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Abstract

Lipids are amongst the most important organic compounds in living organisms, where they serve as building blocks for cellular

membranes as well as energy storage and signaling molecules. Lipidomics is the science of the large-scale determination of

individual lipid species, and the underlying analytical technology that is used to identify and quantify the lipidome is generally

mass spectrometry (MS). This review article provides an overview of the crucial steps in MS-based lipidomics workflows,

including sample preparation, either liquid–liquid or solid-phase extraction, derivatization, chromatography, ion-mobility spec-

trometry, MS, and data processing by various software packages. The associated concepts are discussed from a technical

perspective as well as in terms of their application. Furthermore, this article sheds light on recent advances in the technology

used in this field and its current limitations. Particular emphasis is placed on data quality assurance and adequate data reporting;

some of the most common pitfalls in lipidomics are discussed, along with how to circumvent them.
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Introduction

Lipids are an important class of biomolecules that are in-

volved in many vital cellular processes. Due to their hydro-

phobic nature, lipids are the major constituents of biological

membranes and are thus the physical basis of all living organ-

isms because they provide the ability to separate living entities

from their natural surroundings. Another task that lipids fulfil

is the storage of surplus energy for later consumption. Finally,

lipids are also involved in extra- and intracellular signaling

processes, where they transduce signals and amplify regulato-

ry cascades.

From a chemical point of view, lipids are a heterogeneous

pool of compounds that all contain either fatty acyl/alkyl,

sphingosine, or isoprene moieties as their hydrophobic build-

ing blocks. Since 2005, lipids have been classified into eight

categories: (1) fatty acyls, (2) glycerolipids, (3)

glycerophospholipids, (4) sphingolipids, (5) sterols, (6) prenol

lipids, (7) saccharolipids, and (8) polyketides (Fig. 1) [1]. Each

of these eight lipid categories consists of further lipid classes and

subclasses, leading to a total of 43,636 lipids in the LIPIDMAPS

Structure Database (LMSD), among which 21,683 compounds

are curated and 21,953 are computationally generated lipids

(October 2019).

Since lipids play a crucial role in many biological process-

es, any imbalance in their homeostasis can lead to serious

conditions in living organisms, such as chronic inflammation,

cardiovascular diseases, diabetes, and neurodegenerative dis-

eases, to name just a few. Hence, the importance of identifying

and quantifying lipids in biomedical research should not be

underestimated. The method of choice for the analysis of lipid

molecules or huge assemblies of them (known as the

lipidome) is undoubtedly mass spectrometry (MS), due to its

sensitivity and specificity [2]. Because of the inherent chem-

ical complexity of the lipidome and the consequent challenges

associated with analyzing it, progress in the field of lipidomics

lagged behind the progress made in other omics disciplines for

a long time. However, within the last decade, the output of

publications on lipidomics has increased by a factor of 7.7

according to Web of Science, which makes it one of the

fastest-growing research fields of the last decade. As depicted

in Fig. 2, the workflow of a typical lipidomics analysis com-

prises sample preparation, data acquisition, data processing,

and data interpretation. In this review, we will discuss the
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analytical methods and workflows that have led to the tremen-

dous expansion of the field of lipodomics, and we will also

introduce and critique the technical challenges and limitations

of these methods.

Fig. 2 The lipidomics workflow,

including all essential steps from

sample to biological outcome

Fig. 1 Lipid categories according to the International Lipids Classification and Nomenclature Committee, with one representative structure shown for

each category
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Sample processing

The first and most vital step in sample processing is the sam-

pling itself. If samples are not immediately processed or flash

frozen, many enzymatic and chemical processes will continue,

eventually metabolizing the lipids. For example, it was shown

that the concentration of lysophosphatidylcholine (LPC) or

lysophosphatidic acid (LPA) in plasma artificially increases

when the sample is left at room temperature for too long [3,

4]. Monolysocardiolipin, on the other hand, is thought to be

generated by the hydrolysis of cardiolipin (CL) during the

freezing process [5]. When samples are left in methanol at

temperatures above 20 °C and at pH > 6, lysophospholipid

regioisomers will start to isomerize until they reach equilibri-

um [6]. In general, particular care needs to be taken whenever

any degradation or oxidation products of lipids such as oxi-

dized phospholipids, oxylipins, and lysolipids need to be an-

alyzed, and even more so when their concentrations are ex-

pected to be very low, which is very often the case. Therefore,

it is highly advisable to process samples as quickly as possi-

ble, or, if this is not possible, to store them at least at −80 °C.

