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Abstract

Introduction Osteoarthritis (OA) is the most common form of joint disease, causing pain and disability. Previous studies 

have demonstrated the role of lipid mediators in OA pathogenesis.

Objectives To explore potential alterations in the plasma lipidomic profile in an established mouse model of OA, with a 

view to identification of potential biomarkers of pain and/or pathology.

Methods Pain behaviour was assessed following destabilisation of the medial meniscus (DMM) model of OA (n = 8 mice) 

and compared to sham controls (n = 7). Plasma and knee joints were collected at 16 weeks post-surgery. Plasma samples were 

analysed using ultra-high performance liquid chromatography accurate mass high resolution mass spectrometry (UHPLC-

HR-MS) to identify potential differences in the lipidome, using multivariate and univariate statistical analyses. Correlations 

between pain behaviour, joint pathology and levels of lipids were investigated.

Results 24 lipids, predominantly from the lipid classes of cholesterol esters (CE), fatty acids (FA), phosphatidylcholines 

(PC), N-acylethanolamines (NAE) and sphingomyelins (SM), were differentially expressed in DMM plasma compared to 

sham plasma. Six of these lipids which were increased in the DMM model were identified as CE(18:2), CE(20:4), CE(22:6), 

PC(18:0/18:2), PC(38:7) and SM(d34:1). CEs were positively correlated with pain behaviour and all six lipid species were 

positively correlated with cartilage damage. Pathways shown to be involved in altered lipid homeostasis in OA were steroid 

biosynthesis and sphingolipid metabolism.

Conclusion We identify plasma lipid species associated with pain and/or pathology in a DMM model of OA.

Keywords Osteoarthritis · Pain · LC–MS lipidomics · Destabilisation of the medial meniscus

1 Introduction

Osteoarthritis (OA) is the most common form of joint dis-

ease, characterized by pain and disability (Felson et al. 2000; 

Hinman and Crossley 2007). Recent estimates suggest that 

the global burden of knee OA affects approximately 250 

million people. In USA alone, approximately 21 million peo-

ple present with OA associated symptoms, while it is esti-

mated that the number of individuals is set to double by 2020 

(Hunter et al. 2014). Currently there are no disease modi-

fying drugs for OA and treatment of the associated pain is 

hampered by lack of efficacy and/or unwanted side-effects of 

treatments. Total joint replacement remains the most effec-

tive treatment for OA pain (Lui et al. 2015). It is increas-

ingly recognised that the slow progression of OA pathology, 

coupled with the poor relationship between radiographic OA 

and the phenotype and magnitude of pain experienced, limits 

treatment strategies to prevent the development of chronic 

pain. Biochemical markers (in blood, urine or synovial fluid) 

of OA have the potential to reflect changes in joint structure 

to monitor disease progression (Lotz et al. 2013) and OA 

pain (Valdes et al. 2017, 2018). There is a pressing clinical 

need for biomarkers of OA that detect the disease in its early 
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stages, where progression of disease may still be responsive 

to pharmacotherapy. Such biomarkers could also contribute 

to personalized medicine and the identification of new drug 

targets (Mobasheri and Henrotin 2015).

The role of a broad spectrum of lipid mediators, includ-

ing fatty acids, sphingolipids, and eicosanoids in cartilage 

degradation in OA is increasingly recognised (Masuko et al. 

2009). Lipid dysregulation in all compartments of the joint 

is considered an important feature of this disease (Cour-

ties et al. 2015; Sun et al. 2016). Lipidomics, which can be 

defined as the system-wide characterization of lipids and 

their interaction with other biochemicals and cells (Spener 

2003), has dramatically advanced over the past decade, due 

to developments in analytical technologies, such as mass 

spectrometry (MS) and chromatography, reviewed in (Hyo-

tylainen and Oresic 2016).

Previous studies highlight the value of a lipidomic 

approach to identify potential biomarkers of OA pain and 

pathology. For example, a global lipidomic analysis of 

human synovial fluid identified changes in 66 phospholipid 

species in early OA versus late OA (Kosinska et al. 2013) 

and changes in the synovial fluid levels of 21 sphingolipids 

in early OA compared to late OA (Kosinska et al. 2014). 

