we have undertaken

the first lipidomics analysis of human PD tissues. We have focused

on the primary VC and two additional brain regions, the AMY

and ACC which contain Lewy bodies at different disease stages

but do not have as severe degeneration as the SN at end-stage PD.

The lipidomics data was confirmed by follow-up mass spectrom-

etry and high-performance liquid chromatography (HPLC)

techniques that were used to inform a targeted assessment of lipid

pathway gene expression. Our data reveal substantial changes in

sphingolipid and glycerophospholipid biosynthetic pathways in the

VC of PD patients compared to controls. Levels of oxysterols

derived from both non-enzymatic (free radical-mediated) and

enzymatic pathways were also increased in the PD VC. Many of

these changes in VC lipids were correlated with relevant changes

in the expression of genes involved in lipid metabolism and an

oxidative stress response.

Table 1. Demographic and limited clinical and neuropathological brain donor details.

Case #
Age at
death (y)

Gender
(M/F) PD duration (y)

Visual hallucinations
(Y/N)

Post- mortem
interval (h)

Braak PD
stage (0-VI)

Braak neuritic
stage (0-VI)

Con 1 93 F - N 21 0 0

Con 2 83 F - N 7 0 0

Con 3 79 M - N 8 0 0

Con 4 102 F - N 5 0 0

Con 5 92 F - N 16 0 0

Con 6 86 M - N 15 0 I

Con 7 85 M - N 9 0 I

Con 8 88 M - N 9 0 II

Con 9 87 F - N 5 0 0

Con 10 85 F - N 10 0 II

PD 1 78 M 24 Y 6 V 0

PD 2 84 M 17 N 7 IV 0

PD 3 66 M 12 Y 6 V 0

PD 4 91 F 10 Y 4 IV III

PD 5 83 F 14 Y 32 V III

PD 6 90 M 15 N 5 V 0

PD 7 72 M 9 N 4 IV 0

PD 8 83 F 14 Y 7 V 0

PD 9 75 M 14 Y 9 V II

PD 10 69 M 17 Y 5 V I

doi:10.1371/journal.pone.0017299.t001

Lipid Changes in Parkinson’s Disease Visual Cortex
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Materials and Methods

Ethics statement
This research was conducted according to the principles

expressed in the Declaration of Helsinki. Ethics approval was

from the University of New South Wales Human Research Ethics

Committee.

Materials
All organic solvents used were of analytical/HPLC grade and

purchased from Merck (Darmsdadt, Germany). Standard solutions

of oxysterols, 5-alpha cholestane, and other cholesterol biosyn-

thetic precursors were diluted in ethanol. Formic acid, acetic acid

(Lancaster, England), potassium hydroxide, butylated hydroxyto-

luene (BHT), ethanol, acetic acid (Merck, Darmstadt, Germany),

and hexane (Tedia, OH, USA) were of analytical grade. Methanol

(EM Science, Darmstadt, Germany) and ethyl acetate (Fisher

Scientific, UK) were of HPLC grade. Oasis mixed anion-exchange

cartridges were from Waters Corp. (Milford, MA, USA).

Recombinant human a-syn protein used as a Western blot

standard was generously provided by Wei Ping Gai, Flinders

University, Adelaide, Australia.

Human Brain Tissue
Frozen grey matter brain tissue from 10 sporadic PD cases and

10 control cases was received from the Sydney Brain Bank and the

NSW Tissue Resource Centre, part of the Australian Brain Bank

Network funded by the National Health and Medical Research

Council of Australia. Standardized clinicopathological criteria

were used for diagnosis [43]. The demographic and basic clinical

and neuropathological details for all cases and controls are

provided in Table 1.

The PD cases had a mean age of 7969 y, a mean disease

duration of 1564 y and a mean postmortem interval of 8.568 h.

The controls were 9 years older on average (mean age of 8866 y,

t-test p = 0.02) and had a similar postmortem interval (mean of

10.565 h, t-test p = 0.5). Age was factored into the analyses as

described in the Results section. There was no difference in the sex

distribution between groups (x2 p = 0.37) and both groups had

similar causes of death; which included pneumonia (2 PD, 2

controls), terminal prostate cancer (1 PD, 1 control), sepsis/renal

failure (1 PD, 1 control) and cardiac events or cardiorespiratory

arrest (remaining PD and controls).

Approximately 500 mg of frozen brain tissue from the AMY,

ACC and VC was pulverized over dry ice and four aliquots of

approximately 10 mg, 50 mg, 100 mg, 100 mg of accurately

weighed pulverised tissue samples were frozen and stored at

280uC until required for analysis by Western blotting, mass

spectrometry, HPLC or quantitative real-time (qRT-PCR). These

methods are briefly summarised below and a full description is

included as Methods S1. A schematic diagram outlining the

workflow of the complete lipidomic screening strategy is also

included as Figure S1.

Western blotting for a-syn and synaptophysin
The brain tissue was homogenized into three fractions as

described previously [44,45] to provide homogenates that were

soluble in tris-buffered saline (TBS), TBS containing 1% (w/v)

Triton X-100 (TX) and an SDS-solublized pellet fraction (SDS).

Equal amounts of protein were then analysed by SDS-PAGE and

Western blotting using a-syn or synaptophysin monoclonal

antibodies and re-probed with a rabbit b-actin polyclonal

antibody. Signal intensities were quantified using NIH Image J

software (National Institutes of Health, Bethesda, MD) with the

relative expression of bands of interest normalised to b-actin. Full

details are included as Methods S1.

Analysis of lipids using high performance liquid
chromatography/mass spectrometry (LC/MS) and gas
chromatography/mass spectrometry (GC/MS)

Lipids were extracted from tissue samples containing internal

standards and heavy isotopes using a modified Bligh and Dyer

extraction method [46]. The lipid extract was split into two

aliquots for LC/MS and GC/MS. For the LC/MS analysis an

Agilent high performance liquid chromatography (HPLC) 1200

system coupled with an Applied Biosystem Triple Quadrupole/

Ion Trap mass spectrometer (3200 Qtrap) was used for

quantification of individual phospholipids and sphingolipids

[42,47]. Neutral lipids were analyzed using a modified method

from a previously described LC/MS method [48]. Free cholesterol

was quantified using a HPLC atmospheric pressure chemical

ionisation MS (LC/APCI/MS) method [49]. For the GC/MS

analysis, aliquots of lipid extracts prepared as for LC/MS above

were analysed using an Agilent 5975 inert XL mass selective

detector and 5973 gas chromatograph equipped with an automatic

Figure 1. Analysis of a-synuclein and synaptophysin in
fractionated Parkinson’s disease tissues. Tissues were homoge-
nised into three fractions that contained tris-buffered saline (TBS), TBS
containing Triton X100 (TX) or sodium dodecyl sulphate (SDS) and a-
synuclein (a-Syn), synaptophysin (Sp) and b-actin expression was
analysed by Western blotting (A). The intensity of the bands was
measured and the relative amounts of a-Syn and Sp in each fraction is
expressed in the histogram (B). The data are derived from Parkinson’s
disease amygdala (PD AMY) samples and are used as an example to
illustrate the techniques used to characterise the PD tissues. Data in ‘‘B’’
represent mean values with SEM shown by the error bars for the three
samples shown in ‘‘A’’.
doi:10.1371/journal.pone.0017299.g001

Lipid Changes in Parkinson’s Disease Visual Cortex
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sampler and a computer workstation. Full details are included as

Methods S1.

Electrospray ionisation MS
Samples were also analysed by direct ESI/MS. In brief, lipids

were extracted using published methods [50,51] and mass spectra

were obtained using a Waters QuattroMicroTM (Waters, Man-

chester, U.K.) equipped with a z-spray electrospray ion source.

Samples were infused into the electrospray ion source and

sphingolipids and ceramides analysed as described previously

[50,52,53]. Full details are included as Methods S1.

High performance liquid chromatography
Cholesterol and a-tocopherol content of brain tissue was

determined by reversed-phase HPLC using a C18 reversed phase

column as described previously [54]. Trace amounts of [3H]-

cholesterol were used as an internal standard. Full details are

included as Methods S1.

