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Abstract 

Dysregulated lipid metabolism is a prominent feature of prostate cancer that is driven by 

androgen receptor (AR) signaling. Herein, we used quantitative mass spectrometry to define 

the “lipidome” in prostate tumors with matched benign tissues (n=21), independent tissues 

(n=47), and primary prostate explants cultured with a clinical AR antagonist, enzalutamide 

(n=43). Significant differences in lipid composition were detected and spatially visualized in 

tumors compared to matched benign samples. Notably, tumors featured higher proportions 

of monounsaturated lipids overall and elongated fatty acid chains in phosphatidylinositol and 

phosphatidylserine lipids. Significant associations between lipid profile and malignancy were 

validated in unmatched samples, and PL composition was characteristically altered in 

patient tissues that responded to AR inhibition. Importantly, targeting of altered tumor-related 

lipid features, via inhibition of acetyl CoA carboxylase 1, significantly reduced cellular 

proliferation in tissue explants (n=13). This first characterization of the prostate cancer 

lipidome in clinical tissues revealed enhanced fatty acid synthesis, elongation and 

desaturation as tumor-defining features, with potential for therapeutic targeting. 
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Introduction 

With more than 1 million deaths annually, prostate cancer remains a major cause of 

mortality and morbidity for men worldwide (1). The clinical implementation of systemic 

androgen receptor (AR) targeting agents such as enzalutamide and apalutamide has 

increased the available therapeutic options beyond androgen deprivation, but development 

of resistance to these strategies remains inevitable. To more effectively combat this disease, 

there is a need for alternative targets for intervention and a thorough understanding of the 

molecular changes that accompany cancer development, progression and therapy. The 

advent of parallel ‘omic’ approaches has led to the identification of previously unsuspected 

cancer subtypes and therapeutic targets. However, in contrast to the genome, transcriptome, 

and proteome, the cancer “lipidome” remains inadequately characterized (2). As building 

blocks of cellular membranes, lipids affect numerous cellular processes including signal 

transduction, ion transport, cell proliferation, energy metabolism and cell death mechanisms, 

which are all involved in the development and progression of cancer (3,4).  

For prostate cancer, the lipidomic changes that accompany malignancy are of particular 

interest due to the unique metabolic profile of this cancer, whereby the normal cellular 

production of citrate is instead utilized in the TCA cycle for oxidative phosphorylation and 

biosynthetic processes such as lipogenesis (5,6). Moreover, lipid metabolism is a highly 

androgen-sensitive process in prostate cancer cells (7) and lipid composition may therefore 

be a unique cellular readout of both androgen targeting and tumorigenesis. While panels of 

circulating plasma lipids have previously been associated with prostate cancer risk (8), 

diagnosis (9) and patient outcome (10), analysis of the prostate tumor lipidome has largely 

been confined to cell line-based studies (11-13), which lack clinical relevance. The recent 

evidence of malignancy-related changes in lipid composition of prostate tumors provided by 

mass spectrometry-based imaging studies (14-17) supports undertaking a more detailed and 

quantitative study of the clinical prostate cancer lipidome. Moreover, treatment-related 

changes in the lipidome, which may reveal new resistance-related vulnerabilities, remain 
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completely unexplored.   

To gain insight into the potentially targetable changes in the lipid composition of prostate 

cancer, we employed a quantitative mass spectrometry-based lipidomics approach coupled 

with mass spectrometry imaging to robustly analyze and visualize a wide range of intact 

phospholipid (PL) species in malignant and matched non-malignant tissues. Our results 

provide the first comprehensive picture of the lipidomic landscape in a clinical cancer context 

and reveal robust associations with malignancy. We further demonstrate treatment-related 

changes in the lipidome accompanying response to enzalutamide, an AR antagonist widely 

used in the management of prostate cancer, in patient-derived explants (PDEs) of clinical 

prostate tissues. Finally, we report that an inhibitor of acetyl CoA carboxylase was effective 

in pharmacologically targeting the most recurrent lipidomic alterations observed.  

 

Results 

Tumor-specific lipid profiles are evident in clinical prostate tumors. Spatial variation in 

PL composition was initially assessed in a set of clinical prostate tumors that contained 

discrete benign and malignant areas of epithelium within the same tissue section, using 

MALDI-mass spectrometry imaging (MALDI-MSI). Shown in Figure 1A is a representative 

tumor in which comparison of spectral data from these regions revealed a tumor-specific PL 

composition that was distinct from that detected in pathologically benign epithelium or a 

region of high-grade prostatic intraepithelial neoplasia (PIN) from the same patient (Figure 

1B; Supplementary Figure 1A). Distinct PL mass spectra and specific masses (eg m/z 

756.53, Figure 1A) were consistently detected in multiple independent tumor regions 

assessed across 3 individual PCa patients (Supplementary Figure 1B,C), consistent with 

recent reports (16,17) that characteristic changes in lipid composition accompany prostate 

tumorigenesis. 

In light of these findings, we undertook a more detailed examination and quantification of 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.356634doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.356634


 6 

tumor-related changes in PL composition using shotgun lipidomics incorporating 

electrospray tandem mass spectrometry in pathologist-microdissected regions of prostate 

tumor and matched benign tissues from 21 prostate cancer patients (Figure 1C). 

Clinicopathological data for the patients are summarized in Supplementary Table S1. Using 

this methodology, a total of 108 PL species of the four most abundant subclasses (PC, PE, 

PS and PI) could be detected and quantified. PL profiles of both cancer and normal tissues 

were dominated by PC species, and the total proportion of PC lipids was greater in tumor 

than in benign tissues for this cohort (Supplementary Figure 2A; p<0.05). There was a 

significant tumor-specific increase in the collective abundance of PL species with 1 or 2 

double bonds, most evident in the PC lipids (Figure 1D). As these mainly represent species 

with one or two monounsaturated fatty acyl (MUFA) chains, this shift altered PL composition 

towards a greater overall proportion of MUFAs in the tumors, consistent with a lipogenic 

tumor phenotype (11).  