Since lipids are generally prone to oxidization and hydrolysis,

it is advisable to restrict the storage of samples to a period that

is as short as possible, even at −80 °C.

Sample homogenization

While homogenization is not a big issue for biofluids such

as serum, plasma, or urine, this step becomes very impor-

tant when working on t issue samples or ce l l s .

Homogenization ensures that lipids from all parts of a

piece of tissue are equally accessible to extraction sol-

vents. For cells, it is important to rupture the cell wall

in order to obtain full access to intracellular domains

(e.g., organelles). Limited solvent accessibility of tissues

or cells can result in significantly distorted lipid profiles

(unpublished observation relating to mouse liver).

Frequently used homogenization methods are the shear-

force-based grinding of tissue (Potter–Elvehjem homoge-

nizer, ULTRA-TURRAX) in a solvent or the crushing of

liquid-nitrogen-frozen tissue by pestle and mortar [7, 8].

Since the latter approach is performed manually, it is rath-

er slow. Additionally, frozen tissue pieces often contain

some ice, which could distort the results when they are

normalized based on frozen tissue weight [7]. Cells can be

disrupted by a pebble mill with beads or a nitrogen cav-

itation bomb [7, 9]. While the first method disrupts cell

walls by applying shear force (the cells are beaten by

specialized Lysing Matrix beads), the second method

combines high pressure (of inert gaseous nitrogen) with

subsequent fast adiabatic expansion, thus avoiding any

shear stress to the biomolecules.

Liquid–liquid extraction

Any extraction method used in lipidomics serves two main

purposes. First of all, it reduces the complexity of the sample

by getting rid of any unwanted nonlipid compounds. Since

this can also be seen as a method of reducing levels of con-

taminants, a positive side effect of sample extraction is a less

contaminated mass spectrometer, which in turn leads to less

instrument downtime due to maintenance and cleaning. The

second aim of sample preparation is to enrich the analytes of

interest (in our case lipids), leading to improved signal-to-

noise ratios.

The sample preparation technique most widely used in

lipidomics is liquid–liquid extraction. The Folch protocol

and the Bligh and Dyer protocol both rely on a ternary mixture

of chloroform, methanol, and water [10, 11]. In this setting,

the organic chloroform/methanol phase contains the lipids and

the aqueous phase contains the more hydrophilic compounds

and salts. For anionic lipids such as phosphatidic acids (PA),

LPA, phosphatidylinositols (PI), or sphingosine-1-phosphate

(S1P), it is advisable to modify this protocol by adding some

acid to neutralize these anionic lipids and thus improve solu-

bility in the organic phase, which then results in increased

extraction efficiency. However, when using an acidic extrac-

tion protocol of this nature, it is highly recommended that the

acid concentration and extraction time should be strictly con-

t ro l led ; o therwise , hydrolys is ar tefac ts such as

lysophospholipids are easily generated, leading to false-

positive data in the worst case scenario [12]. A variant of

chloroform-based extraction is the alkaline hydrolysis proto-

col. In this, the addition of a 0.2 M sodium hydroxide solution

to the aqueous phase hydrolyzes all of the ester bonds but not

the amide bonds of sphingolipids. After neutralization by

acetic acid, this protocol yields a lipid extract devoid of

glycerophospholipids, glycerolipids, and sterol esters, leaving

only sphingolipids intact for subsequent analysis in mamma-

lian samples. This in turn greatly enhances the detectability of

sphingolipids, which would be suppressed to a greater degree

by more abundant lipid classes such as phosphatidylcholine

(PC) in a nonhydrolyzed extract. In contrast to the aforemen-

tioned liquid–liquid extraction protocols, the extraction meth-

od proposed by Matyash et al. is based on methyl tert-butyl

ether (MTBE) instead of chloroform [13]. Upon mixing

MTBE with methanol and water in the ratio 5:1.5:1.25 (v/v/

v), the upper organic phase retains the lipids while salts and

hydrophilic compounds are enriched in the lower aqueous

phase. The extraction efficiency is comparable to the Bligh

and Dyer protocol, but handling is much easier since the upper

layer (MTBE) is removed more efficiently by pipetting than

the lower layer (chloroform). Additionally, MTBE is less

harmful than chloroform, which is an important safety aspect

for people exposed to these chemicals on a daily basis. A

recently published comparison of chloroform and MTBE
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protocols suggests that theMTBEmethod is more efficient for