Comparison of the synovial fluid lipidomes of human OA 

versus canine OA identified similarities in the lipid composi-

tion between the two species, in particular for early stages of 

OA (Kosinska et al. 2016). However, collection of synovial 

fluid is invasive and there are limitations in obtaining syno-

vial fluid samples from control healthy volunteers. The util-

ity of plasma to search for biomarkers of OA progression has 

been highlighted by the first untargeted (global) lipidomics 

study of human OA plasma (Castro-Perez et al. 2010), which 

revealed an altered lipid metabolism associated with OA.

Animal models of OA have advanced understanding of 

the mechanisms of pain and facilitate studies of the complex 

relationship between pathology and pain behaviour (Little 

and Zaki 2012). Destabilization of the medial meniscus 

(DMM) in the mouse (Glasson et al. 2007) is a slowly pro-

gressing surgical model of OA, which mimics key features 

of the clinical pathology and pain responses. There are few 

lipidomic studies in animal models of OA and these have 

been focused on targeted lipid (oxylipin) analysis. In a model 

of inflammatory arthritis, He et al. (He et al. 2015) reported 

differences in oxylipin plasma levels in collagen induced 

arthritis (CIA) mice compared to control mice using a tar-

geted LC–MS/MS oxylipin method with both univariate and 

multivariate analysis. Previously we used a novel targeted 

oxylipin LC–MS/MS method to measure oxylipin and endo-

cannabinoid profiles in different tissues from the rat mono-

sodium iodoacetate (MIA) model of OA pain, compared to 

control rats (Wong et al. 2014).

The aim of the present study was to use untargeted lipid-

omics LC–MS analysis in conjunction with multivariate and 

univariate analysis to identify potential changes in plasma 

lipidome in the DMM model of OA, to identify related 

pathways of lipid metabolism altered in OA, and to inves-

tigate potential correlations with pain behaviour and joint 

pathology.

2  Material and methods

2.1  Reagents and materials

A Milli-Q water purification system (Millipore, MA, USA) 

was used in the preparation of deionized water (18.2 MΩ). 

Acetonitrile and chloroform were HPLC grade purchased 

from Fischer Scientific (Loughborough, UK). Methanol 

(LC–MS grade) and ammonium acetate were purchased 

from Sigma-Aldrich (Dorset, UK). Isopropanol (LC–MS 

grade) was obtained from Fischer Scientific (Loughborough, 

UK).

2.2  Animals

Experiments were performed on male C57BL/6 mice 

(Charles River, Margate, Kent, UK) aged 8–9 weeks at start 

of surgery in accordance with the UK Animal (Scientific 

Procedures) Act (1986). All procedures were approved by 

the University of Nottingham Ethical Review Committee 

and IASP guidelines. All animals were group-housed in a 

temperature-controlled environment (22 ± 1 °C) and main-

tained on a 12-h light/dark cycle with access to an identical 

diet and water ad libitum. A total of 15 male C57BL/6 mice 

(n = 7 in sham control group, n = 8 in DMM group) were 

used for this study.

2.3  Induction of DMM model

The surgery to generate the DMM model of OA was per-

formed under brief isoflurane anaesthesia. An incision was 

made over the medial meniscus; a blunt dissection was then 

used to open the knee joint capsule and the mediomenis-

cotibial ligament (MMTL) was transected to destabilise the 

medial meniscus (Glasson et al. 2007). Sham operated mice 

underwent the same procedure except for the transection of 

the MMTL.

2.4  Pain behaviour testing

Changes in weight distribution (weight bearing, WB) 

between the left (ipsilateral) and right (contralateral) knees 

were assessed using an incapacitance meter (Linton Instru-

ments UK) as previously described (Bove et al. 2003). Hind-

paw withdrawal thresholds (PWT) to mechanical stimulation 

of the hindpaw were measured using calibrated von Frey 
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monofilaments using the up down method, as previously 

described (Sagar et al. 2010). The timeline of behavioural 

pain measurements is provided in Electronic Supplementary 

Information (ESI, Fig. S1A). The time-course of changes in 

WB and PWT in DMM mice is provided in Figs. S1B, C.

2.5  Joint pathology

The ipsilateral knee joints were fixed in 10% neutral buffered 

formalin post-mortem before being decalcified in a 10% eth-

ylenediaminetetraacetic acid (EDTA) solution for 10 days. 

Coronal sections (5 µm thickness) were stained with haema-

toxylin and eosin before chondropathy in the medial tibial 

plateau was scored according to the OARSI scoring system 

(Glasson et al. 2010), (Fig. S2).