Shown in Figure 1E is a circle plot summarizing the individual tumor-related lipidomic 

changes for this cohort of patients. PL are annotated by “lipid subclass” followed by the “total 

fatty acyl chain length:total number of unsaturated bonds” (eg PC34:1). The species in each 

PL class are ordered from fully saturated to highly polyunsaturated and, within each 

subgroup, from shortest to longest (combined) acyl chain length. When considering the 

relative abundance of individual PL species, consistent patterns of change in PL saturation 

groups were more evident within certain lipid classes (Figure 1E, outer circle). Most notably, 

PC species had tumor-related increases in fatty acyl chains containing 1 or 2 double bonds, 

indicative of MUFAs, accompanied by relative decreases in polyunsaturated (PUFA; ≥3 

double bonds) and fully saturated (0 double bonds) species. In PS species, however, 

marked increases in long PUFA species were evident across multiple saturation groups in 

tumor compared to benign tissue. 

Consistent changes across patients were also detected in the fatty acyl chain lengths of 

tumor PLs. To most optimally visualize altered acyl chain length, we expressed the 
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abundance of each PL species in tumors and matching benign tissue relative to the shortest 

PL species of each saturation subclass (Figure 1E, inner circle; denoted “elongation index”). 

Whereas substantial heterogeneity in fatty acyl chain length existed between individual 

patients for PC and PE lipids (Supplementary Figure 2B), almost every tumor exhibited 

increased combined acyl chain length over multiple saturation groups of the PI and PS 

classes compared to normal tissue, particularly for polyunsaturated species (Figure 1D; 

Supplementary Figure 2B). This was validated within the cohort as a significant increase in 

average chain length for polyunsaturated PI and PS lipids (Supplementary Figure 2C). 

Associations between Lipid Profiles and Malignancy. Based on the above observations, 

we investigated whether there were associations between any lipid measures and sample 

malignancy status. Linear mixed effects models regressed PL measures from malignant 

samples onto the equivalent values from benign samples, adjusting for age and batch. We 

specifically considered i) abundance of individual PL species, ii) saturation group abundance 

and iii) fatty acyl chain length per saturation group. The permutation analysis indicated that 

there were associations between lipid profile and malignancy beyond what would be 

expected by chance (Supplementary Figure 3A; permutation p<0.001). Of the 51 lipid 

features most strongly associated with malignant versus benign prostate tissue, 34 were 

individual lipid species (Figure 2A & Supplementary Table S2), five were mean chain 

lengths within saturation groups and 12 were overall saturation group abundance 

(Supplementary Figure 3B & Table S2). As expected, certain individual species cross-

correlated within and across head group classes (Figure 2B). 

We subsequently assessed whether similar malignancy-associated lipidomic profiles would 

also be evident in an independent collection of 47 non-patient matched tissue specimens 

comprising 26 tumors and 21 benign samples (Figure 2C). A greater range of lipids were 

measured in this cohort (n=248), and included sphingomyelins (SM), ceramides (Cer) and 

lysoPLs (containing only 1 fatty acyl chain) in addition to the main four PL classes analyzed 

above. Using the same criteria as for the paired cohort, a substantial signal was again 
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detected in terms of FDR for significant associations between lipid features and sample 

malignancy (Supplementary Figure 3A). Associations were detected for 64 lipid features, 

including 44 individual lipid species (FDR=0.03; permutation p<0.001; Supplementary 

Figures 3C,D,E and Supplementary Table S3).  

There was considerable overlap in the lipid features identified in both cohorts, and by 

combining data from both cohorts, we identified a series of lipids that robustly associated 

with prostate tumor malignancy (Table 1). Shown in Figure 2D are representative examples 

of these lipids demonstrating concordant associations with malignancy across the individual 

cohorts and batches, which included the abundance of monounsaturated PC lipids (PC1 SA), 

individual lipids PE42:6 and PI36:4, and chain length in monounsaturated PI lipids (PI1 CL). 

Consistent with these data, MALDI-MSI on two patient tissues imaged in negative ion mode 

revealed the expected changes in relative abundance of masses corresponding to PE42:6 

(m/z 818.5) and PI36:4 (m/z 857.5) in malignant versus non-malignant regions of the tissues 

(Figure 2E; box plots of normalized mass intensity shown adjacent to ion map images; 

Supplementary Figure 4). 

While the tumor cohort size limited our ability to detect associations with clinical parameters 

such as serum PSA (Supplementary Figure 5B; permutation p=0.79) and Gleason Score 

(Supplementary Figure 5B,C; permutation p=0.24), there was evidence for weak 

associations between lipid profile and TMPRSS2-ERG subtype (Supplementary Figure 

5B,D,E and Table S4; permutation p=0.05) and proliferation (Ki67 positivity index) in 

malignant samples (Supplementary Figure 5A,F and Table S5; permutation p=0.10).  