glycerophospholipids, ceramides, and unsaturated fatty acids,

while the chloroform protocol is superior for saturated fatty

acids and plasmalogens [14]. Recently, an interesting one-step

extraction protocol for mouse plasma was published by

Satomi et al. [15]. The authors compare methanol, ethanol,

2-propanol, and acetonitrile to the MTBE method described

above. These procedures all involve the addition of an organic

solvent and the spinning down of the precipitated proteins.

Obviously, these protocols result in an increased number of

nonlipid compounds in the extract compared to two-phase

systems. This may lead to increased instrument contamination

and greater ion suppression effects. That said, one-step proto-

cols are fast and robust and show higher extraction efficiencies

for polar lipids than the MTBE method. This effect is partic-

ularly pronounced for LPC, lysophosphatidylinositols (LPI),

gangliosides, bile acids, acylcarnitines, and S1P. The BUME

(butanol/methanol) method is a completely automated extrac-

tion protocol that is based on the sequential addition of

butanol/methanol (3:1), heptane/ethylacetate (3:1), and finally

acetic acid for phase partitioning [16]. Just as in the MTBE

protocol, the organic phase constitutes the upper layer. This

method has comparable extraction efficiency to the Folch pro-

tocol, but can be fully automated for high-throughput screen-

ing in 96-well plates and avoids the need for hazardous chlo-

roform. A recently published three-phase lipid extraction pro-

tocol relies on the addition of hexane, methyl acetate, aceto-

nitrile, and water, which results in three distinct phases: a

lower aqueous phase, an organic phase in the middle, and an

upper organic phase [17]. While the middle organic phase

contains mostly polar lipids (e.g., glycerophospholipids,

sphingolipids), the upper organic phase contains mostly neu-

tral lipids (e.g., triacylglycerols (TG)). Both organic phases

can then be acquired in separate analytical runs. Finally, the

increased separation of lipids is reflected in an increased iden-

tification rate due to the reduced sample complexity in each

run.

Solid-phase extraction

Solid-phase extraction (SPE) is a very specific sample

preparation technique used in lipidomics that yields highly

enriched samples with little contamination. On the down-

side, extraction protocols become highly sophisticated and

laborious as the number of lipid classes to be analyzed

increases. Thus, SPE is clearly not the method of choice

if many lipid classes need to be analyzed in a high-

throughput fashion, but it can be a highly valuable method

if only few precious samples need to be analyzed with a

very high coverage of lipid species. For instance, Fauland

et al. proposed a separation scheme that utilizes three dif-

ferent SPE cartridges and six eluents and results in seven

fractions at the end of the fractionation process [18].

Another example of the usefulness of SPE is the separation

of gangliosides from the aqueous phase of a Folch extract

[19]. Since this is achieved using a C-18 SPE cartridge,

gangliosides are selectively separated from other polar

compounds by their ceramide moieties after other nonpolar

lipids have already been removed by the previous Folch

extraction. This ultimately results in a highly ganglioside-

enriched fraction of the sample.

