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Lipid Quality in Infant Nutrition: Current Knowledge and

Future Opportunities

�Bernadette Delplanque, yRobert Gibson, zBerthold Koletzko,
§Alexandre Lapillonne, and jjBirgitta Strandvik

ABSTRACT

Dietary lipids are key for infants to not only meet their high energy needs but

also fulfill numerous metabolic and physiological functions critical to their

growth, development, and health. The lipid composition of breast milk

varies during lactation and according to the mother’s diet, whereas the lipid

composition of infant formulae varies according to the blend of different fat

sources. This report compares the compositions of lipids in breast milk and

infant formulae, and highlights the roles of dietary lipids in term and preterm

infants and their potential biological and health effects. The major differ-

ences between breast milk and formulae lie in a variety of saturated fatty

acids (such as palmitic acid, including its structural position) and unsaturated

fatty acids (including arachidonic acid and docosahexaenoic acid), choles-

terol, and complex lipids. The functional outcomes of these differences

during infancy and for later child and adult life are still largely unknown, and

some of them are discussed, but there is consensus that opportunities exist

for improvements in the qualitative lipid supply to infants through the

mother’s diet or infant formulae. Furthermore, research is required in several

areas, including the needs of term and preterm infants for long-chain

polyunsaturated fatty acids, the sites of action and clinical effects of lipid

mediators on immunity and inflammation, the role of lipids on metabolic,

neurological, and immunological outcomes, and the mechanisms by which

lipids act on short- and long-term health.

Key Words: breast milk, cholesterol, complex lipids, fatty acids, infant

formulae

(JPGN 2015;61: 8–17)

What Is Known

� Lipids are the dominant provider of energy during
the early months of life.

� The quality of lipids supplied to infants is of utmost
importance for growth, development, and future
health.

What Is New

� The lipid composition of breast milk is partly affected
by the mother’s diet.

� The major differences between breast milk and
formulae and within formulae concern saturated fats,
polyunsaturated fats, cholesterol, and complex lipids.

� The quality of the lipid supply to infants should be
improved by translating the results of current and
future research into mothers’ diets and into the
design of optimized fat blends in formulae.

B reast-feeding is regarded as the best choice for feeding infants
(1). The composition of human milk and the physiology of

lactationmay provide some guidance for feeding infants who receive
breast milk substitutes, although similarity of an infant feeding
product to humanmilk in terms of composition alone is not sufficient
to support suitability and safety (2). Fats contribute themajor portion
(45%–55%) of the energy contained in human milk, with a total fat
intake of approximately 5.5 kg in a fully breast-fed infant during the
first 6 months of life (3). Humanmilk contains a wide variety of lipid
components, some of them being indispensable nutrients, for
example, the polyunsaturated fatty acids (PUFAs) and long-chain
PUFAs (LC-PUFA) of the n-6 and n-3 series, and the lipid-soluble
vitamins. Although their precise functionalities are not yet fully
understood, the various lipids provided by human milk are known
to modulate gastrointestinal function, lipoprotein metabolism, mem-
brane composition and function, and signaling pathways, thereby
markedly affecting infant growth, development, and health (4).

The objectives of this publication are to review the lipid
composition of breast milk and of some currently available infant
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formulae, to highlight the potential functional relevance of differ-
ences between breast milk and infant formulae, based on the role of
dietary lipids, and the biological and health consequences these
differences may have in infancy and in the long term. In addition,
new research routes and opportunities for future optimization of
lipid supply to infants are identified.

LIPID COMPOSITION OF BREAST MILK AND
INFANT FORMULAE

The lipids in human milk and infant formulae are chiefly (in
most cases >95%) in the form of triglycerides, that is, 3 fatty acids
esterified to a glycerol backbone. Triglycerides are the main form of
lipid in commonly occurring oils and fats. Human milk also
contains a small proportion of (lyso)phospholipids in which 1 or
2 fatty acids are attached to a glycerol backbone with the third
carbon of glycerol linked to a phosphate group and a polar head
group such as choline or ethanolamine present.

In human milk, lipid content is far more variable than the
other macronutrients. Lipid averages 3.5 to 4.5/100 g in mature milk
but changes with the length of time the mother has been breast-
feeding, during the course of a day, and increases during an
individual feed (5). Mammary alveolar cells produce milk fat
globules (Fig. 1), containing a core predominantly consisting of
triglycerides (comprising 98%–99% of milk lipids) and small
amounts of monoglycerides, diglycerides, and nonesterified fatty
acids, surrounded by a milk fat membrane with different phospho-
lipids, esterified cholesterol, glycosylated polypeptides, filaments,
mucin, lactadherin, and other components (6,7) (Fig. 1 and Table 1).
The specific structure of the milk fat globule, and especially the type
of polar lipids at the droplet interface, could influence digestion of
lipids (reviewed in (6)).