2.6  Plasma collection and lipid extraction

On post-operative (PO) day 112, following the last set of 

pain behaviour tests, mice were euthanized. Blood was col-

lected, centrifuged at 15,871×g for 5 min, at room tempera-

ture, and the plasma frozen immediately in liquid nitrogen. 

Note the volume of blood (1 mL) required for the global lipi-

domic analysis prevented a longitudinal study of the poten-

tial changes in lipidomics over the time-course of the study. 

For this reason we focused on the late time point (week 16) 

when pain behaviour had been significant for a number of 

weeks and joint pathology was known to be significant as 

well. All samples were stored at − 80 °C until lipidomic 

extraction (Folch et al. 1957) (see ESI) and LC–MS analysis.

2.7  Liquid chromatography–mass spectrometry 
lipidomic analysis

LC–MS analysis was performed based on a method previ-

ously published from our group (Haoula et al. 2015). Briefly, 

chromatographic separations were performed on an ACE 2 

C18 HPLC column (20 × 2.1 mm, 2 μm particle size; Aber-

deen, UK), maintained at a temperature of 40 °C and a flow 

rate of 600 µL/min. Mobile phases consisted of (A) 60:40 

acetonitrile:10 mM aqueous ammonium acetate and (B) 

90:10 isopropanol:10 mM ammonium acetate in acetonitrile. 

A binary gradient from 32 to 97% B was used with a total 

run time of 4 min. The injection volume was 10 µL and was 

the same as the mobile phase A composition.

Mass spectrometry was performed on an Orbitrap 

Exactive MS (ThermoFisher Scientific, Hemel Hempstead, 

UK) acquiring data simultaneously in full scan ion mode 

(m/z 100–1200, resolution 50,000 at m/z 200) in positive 

and negative ionisation modes. The capillary voltage was 

maintained at 25 V in the positive ion mode and at 27 V in 

the negative ion mode. The voltages of tube lens and skim-

mer in positive mode were set to 115 and 22 V respectively. 

Negative mode voltages of tube lens and skimmer were set 

to 140 and 28 V respectively. The flow rates of sheath gas, 

auxiliary gas and sweep gas for both positive negative modes 

were adjusted to 30, 15 and 5 (arbitrary units). The capillary 

temperature and heater temperature were maintained at 350 

and 300 °C respectively in both positive and negative modes.

2.8  Lipidomics data analysis

Raw UHPLC-HR-MS data from the DMM and control 

mice samples were acquired using Xcalibur v2.1 software 

(Thermo Scientific, Hemel Hempstead UK). The full data-

sets from DMM group and control group were imported and 

pre-processed in SIEVE (Version 2.1, Thermo Fisher Sci-

entific Inc., USA) using normalisation to total ion intensity 

(TIC). Ions imported for further analysis into SIMCA-14 

(Umetrics, Umea, Sweden) were included as follows: (a) 

ions with non-zero peak areas with an RSD of peak areas 

less than 30% in QCs and (b) ions that have an RSD of peak 

areas less than 30% in each group (control and OA) (Gika 

et al. 2016; Vorkas et al. 2015).

The processed datasets analysed by principal component 

analysis (PCA) and orthogonal projections to latent struc-

tures discriminant analysis (OPLS-DA) (Trygg et al. 2007) 

using pareto (Par) scaling. VIP (Variable Importance in the 

Projection) and p(corr) were used (V-Plot) to find statisti-

cally changed ions (Chang et al. 2017). Ions with VIP > 1.5 

and p(corr) > |0.4| were subjected to univariate analysis 

with False Discovery Rate (FDR) at 5% level for correction 

of multiple comparisons using Prism v.7 (Graph Pad, San 

Diego, California, USA). The performance of the analyti-

cal method was validated by monitoring a representative set 

of plasma lipids in pooled quality control (QC) samples, 

injected throughout the LC–MS (following full equilibra-

tion) run to assess RSD(%) of retention time (RT) shifts and 

peak areas.

Tentative identification of significant lipids was achieved 

by using accurate mass determinations (up to 5 ppm mass 

accuracy) to search appropriate metabolite databases: LIPID 

MAPS (www.lipid maps.org), the Human Metabolome data-

base (www.hmdb.ca) and METLIN (https ://metli n.scrip 

ps.edu). Statistically significant lipid species were con-

firmed by MS/MS fragmentation experiments in Q-Exactive 

(Thermo, UK) using LipidSearch (Breitkopf et al. 2017, 

Peake et al. 2013) software v4.1 (Thermo Fisher Scientific, 

CA, USA) (see ESI for more information).