Quantitative real-time PCR
The qRT-PCR analysis of human brain samples was performed

using our established methods [55]. Brain tissue was homogenized

in TRIzol reagent (Invitrogen, Mount Waverly, Australia) and

RNA concentration was determined spectrophometrically with a

Nanodrop 1000 (Thermo scientific, Wilmington, DE). Five mg of

total RNA was used for reverse transcription with random primers

and M-MLV reverse transcriptase (Promega, Sydney, Australia).

The resulting cDNA provided the template in the qRT-PCR,

which was carried out using a Mastercycler EP Realplex S

(Eppendorf, North Ryde, Australia). qRT-PCR of the house

keeping gene, b-actin was also performed for each cDNA template

and gene expression normalised to b-actin. RNA integrity was

confirmed using a high resolution Bioanalyzer electrophoresis

system (Agilent Technologies, Palo Alto, CA, USA) as described

previously [55]. Full details are included as Methods S1. All

primers were purchased from Sigma (Castle Hill, Australia) and

details of the sequences are provided as Table S1.

Statistics
Data presented are expressed as mean with SEM shown by the

error bars. Statistical significance was analysed using the two-sided

unpaired t-test and SPSS Statistics software (version 17, SPSS Inc.

Chicago, IL). A p-value ,0.05 was considered significant. For the

lipidomics datasets, false discovery rate (FDR) q-values were

calculated from the t-test p-values [56].

Results

Characterisation of a-syn and synaptophysin expression
The PD Braak staging for the cases and controls is given in

Table 1. In order to provide a biochemical correlate of Lewy body

pathology in the corresponding small tissue samples that we

analysed, Western blotting for a-syn in SDS-soluble fractions of

brain homogenate was performed [45]. As an example, AMY

samples derived from PD cases are shown in Figure 1. a-Syn was

detected predominantly in the TBS-soluble (41%) and TX-soluble

(54%) fractions with a small but reproducibly detectable portion

(5%) also detected in the SDS-soluble fraction (Fig. 1A,B). The

Figure 2. Analysis of control (Con) and Parkinson’s disease (PD) a-synuclein (a-Syn) and synaptophysin (Sp) levels. Tissues were
homogenised and fractionated as described in the legend to Figure 1 and insoluble a-Syn in the SDS fraction, and Sp in the TX-fraction was measured
in the anterior cingulate cortex (ACC) (A), amygdala (AMY) (B), and visual cortex (VC) (C). Corresponding quantification of relative a-Syn (D) and Sp (E)
protein expression in the three brain regions is provided in the histograms. Data represent mean 6 SEM (n = 10), **p,0.001 by t-test.
doi:10.1371/journal.pone.0017299.g002

Lipid Changes in Parkinson’s Disease Visual Cortex
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amount of a-syn extracted in the SDS fraction reflects a-syn

deposition in Lewy bodies [3]. In approximately 50% of PD cases,

we also detected apparent high molecular weight (HMW) species

of a-syn in the SDS fraction of the AMY (Fig. S2). A 31 kDa a-syn

band was one of the clearest HMW bands detected; although a

previous study has suggested this may be due to non-specific

binding of the detection antibody [45]. These HMW species

accounted for only a minor proportion of total a-syn and because

they were not consistently observed, they were not quantified in

the present study. Synaptophysin was also measured in the

samples as a control for the fractionation method (as the

membrane-bound synaptophysin should appear predominantly

in the TX fraction) and as a surrogate marker for synaptic density/

neuron loss. As predicted, the vast majority (91%) of synaptophy-

sin was recovered in the TX fraction (Fig. 1A,B).

The amounts of a-syn in the SDS-soluble fractions were then

used to estimate relative Lewy body pathology in all samples. The

data indicate that a-syn deposition was significantly increased in

the SDS-soluble fractions of the AMY of the PD cases as

compared to the controls (Fig. 2). A non-significant trend for

increased a-syn deposition in the ACC was also noted whereas

there were no changes in the VC (Fig. 2). This is consistent with

the Braak stages for these cases with ACC Lewy bodies (Braak PD

stage V) found in 7/10 of the PD cases (Table 1). Synaptophysin

levels were not altered in any of the samples analysed, suggesting

that extensive neurodegeneration or synaptic loss was not a feature

of the brain regions analysed in this PD cohort (Fig. 2).

LC/MS lipidomics assessment of control and PD tissues
A lipidomics analysis of ACC, AMY and VC tissues from both

control and PD brains was then conducted. We initially focused on

200 lipid species that we categorised into three broad familes:

sphingolipids (including C18-sphingosine, C18-dihydrosphingosine

and multiple molecular species of sphingomyelin (SM), ceramide

(Cer), ganglioside GM3 (GM3) and sulfatide (SL); glyceropho-

spholipids (including multiple molecular species of phosphatidic acid

(PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE),

phosphatidylinositol (PI) and phosphatidylserine (PS); and neutral

lipids (including cholesterol and multiple molecular species of

cholesteryl esters (CE), triacylglycerides (TAG) and diacylglycer-

ides (DAG). In this analysis, each individual lipid in the PD

samples was quantified relative to the levels detected in Con

samples. The ‘‘heat map’’ of these lipid changes indicates

significant changes in all brain areas examined (Fig. 3). Clearly,

however, most of the statistically significant changes in lipid levels

were detected in the VC (Fig. 3, Tables S2–S4). One issue that

needs to be considered is the possibility that false discoveries are

made due to the large number of test variables assessed using a

lipidomics approach. We therefore used a robust method for

estimating false discovery rates (FDR) that calculates q-values

based on p-values derived from t-test analysis [56]. With a q-value

threshold set at 5%, 73 of the 79 significant differences identified

in the VC by the t-test remained statistically significant (Table S5).

In contrast, all 17 and all 12 of the differences observed in the

AMY and ACC were found to have q-values .0.05 (Table S5).

This suggests that the changes detected in the VC are not due to

chance whereas the changes detected in the AMY and ACC may

be false positives and need to be interpreted with caution.

In the PD VC, the lipidomics data indicated an overall increase

in sphingolipid levels, a decrease in PE accompanied by an

increase in PS, and an overall increase in cholesterol and DAG

(Fig. 3). To confirm the PD-related changes in lipid profiles

identified by the lipidomics approach, independent quantitative

lipid analysis methods were employed using the same Con (n = 10)

and PD (n = 10) samples. To assess the possible influence of the

10% older age of the Con subjects (see Materials and Methods

section), additional analyses were also performed that excluded the

two oldest Con subjects and the two youngest PD subjects to

provide age-matched groups (i.e. Con (n = 8) mean age

86.061.4 y, PD (n = 8) mean age 82.062.4 y (t-test, p = 0.2).

The PD-related changes in lipid profiles were then used to inform

a targeted assessment of changes in the expression of relevant

genes involved in each of the lipid biosynthetic pathways.

Changes in sphingolipid metabolism related to PD
To confirm the changes in sphingolipid metabolism identified

by LC/MS lipidomics, separate aliquots of brain tissue were

analysed by electrospray ionisation (ESI)/MS. The results for this

analysis were significantly correlated (r2 = 0.59, p,0.0001) with

the LC/MS lipidomics data (Fig. 4A, Table S6). Figure 4A

indicates a degree of variation in this correlation that may be due

to differences in the lipid extraction methods and MS analytical

techniques employed (as summarized in Fig. S1). The ESI/MS

analysis did however confirm that levels of sphingolipids (SM and

Cer) were increased in the PD VC (Table S6 and Table S7). There

were no significant correlations between age and either SM or Cer

in the entire cohort (data not shown). The PD-related changes in

SM and Cer were also detected in the smaller age-matched group

comparison (n = 8, data not shown). This lack of impact of age was

expected as previous data indicates that changes in these

sphingolipids across the ages of the brain samples used in our

study would be extremely small and thus undetectable [57,58].