The fat in most infant formulae used today is based on a
mixture of vegetable oils and hence has a much less complex
composition than human milk fat. Formulae containing dairy fats
were widely used in the first part of the 20th century and are still
used in some parts of the world, but their use has diminished. Other
sources of lipid used in infant formulae include single cell oils,
fractionated lipids and various polar lipids, repeat esterified struc-
tured lipids, egg phospholipids, and fish oils. In infant formulae
based on vegetable fat, the fat globule is usually smaller than in
breast milk, and the phospholipids are provided by emulsifying
lecithin, with a wide range of phospholipid species included
(usually phosphatidylcholine or inositol). When dairy fats are
included as ingredients in formulae, phospholipid content is usually
higher, with a wide range of molecular species from different

phospholipid classes. Human milk contains 90 to 150 mg/L cho-
lesterol (8), in contrast to no appreciable cholesterol content in
vegetable oil–based infant formulae and to approximately 40mg/L
in dairy fat–based infant formulae.

The properties of milk triglycerides depend on their fatty acid
composition. Mature human milk typically contains approximately
34% to 47% saturated fatty acids, mainly palmitic acid
(17%–25%), approximately 31% to 43% monounsaturated fatty
acids, approximately 12% to 26% n-6 PUFA, and approximately
0.8% to 3.6% n-3 PUFA (Fig. 2 and supplementary digital content
1, http://links.lww.com/MPG/A473, and supplementary digital con-
tent 2, http://links.lww.com/MPG/A474). In infant formulae, the
fatty acid composition varies according to the lipid sources used,
whose compositions are described in supplementary digital content
3 (http://links.lww.com/MPG/A475). Some lipid sources have
specific features. For example, palm oil has a high palmitic acid
content, with no short- or medium-chain fatty acids, whereas these
fatty acids are present in high proportions in coconut oil. Use of
different lipid sources therefore translates into differences in con-
tents and proportions of short- and medium-chain fatty acids
(Fig. 2A), and in lauric acid (Fig. 2B), myristic acid (Fig. 2C),
palmitic acid (Fig. 2D), and oleic acid (Fig. 2E) (see http://

links.lww.com/MPG/A474 for numerical values). Most preterm
and some term infant formulae contain medium-chain triglycerides
derived from coconut oil.
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FIGURE 1. Structure of a milk fat globule. Adapted from (5).

TABLE 1. Lipid classes in mature breast milk

Content in breast milk

Total lipids,

% (5)

Mean

(minimum–maximum),

mg/100g (6)

Triacylglycerols 98.1–98.8

Diacylglycerols 0.01–0.7

Monoacylglycerols Traces

Nonesterified fatty acids 0.08–0.4

Phospholipids 0.26–0.8 23.8 (10.4–38.4)

Phosphatidylinositol 1.1 (0.9–2.3)

Phosphatidylserine 1.4 (1–1.9)

Phosphatidylethanolamine 6.8 (1.98–11.8)

Phosphatidylcholine 6.0 (1.98–9.6)

Sphingomyelin 8.5 (2.7–14.6)

Cholesterol 0.25–0.34
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The triglyceride structure (ie, the position of the fatty
acids on the glycerol molecule) is also of importance because it
has been shown that long-chain saturated fatty acids in the
center (sn-2) position are more efficiently digested and absorbed
(9). Human milk and bovine milk are rich in the saturated fatty
acid palmitic acid (C16:0, approximately 25% of fatty acids), of
which approximately 70% of molecules in human milk and 45%
in bovine milk, but <20% in most plant oils are esterified in the
sn-2 position of triglycerides (10). In infant formulae, this
translates into a lower proportion of palmitic acid in the sn-2
position in formulae containing only vegetable oils compared with
formulae containing milk fat or b-palmitate (a structured trigly-
ceride with palmitic acid esterified preferentially in the sn-2
position) (11).

The fatty acid composition of human milk lipids is markedly
modified by maternal dietary habits. For example, the proportions
of the essential PUFA linoleic acid (LA) and a-linolenic acid
(ALA) in breast milk depend on the mother’s diet and thus vary
widely (10%–24% of fatty acids and 0.6%–1.9% of fatty acids,
respectively; http://links.lww.com/MPG/A474). The increase in
maternal intake of LA in the last 60 years is reflected in a significant
increase in the LA content of breast milk in the United States. The

level of ALA has remained fairly stable during this same period,
resulting in a marked increase in the LA:ALA ratio from approxi-
mately 6%–8% before 1970 to approximately 14%–16% since
1980 (Fig. 3) (12).