Metabolite identification confidence was classified using 

identification levels as proposed previously (Sumner et al. 

2007). Putative statistically significant lipids between sham 

and DMM groups were categorized according to their VIP 

score. Furthermore, in order to validate the differentially 

expressed lipids the sensitivity, specificity and the area under 

the receiver-operating characteristic (ROC) curve for binary 

http://www.lipidmaps.org
http://www.hmdb.ca
https://metlin.scripps.edu
https://metlin.scripps.edu
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classification of the OPLS-DA models were also calculated 

from the respective Monte-Carlo cross validation prediction 

(www.metab oanal yst.ca).

In addition, based on the identified biomarkers, the 

plasma lipidomic pathway analysis was performed using 

Metabolic Pathway Analysis (MetPA), a tool in MetaboAn-

alyst (www.metab oanal yst.ca), to reveal the most relevant 

pathways related to OA. The impact value of these pathways 

calculated from pathway topology analysis above 0.1 was 

considered as the potential target pathway.

2.9  Statistical analysis

Statistical analysis was performed using Prism v.7 (Graph 

Pad, San Diego, California, USA). Data are presented as 

mean ± SEM or box-and-whisker plots. Changes in weight 

bearing asymmetry and log transformed paw withdrawal 

thresholds (PWT) in DMM and sham operated mice over 

time were analyzed by two-way ANOVA with Bonferroni 

corrected multiple comparisons. Differences in medial tib-

ial plateau cartilage damage between DMM and sham mice 

were analyzed by Mann–Whitney U test. Differences in lipid 

metabolite expression between DMM and sham mice were 

analyzed by two-tailed Welch’s t-test. Correlations between 

pain behavior (weight bearing asymmetry and log PWT at 

the final behavioural timepoint) and MTP cartilage damage 

with the expression of lipid metabolites were analyzed by 

Pearson’s Correlation Coefficient. A value of p < 0.05 was 

considered significant for all analyses.

3  Results

3.1  Pain behavior and joint pathology of DMM 
model

Changes in weight-bearing (WB) were evident in DMM 

mice, with a significant decrease in WB on the injured side 

from day 56 post-DMM surgery, compared with sham con-

trols. Changes in WB remained stable until the end of the 

study (Fig. S1A). Similarly, ipsilateral hindpaw withdrawal 

thresholds were lowered from day 49 post DMM surgery 

until the end of the study (Fig. S1B). There were significant 

differences in pain behavior between the DMM and sham 

control group for the later stages of the study. At the end 

of the study (day 112) DMM mice had a significant MTP 

Fig. 1  Multivariate analysis of global lipidomics in the DMM mouse 

model. a OPLS-DA score plot of plasma from DMM (n = 8, blue) 

and, sham mice (n = 7, green). The score plots show a good separa-

tion between DMM and sham mice (R2X = 0.547, R2Y = 0.794, and 

Q2 = 0.407). b V-plot with p(corr) and VIP values. Features with 

VIP > 1.5 and p(corr) >|0.4| are highlighted in red. c A permutation 

test performed with 100 random permutations on generated PLS-DA 

model; R2 is the explained variance, and Q2 is the predictive ability 

of the model. Low value of Q2-intercept depicts the high predictabil-

ity of the model

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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score indicative of cartilage damage, compared to the sham 

controls (Fig. S2).

3.2  Lipidomic pro�ling using UHPLC-HR-MS 
and identi�cation of potential biomarkers

The lipidomics analysis met accepted quality criteria 

with close clustering of the plasma QCs in PCA, and with 

RSD% of peak areas from selected lipids and RT being 

less than 15% and 2%, respectively (ESI, Table S1).