Derivatization

Derivatization serves four purposes in lipidomics: it can be

used to (1) increase ionization efficiency, (2) introduce a se-

lective fragment that can even be used in precursor ion or

neutral loss scans, (3) mask functional groups (e.g., phos-

phates) that may stick to steel surfaces when they are trans-

ferred to the mass spectrometer, and (4) introduce an isotopic

label for differential quantitation. A good example of the first

category is the reaction of Girard’s Reagent P with the hy-

droxy group at C3 in sterols and oxysterols [20]. In this case,

the C3 hydroxy group is first oxidized to a keto group, after

which it reacts with Girard’s Reagent P to form a hydrazone

and to introduce a quaternary nitrogen atom, which greatly

enhances the ionization properties of the molecules of interest

in positive electrospray ionization. The second strategy is il-

lustrated by a recent publication from the group of Han, who

used phosphate group methylation of phosphatidylglycerols

(PG) and bis(monoacylglycero)phosphates (BMP) [21]. This

diazomethane-based methylation introduces class-specific

fragments into the MS/MS spectra of PG and BMP, which

yield very similar fragmentation patterns without derivatiza-

tion. A paper published by Clark et al. also utilizes the meth-

ylation of phosphate groups (from phosphatidyl inositol phos-

phates, PIP), but in this case the main benefit of methylation is

the masking of free phosphates, which enables better quanti-

tative transfer of minute amounts of PIP from the HPLC via

connective tubes to the mass spectrometer and enhances ion-

ization efficiency in positive electrospray ionization (ESI)

[22]. The fourth strategy aims at the introduction of a stable

isotope-labeled derivatization moiety into one sample, where-

as the comparison sample receives an unlabeled derivatization

moiety. A good example of such a strategy was demonstrated

by Lee et al. [23], who methylated glycerophospholipids at

their phosphate groups using (trimethylsilyl)diazomethane.

Since this reaction was carried out once in HCl/MeOH and

once in DCl/MeOD, the introduced methyl group contained

either two H atoms or two D atoms, which resulted in a mass

shift of 2 Da for each methyl group. By mixing together equal

amounts of the samples, it was possible to directly compare

the labeled and unlabeled signals from the same lipids and

determine the ratio of each lipid in a direct comparison be-

tween both samples. This application was shown to work for

Züllig T. et al.2194



PA, PI, PIP, PS, PG, and CL and is an elegant approach for the

direct comparison of samples.

Direct infusion lipidomics

The term ‘shotgun lipidomics,’ which refers to direct-infusion

ESI mass spectrometry without any prior separation tech-

nique, was coined about 20 years ago by the group of Han,

who was in fact the first scientist to utilize electrospray for

lipidomics in 1994 [24]. The basic concept of these triple-

quadrupole-based methods involves the selective ionization

enhancement of certain lipid classes, which is termed

intrasource separation, and the subsequent application of pre-

cursor ion and neutral loss scans of polar head group and fatty

acid moieties [25]. In terms of identification, this approach

exclusively relies on a set of unique fragments for each lipid.

A variant of this setup is flow injection analysis, which was

proposed by Liebisch in the late 1990s and has since been

applied to most major mammalian lipid classes [3, 26]. Flow

injection analysis uses a HPLC without a chromatographic

column, with the sample injected into a continuous isocratic

flow of mobile phase as an unseparated peak. All of the re-

quired single reaction monitoring (SRM), precursor ion, and

neutral loss scans have to be performed during this peak. The

advantage of this method over direct infusion via syringe is

that it can be automated via a HPLC autosampler. For both of

these infusion setups, carryover effects can be a problem and

must be closely monitored for in order to achieve high data

quality. A good solution to this issue is the Nanomate nano-

ESI chip developed by Advion Inc. (Ithaca, NY, USA), which

relies on one nanoESI spray needle for each sample and there-

fore eliminates any carryover from the injection system [27].

Furthermore, nano-ESI greatly enhances signal intensities,

resulting in better detection limits, and it minimizes the

amount of sample needed [28]. Thus, a nano-ESI chip is con-

sidered a contemporary and highly useful piece of equipment

when performing shotgun lipidomics. The major strength of

any shotgun lipidomics approach when compared to

chromatography-based methods is its steady ionization envi-

ronment, which results in a very robust basis for quantifica-

tion. Thus, it is possible to get quantitative results with just one

nonendogenous internal standard per lipid class, which would

be impossible to achieve with most chromatographic settings

[25, 27, 29]. This quantitative stability is corroborated by a

long-term study on human plasma, where the obtained con-

centrations were found to be remarkably robust and reproduc-

ible over 3.5 years. The coefficients of variation of the mean

lipid concentrations were mostly below 15%, meaning that

shotgun lipidomics would even comply with Food and Drug

Administration (FDA) requirements according to good labo-

ratory practice (GLP). On the downside, shotgun lipidomics is

prone to ion suppression effects due to the inherently limited

ionization capacities in the electrospray process, which, in the

worst case scenario, may even completely suppress signals

from minor lipid constituents with poor ionization properties.