Maternal dietary intake of marine foods (13) is extremely
variable and explains the wide range of docosahexaenoic acid
(DHA) in breast milk (http://links.lww.com/MPG/A473). Human
milk in many Western countries has an arachidonic acid (ARA) to
DHA ratio of approximately 2:1, which has been mimicked in some
infant formulae. Many Asian and Scandinavian breast milk
samples, however, have much lower ARA to DHA ratios because
of a higher consumption of DHA-rich fish. A minimal part of the
LC-PUFA in breast milk derives from endogenous synthesis, which
is generally low in humans and particularly low in people who carry
less common variants of the genes for the fatty acid desaturating
enzymes, FADS1 and FADS2. Maternal fatty acid desaturase
(FADS) gene polymorphisms have a significant effect on ARA
contents in breast milk but not on DHA, both in early lactation and
at 6 months after delivery (14). Human and animal milks always
provide preformed ARA; the ARA content in human milk is stable
(near 0.5% of fatty acids) around the world despite marked vari-
ations in dietary intakes and lifestyles (15). It can fluctuate slightly
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FIGURE 2. Ranges (minimum–maximum) of short- andmedium-chain fatty acids (C4:0-C10:0, A), lauric (C12:0, B), myristic (C14:0, C), palmitic

(C16:0, D), oleic (C18:1n-9) acid contents, expressed in percentage of total fatty acids in breast milk and infant formulae according to the fat

sources used (see http://links.lww.com/MPG/A474 for numerical values; breast milk data sources are detailed in http://links.lww.com/MPG/A473;

infant formulae data come from unpublished analyses performed in a certified laboratory). FA¼ fatty acid; TFA¼ total fatty acid.
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around this value according to maternal intake (16), but ARA is
mostly derived from preexisting maternal stores (17).

During the course of the first year of lactation, the content of
both LA (200mg/dL) and ALA (20mg/dL) in humanmilk increases
by 8% to 38%, whereas the LC-PUFA ARA (15–16 mg/dL) and
DHA (7–8 mg/dL) decrease by 32% to 52% (18). PUFA compo-
sition of human milk also varies by length of gestation. Preterm
milk may contain slightly higher proportions of DHA and of
medium- and intermediate-chain length fatty acids than term milk
(19). Human milk also contains bile salt–stimulated lipase (BSSL),
which increases bioavailability of human milk fat by improving
lipolysis. When donor human milk is pasteurized to suppress viral
and bacterial activities, this heat treatment inactivates BSSL and
changes the structure of the milk fat globule (19).

In accordance with existing regulations, all infant formulae
contain LA and ALA but in variable amounts, depending on the
blend of fats (http://links.lww.com/MPG/A474), which translates
into an LA:ALA ratio that can vary from approximately 5 to 12.
Some, but not all, formulae contain appreciable amounts of added
LC-PUFA, typically from single cell oils, or marine or egg lipids
(http://links.lww.com/MPG/A474).

Although we have focused on the most abundant lipids in
milk and ignored the numerous quantitatively minor lipid com-
ponents, this short overview illustrates the complexity of the lipid
composition and identifies some quantitative differences between
breast milk and infant formulae, which may or may not be of
importance for childhood health and development.

ROLE OF LIPIDS IN INFANCY AND POTENTIAL
RELEVANCE OF DIFFERENCES IN LIPIDS
BETWEEN BREAST MILK AND INFANT

FORMULAE
Lipids are the dominant provider of energy, contributing

90% of the energy retained by infants during the first 6 months.
Lipids are also an efficient source of energy deposition: the energy
cost to synthesize and store fat from glucose is 25%, whereas it is
only 1% to 4% when lipid is the substrate (20).

Breast-fed infants appear to have a higher fat mass at 3 and
6 months than formulae-fed infants, whereas they tend to have less
body fat at later ages (21). Many studies and meta-analyses found
breast-feeding associated with a slightly lower risk of obesity or
overweight in later life (22,23). It is unclear whether and to which

extent the lipid component in infant feeding, however, contributes
to these protective effects of breast-feeding (24).

Saturated Fats

Saturated fatty acids not only provide energy but also have
structural and metabolic functions. Saturated fatty acids can also be
synthesized in humans from nonfat sources or by b-oxidation from
unsaturated fatty acids (25).