An unsupervised PCA was initially performed on the 

normalized data to identify trends in groups, clusters and 

potential outliers (ESI, Fig. S3). A supervised OPLS-

DA model was generated (Fig. 1a) where R2X = 0.547, 

R2Y = 0.794, and Q2 = 0.407 showing good prediction of 

the model (Q2 > 0.4). The set of lipids that made signifi-

cant contributions to the difference between the DMM and 
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Fig. 2  Lipids discriminating DMM samples (red) from sham samples (green). Box-and-whisker plots illustrating levels differences for the six 

lipid biomarkers between DMM and sham groups of mice. Welch’s t-test was applied. *p < 0.05; **p < 0.01
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sham mice were identified using the V-Plot (Fig. 1b). The 

OPLS-DA permutation plot had low (negative) value of 

Q2-intercept confirming validation of the original model 

(Fig. 1c). Univariate statistical analysis using FDR (at 

level of 5%) revealed 24 differentially expressed lipids 

that were tentatively identified using metabolomics and 

lipidomics databases (METLIN, LIPIDMAPS, HMDB, 

and KEGG) (Table 1). For confirmation of lipid species, 

MS/MS fragmentation experiments (with LipidSearch 

software) using a pooled QC sample (ESI, Figs. S4–9) 

confirmed the identities of six of the 24 significant lipids 

and were assigned as CE(18:2), CE(20:4), CE(22:6), 

PC(18:0/18:2), PC(38:7), and SM(d34:1). The remaining 

lipids were assigned to class of lipid and are reported as a 

specific m/z ion, with a tentative identification (Table 1). 

LipidSearch outputs for the six identified lipids are given 

in ESI (Figs. S4–9). These six potential lipid biomarkers 

belong to three different lipid classes; sterols (STs), phos-

pholipids (PLs), and sphingolipids (SLs). The tentatively 

identified lipids belong to the three aforementioned classes 

in addition to the class of fatty acids (FAs). Plasma levels 

of CE(20:4), CE(18:2), CE(22:6), PC(38:7), PC(18:0/18:2) 

and SM(d34:1) were significantly higher in the DMM 

group, compared to the sham group (Fig. 2).

3.3  Prediction and diagnostic performance test

ROC analysis was performed to validate the OPLS-DA 

analysis and test the applicability of the six identified 

lipid biomarkers in separating DMM mice and sham con-

trol. Figure 3a shows a group of ROC curves for models 

established by using different lipids selected by the filter 

approach. Five models were generated. The top two lipids 

[CE(18:2) and PC(18:0/18:2)] were used to build clas-

sification model 1; the AUC value was 0.802 and the 95% 

confidence interval (CI) was 0.306–1. When all six lipids 

were used the AUC value was 0.863, while sensitivity was 

Table 1  Identification of the 24 significant lipids (top 18 are shown) in DMM plasma (n = 7 and 8 mice/group, for sham and DMM, respectively) 

using UHPLC-HR-MS global lipidomics platform and OPLS-DA analysis

Lipids are sorted by their VIP scores (descending). Online databases METLIN, KEGG, HMDB and LIPIDMAPS were used to assign masses 

(m/z) to putative lipid species. Mass accuracy is considered less than 5 ppm. Fold change between DMM vs sham groups is shown. p values 

generated after applying FDR correction are given. Lipids identified by MS/MS experiments in Q Exactive with LipidSearch software) are high-

lighted in bold, when available. Lipid classes are also given
a DMM/sham group ratio (mean values from each group were used)
b DMM vs sham groups
c p value adjusted after FDR correction (5%) applied (GraphPrism v.6)
d Lipid abbreviations: NAE N-acylethanolamine, FA fatty acid, LCB long-chain bases, CE cholesteryl ester, PC phosphocholine, Cer ceramide, 

SM sphingomyelin

m/z MS mode Time (min) VIP Fold  changea Trendb p  valuec Putative lipid  biomarkerd Confi-