Lipid profile is altered by AR inhibition in patient-derived tumor explants. From the 

cohort of 47 unmatched samples analyzed above, 43 of the samples were also cultured ex 

vivo as patient-derived explants (PDEs) in the absence and presence of the clinical 

antiandrogen, enzalutamide (ENZ; n=24 cultured with 10μM ENZ, n=19 cultured with 10μM 

and 50μM ENZ; Figure 3A). This provided the unique opportunity to examine dynamic, 
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treatment-related changes in lipid composition using patient-matched samples. Ex vivo 

culture alone had a minimal effect on lipid profile; 80% of lipid species had a correlation >0.5 

between uncultured and cultured tissues (Supplementary Figure 6A). Transcript profiling and 

gene set enrichment analysis performed on a subset of these samples (n=12) confirmed 

significant downregulation by ENZ (10μM) of androgen signaling and multiple pathways 

associated with metabolism (Figure 3B). Independent qPCR validation confirmed the 

decrease in expression of canonical AR target genes kallikrein 3 (encoding prostate specific 

antigen) and kallikrein 2 gene across the majority of samples (Supplementary Figure 6B). As 

expected based on clinical trial outcomes (18,19), the PDEs showed substantial 

heterogeneity in proliferative response to ENZ, measured as change in Ki67 proliferative 

index from matched vehicle-treated tissue (Figure 3C). The above features of the ENZ-

treated PDEs were conducive to analysis of treatment-related dynamic changes in PL profile, 

and associations with decreased Ki67 index in individual samples.  ENZ-related changes in 

18 PL variables (including 15 individual species, featuring long-chain PC and PE lipids) were 

associated with Ki67 proliferation index (Supplementary Figure 6C and Supplementary 

Table S6; Figure 3D). MALDI-MSI analysis of a subset of PDE tissues indicated that the 

majority of individual response-related lipids identified reflected the epithelial regions of the 

tumors, and treatment-related changes in abundance were evident (example of PC34:1 

shown in Figure 3E, boxplots in Supplementary Figure 6D). Dynamic changes in PL profile 

were therefore associated with response to AR inhibition across this cohort of PDEs. 

Targeting lipidomic changes in clinical tumors suppresses cellular proliferation. To 

determine whether the cancer-associated alterations in PL composition directly influence 

cellular proliferation, or merely accompany tumorigenesis, we pharmacologically targeted 

two of the key lipidomic changes we detected (i.e. enhanced lipogenesis and elongation of 

fatty acyl chains in the PLs) in patient-derived explants (PDEs) of clinical prostate tissues. 

Inhibition of acetyl CoA carboxylase (ACC1/2), which depletes the cellular content of malonyl 

CoA, was selected as a strategy to simultaneously inhibit both synthesis and elongation of 
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fatty acids (Figure 4A). We utilized PF-05175157, an ACC1/2 inhibitor (20), as a proof of 

principle tool. Culture of PDEs with PF-05175157 (50μM) for 48 or 72 hours (Figure 4B) 

markedly suppressed epithelial cell proliferation in the tumors (n=13) compared to matched, 

vehicle-treated control tissues (Figure 4C). Enhanced epithelial staining of pACC1, a marker 

of ACC inhibition by PF-05175157 in prostate cancer cells (Supplementary Figure 7B), 

confirmed that the agent was effectively targeting ACC activity in the tumors (p<0.01; Figure 

4D). Moreover, PL profiling by mass spectrometry revealed a pronounced shortening of PL 

fatty acyl chains in the majority of PF-05175157-treated tumors (Figure 4E; Supplementary 

Figure 7). Together, these data link the efficacy of PF-05175157 to ACC1 inhibition in the 

tissues. 

 

Discussion 
 
Using mass spectrometry-based lipidomics to sensitively quantify and visualize PL species 

in clinical tissues, we have provided new insight into the changes in lipid composition that 

accompany prostate cancer development. Moreover, this is the first report of dynamic, 

treatment-related changes in lipidomic profiles and the efficacy of targeting lipid metabolic 

enzymes in a clinical tissue context. This study therefore moves beyond previous cell line-

based approaches to demonstrate that, despite the observed heterogeneity at the level of 

individual lipid species, recurrent and clinically-actionable changes in PL metabolism can be 

detected in tumors; some of which may represent common vulnerabilities. Lipidomic profiling 

of prostate tumor biopsies, possibly guided by imaging approaches as highlighted in several 

recent reports (16,17), has the potential to provide new information about disease features 

and, potentially, patient responsiveness to therapeutics such as enzalutamide. 

While robustly associated with sample malignancy, PL profile was only weakly linked to the 

most common clinicopathological characteristics of prostate cancer; PSA levels and Gleason 

score. While this may reflect limitations in the sample size of our cohorts, it also raises the 

possibility that lipidomic profiling may provide independent information regarding tumor 
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biology and prognosis. Moreover, the associations we detected between lipid profiles and 

the TMPRSS2-ERG molecular subtype and Ki67 proliferative index are interesting 

observations that warrant further investigation in larger independent tissue cohorts, 

particularly in light of our recent report of Ki67 status in localized prostate cancer being a 

significant predictive biomarker of subsequent metastatic relapse (21). 

Despite differences in the breadth and scope of lipid classes measured, certain key cancer-

related changes in PL profile reported here support the findings of previous imaging-based 

studies, notably for altered abundance and/or elongation of PC and PI-based lipids and 

ceramides (reviewed in (2,22)). While the functional consequences of individual lipid 

changes remain to be elucidated, PI lipids are of fundamental importance in cancer cells as 

they form the membrane scaffold for kinase and phosphatase activity that supports 

oncogenic signaling. Moreover, altered acyl chain length of PI-based lipids has been linked 

to p53 mutational status (23), a common genomic alteration in clinical prostate cancer. The 

results are also largely consistent with our earlier observed overexpression of lipid synthetic 

enzymes, such as FASN, in cancer cells, which correlates with a shift towards MUFA-

containing species, at the expense of PUFA-containing species (11). Similarly, the tumor-

related shift from saturated to monounsaturated PC species that we found to be significantly 

associated with sample malignancy is concordant with the earlier observed overexpression 

of SCD in certain cancer tissues (24-27). The novel changes in acyl chain length and head 

group switches that we detected may be related to reported alterations in enzymes involved 

in acyl chain elongation including ELOVL enzymes, modulators of malonyl-CoA levels 