In order to understand the underlying mechanisms that may

contribute to regional changes in sphingolipid metabolism in PD,

we assessed the expression of a selection of sphingolipid pathway

genes in the full sample cohort by qRT-PCR. A simplified scheme

depicting the sphingolipid pathway with relevant lipids and genes

we have focused on is shown in Figure 4B. The gene expression

data indicated a significant up-regulation of several genes involved

in Cer and SM synthesis (SPTLC2, FVT1, DEGS1, SGMS1) in

the PD VC (Fig. 5). This is in general agreement with the

lipidomics LC/MS and ESI/MS data and suggests that transcrip-

tional activation contributes to the increased levels of Cer and SM

detected in the PD VC. The increased levels of SL detected in the

PD VC were not associated with changes in UGT8a or Gal3ST1;

two genes that regulate the conversion of Cer to galactosylcer-

amide (GalCer) and SL, respectively (Fig. 5). This may indicate

that increased levels of SL detected in the PD VC are the result of

decreased SL catabolism or that the level of expression of

UGT8a/Gal3ST1 is sufficient to catalyse the conversion of a

Figure 3. Heat map illustrating significant changes in lipid levels associated with Parkinson’s disease as assessed using a lipidomics
approach. Control (n = 10) and PD (n = 10) tissues were collected from the anterior cingulate cortex (ACC), amygdala (AMY) and visual cortex (VC).
Lipids were extracted and analysed using an LC/MS lipidomics approach. The data indicates the fold change in the levels of sphingolipids,
glycerophospholipids and neutral lipids detected in the PD samples relative to the Con samples. The intensity of the red and green colour represents
the magnitude of increase or decrease, respectively, as indicated by the scale bar. Only statistically significant changes (p,0.05, t-test) are
represented by the red and green colours in the heat map. Note: the nomenclature for phospholipid acyl chain length and saturation is abbreviated
to improve clarity. The data used to generate the heat map is included as Tables S2 to S4.
doi:10.1371/journal.pone.0017299.g003
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proportion of the increased Cer (substrate) observed to GalCer

and SL.

Changes in glycerophospholipid metabolism related to
PD

We next focused on changes in glycerophospholipid metabolism

that were revealed by the LC/MS lipidomics analysis. Although

one of the glycerophospholipid molecular species (PC16:0/18:2) in

one brain region (AMY) was found to be negatively correlated with

age (Pearson correlation for whole group r2 = 20.34, p = 0.009, for

smaller age-corrected group r2 = 20.58, p = 0.001), age did not

contribute to PD-related differences in PC16:0/18:2 (i.e. rather

than increased, the levels of this lipid were either unchanged or

decreased in the PD tissues, Table S3). Previous detailed studies

are consistent with only a very subtle decrease in glyceropho-

spholipid levels with age [59]. The changes detected in PD are

therefore not likely to be influenced by age in our analyses.

To understand the underlying mechanisms that may contribute

to regional changes in glycerophospholipid metabolism in PD, we

assessed the expression of a selection of relevant genes in the full

sample cohort by qRT-PCR (as depicted in Figure 6). Of the genes

investigated, the data indicated that PCYT1A was significantly up-

regulated in the PD VC. This gene is important for the production

of CDP-choline which is required to synthesise PC (Fig. 6).

Interestingly, not all species of PC were increased in the PD VC

and this may be due to conversion of specific molecular species of

PC to PS. Consistent with this, PS levels were significantly

increased in the PD VC and there was a non-significant trend for a

5-fold increase in the expression of the PTDSS1 gene that encodes

for the enzyme required to catalyse this reaction (Fig. 7). Although

DAG (classified here as a neutral lipid but also a crucial

intermediate in glycerophospholipid synthesis, Fig. 6) levels were

increased in the PD VC (Fig. 3), expression of two genes important

for the synthesis of DAG from PA (PPAP2A and PPAP2B) were

not significantly changed; although a trend for up-regulation was

detected in the VC but not in the ACC or AMY (Fig. 7). Overall,

the data point towards subtle modulation of the glyceropho-

spholipid biosynthetic pathway to selectively modify glyceropho-

spholipid profiles in the PD VC. The induction of the PCYT1A

gene in the PD VC suggests that at least part of this change in lipid

profile is transcriptionally regulated.

Changes in neutral lipid and sterol metabolism related to
PD

The lipidomics LC/MS analysis indicated that TAG levels were

decreased in the PD VC but not in the ACC or AMY as compared

to the same brain regions derived from control samples (Fig. 3).

This could also contribute to the increase in DAG detected in the

PD VC (discussed above) as TAG are derived from DAG (Fig. 6).

The lipidomics analysis also revealed an increase in cholesterol

levels in the PD VC (Fig. 3). We re-assessed this by analysing an

independent set of replicate samples by reversed phase HPLC.

This analysis confirmed the lipidomics data (Fig. 8A), although the

magnitude of increase in PD VC cholesterol was different (36% by

LC/MS and 15% by HPLC). The lipid-soluble anti-oxidant a-

tocopherol, which eluted from the HPLC column before

cholesterol, was also quantified. a-Tocopherol levels were not

Figure 4. Comparison of liquid chromatography-mass spec-
trometry (LC/MS; National university of Singapore, NUS) and
electrospray ionisation mass spectrometry (ESI/MS; University
of Wollongong, UOW) techniques for the detection of sphin-
golipid changes in control (Con) and Parkinson’s disease (PD)
tissues. Independent aliquots of Con (n = 10) and PD (n = 10) tissues
were collected from the anterior cingulate cortex, amygdala and visual
cortex. Lipids were extracted and analysed using LC/MS lipidomics at
NUS (LC/MS NUS) and ESI/MS at UOW (ESI/MS UOW). The fold-change in
lipid levels of the PD samples relative to the controls is provided in the
scatter plot that compares the data from the two laboratories (A). A
simplified schematic diagram of relevant sphingolipids and related
genes assessed in this study is provided (B). The lipids in the boxes with
black borders were analysed in the present study. Serine palmitoyl-
transferase, long chain base subunit 2 (SPTLC2); follicular lymphoma

variant translocation 1 (FVT1); degenerative spermatocyte homolog 1;
lipid desaturase (DEGS1); sphingomyelin synthase 1 (SGMS1); UDP
galactosyltransferase 8A (UGT8A); and galactose-3-O-sulfotransferase 1
(GAL3ST1). Pearson correlation analysis indicates a positive correlation
between the independent analyses (p,0.0001).
doi:10.1371/journal.pone.0017299.g004
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significantly different in PD cases compared to controls in any of the

brain regions examined (Fig. 8B). Age was not correlated with either

cholesterol or a-tocopherol levels in any brain region (data not

shown) and was therefore unlikely to confound the PD-related

changes in cholesterol that we detected. The increase in PD VC

cholesterol levels detected could theoretically be due to decreased

formation of CE, however, only one of the ten CE molecular species

analysed was found to be reduced (Fig. 3) and the relative amount of

CE present in the brain is at least two orders of magnitude lower

than cholesterol; so this is unlikely to be a major factor.

In order to understand if cholesterol synthesis or metabolism

may be altered in the PD VC, a further investigation of cholesterol

biosynthetic precursor molecules as well as a range of oxysterol

metabolites, that are indicated by the scheme depicted in Figure 9,

was carried out using GC/MS analysis of the full sample cohort.

There were no significant increases in any of the seven cholesterol

precursor molecules assessed in any of the brain regions (Fig. 10).

Intriguingly, lathosterol and 7-dehydrocholesterol levels were

significantly reduced in the PD ACC compared to the control

ACC (Fig. 10). The significance of this finding is not clear since the

cholesterol levels were not different in the PD ACC versus control

ACC (Figs. 3 and 8). Lathosterol was the only cholesterol

precursor found to be correlated with age. This correlation was

weak and only observed in the ACC (r2 = 20.23, p = 0.031). Age

did not appear to have a major impact on the magnitude of PD-

related differences in ACC lathosterol levels we detected in the full

Figure 5. Quantitative real-time PCR analysis of selected sphingolipid-related genes in the anterior cingulate cortex (ACC),
amygdala (AMY) and visual cortex (VC) of control (Con) and Parkinson’s disease (PD) tissues. The expression of genes involved in the
sphingolipid biosynthetic pathway (see Fig. 4B) was assessed by qRT-PCR. Data for all genes are expressed relative to the control values (Con = white
bars, assigned a value of 1.0; PD = black bars). The data are presented separately for ACC (A), AMY (B) and VC (C). Serine palmitoyltransferase, long
chain base subunit 2 (SPTLC2); follicular lymphoma variant translocation 1 (FVT1); degenerative spermatocyte homolog 1, lipid desaturase (DEGS);
sphingomyelin synthase 1 (SGMS1); UDP galactosyltransferase 8A (UGT8A); and galactose-3-O-sulfotransferase 1 (GAL3ST1). Data represent mean 6
SEM, *p,0.05 by t-test.
doi:10.1371/journal.pone.0017299.g005
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sample cohort as very similar data were generated using the age-

matched samples (i.e. in the full cohort lathosterol levels were

24.162.4 ng/mg and 16.162.3 in the Con (n = 10) and PD

(n = 10) groups, respectively (t-test p = 0.026); whereas in the age-

matched cohort lathosterol levels were 23.662.8 ng/mg and

16.862.6 in the Con (n = 8) and PD (n = 8) groups, respectively (t-

test p = 0.097).