Saturated fatty acids range in size from 6 to 24 carbons, but
the most common in infant diets have 12, 14, 16, and 18 carbon
chain lengths (Fig. 2 and http://links.lww.com/MPG/A474).Medium-
chain–length fatty acids (C8–C10) can be absorbed to a large degree
directly into the hepatic portal vein and transported to the liver, where
they can be oxidized for energy (26). Medium-chain fatty acids have
the potential to limit the oxidation of PUFA and LC-PUFA and to
enhance the conversion of PUFA to LC-PUFA (27,28). In preterm
infants, because of possible intestinal immaturity, facilitation of fat
absorption through the inclusion of medium-chain fatty acids in the
diet may be useful, but there is no demonstrated benefit for energy
balance or growth (19,29). Adding dietary medium-chain triglycer-
ides, however, has been shown tobe beneficial in childrenwith severe
fat malabsorption such as intestinal failure because of short bowel
syndrome or severe cholestatic liver disease (30).

Most of the saturated 16-carbon fatty acid palmitic acid in
breast milk is located in the central position (sn-2 position) of the
triglyceride molecule. In palm oil–based formulae, palmitic acid is
mainly located at the sn-1 or sn-3 position, impairing absorption of
calcium and fat and resulting in insoluble calcium soaps, which
negatively influence early bone accretion (31,32). When the sn-2
position of palmitate is duplicated in infant formula by adding
repeat esterified b-palmitate, stool consistency and the absorption
of palmitic acid and calcium become similar to those seen in breast-
fed infants (33). One follow-up study, however, suggested that
possible effects on bone do not persist at age 10 years: bone
measurements did not differ between children who had been fed
a formula with 12% or 50% of the palmitate in the sn-2 position, but
the sample size was small and feeding duration was only 12 weeks
after birth (34).

Some other features of saturated fatty acids might have
physiological or nutritional relevance, such as the presence of
palmitic acid in pulmonary surfactant (35). When studied in vitro
or in animals, individual saturated fatty acids often exhibit specific
properties, such as bactericidal effects for capric acid (36), immu-
nomodulation for arachidic and behenic acids (37), and protein
acylation for myristic or palmitic acids (38). These properties may
deserve further exploration in humans and infants.

As illustrated in Fig. 2 and in supplementary digital content
(http://links.lww.com/MPG/A474), infant formulae without palm oil
or alternative source of palmitic acid have palmitate levels as low as
8% of the total fatty acids, versus 17% to 25% in breast milk,
whereas lauric acid (C12:0) amounts to 12% versus 2% to 7% in
breast milk. In formulae with dairy fat, palmitate levels reach 16%
to 20%. The physiological and health consequences of these
considerable composition changes are not known but would require
investigations as palm oil–free formulae are becoming increasingly
popular.

Monounsaturated Fatty Acids

Monounsaturated fats are the second most common fatty
acids in breast milk and infant formulae. The dominant monoun-
saturated fatty acids are oleic acid (C18:1n-9) and palmitoleic acid
(C16:1n-7). In spite of this abundance, their potential functionalities
have not been explored in infants and are of unknown nutritional
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relevance. In essential fatty acid deficiency, oleic acid is converted
into Mead acid (C20:3n-9), and an inverse relation of ARA and
oleic acid has been observed in a human study (39). In rats, the
provision of Mead acid reduced leukotriene B4 formation in
leukocytes (40). The potential impact of monounsaturated fatty
acid supply on the immune system and other functional outcomes in
infants remain to be explored.

Although found only at extremely low levels in breast milk
and in infant formulae (http://links.lww.com/MPG/A474), in the
body the 24-carbon nervonic acid (C24:1n-9) is important for
myelination and may play a role in brain growth and development;
indeed, nervonic acid is the major extremely long chain fatty acid in
sphingomyelin, with a dramatic accretion around the time of
delivery (41). It has been observed that nervonic acid is 7-fold
higher in breast milk of mothers of premature infants than in mature
milk of mothers of term infants (42). Nervonic acid, however, may
also be endogenously synthesized in newborns, and the relevance of
the dietary supply remains speculative.

Polyunsaturated Fatty Acids

LA and ALA
Both LA and ALA are essential fatty acids, and they can

influence metabolic processes, such as lowering plasma cholesterol.
The relative provision of LA and ALA is of importance for the
endogenous synthesis of the respective LC-PUFA because these 2
precursor fatty acids compete for desaturases and elongases in the

PUFA conversion pathway (Fig. 4) (43). Breast milk contents in
LA and ALA vary depending on the maternal intakes of these
essential fatty acids and cannot be used as a basis for supply
recommendations. Current guidelines for the levels of LA and
ALA in infant formulae aim at avoidance of an extremely high
LA:ALA ratio, which may reduce ALA conversion to n-3
LC-PUFA (44). The estimated LA requirement of infants to
prevent deficiency is approximately 1% energy and that for
ALA is approximately 0.5% energy. Considering a certain
margin of safety, the amounts of LA and ALA mandated by the
European Food Safety Agency (EFSA) for infant formulae are,
respectively, 4.5% and 0.5% of energy content, with upper gui-
dance levels set at respectively 10.8% and 0.9% of energy (45).
Extremely high levels of LA in formulae may have untoward
effects as some of their oxygenated metabolites have proinflam-
matory functions (46,47). High neonatal LA has been associated
with impaired development up to 18months in preterm infants (48)
and with impaired neurodevelopment up to 2 to 3 years of age in
term infants (49).