including ACC, FASN and malonyl-CoA decarboxylase and head group-modifying enzymes 

including PS decarboxylase (28-32). Tumor-specific activation/inactivation patterns of these 

individual enzymes, most likely driven by tumor-specific oncogenic signaling (33-38), may 

lead to the unique phospholipid profile that is characteristic for every individual tumor. In 

view of the evidence that the lipid composition of cellular membranes affects numerous 

aspects of cell biology (reviewed in (39)), including membrane fluidity and curvature, vesicle 
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formation, signal transduction (40), ion channel activity (41,42), susceptibility to lipid 

peroxidation (11), resistance to oxidative stress (11), energy metabolism (43), and uptake 

and response to chemotherapeutics (11), even subtle changes within the lipidome may be 

critical to support the cancer phenotype and treatment resistance. Given the lipidome is an 

integration of oncogenic events and an effector of numerous cancer-related processes, it is 

expected that the tumor lipidome holds significant potential for biomarker discovery and 

identification of novel targets that may be used in a theranostic setting (44).  

While inter-patient heterogeneity was evident in PL profiles from clinical prostate tissues in 

the current study, particularly at the individual lipid species level, more consistent changes in 

broader lipid metabolic processes were evident. Notable among these were proportionally 

higher fatty acid monounsaturation, and elongation of the PL fatty acyl chains. Considering 

these phenotypes, inhibition of acetyl CoA carboxylase (ACC) presented an appealing 

approach to simultaneously target de novo biosynthesis and elongation of intracellular fatty 

acids by restricting production of the substrate for long chain fatty acid biosynthesis, malonyl 

CoA (45,46). To date, the focus for development of ACC inhibitors has been their ability to 

inhibit de novo lipogenesis and increase fatty acid oxidation, thereby reducing lipid 

accumulation and improving insulin sensitivity in patients with diabetes or non-alcoholic liver 

steatosis. There has, however, been considerable interest in repurposing these agents for 

oncology, particularly for lipogenic tumors such as prostate and breast, in which potential 

side-effects would be less of a concern. Here, as proof of principle, we utilized a spiroketone 

derivative ACC1/2 inhibitor, PF-05175157, developed by Pfizer as a clinical agent for 

treatment of Type 2 diabetes and non-alcoholic hepatic steatosis (20). Our results show 

marked efficacy for this agent in reversing the chain elongation phenotype and reducing 

epithelial cell proliferation in clinical PDEs, raising the promise that this class of agents may 

be efficacious in clinical prostate cancer. While the possibility of off-target effects of this 

compound contributing to its antiproliferative effects cannot be discounted, we have used 

two lines of evidence to associate efficacy with ACC inhibition in the tissues. First, we 
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assessed the tissue levels of Ser79-phosphorylated ACC1, which is the inactive form of 

ACC1, the predominant isoform in prostate cells. This phosphorylation was induced by PF-

05175157 treatment of prostate cancer cells and in PDEs. Second, our PL profiling of the 

treated tissues revealed consistent shortening of the fatty acyl chains, indicative of 

decreased elongation reactions. Taken together, our findings provide the first evidence that 

ACC inhibition can be achieved in the context of a complex tumor microenvironment and 

provide impetus for further investigation of ACC inhibition in prostate cancer. In light of the 

marked tumor-associated changes in fatty acyl chain saturation, and particularly 

monounsaturation, future studies targeting desaturases such as SCD1, shown recently to be 

a promising therapeutic target in prostate cancer (47), would also distinguish causality from 

association for this alteration. 

In summary, the cancer-related changes in PL profiles we have detected in clinical tissues 

strengthen the case for lipidomics as a source of novel molecular cancer biomarkers and 

therapeutic targets, as well as an indicator of the underlying biology from which PL profiles 

are derived.  Defining subtypes of lipid profile in tumors, rather than immortalized cell lines, 

and the underlying mechanisms in this and other association-based studies are all critical 

future endeavors if key components of lipid metabolism are to be effectively targeted in 

clinical disease. The heterogeneity of PCa evident from our work reinforces the concept that 

such approaches must also be personalized to the individual patient’s biology. Our findings 

warrant further functional investigation of lipidomes in other cancer types, to unravel the 

molecular mechanisms underlying these changes and to explore the impact on membrane 

functioning and, ultimately, on cancer development and progression.  

 

Materials and Methods 

 

Tissue collection  
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A. Matched normal/tumor cohort. Prostate tumor tissues with matching normal samples 

were obtained from patients who had undergone radical prostatectomy (Centre Hospitalier 

Universitaire de Liège, Belgium). Samples were snap-frozen and stored at -80°C for lipid 

and protein extractions. Normal and tumor tissues were identified by histological analysis of 

adjacent tissue, Gleason scores were determined and the percentage of cancer was 

estimated (48). All tumor samples used for lipidomics were verified to contain at least 75% 

prostate adenocarcinoma by histological examination. The Local Commission for Medical 

Ethics and Clinical Studies at the University of Liège approved the use of clinical samples. 

Approval to perform lipidomics analysis on clinical samples was obtained from the local 

Ethical Committee of KU Leuven. 

B. Unmatched patient tissue cohort. Prostate tissues were collected with written informed 

consent from patients undergoing radical prostatectomy at St Andrew’s Hospital, Adelaide, 

Australia.  A longitudinal section of each tissue was removed prior to ex vivo culture 

(described below). Half was snap frozen and the remainder fixed in formalin and paraffin 

embedded for assessment by a pathologist. Ethical approval for tissue collection and 

experimentation was obtained from St Andrew’s and the University of Adelaide Human 

Research Ethics committees. Histopathologic features of all tumors used in this study are 

detailed in Supplementary Table 1; an additional 5 patients with only benign prostatic 

hyperplasia and no evidence of cancer were also analyzed with this cohort. 