dence 

 levele

Lipid class

318.240 POS 0.32 11.0 1.27 ↑ 0.00749 NAE 16:2 3 Fatty acyl

296.258 POS 0.28 10.0 1.49 ↑ 0.00731 FA(18:3) 3 Fatty acid

369.351 POS 2.86 8.0 1.39 ↑ 0.00598 Cholesterol 3 Sterol lipid

282.279 POS 0.73 7.9 1.39 ↑ 0.00893 LCB 18:2;1 3 Sphingolipid

690.619 POS 2.81 7.2 1.37 ↑ 0.00656 CE(20:4) 2 Sterol lipid

666.618 POS 2.88 6.7 1.38 ↑ 0.00368 CE(18:2) 2 Sterol lipid

844.609 NEG 2.15 5.5 1.26 ↑ 0.0164 PC(18:0/18:2) 2 PC

613.492 POS 0.32 4.4 1.44 ↑ 0.00376 CE(14:3) 3 Sterol lipid

806.569 POS 1.45 4.4 1.17 ↑ 0.0129 PC(38:6) 3 PC

714.619 POS 2.77 4.2 1.43 ↑ 0.00841 CE(22:6) 2 Sterol lipid

804.551 POS 1.53 3.3 1.19 ↑ 0.0190 PC(38:7) 2 PC

473.401 NEG 1.37 2.8 1.07 ↑ 0.0130 Sitosterol 3 Sterol lipid

256.268 POS 0.6 2.7 1.24 ↑ 0.00797 LCB 16:1;1 3 Sphingolipid

316.321 POS 0.79 2.6 1.13 ↑ 0.0217 FA(19:0) 3 Fatty acid

700.628 POS 2.72 2.3 1.43 ↑ 0.0114 Cer 43:2;3 3 Sphingolipid

703.575 POS 1.53 2.2 1.39 ↑ 0.00680 SM(d34:1) 2 Sphingolipid

290.209 POS 0.27 1.8 1.31 ↑ 0.00866 NAE 14:2 3 Fatty acyl

326.378 POS 0.66 1.8 1.45 ↑ 0.00334 FA(22:1) 3 Fatty acid
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100%, specificity of 85.7% (Fig. 3d), and predictive accu-

racy of 78.8% (Fig. 3b). On the basis of the selected bio-

markers, ROC analysis revealed that the OPLS-DA model 

identified lipid biomarkers, sorted by their importance 

(Fig. 3c), that account for the differences between control 

and DMM mice.

3.4  Metabolic pathway analysis

The six lipids identified as potential biomarkers of OA 

were related to steroid (i.e. cholesterol) biosynthesis (CEs), 

sphingolipid metabolism [SM(d34:1)], linoleic acid, alpha-

linolenic acid, glycerophospholipid, and arachidonic acid 

metabolism [PC(18:0/18:2) and PC(38:7)] (Fig. 4). The 

pathway with the smallest p value (p < 0.05) is considered 

the metabolic route most significantly altered in the DMM 

OA model. Notably, p values (raw p values) for all path-

ways generated from Metaboanalyst were p < 0.05. For more 

details see (ESI, Table S2).

3.5  Correlation analysis of lipid levels with pain 
behaviour and joint pathology

Pain on loading (weight-bearing asymmetry) and cartilage 

damage were not correlated with each other (ESI, Fig. 

S10). A Pearson correlation analysis evaluated potential 

associations of the six plasma lipids and pain behaviour 

parameters (WB and PWT). Plasma levels of CE(18:2), 

CE(20:4), CE(22:6), and PC(38:7) were positively cor-

related with changes in WB (p < 0.05, Fig. 5). There was 

Fig. 3  Comparison of different variables based on ROC curves a 

the legend shows the feature numbers and the AUCs of the five 

models, b the predictive accuracies with different features based on 

ROC curves, c the average importance of six lipids based on ROC 

curves, in descending order of importance, and d prediction of DMM 

and sham mice using MCCV analysis. The prediction of the model 

depends on the area under the curve (AUC) provided by ROC analy-

sis: the greater the AUC, the better the prediction of the model
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a similar trend for PC(18:0/18:2) and SM(d34:1) (Fig. 5). 

There was a significant negative correlation between 

PWTs and plasma levels of CE(18:2), CE(20:4), CE(22:6), 

and PC(18:0/18:2) (Fig. 6). There was a similar trend for 

PC(38:7) and SM(d34:1) (Fig. 6). It is important to note 

that an increase in WB is indicative of pain behaviour, 

whereas a lowering of PWT is also indicative of pain 

behaviour. Overall CE(18:2), CE(20:4), and CE(22:6) 

levels were significantly correlated with both features of 

pain behaviour, suggesting that these plasma lipids may 

be biomarkers of OA pain behaviour. Lastly, all of the 

lipids with the exception of PC(38:7) were positively and 

significantly correlated with cartilage damage (Fig. S11). 

4  Discussion

4.1  Lipid biomarkers of potential biological 
signi�cance

The present study identified six potential plasma lipid 

biomarkers in the DMM model of OA pain, which were 

related to steroid biosynthesis (three CEs), sphingolipid 

metabolism [SM(d34:1)], linoleic acid, alpha-linolenic 

acid, glycerophospholipid, and arachidonic acid metab-

olism [PC(18:0/18:2) and PC(38:7)]. Although the fold 

changes of individual lipid levels between the sham and 

DMM mice were small (less than twofold), combining 

these six lipids together provided a valid model of OA 

pathology and pain as indicated by the ROC analysis 

(Fig. 3). Our data are supported by reports that the meta-

bolic pathways underpinning the generation of these six 

lipids play important roles in OA pathogenesis, reviewed 

in (Masuko et al. 2009).