One possible explanation for the lack of correlation between the

levels of cholesterol and its precursors in the ACC and VC could

be due to different rates of conversion of cholesterol to oxysterols

in the different groups. To assess this, GC/MS was used to

measure several oxysterols that are formed by free-radical

mediated oxidation (7a-OH-Ch, 7b-OH-Ch, 5,6a-epoxy-Ch,

5,6b-epoxy-Ch, 7keto-Ch) or by enzymatic pathways (7a-OH-

Ch, 27-OH-Ch, 24S-OH-Ch) [note: 7a-OH-Ch may be formed

by both enzymatic and oxidative routes [60]].

The GC/MS analysis revealed a significant increase in PD VC

oxysterols derived from both enzymatic and non-enzymatic routes

(Fig. 11). Of the seven oxysterols analysed, 5,6a-epoxy-Ch was the

only compound that was not significantly increased (although

there was a trend for an increase) in the PD VC (Fig. 11). 7Keto-

Ch was the only oxysterol found to be correlated with age. This

correlation was weak and only observed in the VC (r2 = 0.20,

p = 0.049). Similar to the observations regarding lathosterol above,

age did not have an impact on the magnitude of PD-related

differences in VC 7keto-Ch levels we detected in the full sample

cohort as very similar data were generated using the age-matched

samples (i.e. in the full cohort 7keto-Ch levels were 2.7460.40 ng/

mg and 4.7360.40 in the Con (n = 10) and PD (n = 10) groups,

respectively (t-test p = 0.002); whereas in the age-matched cohort

7keto-Ch levels were 2.8360.49 ng/mg and 4.8660.49 in the

Con (n = 8) and PD (n = 8) groups, respectively (t-test p = 0.011).

Our finding that the levels of several oxysterols are increased in

the PD VC raises two important issues. Firstly, it suggests that the

small increase in total cholesterol levels detected in the PD VC

(Fig. 8) is not due to decreased conversion to oxysterols such as

Figure 6. Simplified scheme of relevant glycerophospholipids and related genes assessed in this study. A simplified schematic diagram
of relevant glycerophospholipids and related genes assessed in this study. The lipids in the boxes with black borders were analysed in the present
study. Phosphatidylcholine (PC); phosphatidic acid (PA); phosphatidylinositol PI; phosphatidylserine PS; phosphatidylethanolamine (PE);
diacylglycerol (DAG); cytidine diphosphate-diacylglycerol (CDP-DAG); cytidinediphosphate-choline (CDP-Choline); cytidinediphosphate-ethanolamine
(CDP-Etn); phosphocholine cytidylytransferase 1a (PCYT1A); phosphatidic acid phosphatase 2a (PPAP2A); phosphatidic acid phosphatase 2B
(PPAP2B); phosphatidylserine synthase I (PtDSS1).
doi:10.1371/journal.pone.0017299.g006
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24S-OH-Ch; and secondly, the increase in non-enzymatic

oxidation products implies the PD VC may be under a state of

oxidative stress. To explore these issues, we conducted further

analysis of gene expression in the full cohort.

We first examined the expression of HMGCR, the rate-limiting

gene controlling cholesterol synthesis, and trends for increases

were detected in all regions of the PD brain examined although

this increase was significant only for the PD VC (Fig. 12). This is in

general agreement with the lipidomics and HPLC data that

indicated a statistically significant elevation of cholesterol only in

the PD VC (Figs. 3 and 8). In addition, CYP24 expression was

significantly increased in the PD VC (which may explain the

increased levels of 24S-OH-Ch detected by GC/MS) whereas

there was only a trend for increased CYP27 expression (Fig. 12).

Interestingly, increases in SOD1, GPX1 and APOD gene

expression were detected in the PD VC (Fig. 12). SOD1, APOD

and specific GPX genes are also up-regulated in the human brain

under oxidative stress conditions and have been shown to be

correlated with increases in markers of brain lipid peroxidation in

the human prefrontal cortex during development and ageing and

in the SN in PD [55,61].

We also used GC/MS to analyse levels of F2-isoprostanes

(sensitive markers of arachidonic acid oxidation) and found no

evidence for an increase in any of the PD samples (A. Jenner, D.

Cheng and B. Garner, unpublished observations). This, along with

the fact that a-tocopherol levels were not depleted in the PD

tissues (Fig. 8), implies that the increase in oxidative stress in the

PD VC is not a ‘‘generalised’’ condition but may be rather specific

(e.g. perhaps limited to cholesterol). As it has been shown

previously that 27-OH-Ch up-regulates neuronal a-syn mRNA

expression [62], we also assessed SYNA gene expression and the

results indicate there were no differences related to either 27-OH-

Ch levels or to PD status (Fig. 12). The failure of the increased

levels of 27-OH-Ch present in the PD VC to induce a-syn

transcription may be due to a complex interplay with 24S-OH-Ch

as another study has suggested that 27-OH-Ch-mediated up-

regulation of SYNA can be blocked in the presence of equimolar

24S-OH-Ch [63].

Discussion

The data presented herein represent the first lipidomics analysis

of the human PD brain. Although previous work focused on lipid

changes detectable in the SN using histochemical techniques [5],

we have chosen not to focus our present study on the SN for two

Figure 7. Quantitative real-time PCR analysis of selected
glycerophospholipid-related genes in the anterior cingulate
cortex (ACC), amygdala (AMY) and visual cortex (VC) of control
(Con) and Parkinson’s disease (PD) tissues. The expression of
genes involved in the glycerophospholipid biosynthetic pathway (see
Fig. 6) was assessed by qRT-PCR. Data for all genes are expressed
relative to the control values (Con = white bars, assigned a value of 1.0;
PD = black bars). The data are presented separately for ACC (A), AMY
(B) and VC (C). Phosphocholine cytidylytransferase 1a (PCYT1A);
Phosphatidic acid phosphatase 2a (PPAP2A); phosphatidic acid
phosphatase 2B (PPAP2B); Phosphatidylserine synthase I (PtDSS1). Data
represent mean 6 SEM, *p,0.05 by t-test.
doi:10.1371/journal.pone.0017299.g007

Figure 8. High performance liquid chromatography (HPLC)
analysis of cholesterol and a-tocopherol in the anterior
cingulate cortex (ACC), amygdala (AMY) and visual cortex
(VC) of control (Con) and Parkinson’s disease (PD) tissues.
Cholesterol (A) and a-tocopherol (B) levels were analysed in the ACC,
AMY and VC of Con (white bars) and PD (black bars) tissues by reversed
phase HPLC. Data represent mean 6 SEM, *p,0.05 by t-test.
doi:10.1371/journal.pone.0017299.g008
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Figure 9. Simplified schematic diagram of cholesterol synthesis, cholesterol metabolites and selected relevant genes analysed in
this study. The lipids in the boxes with black borders were analysed in the present study. The broken lines indicated additional intermediates are
present in the pathway but they are not not shown in the scheme. The oxysterols that are followed by a dot ‘‘N’’ are formed by non-enzymatic
oxidative reactions. The symbol ‘‘(N)’’ indicates the oxysterol is formed via both enzymatic and non-enzymatic routes. 24-hydroxycholesterol (24-OH
Ch); 27-hydroxycholesterol (27-OH Ch); 7keto-cholesterol (7keto Ch); cholesterol-5a,6a-epoxide (5,6a-Epoxy Ch); cholesterol-5b,6b-epoxide (5,6b-
Epoxy Ch); 7a-hydroxycholesterol (7a-OH Ch); 7b-hydroxycholesterol (7b-OH Ch); 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR); cytochrome
P450, family 24, subfamily A, polypeptide 1 (CYP24); cytochrome P450, family 27, subfamily A, polypeptide 1 (CYP27).
doi:10.1371/journal.pone.0017299.g009

Lipid Changes in Parkinson’s Disease Visual Cortex

PLoS ONE | www.plosone.org 11 February 2011 | Volume 6 | Issue 2 | e17299



reasons. Firstly, the extensive neuronal loss and gliosis that occurs

in the SN in association with PD would obscure interpretation of

any changes in lipid metabolism that may be revealed by a

lipidomics analysis [3,7,64], and secondly, the loss of neuromela-

nin from the SN in PD will similarly confound the lipid analysis as

this pigment is enriched in lipids including cholesterol and, in

particular, dolichol [54].