 

Ex vivo culture of primary prostate tissues. Prostate specimens were dissected and 

cultured as patient-derived explants for 48 hours in the presence and absence of 

enzalutamide (ENZ; Selleckchem; 10 or 50μM) or the ACC1/2 inhibitor PF-05175157 (Pfizer; 

50µM), as previously described (49). In each case, following culture, tissue was either 

formalin-fixed and paraffin embedded for histology or snap frozen for lipidomics and/or RNA 

extraction. 
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MALDI mass spectrometry imaging. Frozen sections of prostate tissue (10μm) were thaw-

mounted on super-frost ultraplus microscope slides and matrix (10mg/ml α-CHCA in 

methanol) applied to tissue sections by sublimation. The sections were analyzed on a 

MALDI SYNAPT HDMS Mass Spectrometer (Waters Corporation, Manchester, UK). The 

laser raster-size was set at 60µm (x,y) and off-tissue areas provided QC spots for data 

filtering. MALDI raw spectrum files were converted to MSI data files by high definition 

imaging (HDI) software (Waters Corporation, Manchester, UK). The data processing settings 

were resolution 8,000 full-width half-height (FWHM) at mass window of 0.02 Da at a 

(restricted) mass range of m/z 400-990 Da. The top 1000 mass features were selected for 

processing and statistical analysis was carried out using the web-based MetaboAnalyst R 

package (48). The MSI ion map were overlaid or aligned to adjacent pathologically 

annotated histopathology images to identify morphological regions of interest (ROIs). 

Equivalent number of data points (3 pixels/mass spectra) from multifocal adenocarcinoma 

areas and off-tissue regions were selected. The data points were then exported as a 

single .csv file in the form of ROI’s vs mass features with relative intensity (abundance) as 

the variable. Before import into MetaboAnalyst, the data was filtered in R studio 3.4.4 using 

baseline packages. The pre-filtered .csv files were uploaded into MetaboAnalyst R in the 

format of spectral bins, data filtering was done by inter-quantile range and data was 

normalized by log transformation and pareto scaling. Heatmaps were generated by 

hierarchical clustering and top 25 mass features (identified by ANOVA) were visualized. 

Principal component analysis (PCA) score plots indicated the relative variation of multifocal 

ROI’s based on distribution of lipid species. For negative ion mode imaging, the 

methodology was adapted as follows: Norharmane matrix  (7 mg/mL) (Sigma-Aldrich) in 

CHCl3:MeOH (7:3 v/v) was applied to the tissue sections with a SunCollect sprayer 

(SunChrom, Friedrichsdorf, Germany). Data processing settings were resolution 8,000 

FWHM at mass window of 0.02 Da at a (restricted) mass range of m/z 50-990 Da. Full-scan 

MSI data was imported into Python and a custom script used for ROI selection. All images, 
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mass spectra and boxplots were generated after total ion current normalization of the 

acquired data. 

 

For validation of ESI-MS/MS data in patient-derived explants, we conducted MALDI imaging 

using a timsTOF FleX mass spectrometer (Bruker Daltonik, Bremen, Germany). Briefly 10 

µm thick frozen tissue sections were thaw mounted onto ITO slides, spray coated with ca 

500 µL of 7 mg/mL αCHCA matrix using a SunCollect MALDI sprayer (Sunchrom GmbH, 

Friedrichsdorf, Germany).  Data were acquired with a 20 µm pixel size and a 20 µm laser 

step-size over m/z 50-1250.  Imaging data was imported into SCiLS Lab 2020a (Bruker 

Daltonik, Bremen, Germany). Spectra were normalised to total ion count, with weak 

denoising, and segmentation analysis was preformed using bisecting k-means algorithm 

with correlation distance metric in SCiLS Lab. Segments which aligned with the epithelia in 

matched H&E stained sections were selected for each tissue. Box plots of the relative 

intensity of m/z of interest were generated from these segments.  

 

ESI-MS/MS-based lipidomics. Lipid extracts were generated by homogenizing 

approximately 40mg of tissue in 800µl PBS with a Dounce or a Precellys (Bertin 

Technologies) homogenizer. An aliquot of 100µl was set aside for DNA quantification. The 

remaining 700µl was transferred to a glass tube with Teflon liner and 900µl 1N HCl:CH3OH 

1:8 (v/v), 800µl CHCl3 and 500µg of the antioxidant 2,6-di-tert-butyl-4-methylphenol (BHT) 

(Sigma, St. Louis, MO) were added. DNA concentration was measured using Hoechst 

33258 reagent (Calbiochem, La Jolla, CA). The appropriate lipid standards (Avanti Polar 

Lipids Inc., Alabaster, AL) were added based on the amount of DNA of the original sample 

(per mg DNA: 150nmol PC26:0; 50nmol PC28:0; 150nmol PC40:0; 75nmol PE28:0; 

8.61nmol PI25:0 and 3nmol PS28:0). After mixing for 5 min in a rotary shaker and phase 

separation (by centrifugation at 17300xg, for 5 min at 4°C), the lower organic fraction was 

collected using a glass Pasteur pipette and evaporated using a Savant Speedvac spd111v 

(Thermo Fisher Scientific, Waltham, MA). The remaining lipid pellet was covered with argon 
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gas and stored at -20 °C. Before ESI-MS/MS measurement, lipid pellets were reconstituted 

in diluent (CH3OH:CHCl3:NH4OH; 90:10:1.25, v/v/v) according to the amount of DNA in the 

original cell sample (1µl diluent / 1µg DNA). Phospholipid species were analyzed by ESI-

MS/MS on a hybrid quadrupole linear ion trap mass spectrometer (4000 QTRAP system; 

Applied Biosystems, Foster City, CA) equipped with an Advion TriVersa robotic nanosource 

for automated sample injection (Advion Biosciences). For quantification of individual 

phospholipid species, the system was operated in multiple reaction monitoring (MRM) mode. 