Sphingolipids (SLs) are a class of lipids that include 

ceramide (Cer) species, sphingomyelins (SMs) and more 

complex glycosphingolipids known to be present in SF 

(Lahiri and Futerman 2007). SLs are structural components 

of plasma membranes and bioactive molecules that regulate 

many processes including growth and differentiation, cellu-

lar signal transduction, and apoptosis in cells such as fibro-

blast-like synoviocytes (FLSs) (Baker et al. 2011; Patward-

han et al. 2016). Changes in sphingolipid metabolism have 

been associated with joint damage in a model of OA and 

selective inhibition of sphingosine kinase-2, a key enzyme 

in the sphingolipid pathway, attenuated histological dam-

age and pain behaviour associated with MIA-induced OA 

in rats (Fitzpatrick et al. 2011). Our report that SM(d34:1) 

is a potential plasma lipid biomarker of OA is in agreement 

with a report by Kosinska et al. (2014) that the levels of 

19 SMs, including SM(d34:1), were approximately twofold 

higher concentrations in SF from late OA versus early OA 

in humans. Furthermore, levels of 6 SMs were statistically 

increased by 1.7 fold in SF in a sub-group of OA sufferers 

(Zhang et al. 2014). Consistencies between the changes in 

the lipidome in plasma and SF in OA support further inves-

tigation of SLs as potential of plasma biomarkers.

Phospholipids (PLs) are essential components of all 

biological membranes and they contribute to boundary 

lubrication that is provided by SF (Kosinska et al. 2015). 

Our demonstration that plasma levels of PC(18:0/18:2) 

and PC(38:7) are significantly higher in the DMM model 

of OA are consistent with previous clinical data (Kosinska 

et al. 2013) showing alteration of phospholipid species 

between early OA and late OA SF in humans. The group 

of Kosinska (Kosinska et al. 2013) suggests that the phos-

pholipid composition in SF is associated with increased 

friction, inflammation, and cartilage damage, ultimately 

reflecting the severity of human OA. A separate study 

demonstrated that levels of 24 glycerophospholipids in SF 

were significantly higher in patients in a subgroup of OA 

sufferers, with this effect more prominent for PC species 

(Zhang et al. 2014).

Amongst the significant lipids that were found to separate 

sham from DMM mice were NAE (14:2) and NAE (16:2). 

These lipids belong to the class of N-acylethanolamines 

(NAEs), bioactive lipids involved in many physiological 

processes including pain and inflammation (Bottemanne 

et al. 2018; Tsuboi et al. 2018).

Linoleic acid (18:2), an omega-6 fatty acid, which is a 

constituent part of two of our identified lipid biomarkers 

Fig. 4  Summary of pathway analysis with MetPA: (a) steroid biosyn-

thesis, (b) sphingolipid metabolism, (c) linoleic acid metabolism, (d) 

alpha-linolenic acid metabolism, (e) glycerophospholipid metabo-

lism, and (f) arachidonic acid metabolism. The pathways depicted are 

listed from (a) to (f) in a descending order of importance, based on a 

combination of both the p values (y-axis) and impact (x-axis), accord-

ing to Metabolic Pathway Analysis (MetPA) carried out in Metabo-

analyst
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CE(18:2) and PC(18:0/18:2), is known to be metabolised 

via lipoxygenase, cyclooxygenase and cytochrome P450 

(CYP) enzymes to a range of hydroxy- and oxo- metabo-

lites that exhibit anti-inflammatory and immunomodulatory 

properties in OA (Chabane et al. 2009). Relevant to this 

observation, our group has recently reported that omega-6 

FAs are increased in OA joints and downstream products 

of linoleic acid are associated with radiographic progres-

sion of OA (Valdes et al. 2018). The steroid biosynthesis 

pathway, identified in our study, has an important role in 

joint homeostasis, reviewed here (Farnaghi et al. 2017a, b), 

with both cartilage and bone severely affected by steroid 

hormone glucocorticoids, which are frequently used to treat 

inflammatory diseases.