The most important findings arising from our current work relate

to changes in lipid metabolism in the PD VC. It should be

emphasised that there are no substantive pathological changes

observed in this region of the brain in PD; although previous studies

have indicated changes in metabolic activity by PET and fMRI

techniques [20–23]. Our data indicate an activation of the

sphingolipid biosynthetic pathway in the PD VC that appears to be

regulated at the transcriptional level. Increases in specific ceramide

species and other sphingolipids may alter intracellular signalling and

contribute to neuronal dysfunction in PD [65]. Similarly, alterations

in DAG and glycerophospholipid metabolism may also modulate

neuronal function in the PD VC [66]. We speculate that such

significant changes in lipid metabolism might result in neuronal

dysfunction of the primary VC in PD and that these changes may

impact on visual perception and possibly contribute to VH.

Oxidative stress resulting in lipid peroxidation has been suggested

to cause neuronal death in the PD SN [67,68]. Cholesterol is highly

enriched in the brain and previous studies have shown that specific

oxysterols (e.g. 7b-OH-Ch and 24S-OH-Ch) may be neurotoxic at

reasonably high mM concentrations [69,70]. At sub-lethal concen-

trations, oxysterols including 27-OH-Ch and 24S-OH-Ch can also

regulate the transcription of a-syn and many other genes involved in

neuroinflammation and neurodegeneration via the liver-X-receptor

(LXR) pathway [62,63,71–73]. Very recently, oxysterol-mediated

LXR activation of human embryonic stem cells (hESC) has been

shown to increase neurogenesis and this led to the suggestion that

oxysterols may be used to improve hESC replacement strategies for

Figure 10. Gas chromatography mass spectrometry (GC/MS) analysis of cholesterol precursors in the anterior cingulate cortex
(ACC), amygdala (AMY) and visual cortex (VC) of control (Con) and Parkinson’s disease (PD) tissues. Control (n = 10) and PD (n = 10)
tissues were collected from the ACC (A), AMY (B) and VC (C). Lipids were extracted and cholesterol precursors analysed using GC/MS. The data
indicates the fold change in the levels of cholesterol precursors detected in the PD (black bars) samples relative to the Con (white bars) samples.
Absolute values for the cholesterol precursors in the different brain regions are provided as Table S8. Squalene (Squa); lanosterol (Lano), 14-dimethyl
lanosterol (14-DL), zymosterol (Zymo), desmosterol (Desmo), lathosterol (Latho), 7-dehyrocholesterol (7-DC). Data represent mean 6 SEM.
doi:10.1371/journal.pone.0017299.g010
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PD [74]. Therefore, although the formation of oxysterols could be

considered deleterious, it is possible that increases in certain

oxysterols we have observed in the VC may perform a function that

is protective in the PD context.

Another consideration is the source of oxysterol increase we have

detected in the PD VC. Our assumption is that the oxysterols are

mostly locally produced, and this would fit with the changes in

CYP24 expression that our data indicate are correlated with

increased 24S-OH-Ch; however, it is quite likely that the increase

in 27-OH-Ch we detected could also be due to plasma derived

oxysterol. Relevant to this point, recent studies have shown that 27-

OH-Ch levels are significantly elevated in PD plasma [75,76]. Similar

ideas have been put forward regarding the source of elevated 27-OH-

Ch levels in Alzheimer’s disease brain where, intriguingly, levels of

this oxysterol are also elevated in the occipital cortex [77,78].

Our current study has also revealed for the first time that there

is an up-regulation of antioxidant response genes in the PD VC.

Oxidative stress has been well established as a causative factor in

the pathways that result in neuron loss within the SN in PD [67];

however, due to the lack of pathology in the VC, the up-regulation

of genes such as SOD1, GPX1 and APOD that we detected was

rather unexpected. It is possible that hypoperfusion of the PD VC

that is associated with hypometabolism of glucose could result in

less efficient production of reducing equivalents through the Krebs

cycle and thereby place the origin of the oxidative stress response

at the level of metabolic changes in the mitochondria (of neurons

and/or astroglial cells) [79,80]. Interestingly, previous work has

shown that glial apoD and GPX1 levels are increased in the SN in

PD cases [61,81,82]. From these studies it was concluded that glia

may afford neuroprotection in the SN and it remains possible that

a similar process occurs in the VC in PD.

It is currently not known if the changes we have detected in lipid

homeostasis and oxidative stress in the VC are specific for PD. As

noted above, oxysterol metabolism is altered in the occipital cortex

Figure 11. Gas chromatography mass spectrometry (GC/MS) analysis of oxysterols in the anterior cingulate cortex (ACC), amygdala
(AMY) and visual cortex (VC) of control (Con) and Parkinson’s disease (PD) tissues. Control (n = 10) and PD (n = 10) tissues were collected
from the ACC (A), AMY (B) and VC (C). Lipids were extracted and oxysterols analysed using GC/MS. The data indicates the fold change in the levels of
oxysterols detected in the PD (black bars) samples relative to the Con (white bars) samples. 7a-hydroxycholesterol (7aOHC); 7b-hydroxycholesterol
(7bOHC); cholesterol-5a,6a-epoxide (5,6aEC); cholesterol-5b,6b-epoxide (5,6bEC); 7keto-cholesterol (7KC); 27-hydroxycholesterol (27OHC); 24-
hydroxycholesterol (24OHC). Data represent mean 6 SEM, *p,0.05, **p,0.001 by t-test.
doi:10.1371/journal.pone.0017299.g011
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in Alzheimer’s disease [77,78]. There is also evidence that brain

injury induced by trauma or stroke alters lipid peroxidation status

[83–85]. Furthermore, data from animal studies indicate that

bioactive oxysterols, such as 24S-OH-Ch, increase in response to

traumatic brain injury and this can modulate the transcription of

specific genes that regulate lipid homeostasis [86]. Interestingly, it

has been reported that visual hallucinations are present in ,30%

of Alzheimer’s disease patients [87]. Similarly, VH have been

reported in association with both stroke and traumatic brain injury

[88,89]. Based on the fact that alterations in cerebral lipid

homeostasis and oxidative stress status appear to coexist with VH

in other neurological conditions, we cannot exclude the possibility

that the changes in lipid homeostasis and oxidative stress we have

detected in the PD VC may be a generalised phenomenon that is

not specific to PD VH. Further studies that compare cerebral lipid

homeostasis in large cohorts of PD patients both with and without

VH would provide further evidence for a specific association.

In conclusion, our studies reveal significant alterations in the

sphingolipid and glycerophospholipid pathways in the primary VC

in idiopathic PD. We also show that cholesterol metabolism through

the oxysterol pathway is up-regulated in the PD VC. These changes

are associated with selective changes in the expression of genes

responsible for the control of lipid biosynthesis and with increased

expression of antioxidant genes. Although causation can not be

established from these studies, the data do suggest that normaliza-

tion of the dysregulated lipid metabolism/oxidative stress status in

the VC may represent a novel route for treatment of the VH that

are experienced by a majority of PD patients.