MRM transitions were built based on the release of the phospholipid head group as ion or as 

neutral species during tandem MS experiments. Analysis was performed using Rapid Lipid 

Profiling v2.2. Data were corrected for carbon isotope effects. Blank samples consisting of 

only diluent were measured to determine background signals. Only phospholipid species 

with an intensity > 5-fold the intensity of the blank were considered true signals. PL were 

annotated using “lipid subclass” and the “C followed by the total fatty acyl chain length:total 

number of unsaturated bonds”. The circle plot of lipidomic alterations was generated using 

the circlize R package (50). 

 

RNA extraction and sequencing. RNA was extracted from cultured PDE tissues as 

previously described (51). Total RNA samples were treated with Ribo-Zero to deplete rRNA 

prior to library construction with the Illumina TruSeq RNA kit. Sequencing was performed on 

an Illumina NextSeq 500 to generate 1×100bp single-end reads. Library preparation and 

sequencing were performed at the Genomics Facility of the South Australian Health and 

Medical Research Institute (Adelaide, Australia). The quality and number of reads for each 

sample were assessed with FastQC v0.11.3. Adaptors were trimmed from reads, and low-

quality bases, with Phred scores < 28, were trimmed from ends of reads, using Trimgalore 

v0.4.4 . Trimmed reads of <20 nucleotides were discarded. Reads passing all quality control 

steps were aligned to the hg38 assembly of the human genome using TopHat v2.1.1 (52) 

allowing for up to two mismatches. Reads not uniquely aligned to the genome were 

discarded. HTSeq-count v0.6.1 (53) was used with the union model to assign uniquely 
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aligned reads to Ensembl Hg38.86-annotated genes. Data were normalized across libraries 

by the trimmed mean of M-values (TMM) normalization method, implemented in the R v3.5.0, 

using Bioconductor v3.6 EdgeR v3.20.9 package (54). Only genes expressed at a count-per-

million above 0.5 for at least 18 out of 36 samples were analysed for evidence of differential 

gene expression. Differentially expressed genes were identified using the quasi-likelihood 

negative binomial generalized log-linear model implemented in EdgeR and were defined as 

having an FDR adjusted P value of < 0.05. Gene Set Enrichment Analysis (GSEA) was 

undertaken using camera() function in the R limma v3.34.9 package. 

 

Immunohistochemical Staining. Sections (3μm) of paraffin-embedded cultured patient-

derived explants were immunostained essentially as described previously (49). Briefly, 

antigen retrieval was performed using Tris-EDTA buffer, pH 6.5 using a Biocare Medical 

Nexgen decloaker at 115°C for 15 min. Tissue slides were then incubated at room 

temperature with 10% goat serum block.  Primary antibody against Ki67 (DAKO, M7240; 

1:200), ERG (Abcam, ab92513; 1:400) or pACC1 (Cell Signaling, 3661S; 1:400) was applied 

and slides incubated overnight at 4°C. Secondary antibody anti-rabbit (DAKO E0432, Lot 

#20027287) was applied for one hour, followed by HRP-conjugated streptavidin (DAKO, 

P0397, Lot #20040879) at 1:500 for one hour and visualization by DAB. 

 

Statistical Analysis. 

Matched patient tissues: Cohort A. In the n=21 sample with matched tumour and disease 

free tissue a mixed effects regression of the within individual difference in lipid variable 

adjusting for lipid variable in normal tissue sample and individuals age. A random intercept 

was included per batch, error variance was allowed to differ with batch, and a compound 

symmetry correlation structure for errors within batches (R package nlme). Restricted 

maximum likelihoods of this full model is compared with a reduced model without the error 

variance and correlation structure and the full model chosen only when 2 times the 

difference in log likelihoods exceeded the 95th percentile of χ2(df=1)=3.84. The lipid 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.27.356634doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.356634


 19 

variables consisted of log2 transformed species abundance, saturation group abundance 

and saturation group mean chain length. Prior to these calculations lipid species 

abundances in each sample were standardized to the median abundance across all samples 

(ref Dieterle et al 2006). 

 

Unmatched patient tissues: Cohort B. In the cohort of n=47 with single tissue samples per 

individual, for associations with sample malignancy similar mixed effects regression to those 

described above (same random effects structure) were constructed for each lipid variable as 

outcome, however the only fixed effect covariate was age. In the subset of 28 individuals 

with malignant samples associations between lipid variables and serum PSA employed the 

same mixed effects regression models with sample malignancy replaced by log transformed 

PSA as a fixed effect and sample Gleason score included as an additional covariate.  

 

Proliferation associations. For associations with Ki67 both in Day 0 samples and in vehicle 

vs ENZ treated samples we analyze repeated count data across fields of view within a 

sample using a beta-binomial mixed effects regression (R package glmmTMB). In the Day 0 

analyses, the lipid variables are the primary predictors of interest with batch and age being 

included as fixed effect covariates. In the treated samples, the primary predictor of interest is 

the batch-adjusted difference between ENZ and vehicle, with batch, age and lipid variable 

vehicle as fixed effects. In all models, a random intercept is included per individual, with a 

logit link for the mean Ki67 cell positivity prevalence. 

 

For each set of outcomes the distribution of p-values for the species abundance 

associations is assessed to determine the presence of a signal (deviation from the uniform 

distribution)  (55) and the FDR reported for the number of significant associations defined as 

p<0.01. To address concerns that an apparent signal may be due to a combination of 

insufficient comparisons and clustering between lipid species, we perform a permutation test 

with 1000 permutations of the clinical outcome, and define the fraction of significant 
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associations are beyond that observed in the original cohort as the permutation p-value. 