In that case, a custom chromatography-coupled approach may

be the method of choice instead. Another challenge associated

with nano-ESI is the limited stability of the electrospray due to

clogging. Furthermore, shotgun lipidomics lacks the addition-

al analytical dimension introduced by any separation tech-

nique, and so also lacks some of the identification certainty

inherent to liquid chromatography–mass spectrometry (LC-

MS) approaches. The lack of chromatographic separation is

also a disadvantagewhenworkingwith complex samples with

lots of isobaric/isomeric lipids. For example, it is not possible

to separate PCs with odd-carbon-numbered fatty acids from

plasmalogens if they are isobaric [30]. To deal with such un-

certainty, many users have transferred from triple-quadrupole

instruments to high-resolution mass spectrometers with

quadrupole–time of flight (Q-TOF) or Orbitrap technology

[27, 29, 31]. While Q-TOF-based technology offers the mass

resolution of 40,000 needed to separate the above-described

isobaric example of plasmalogens and diacyl PC species, the

mass resolution required to separate 13C, 17O, 2H, or 15N

isotopologues from either each other or other monoisotopic

lipid species is above 100,000, and can only be provided by

Orbitrap or ion cyclotron technology. Nevertheless, in natural

samples, all minor isotopes except for 13C can be neglected for

practical purposes due to their low abundances, but it is highly

beneficial to separate the M + 2 isotopic peak of a lipid, which

is mainly due to 13C, from the monoisotopic mass peak of the

same lipid with one double bond less. A resolution of 200,000

full width at half height is sufficient to separate these overlap-

ping isotopes. For more information on the correlation be-

tween mass resolution and identification ambiguities, readers

are referred to Bielow et al., who cover this topic in depth [32].

Instrumentation with a mass resolution beyond 500,000

makes it possible to perform isotopic labeling experiments

and subsequent metabolic flux analysis with isotopes that

have naturally low abundances, such as the technique pro-

posed by Schuhmann et al. for 15N labeling in human

HepG2 cells [33]. A recently published and interesting ap-

proach to addressing the ion suppression challenges arising

from direct infusion is spectral stitching [33, 34]. The pro-

posed acquisition protocol parses the mass range of the full-

scan spectrum into smaller selected ion monitoring (SIM)

mass ranges of between 20 and 50 Da, which are acquired

sequentially and then ‘stitched’ together by the software into

one large full-scan spectrum. Although ion suppression effects

arising from the ESI process are still an issue with this method,

it does alleviate ion suppression effects arising from the inher-

ently limited fill capacity and dynamic range of Orbitrap and

Fourier transform–ion cyclotron resonance (FT-ICR) ana-

lyzers. In contrast to chromatography-coupled methods, the

acquisition time in nano-ESI chip-based shotgun lipidomics
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is virtually limited only by the sample volume, which can

result in an acquisition time of more than 30 min per sample.

This facilitates techniques such as data-independent acquisi-

tion (DIA) MS/MSALL with very fast high-resolution instru-

ments such as a TripleTOF, and provides MS/MS spectra for

all masses with an isolation width of 1 Da across a mass range

as wide as 1000 Da [35]. This method has the advantage that

no information is lost, and MS/MS spectral coverage is 100%

over a wide mass range. Furthermore, it was shown that MS/

MSALL can be performed in a quantitative manner, and the

method was successfully applied for the quantification of CL

in mitochondrial preparations. A disadvantage of MS/MSALL

is the eventual loss of information on precursor–fragment re-

lationships, which potentially complicates the identification of

lipid species. The MSALL approach published by Almeida

et al. relies on the same concept but also involves the acquisi-

tion of full-scan spectra at a resolution of 450,000 (m/z 200),

split into low and high m/z ranges with positive and negative

polarity [31]. Furthermore, it utilizes the full fragmentation

power of an Orbitrap Fusion Tribrid, and sequentially acquires

higher-energy collisional induced dissociation (HCD) and col-

lisional induced dissociation (CID) MS/MS spectra at R =

30,000 (m/z 200) as well as CID MS3 spectra for specific

compounds. Using these complementary analytical tools, it

was possible to quantify 311 lipid species in mouse cerebel-

lum and hippocampus and to explore the structures of 202 of

these lipids in depth [31].