Figure 12. Quantitative real-time PCR analysis of selected sterol-related and oxidative stress-related genes in the anterior cingulate
cortex (ACC), amygdala (AMY) and visual cortex (VC) of control (Con) and Parkinson’s disease (PD) tissues. The expression of genes
involved in cholesterol metabolism and oxidative stress was assessed by qRT-PCR. Data for all genes are expressed relative to the control values (Con
= white bars, assigned a value of 1.0; PD = black bars). The data are presented separately for ACC (A), AMY (B) and VC (C). 3-hydroxy-3-methyl-
glutaryl-CoA reductase (HMG); cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24); cytochrome P450, family 27, subfamily A, polypeptide
1 (CYP27); superoxide dismutase 1 (SOD1); glutathione peroxidase 1 (GPX1); glutathione peroxidase 3 (GPX3); Apolipoprotein-D (APOD); a-synuclein
(SNCA). Data represent mean 6 SEM, *p,0.05 by t-test.
doi:10.1371/journal.pone.0017299.g012
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Supporting Information

Figure S1 Workflow of lipidomic screening strategy.
The strategy for human brain tissue sample collection, distribution

and analysis of the major lipid classes is illustrated.

(TIF)

Figure S2 Analysis of a-synuclein is SDS fraction
Parkinson’s disease amygdala. Tissues were homogenised

into three fractions that contained tris-buffered saline, TBS

containing Triton X100 or sodium dodecyl sulphate (SDS) and

a-synuclein (a-Syn) expression was analysed by Western blotting.

The detection of high molecular weight species of a-syn are

indicated, the arrow indicates a 31 kDa a-Syn band that is present

in some of the human brain SDS fractions. The data are derived

from Parkinson’s disease amygdala (PD AMY) samples.

(TIF)

Table S1 qRT-PCR primer details. Primers were designed

using Primer3 software (available at http://www.ncbi.nlm.nih.

gov/) and based on the National Center for Biotechnology

Information (NCBI) reference sequences. The specificity of the

primers was confirmed by demonstration of a single PCR product

of the correct size as judged by agarose gel electrophoresis.

(DOC)

Table S2 Changes in lipid levels associated with
Parkinson’s disease (PD) anterior cingulate cortex as
assessed using a lipidomics approach. Control (n = 10) and

PD Patient (n = 10) tissues were collected from the anterior

cingulate cortex (ACC). Lipids were extracted and analysed using

an LC/MS lipidomics approach. The data indicates mol% values

for all lipid species listed in the Table. The fold-change values in

the levels of sphingolipids, glycerophospholipids and neutral lipids

detected in the PD patient samples relative to the Con samples are

provided (‘‘Ratio’’) along with the t-test p-values. These data were

used to generate the heat map provided in Figure 3.

(XLS)

Table S3 Changes in lipid levels associated with
Parkinson’s disease (PD) amygdala as assessed using a
lipidomics approach. Control (n = 10) and PD Patient (n = 10)

tissues were collected from the amygdala (AMY). Lipids were

extracted and analysed using an LC/MS lipidomics approach.

The data indicates mol% values for all lipid species listed in the

Table. The fold-change values in the levels of sphingolipids,

glycerophospholipids and neutral lipids detected in the PD patient

samples relative to the Con samples are provided (‘‘Ratio’’) along

with the t-test p-values. These data were used to generate the heat

map provided in Figure 3.

(XLS)

Table S4 Changes in lipid levels associated with
Parkinson’s disease (PD) primary visual cortex as
assessed using a lipidomics approach. Control (n = 10)

and PD Patient (n = 10) tissues were collected from the primary

visual cortex (VC). Lipids were extracted and analysed using an

LC/MS lipidomics approach. The data indicates mol% values for

all lipid species listed in the Table. The fold-change values in the

levels of sphingolipids, glycerophospholipids and neutral lipids

detected in the PD patient samples relative to the Con samples are

provided (‘‘Ratio’’) along with the t-test p-values. These data were

used to generate the heat map provided in Figure 3.

(XLS)

Table S5 False discovery rate (FDR) analysis for the
lipidomics data sets. False discovery rate (FDR) q-values were

calculated from the t-test p-values for the lipidomics datasets

provided in Tables S2 to S4. Data are sorted based on p-value

ascending order. VC, visual cortex; AMY, amygdala; ACC,

anterior cingulate cortex.

(XLS)

Table S6 Comparison of electrospray ionisation mass
spectrometry and liquid chromatography mass spec-
trometry data. All values represent the fold-change in PD lipids

relative to the control cases. UOW ESI/MS, University of

Wollongong electrospray ionisation mass spectrometry; National

University of Singapore, liquid chromatography mass spectrom-

etry.

(DOC)

Table S7 Brain sphingolipid quantification by electro-
spray ionisation mass spectrometry. Semi-quantitative

analysis of the major sphingolipid species present in Control and

PD brain samples was assessed by ESI/MS. All values are nmol/g

tissue (wet weight). Note that changes in pulverized tissue sample

moisture content during storage of samples at 280uC may

influence the absolute quantities of lipids given in the Table.

(DOC)

Table S8 Cholesterol precursor quantification by gas
chromatography mass spectrometry. Semi-quantitative

analysis of the major cholesterol precursor species present in

brain samples was assessed by GC/MS. All values are ng/mg

tissue (wet weight). Note that changes in pulverized tissue sample

moisture content during storage of samples at 280uC may

influence the absolute quantities of lipids given in the Table.

(XLS)

Methods S1 Detailed methods.

(DOC)

Acknowledgments

We are very grateful to Dr Marijka Batterham, Director, Statistical

Consulting Service, University of Wollongong, for statistical advice and for

performing the FDR analysis. We acknowledge assistance from Mr Josh

Martin (Neuroscience Research Australia) in the preparation of the

lipidomics heat map. Brain tissue was received from the Sydney Brain

Bank (Project # PID0123) and the NSW Tissue Resource Centre.

Author Contributions

Conceived and designed the experiments: AMJ GS TWM GMH BG.

Performed the experiments: DC AMJ GS WFC JRN WSK. Analyzed the

data: DC AMJ GS WSK BG. Contributed reagents/materials/analysis

tools: TWM HMcC MRW GMH BG. Wrote the manuscript: DC AMJ

GS TWM GMH BG.

References

1. Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome.

Ann N Y Acad Sci 991: 1–14.

2. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, et al.

(2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16: 653–661.

Lipid Changes in Parkinson’s Disease Visual Cortex

PLoS ONE | www.plosone.org 15 February 2011 | Volume 6 | Issue 2 | e17299



3. Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, et al. (2009)

Neuropathological assessment of Parkinson’s disease: refining the diagnostic

criteria. Lancet Neurol 8: 1150–1157.

4. Gai WP, Yuan HX, Li XQ, Power JT, Blumbergs PC, et al. (2000) In situ and in

vitro study of colocalization and segregation of alpha-synuclein, ubiquitin, and

lipids in Lewy bodies. Exp Neurol 166: 324–333.

5. Halliday GM, Ophof A, Broe M, Jensen PH, Kettle E, et al. (2005) Alpha-

synuclein redistributes to neuromelanin lipid in the substantia nigra early in

Parkinson’s disease. Brain 128: 2654–2664.

6. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, et al. (2003)

Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol

Aging 24: 197–211.

7. Halliday GM, McCann H (2010) The progression of pathology in Parkinson’s

disease. Ann N Y Acad Sci 1184: 188–195.

8. Dickson DW, Fujishiro H, Orr C, DelleDonne A, Josephs KA, et al. (2009)

Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat

Disord 15 (Suppl 3): S1–5.

9. Burke RE, Dauer WT, Vonsattel JP (2008) A critical evaluation of the Braak

staging scheme for Parkinson’s disease. Ann Neurol 64: 485–491.

10. Jellinger KA (2008) A critical reappraisal of current staging of Lewy-related

pathology in human brain. Acta Neuropathol 116: 1–16.

11. Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG (2008) The Sydney

multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years.

Mov Disord 23: 837–844.

12. Barnes J, David AS (2001) Visual hallucinations in Parkinson’s disease: a review

and phenomenological survey. J Neurol Neurosurg Psychiatry 70: 727–733.