Although identities were not confirmed for the lipids 

in the class of fatty acids (FAs), this family of lipids has 

established roles in OA (Sekar et al. 2017; Thomas et al. 

2018). Recent studies support an involvement of n-3 poly-

unsaturated fatty acids (PUFAs) and their anti-inflamma-

tory and pro-resolving derivatives in OA. These lipids were 

identified in the OA joint, and were found to have benefi-

cial effects on cartilage health in vitro and reduced pain in 

human OA and animal models (Mehler et al. 2016; Van de 

Vyver et al. 2018), reviewed here (Ioan-Facsinay and Klop-

penburg 2018).

4.2  Correlation analysis of lipids with pain 
and histology parameters

Potential relationships between levels of plasma lipid bio-

markers and pain parameters (WB and PWT) at 16 weeks 

post-surgery were determined. Levels of the six plasma 

Fig. 5  Correlation between 

levels of lipid metabolites and 

weight bearing asymmetry 

(WB) 16 weeks post DMM/

sham surgery. Data analysed 

by Pearson’s Correlation Co-

efficient. A positive correlation 

for all lipid biomarkers was 

observed. P and r values are 

shown
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lipids identified as being elevated in the DMM model were 

significantly associated with pain behavior in the model of 

OA at this time-point. These data strengthen the validity of 

these six plasma lipids as potential biomarkers for estab-

lished OA pain and are in agreement with the demonstration 

that increased levels of cholesterol transport molecules are 

associated with inflammation and pain in animal models of 

OA (Ioan-Facsinay and Kloppenburg 2018). However, it is 

still unknown whether these plasma lipids are related to pain 

during the onset and development of pain over time. Simv-

astatin, a lipid-lowering agent that blocks the production of 

cholesterol, inhibited mechanical hyperalgesia in a model of 

neuropathic pain, as well as attenuating the development of 

morphine tolerance (Vieira et al. 2017). In our study, plasma 

levels of the three CEs, PC(18:0/18:2), and SM(d34:1) 

which were significantly elevated in the DMM model, were 

correlated with the extent of articular cartilage damage in 

the knee joint at 16 weeks post-surgery. These data are con-

sistent with evidence that a cholesterol-rich diet increased 

cartilage damage in a collagenase mouse model of OA (de 

Munter et al. 2013). In addition, mice fed a high-cholesterol 

diet had greater breakdown of the cartilage matrix compared 

to controls (Farnaghi et al. 2017a, b) and that the severity 

of diet-induced OA changes were attenuated by treatment 

with atorvastatin, a statin. In our study, both groups of mice 

followed the same diet and subsequently had the same cho-

lesterol intake, hence any changes in cholesteryl esters (CEs) 

levels could be due to changes in cholesterol ester metabo-

lism in the OA mouse model. More research into the role of 

CEs in OA pathophysiology is needed to further support our 

findings. Lastly, levels of both phospholipids (McDougall 

et al. 2017) and sphingomyelins (Kosinska et al. 2013) were 

Fig. 6  Correlation between lev-

els of lipid metabolites and log 

transformed ipsilateral hindpaw 

withdrawal thresholds 16 weeks 

post DMM/sham surgery. Data 

analysed by Pearson’s Correla-

tion Co-efficient. A negative 

correlation for all lipid biomark-

ers was observed. P and r values 

are shown
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correlated with cartilage damage in the MIA model of OA in 

the rat and in human OA patients, respectively.

5  Conclusions

This is the first study using global LC–MS based lipidomics 

analysis in the established DMM mouse model of OA. Our 

LC–MS analysis of the whole lipidome in the plasma indi-

cated differences in the profiles of 24 lipids between DMM 

and sham mice. Evidence is presented that a panel of six 

fully identified lipid species consisting of CEs, SMs and PCs 

may play roles in the pathogenesis of OA like chondropathy 

in this model. The six potential lipid biomarkers were related 

to different biochemical pathways, mainly steroid biosyn-

thesis, sphingolipid and glycerophospholipid metabolism, 

consistent with previous studies. Lastly, correlation analysis 

suggests that the three CEs identified here are strongly asso-

ciated with pain behavior and cartilage damage in the DMM 

model. While the findings need to be confirmed in large 

clinical studies in human knee OA, the identification of these 

six lipid biomarkers in small rodent studies in a non-invasive 

biological source, such as plasma, will help to unravel the 

pathogenesis and develop targeted therapies for OA.
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