These permutation analyses are performed within batches and where appropriate within 

malignancy groups, and by design retain the between lipid correlation structure. 

 

Other statistical analyses. Statistical analysis for lipid or immunostaining quantification and 

PDE ex vivo culture experiments, was carried out using GraphPad Prism software v7.02 

(2016, GraphPad Software). Significance was measured by two-tailed unpaired t-test or one-

way ANOVA with Dunnett’s multiple comparison test as indicated. Significance is expressed 

as *P < 0.05, **P < 0.01 and ***P < 0.001. 
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Table 1. Conserved lipid associations with malignancy in clinical prostate samples. 

Variable Lipid ID Est [95%CI] p-value 
Lipid abundance PI 38:6 -0.35 [-0.36, -0.33] 6.52E-19 

 PI 40:6 0.19 [0.18, 0.21] 1.78E-14 
 PS 40:8 1.10 [1.00, 1.20] 6.40E-14 
 PC 36:4 -0.56 [-0.64, -0.49] 3.51E-11 
 PC 34:1 0.17 [0.14, 0.20] 5.81E-10 
 PC 40:4 -0.45 [-0.57, -0.33] 1.18E-06 
 PI 38:5 -0.68 [-0.89, -0.48] 4.51E-06 
 PS 42:8 0.70 [0.50, 0.90] 2.20E-05 
 PS 42:2 -0.26 [-0.35, -0.16] 4.08E-05 
 PS 42:4 -0.23 [-0.32, -0.14] 8.25E-05 
 PE 42:6 0.75 [0.44, 1.06] 0.000149 
 PI 36:4 -0.68 [-0.96, -0.39] 0.000203 
 PE 42:5 0.51 [0.29, 0.74] 0.000255 
 PS 38:4 -0.66 [-0.96, -0.36] 0.000399 
 PC 38:4 -0.52 [-0.77, -0.27] 0.000693 
 PS 36:2 -0.32 [-0.48, -0.16] 0.000753 
 PS 36:1 -0.46 [-0.68, -0.23] 0.000789 
 PC 32:0 -0.66 [-0.98, -0.33] 0.000832 
 PS 38:3 -0.72 [-1.08, -0.36] 0.000942 
 PC 40:6 -0.36 [-0.55, -0.18] 0.001045 
 PS 38:6 -0.82 [-1.24, -0.40] 0.001116 
 PE 40:4 0.042 [0.02, 0.065] 0.001414 
 PC 38:5 -0.38 [-0.59, -0.18] 0.001489 
 PE 38:7 0.36 [0.17, 0.56] 0.001681 
 PI 38:4 -0.50 [-0.80, -0.20] 0.001944 
 PC 36:5 -0.40 [-0.60, -0.20] 0.002105 
 PS 44:6 0.52 [0.23, 0.81] 0.002306 
 PI 36:1 0.51 [0.22, 0.80] 0.00274 
 PS 42:9 0.47 [0.19, 0.75] 0.003707 
 PS 40:4 -0.48 [-0.77, -0.20] 0.003719 
 PE 42:9 0.45 [0.16, 0.73] 0.005855 
 PE 40:6 0.36 [0.13, 0.60] 0.006456 
 PE 40:8 0.28 [0.10, 0.46] 0.006487 
 PC 40:5 -0.30 [-0.50, -0.10] 0.008872 

Mean Chain Length PE 3 -0.13 [-0.14, -0.12] 7.43E-14 
 PS 1 0.13 [0.07, 0.18] 0.000187 
 PE 6 0.11 [0.06, 0.15] 0.000209 
 PI 1 0.19 [0.11, 0.27] 0.000231 
 PS 3 0.096 [0.048, 0.144] 0.000948 

Saturation Abundance PC 6 -0.0021 [-0.0024, -0.0017] 6.10E-10 
 PI 2 0.013 [0.01, 0.015] 2.16E-08 
 PE 3 0.0029 [0.0022, 0.0037] 9.74E-07 
 PS 8 0.0036 [0.0026, 0.0046] 1.82E-06 

 PS 9 
0.00078 [0.00048, 

0.00108] 6.25E-05 
 PC 4 -0.038 [-0.056, -0.021] 0.00046 
 PC 1 0.066 [0.033, 0.098] 0.000959 
 PC 5 -0.0071 [-0.0107, -0.0034] 0.001172 
 PI 5 -0.0016 [-0.0025, -7e-04] 0.002608 
 PS 3 -0.0088 [-0.0139, -0.0036] 0.003266 
 PC 0 -0.013 [-0.021, -0.005] 0.004081 
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 PS 4 -0.0079 [-0.0133, -0.0025] 0.009611 
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Figure legends 

Figure 1. Evidence for a tumor-associated phospholipidome in clinical prostate 

cancer. A. MALDI-mass spectrometry imaging of pathologically heterogeneous prostate 

tissue, including ion maps of two representative examples of histology-restricted lipid 

masses. B. principal component analysis of the top 25 mass features distinguishing benign 

from malignant regions of tissue. C. Workflow for shotgun lipidomics analysis of matched 

normal and tumor tissues from 21 prostate cancer patients. D. Relative proportions of 

phospholipids containing 0 (SFA), 1 or 2 (MUFA), or 3 or greater (PUFA) unsaturations in 

benign versus tumor specimens. E. Circle plot of tumor-related lipidomic changes in relative 

abundance and fatty acyl chain elongation across the patient cohort. The outer circle 

represents the ratio of median-adjusted normalized abundance of individual lipid species in 

tumor versus benign tissues. * reflects significant association with tumor tissues. The inner 

circle represents fatty acid elongation index in tumor versus benign tissues. PL are 

annotated using “lipid subclass” followed by the “total fatty acyl chain length:total number of 

unsaturated bonds”. 