Endogenous Synthesis of LC-PUFA

The question whether it is the total amount of the essential
fatty acids or the ratio between LA and ALA that is most important
is controversial. Some authors found that, in adults, the absolute
amounts of ALA and LA in the diet, but not their ratio, determine
ALA conversion (50). Others reported increased eicosapentaenoic

18:2 n-6
(LA)

∆6-desaturase

∆6-desaturase

β-oxidation Peroxisome

∆5-desaturase

Elongase 5

Elongase 2

Elongase 2 and 5

18:3 n-6
(GLA)

20:3 n-6
(DGLA)

20:4 n-6
(ARA)

22:4 n-6
(AdA)

24:4 n-6
(n-6 TTA)

18:3 n-3
(ALA)

18:4 n-3
(SA)

20:4 n-3
(n-3 ETA)

20:5 n-3
(EPA)

22:5 n-3
(n-3 DPA)

24:5 n-3
(n-3 TPA)

24:5 n-6
(n-6 TPA)

22:5 n-6
(n-6 DPA)

24:6 n-3
(n-3 THA)

22:6 n-3
(DHA)

FIGURE 4. Biochemical pathways leading from the LA and ALA to LC-PUFAs. AdA¼ adrenic acid; ALA¼a-linolenic acid; ARA¼ arachidonic acid;

(D)GLA¼ (di-homo) g-linolenic acid; DHA¼docosahexaenoic acid; DPA¼docosapentaenoic acid; EPA¼ eicosapentaenoic acid;

ETA¼ eicosatetraenoic acid; LA¼ linoleic acid; LC-PUFA¼ long-chain polyunsaturated fatty acid; SA¼ stearidonic acid; TFA¼ total fatty acid;

THA¼ tetrahexaenoic acid; TPA¼ tetraeicosapentaenoic acid; TTA¼ tetracosatetraenoic acid.
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acid (EPA) concentration when LA was decreased relatively to
ALA (51).

The LA-ALA contents and ratios in breast milk and different
formulae vary (http://links.lww.com/MPG/A474), which may influ-
ence an infant’s conversion of ALA and LA to their respective
LC-PUFAs. In term infants, an infant formula with a 5:1 ratio of
LA to ALA induced higher DHA concentrations in plasma and
erythrocyte phospholipids than a 10:1 formula with the same LA
content (16% of total fatty acids) (52). This study supports the
concept that the relative intakes of LA and ALA may affect n-3
LC-PUFA synthesis and tissue levels in infants. The effects and
safety of formulae with low LA:ALA ratios, however, may need
further evaluation because infants fed from birth with a formula
with a 4.8 LA:ALA ratio had a lower body weight at 4 months (but
not at 6 months), compared with formulae with higher ratios
resulting from lower ALA concentrations (43).

In young rats, a dairy/vegetable fat blend diet providing 1.5%
and 14% of total fatty acids as ALA and LA, respectively, induced
higher plasma, erythrocyte, and brain DHA levels than a pure veg-
etable fat blend diet with extremely similar ALA and LA contents
(1.5% and 16% of total fatty acids) (53,54). In a small trial in term
infants, a formula containing evaporated bovine milk providing
reduced intakes of LA and ALA (2.3% and 0.8% of total fatty acids,
respectively) led to higher DHA levels than vegetable oil–based
formulaeproviding30%oftotal fattyacidsasLAand5%asALA(55).

In formula-fed preterm infants, DHA synthesis was 6 times
lower at 7 months of age than at 1 month, whereas ARA synthesis
decreased by half (56); estimates of the mean endogenous synthesis
rate suggest that endogenous synthesis of LC-PUFAs in preterm
infants is insufficient to meet their requirements defined by the
normal fetal accretion rate (19,29).

Role of DHA

The nervous system is especially rich in DHA. DHA accumu-
lation in nervous tissues starts in utero and proceeds at high rates
during the first 2 postnatal years, when the growth and differentiation
of the central nervous system are most rapid. Breast milk–derived
DHA is readily incorporated into infant brains: breast-fed infants
have a greater proportion of DHA in their erythrocytes and brain
cortex relative to those fed formula. During infancy, cortex DHA
increases in breast-fed but not formula-fed infants (57).