13. Williams DR, Lees AJ (2005) Visual hallucinations in the diagnosis of idiopathic

Parkinson’s disease: a retrospective autopsy study. Lancet Neurol 4: 605–610.

14. Williams DR, Warren JD, Lees AJ (2008) Using the presence of visual

hallucinations to differentiate Parkinson’s disease from atypical parkinsonism.

J Neurol Neurosurg Psychiatry 79: 652–655.

15. Forsaa EB, Larsen JP, Wentzel-Larsen T, Goetz CG, Stebbins GT, et al. (2010)

A 12-year population-based study of psychosis in Parkinson disease. Arch Neurol

67: 996–1001.

16. Diederich NJ, Fenelon G, Stebbins G, Goetz CG (2009) Hallucinations in

Parkinson disease. Nat Rev Neurol 5: 331–342.

17. Ibarretxe-Bilbao N, Tolosa E, Junque C, Marti MJ (2009) MRI and cognitive

impairment in Parkinson’s disease. Mov Disord 24 (Suppl 2): S748–753.

18. Sanchez-Castaneda C, Rene R, Ramirez-Ruiz B, Campdelacreu J, Gascon J,

et al. (2010) Frontal and associative visual areas related to visual hallucinations in
dementia with Lewy bodies and Parkinson’s disease with dementia. Mov Disord

25: 615–622.

19. Ramirez-Ruiz B, Marti MJ, Tolosa E, Gimenez M, Bargallo N, et al. (2007)

Cerebral atrophy in Parkinson’s disease patients with visual hallucinations.

Eur J Neurol 14: 750–756.

20. Meppelink AM, de Jong BM, Renken R, Leenders KL, Cornelissen FW, et al.

(2009) Impaired visual processing preceding image recognition in Parkinson’s

disease patients with visual hallucinations. Brain 132: 2980–2993.

21. Ramirez-Ruiz B, Marti MJ, Tolosa E, Falcon C, Bargallo N, et al. (2008) Brain

response to complex visual stimuli in Parkinson’s patients with hallucinations: a

functional magnetic resonance imaging study. Mov Disord 23: 2335–2343.

22. Holroyd S, Wooten GF (2006) Preliminary FMRI evidence of visual system

dysfunction in Parkinson’s disease patients with visual hallucinations.

J Neuropsychiatry Clin Neurosci 18: 402–404.

23. Eberling JL, Richardson BC, Reed BR, Wolfe N, Jagust WJ (1994) Cortical

glucose metabolism in Parkinson’s disease without dementia. Neurobiol Aging

15: 329–335.

24. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, et al. (1997)

Alpha-synuclein in Lewy bodies. Nature 388: 839–840.

25. Barcelo-Coblijn G, Golovko MY, Weinhofer I, Berger J, Murphy EJ (2007)

Brain neutral lipids mass is increased in alpha-synuclein gene-ablated mice.

J Neurochem 101: 132–141.

26. Rappley I, Myers DS, Milne SB, Ivanova PT, Lavoie MJ, et al. (2009) Lipidomic

profiling in mouse brain reveals differences between ages and genders, with

smaller changes associated with alpha-synuclein genotype. J Neurochem 111:

15–25.

27. Ruiperez V, Darios F, Davletov B (2010) Alpha-synuclein, lipids and Parkinson’s

disease. Prog Lipid Res.

28. Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, et al. (1994) Increased

levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC

and ESR study. Mov Disord 9: 92–97.

29. Bar-On P, Crews L, Koob AO, Mizuno H, Adame A, et al. (2008) Statins reduce

neuronal alpha-synuclein aggregation in in vitro models of Parkinson’s disease.

J Neurochem 105: 1656–1667.

30. Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, et al. (2006) Elevated

levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate

alpha-synuclein fibrilization. Nat Chem Biol 2: 249–253.

31. Lwin A, Orvisky E, Goker-Alpan O, LaMarca ME, Sidransky E (2004)

Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab

81: 70–73.

32. Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinen L, et al. (2009)

Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s

disease. Brain 132: 1783–1794.

33. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:
594–610.

34. Fasano C, Terce F, Niel JP, Nguyen TT, Hiol A, et al. (2007) Neuronal

conduction of excitation without action potentials based on ceramide

production. PLoS ONE 2: e612.

35. Sanchez-Mejia RO, Newman JW, Toh S, Yu GQ, Zhou Y, et al. (2008)

Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of

Alzheimer’s disease. Nat Neurosci 11: 1311–1318.

36. Schwab U, Seppanen-Laakso T, Yetukuri L, Agren J, Kolehmainen M, et al.
(2008) Triacylglycerol fatty acid composition in diet-induced weight loss in

subjects with abnormal glucose metabolism–the GENOBIN study. PLoS ONE
3: e2630.

37. Graessler J, Schwudke D, Schwarz PE, Herzog R, Shevchenko A, et al. (2009)

Top-down lipidomics reveals ether lipid deficiency in blood plasma of
hypertensive patients. PLoS ONE 4: e6261.

38. Guerrera IC, Astarita G, Jais JP, Sands D, Nowakowska A, et al. (2009) A novel

lipidomic strategy reveals plasma phospholipid signatures associated with
respiratory disease severity in cystic fibrosis patients. PLoS ONE 4: e7735.

39. Caesar R, Manieri M, Kelder T, Boekschoten M, Evelo C, et al. (2010) A

combined transcriptomics and lipidomics analysis of subcutaneous, epididymal
and mesenteric adipose tissue reveals marked functional differences. PLoS ONE

5: e11525.

40. Han X (2010) Multi-dimensional mass spectrometry-based shotgun lipidomics

and the altered lipids at the mild cognitive impairment stage of Alzheimer’s
disease. Biochim Biophys Acta 1801: 774–783.

41. Hu C, Hoene M, Zhao X, Haring HU, Schleicher E, et al. (2010) Lipidomics

analysis reveals efficient storage of hepatic triacylglycerides enriched in
unsaturated Fatty acids after one bout of exercise in mice. PLoS ONE 5.

42. Shui G, Guan XL, Gopalakrishnan P, Xue Y, Goh JS, et al. (2010)

Characterization of substrate preference for Slc1p and Cst26p in Saccharomyces
cerevisiae using lipidomic approaches and an LPAAT activity assay. PLoS ONE

5: e11956.

43. Halliday G, Ng T, Rodriguez M, Harding A, Blumbergs P, et al. (2002)
Consensus neuropathological diagnosis of common dementia syndromes: testing

and standardising the use of multiple diagnostic criteria. Acta Neuropathol 104:
72–78.

44. Elliott DA, Tsoi K, Holinkova S, Chan SL, Kim WS, et al. (2011) Isoform-

specific proteolysis of apolipoprotein-E in the brain. Neurobiol Aging 32:

257–271.

45. Tong J, Wong H, Guttman M, Ang LC, Forno LS, et al. (2010) Brain alpha-

synuclein accumulation in multiple system atrophy, Parkinson’s disease and

progressive supranuclear palsy: a comparative investigation. Brain 133:
172–188.

46. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and

purification. Can J Biochem Physiol 37: 911–917.

47. Chan R, Uchil PD, Jin J, Shui G, Ott DE, et al. (2008) Retroviruses human
immunodeficiency virus and murine leukemia virus are enriched in phospho-

inositides. J Virol 82: 11228–11238.

48. Shui G, Guan XL, Low CP, Chua GH, Goh JS, et al. (2010) Toward one step
analysis of cellular lipidomes using liquid chromatography coupled with mass

spectrometry: application to Saccharomyces cerevisiae and Schizosaccharo-
myces pombe lipidomics. Mol Biosyst 6: 1008–1017.

49. Huang Q, Shen HM, Shui G, Wenk MR, Ong CN (2006) Emodin inhibits

tumor cell adhesion through disruption of the membrane lipid Raft-associated
integrin signaling pathway. Cancer Res 66: 5807–5815.

50. Deeley JM, Mitchell TW, Wei X, Korth J, Nealon JR, et al. (2008) Human lens

lipids differ markedly from those of commonly used experimental animals.

Biochim Biophys Acta 1781: 288–298.