Figure 2. Associations of phospholipid profile with malignancy. A. Phospholipid 

variables significantly associated with tumor versus matched benign tissues in Cohort A. B. 

Correlation plot of individual phospholipid species significantly associated with sample 

malignancy in Cohort A. C. Workflow for lipidomics analysis of unmatched patient tissue 

cohort B (n=47). D. Box plots of representative examples of different phospholipid variables 

significantly associated with sample malignancy across both patient cohorts A and B. E. 

MALDI-mass spectrometry imaging of ion masses corresponding to PE42:6 (m/z 818.5) and 

PI36:4 (m/z 857.5) in 2 independent prostate cancer tissues, with box plots of normalized ion 

intensity between non-malignant and malignant tissues regions adjacent to the images. 

Figure 3. Associations between phospholipid profile and tumor response to the 

clinical antiandrogen enzalutamide (ENZ). A. Variation in proliferative response of 

prostate tissues to ENZ across cohort B. Upper panel: Patient-derived explant culture setup 
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for prostate tissue from Cohort B and Ki67 immunohistochemistry in a representative set of 

patient samples. Lower panel: Waterfall plot of individual patient response to ENZ, 

measured as log2fold change in Ki67 proliferative index. B. Gene set enrichment analysis for 

transcriptomic data from enzalutamide treated versus vehicle control tissues (n=12 patients). 

C. Correlation plots of phospholipid species whose change in abundance is significantly 

associated with response (change in Ki67 index) to ENZ (p<0.01). D. MALDI-mass 

spectrometry imaging of ion mass corresponding to PC34:1-H+ in 2 independent prostate 

cancer tissue cores from a single patient, showing epithelial localization and ENZ-related 

change in abundance. 

Figure 4. Efficacy of acetyl CoA carboxylase inhibition in patient-derived prostate 

explants. A. The ACC1/2 inhibitor PF-05175157 targets fatty acid synthesis and chain 

elongation. B. Patient-derived explant culture setup and workflow. C. Antiproliferative activity, 

measured by Ki67 proliferative index, of PF-05175157 (50μM) compared to vehicle-treated 

matched control tissue in patient-derived explants (PDEs; n=13 patients). D. 

Immunohistochemical detection and quantification of pACC1 intensity in PDEs cultured in 

the absence and presence of PF-05175157. E. Treatment-induced alterations (expressed as 

log2-fold change in the heatmap) in PC phospholipid abundance for PDEs cultured with PF-

05175157. Altered relative fatty acyl chain length for the upper cluster of PDEs are further 

visualized graphically. 
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Supplementary Figure Legends 

Supplementary Figure 1. MALDI-mass spectrometry imaging of regions of interest in 

pathologically heterogeneous prostate tissue from 3 individual prostate cancer patients, 

including ion maps of two representative examples of histology-restricted lipid masses, 

principal component and heatmap analysis of the top 25 mass features distinguishing benign 

from malignant regions of tissue for each patient. 

Supplementary Figure 2. Cancer-related changes in phospholipid composition in matched 

non-malignant and malignant tissues from prostate cancer patients (n=21). A. Relative 

proportions of PC, PE, PS and PI phospholipid classes across the patient cohort. B. 

Heatmap clustering of changes in PI, PS, PE and PC fatty acid chain length and saturation 

in prostate tumours versus matched non-malignant tissue. Each row represents a patient, 

and each column represents a different phospholipid species. The elongation can be 

observed as vertical striation patterns of increased chain lengths for each saturation group, 

and is represented graphically for the PS and PI species in the inset box. C. Tumor-related 

changes in average chain length for each main phospholipid class. 

Supplementary Figure 3. Phospholipid species associations with malignancy. A. FDR 

for PL associations with malignancy in Cohorts A and B. B. Saturation group chain length 

and abundance associations with malignancy in Cohort A. C, D, E. PL abundance 

associations with malignancy in Cohort B. F. Correlation plot of individual phospholipid 

species significantly associated with sample malignancy in Cohort B. 

Supplementary Figure 4. MALDI-mass spectrometry imaging-derived spectra of discrete 

histological foci (non-malignant versus malignant as indicated) in 2 independent prostate 

cancer patients.  

Supplementary Figure 5. Associations of lipid measures with tumor clinicopathological 

features. p-value distribution for associations of lipid species with A. Ki67 proliferative index, 
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and B. serum prostate specific antigen levels, tumor Gleason score, and ERG positivity. C. 

PL abundance associations with original tumor pathology. D, E. PL associations with ERG 

positivity status. F. PL associations with Ki67 positivity.  

Supplementary Figure 6. Associations of lipid measures with response to the AR 

antagonist enzalutamide in patient-derived explants of clinical prostate tissues. A. Effect of 

ex vivo culture on PL profiles in prostate tissues, demonstrated by correlations in lipids 

between uncultured and vehicle-cultured samples. B. Treatment-related changes in mRNA 

expression of the AR-target genes, KLK3 (prostate specific antigen) and KLK2. C. P-value 

distribution for PL associations with proliferative response to enzalutamide. D. Box plots of 

normalized ion intensity for PC34:1-H+ in epithelial regions of enzalutamide-treated versus 

vehicle-treated explants from two separate tissue cores. 

Supplementary Figure 7. A. Altered fatty acyl chain length for PE, PS and PI lipids in 

patient-derived explants cultured in the ACC inhibitor PF-05175157 compared to vehicle 

control. B. Dose-dependent increase in pACC1/ACC1 levels in LNCaP prostate cancer cells 

cultured with PF-05175157 (50μM) for 24 or 48 hours. 
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