Many studies have compared the supplementation of
formulae with DHA with feeding human breast milk, which is
relatively rich in LC-PUFA. In term infants, the addition of DHA to
infant formula has not been consistently shown to have benefits in
visual, neural, or growth outcomes (58). The strongest evidence for
the role of DHA on development comes from the studies performed
in preterm infants. DHA supplementation has consistently demon-
strated better visual development of preterm infants compared with
nonsupplemented formulae and appears related to improvements in
more global measures of development, without any adverse effects
(19,26). Following clinical interventions with DHA doses similar to
human milk lipid contents (0.3% of total fatty acids), more studies
have demonstrated that DHA doses of approximately 1% of total
fatty acids were related to further improvements in neurodevelop-
ment at 18 months in girls (not boys) born preterm (59). These DHA
doses in breast milk were also linked to a reduced incidence of
bronchopulmonary dysplasia in preterm infants (60).

Adequate growth is an important indicator of health and well
being in infants. Trials designed to test the effect of LC-PUFA
supplementation in term infants were subjected to a systematic
review, which included 14 studies and 1846 infants (61). No
significant effect of LC-PUFA supplementation on infant weight,
length, or head circumference was found, at any assessment age,

and whatever the source of LC-PUFA supplementation (phospho-
lipid or triacylglycerol). Many of the included studies, however,
were neither designed nor powered to detect growth effects, and the
included interventions were extremely heterogeneous. Further-
more, long-term effects have not been extensively studied, although
some studies suggest long-term effects of early DHA supply on
growth and body composition (62).

In preterm infants, early studies reported failure to thrive
after feeding fish oil–supplemented formula (63,64), and the effect
of fish oil without provision of ARA on the growth of preterm
infants has been controversial since then. A large randomized
controlled trial including 657 infants born at <33 weeks showed
that a 1% dose of DHA had no adverse effect on weight or head
circumference up to 18 months corrected age compared with
standard feeding practice (0.2%–0.3% DHA), ARA being present
at similar levels (0.4%) in both the groups. In fact, preterm infants
fed higher DHA were significantly (0.7 cm) longer at 18 months
corrected age (65). Thus, there are no major safety concerns
regarding the current levels of LC-PUFA provided to preterm
infants, whereas there are indications that they can be beneficial.

Long-lasting benefits of DHA status in infancy for brain and
immune development and health have been recently found in
studies that revealed exciting breast-feeding–gene interactions.
A marked protective effect of prolonged breast-feeding against
physician-diagnosed asthma was found up to the age of 10 years in
children with a genotype FADS gene cluster resulting in low LC-
PUFA synthesis, whereas there was no significant effect in children
homozygous for the major genetic allele (66). Similarly, higher IQ
results at the age of 8 years were reported in previously breast-fed
children. The benefit of receiving breast milk, providing preformed
LC-PUFA, was more than 4 IQ points greater in those children with
FADS2 genetic variants that lead to low LC-PUFA synthesis (67). A
benefit of early LC-PUFA status on brain development was also
shown in a randomized clinical trial in which breast-feeding women
received supplementation with 200mg DHA per day or placebo
during the first 4 months of lactation. Improved psychomotor
development was observed at 2.5 years of age and enhanced
sustained attention at the age of 5 years (68). Study results,
however, are heterogeneous, and recent meta-analyses both on
term (69) and preterm infants (70) did not find conclusive evidence
for long-term benefits of DHA supplementation (60).

Because adequate DHA status is important for infant devel-
opment, it has been recommended to include DHA in infant
formulae at levels approximately 0.10% to 0.18% of energy
(71). More recently, the EFSA proposed an increased recommen-
dation setting a minimum–maximal range of 0.18% to 0.45%
energy (45). A cause and effect relationship has been recognized
by the EFSA between infant DHA intake levels of 0.3% of total
fatty acids intake and visual function achieved at 12 months (72).
Higher DHA intakes have been recently recommended for preterm
infants, who have higher requirements regarding neurodevelopment
(19,26). Mothers who consumed 3.45 g of n-3 LC-PUFA from
salmon, weekly from the 20th gestational week, delivered neonates
with higher cord blood concentrations in EPA and DHA compared
with nonsupplemented mothers (73). A similar supplementation
with 1.2 g/day from the 15th week of gestation until 4 months of
lactation resulted in increased concentrations of n-3 LC-PUFA in
breast milk (74). It is thus recommended that pregnant and breast-
feeding women should consume preformed n-3 LC-PUFA provid-
ing an average intake of �200 mg DHA/day (13,71).