51. Le Lay S, Li Q, Proschogo N, Rodriguez M, Gunaratnam K, et al. (2009)

Caveolin-1-dependent and -independent membrane domains. J Lipid Res 50:

1609–1620.

52. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997)

Quantitative analysis of biological membrane lipids at the low picomole level

by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad
Sci U S A 94: 2339–2344.

53. Han X (2002) Characterization and direct quantitation of ceramide molecular

species from lipid extracts of biological samples by electrospray ionization
tandem mass spectrometry. Anal Biochem 302: 199–212.

54. Fedorow H, Pickford R, Hook JM, Double KL, Halliday GM, et al. (2005)

Dolichol is the major lipid component of human substantia nigra neuromelanin.
J Neurochem 92: 990–995.

55. Kim WS, Wong J, Weickert CS, Webster MJ, Bahn S, et al. (2009)

Apolipoprotein-D expression is increased during development and maturation
of the human prefrontal cortex. J Neurochem 109: 1053–1066.

56. Storey J (2002) A direct approach to false discovery rates. J R Stat Soc B 64:

479–498.

57. Staellberg-Stenhagen S, Svennerholm L (1965) Fatty Acid Composition of
Human Brain Sphingomyelins: Normal Variation with Age and Changes during

Myelin Disorders. J Lipid Res 6: 146–155.

58. Stommel A, Berlet HH, Debuch H (1989) Buoyant density and lipid composition
of purified myelin of aging human brain. Mech Ageing Dev 48: 1–14.

59. Svennerholm L, Bostrom K, Jungbjer B, Olsson L (1994) Membrane lipids of

adult human brain: lipid composition of frontal and temporal lobe in subjects of

age 20 to 100 years. J Neurochem 63: 1802–1811.

Lipid Changes in Parkinson’s Disease Visual Cortex

PLoS ONE | www.plosone.org 16 February 2011 | Volume 6 | Issue 2 | e17299



60. Brown AJ, Jessup W (2009) Oxysterols: Sources, cellular storage and

metabolism, and new insights into their roles in cholesterol homeostasis. Mol
Aspects Med 30: 111–122.

61. Ordonez C, Navarro A, Perez C, Astudillo A, Martinez E, et al. (2006)

Apolipoprotein D expression in substantia nigra of Parkinson disease. Histol
Histopathol 21: 361–366.

62. Cheng D, Kim WS, Garner B (2008) Regulation of alpha-synuclein expression
by liver X receptor ligands in vitro. Neuroreport 19: 1685–1689.

63. Rantham Prabhakara JP, Feist G, Thomasson S, Thompson A, Schommer E,

et al. (2008) Differential effects of 24-hydroxycholesterol and 27-hydroxycho-
lesterol on tyrosine hydroxylase and alpha-synuclein in human neuroblastoma

SH-SY5Y cells. J Neurochem 107: 1722–1729.
64. Harding AJ, Stimson E, Henderson JM, Halliday GM (2002) Clinical correlates

of selective pathology in the amygdala of patients with Parkinson’s disease. Brain
125: 2431–2445.

65. Bras J, Singleton A, Cookson MR, Hardy J (2008) Emerging pathways in genetic

Parkinson’s disease: Potential role of ceramide metabolism in Lewy body disease.
FEBS J 275: 5767–5773.

66. Farooqui AA, Horrocks LA, Farooqui T (2007) Interactions between neural
membrane glycerophospholipid and sphingolipid mediators: a recipe for neural

cell survival or suicide. J Neurosci Res 85: 1834–1850.

67. Jenner P, Dexter DT, Sian J, Schapira AH, Marsden CD (1992) Oxidative stress
as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body

disease. The Royal Kings and Queens Parkinson’s Disease Research Group.
Ann Neurol 32 (Suppl): S82–87.

68. Owen AD, Schapira AH, Jenner P, Marsden CD (1996) Oxidative stress and
Parkinson’s disease. Ann N Y Acad Sci 786: 217–223.

69. Kolsch H, Ludwig M, Lutjohann D, Prange W, Rao ML (2000) 7alpha-

Hydroperoxycholesterol causes CNS neuronal cell death. Neurochem Int 36:
507–512.

70. Kolsch H, Lutjohann D, Tulke A, Bjorkhem I, Rao ML (1999) The neurotoxic
effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain

Res 818: 171–175.

71. Kim HJ, Fan X, Gabbi C, Yakimchuk K, Parini P, et al. (2008) Liver X receptor
beta (LXRbeta): a link between beta-sitosterol and amyotrophic lateral sclerosis-

Parkinson’s dementia. Proc Natl Acad Sci U S A 105: 2094–2099.
72. Repa JJ, Li H, Frank-Cannon TC, Valasek MA, Turley SD, et al. (2007) Liver X

receptor activation enhances cholesterol loss from the brain, decreases
neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci 27:

14470–14480.

73. Wang L, Schuster GU, Hultenby K, Zhang Q, Andersson S, et al. (2002) Liver
X receptors in the central nervous system: from lipid homeostasis to neuronal

degeneration. Proc Natl Acad Sci U S A 99: 13878–13883.
74. Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, et al. (2009) Liver X

receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in

human embryonic stem cells. Cell Stem Cell 5: 409–419.

75. Seet RC, Lee CY, Lim EC, Tan JJ, Quek AM, et al. (2010) Oxidative damage in

Parkinson disease: Measurement using accurate biomarkers. Free Radic Biol

Med 48: 560–566.

76. Lee CY, Seet RC, Huang SH, Long LH, Halliwell B (2009) Different patterns of

oxidized lipid products in plasma and urine of dengue fever, stroke, and

Parkinson’s disease patients: cautions in the use of biomarkers of oxidative stress.

Antioxid Redox Signal 11: 407–420.

77. Heverin M, Meaney S, Lutjohann D, Diczfalusy U, Wahren J, et al. (2005)

Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain.

J Lipid Res 46: 1047–1052.

78. Heverin M, Bogdanovic N, Lutjohann D, Bayer T, Pikuleva I, et al. (2004)

Changes in the levels of cerebral and extracerebral sterols in the brain of patients

with Alzheimer’s disease. J Lipid Res 45: 186–193.

79. Mosconi L, Pupi A, De Leon MJ (2008) Brain glucose hypometabolism and

oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci 1147:

180–195.

80. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in

Parkinson disease pathogenesis. Nat Clin Pract Neurol 4: 600–609.

81. Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione

peroxidase, glial cells and Parkinson’s disease. Neuroscience 52: 1–6.

82. Power JH, Blumbergs PC (2009) Cellular glutathione peroxidase in human

brain: cellular distribution, and its potential role in the degradation of Lewy

bodies in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol

117: 63–73.

83. Hall ED, Braughler JM (1989) Central nervous system trauma and stroke. II.

Physiological and pharmacological evidence for involvement of oxygen radicals

and lipid peroxidation. Free Radic Biol Med 6: 303–313.

84. Scholpp J, Schubert JK, Miekisch W, Noeldge-Schomburg GF (2004) Lipid

peroxidation early after brain injury. J Neurotrauma 21: 667–677.

85. Sparvero LJ, Amoscato AA, Kochanek PM, Pitt BR, Kagan VE, et al. (2010)

Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in

traumatic brain injury. J Neurochem 115: 1322–1336.

86. Cartagena CM, Burns MP, Rebeck GW (2010) 24S-hydroxycholesterol effects

on lipid metabolism genes are modeled in traumatic brain injury. Brain Res

1319: 1–12.

87. Wilson RS, Gilley DW, Bennett DA, Beckett LA, Evans DA (2000)

Hallucinations, delusions, and cognitive decline in Alzheimer’s disease.

J Neurol Neurosurg Psychiatry 69: 172–177.

88. De Haan EH, Nys GM, van Zandvoort MJ, Ramsey NF (2007) The

physiological basis of visual hallucinations after damage to the primary visual

cortex. Neuroreport 18: 1177–1180.

89. Zhang Q, Sachdev PS (2003) Psychotic disorder and traumatic brain injury.

Curr Psychiatry Rep 5: 197–201.

Lipid Changes in Parkinson’s Disease Visual Cortex

PLoS ONE | www.plosone.org 17 February 2011 | Volume 6 | Issue 2 | e17299