Role of ARA

An ongoing challenge is to fully understand the role of ARA,
which is consistently found in breast milk and in some but not all
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infant formulae. Brain ARA increases rapidly in late gestation and
in the first year of life, but the regulation of its accumulation and the
potential impact of ARA in the infant diet are not fully understood.
The brains of breast-fed infants contain no more ARA than those of
infants fed infant formula without DHA and ARA (57). An inverse
correlation, however, has been observed in plasma and red blood
cells of newborns between LA and ARA levels (48). This is a
general phenomenon, which is also seen in adults (75,76). The
potential of such a negative relationship on the ARA cascade in the
neonatal period is unknown, but some studies found an association
between low ARA and less growth (63,77), reflecting experimental
data that found ARA had a stimulatory effect on cell growth (64,78).

Whether or not the provision of preformed dietary ARA in
infancy is of high importance remains controversial (45,79). The
appropriateness of an ARA:DHA ratio of 2:1 in infant formulae has
been questioned (61). The balance between ARA and DHA might
be of importance because it might contribute to LC-PUFA depo-
sition in the growing brain (80). A recent recommendation from
EFSA (45) considers that there is no necessity to set a specific
minimum content of ARA or EPA or a specific ratio for DHA:ARA,
whereas the Food and Agriculture Organization has defined an
adequate intake for ARA as 0.2% to 0.3% of energy (which
translates into 0.4% to 0.6% fatty acids) (71) and, based on a
systematic data analysis (79), an international expert consultation
advised infant minimum intakes of ARA and DHA of 140 and 100
mg/day, respectively. Future research should further explore DHA
and ARA needs in infancy.

Other LC-PUFA and Other PUFA
Breast milk and dairy fats contain low levels of several other

LC-PUFA, including EPA and n-3 docosapentaenoic acid (http://
links.lww.com/MPG/A473). EPA has antithrombotic activities in
adults, and, together with other n-3 LC-PUFA, serves as a precursor
of metabolites with anti-inflammatory properties (81). Breast milk
also contains extremely small amounts of n-3 stearidonic acid,
which may be more efficiently transformed into EPA and DHA than
ALA (82). No data are available concerning their potential phys-
iological functions in infants, and requirements for these fatty acids
have not been defined (71).

LC-PUFAs are ligands to nuclear transcription factors and
have been shown, in vitro and in animals, to influence gene
expression. In rodents, diets rich in saturated fatty acids and poor
in PUFA provided during pregnancy and/or lactation have been
shown to influence obesity development and glucose/insulin
homeostasis in the offspring when they became adults (83). Recent
data in humans suggest similar long-term influences on adiposity
(84), insulin resistance (85) and neurodevelopment (49), which
might be because of epigenetic mechanisms and require further
research, especially in light of the changes in breast milk compo-
sition of PUFA during the latest decades and the potential for
transgenerational transfer.

Synthesis and Roles of Cholesterol
Cholesterol is endogenously synthesized, and dietary sources

are animal lipids and mammalian milks (86). Cholesterol is the
substrate for the synthesis of bile acids, lipoproteins, vitamin D, and
hormones. It also acts by stabilizing the structure of cellular
membranes and is incorporated into brain lipids mainly during
the first months of life (87). The balance and interaction between
DHA and cholesterol might modulate membrane rafts and functions
of channels, enzymes, and receptors associated with membranes,
but clinical consequences in infants are not known.

The higher cholesterol concentration of human milk is most
likely the reason for the higher blood levels of cholesterol and

low-density lipoprotein cholesterol levels in breast-fed infants
compared with formula-fed infants (88). Several studies in
formula-fed infants have assessed the possible risks and benefits
of various levels of cholesterol. Breast-fed infants show a 3-fold
lower fractional synthesis rate of cholesterol than infants fed
formulae containing extremely low levels of cholesterol (89),
suggesting that dietary cholesterol intake, in addition to other
possible factors, may modulate cholesterol metabolism in infancy.
Other trials in infants reported similar short-term effects, which
usually disappear after 18 months (86,90,91). Lasting effects were
reported in meta-analyses of studies on the association of breast-
feeding with modestly but significantly reduced concentrations of
total cholesterol and low-density lipoprotein cholesterol in adults. A
greater difference (0.15 mmol/L) was observed for exclusive rather
than partial breast-feeding, suggesting that exclusive breast-feeding
of 30% of infants could reduce population prevalence of cardio-
vascular disease by 5% (92). Indeed, the longitudinal study of
87,252 nurses born in the first half of the 20th century found breast-
feeding associated with a 10% risk reduction for cardiovascular
disease (93).

Cholesterol supplementation in preterm infants did not influ-
ence vitamin D metabolism or endogenous cholesterol synthesis
(94). Addition of dairy fat in infant formulae has been reported not
only to increase LC-PUFA levels in red blood cells (95–97), which
may be because of cholesterol, but also to increase other com-
ponents of dairy fat, such as myristic acid (98). At this time,
conclusive evidence on the potential benefits of adding different
sources of cholesterol to infant formulae is still lacking.

Role of Complex Lipids
Mammalian milks contain phospholipids plasmalogens, gly-

cerophospholipids, and sphingolipids (including ceramides and
gangliosides) at levels accounting for 0.2% to 1% of total lipids
(approximately 10 to 40 mg/100 mL). Phospholipids (Table 1) have
a structural role as constituents of the biomolecular membranes that
surround all cells and organelles in the body, and they modify
cellular metabolism and other functions. Complex lipids play
important roles in signal transmission and cell recognition, which
have been suggested to interact with the physiology of the brain,
gut, and skin. Recently, the results of a randomized trial of
sphingomyelin-enriched formula were reported showing a positive
association with neurobehavioral development of low-birth-weight
infants (99). Gangliosides have been reported to reduce proinflam-
matory signaling in the intestine (100) and protect the bowel in an
infant model of necrotizing enterocolitis (101). Gangliosides make
up 10% of the total lipid mass in the brain and are highly con-
centrated in the cerebral cortex of the brain’s gray matter. It has
therefore been proposed that complex lipids should be included by
enriching infant formula using dairy sources (102). Complex lipids
in the milk fat globule appear to provide anti-infective protection to
breast-fed infants (3) or to young children receiving a fat-globule–
enriched dairy product (103). A recent randomized intervention
study feeding infants with a standard formula based on vegetable oil
or a formula with an added dairy lipid fraction enriched in bovine
milk fat globule membranes reported a benefit of the latter on
mental development at 1 year (104), which should stimulate further
research on the use of dairy fat in infant formulae.

CONCLUSIONS
Dietary lipids have a wide range of biological actions beyond

the provision of energy and are essential for infants’ growth,
development, and health. Lipids in breast milk are extremely
complex and diverse, and their physiological roles are not yet fully
understood. Evidence continues to accumulate that the quality of
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dietary lipids provided to infants has a marked impact on health
outcomes.

There is thus some opportunity for improving the quality of the
lipid intake of breast-fed infants by modifying the dietary supply of
women during pregnancy and lactation, either in the general popu-
lation or following targeted approaches. Although the lipid compo-
sition of infant formulae has been amended over time, currently
available products continue to markedly differ in their lipid compo-
sition and structure from breast milk; most of these differences might
beof importance for infant health anddevelopment, including, but not
restricted to those in LC-PUFA, the nature and position in the
triglyceride molecule of saturated fatty acids or medium- and
short-chain fatty acids, cholesterol, and complex lipids.

Changes in the lipid composition of infant formulae should
take advantage of the increasing knowledge and must be based on
solid scientific evidence, exploring biological effects and evaluat-
ing clinical outcomes. When elaborating infant formulae, the
ultimate challenge is to approximate the biochemical and clinical
outcomes of breast-feeding, rather than simply mimicking the
composition of human milk.

Significant improvements have been achieved in the last few
years not only in research methodologies and understanding of
biology, but also toward optimal usage of raw materials in the
manufacture of the fat blends used in formulae. This combined
progress provides opportunities to explore and evaluate optimized
lipid nutrition in infants, with the aim of improving health in both
the short and long terms.

RESEARCH PERSPECTIVES
Although we are gaining knowledge about lipid nutritional

requirements and functions, more research is required. There are
many areas of primary research but the most relevant aim to
improve both understanding of underlying mechanisms and the
short- and long-term clinical outcomes of infant nutrition. The latter
should be addressed via adequately powered clinical trials, con-
ducted with high methodological quality standards to achieve
reliable conclusions. Future research should aim to

1. Refine the understanding of the needs of preterm and term
infants for LC-PUFA and other fatty acids, including the use of
dose-response studies and in-depth mechanistic studies

2. Explore the effects of lipids on innate and acquired immunity
and inflammation in term and preterm infants as well as on new
and promising areas, such as pulmonary function

3. Delineate the metabolic response to dietary lipids in infants, the
associated pathways and the productions of mediators and
signaling molecules, as well as related effects in infants

4. Investigate the effects of dairy lipids or dairy lipid fractions
supplied to infants on immediate and later functional outcomes,
including neurological (including behavioral and mental
health) and immunological (including risk of infection) effects

5. Assess the long-term impact of dietary fatty acids in infants
(such as LA, ARA, saturated and monounsaturated fatty acids,
and LC-PUFA, and ratios of the different fatty acids) on growth,
body composition, lipid metabolism, and insulin resistance

6. Unravel the role of lipids in epigenetic genome modification
(DNA methylation, histone acetylase, and microRNA) and the
resulting long-term effects, such as propensity for obesity or
type 2 diabetes.
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