In recent years, desorption electrospray ionization (DESI)

has become a noteworthy option for direct infusion

lipidomics. In a comparative study with LC-MS, it was shown

that DESI-MS forms different adducts than LC-MS, but when

adjusted for these different adducts, the mass spectra show a

very high degree of correlation in the determined lipid com-

position [36]. The major advantage of DESI in lipidomics is

the ability to use it for mass spectrometry imaging (MSI). This

was shown nicely for various tissues frommammalian sources

by Klein et al. [37].

LC-MS

The chromatographic separation method most widely used in

lipidomics is reversed-phase HPLC, which separates lipids

based on their nonpolar fatty acyl moieties [38]. The underly-

ing mechanism is described by the equivalent carbon number

theory. According to this model, lipids of the same class are

separated according to a combination of their cumulative

number of fatty acyl carbons and the number of fatty acyl

double bonds, as retention time increases as the number of

carbons increases and decreases as the number of double

bonds increases. It was recently reported that the use of a

reversed-phase nano-HPLC setup increased the number of

detected lipids by a factor of 3.4 when compared to the more

frequently used narrow-bore HPLC setup [39]. In contrast to

reversed-phase HPLC, normal-phase chromatography sepa-

rates lipids based on their polar head groups, but from a prac-

tical perspective, normal-phase HPLC is poorly compatible

with the ESI process of ion formation due to its extremely

high nonpolar organic solvent content. Nevertheless, highly

specialized normal-phase HPLC techniques such as silver ion

chiral chromatography coupled to atmospheric pressure

chemical ionization (APCI) can be applied to achieve a de-

tailed analysis of TGs, including the positions of fatty acyls

and even the locations and geometries of double bonds [40].

Hydrophilic interaction liquid chromatography (HILIC) also

resolves lipids according to their polar head groups, but the

solvents used are much less hydrophobic and are thus much

more compatible with ESI. Therefore, HILIC is also frequent-

ly used in lipidomics [19, 41, 42]. In a HILIC run, all species

of a particular lipid class elute in a very narrow time window,

resulting in one unresolved chromatographic peak in which

lipid species are only distinguished based on their mass. This

makes quantification easier—due to the high degree of

coelution of all species in a given lipid class, one internal

standard with one response factor is sufficient for quantifica-

tion, similar to shotgun lipidomics [43]. In comparison,

reversed-phase HPLC requires many more internal standards

per lipid class because the species are spread across a much

wider retention time window, leading to much stronger differ-

ential ion suppression effects. This would ideally be compen-

sated for by applying one internal standard for each com-

pound. In reality, however, it is possible to get a good quanti-

tative approximation by using a set of four or more internal

standards for each lipid class, which should ideally be spread

over the whole retention time range of the class [44]. On the

other hand, reversed-phase HPLC is able to separate isomeric

lipid species and therefore offers the potential for in-depth

structural elucidation [38, 45]. It should be noted that, accord-

ing to the Web of Knowledge, ultra-high performance liquid

chromatography (UHPLC) has increasingly replaced conven-

tional HPLC systems over the last decade because UHPLC

provides faster run times at higher chromatographic resolu-

tions due to its much higher backpressure allowance. The

challenge with ever-decreasing peak widths is the duty cycle

time of the mass spectrometer, which still has to allow for a

sufficient number of sampling points per chromatographic

peak. Therefore, instruments that perform rapid scans, such

as q-TOFs, are the preferred choice for fast UHPLC-delivered

gradients with narrow peak widths.

From the perspective of scope, the coupling of HPLC with

mass spectrometry can be realized using two fundamentally

different approaches: targeted analysis or nontargeted analysis,

with the former being easily scalable and the latter being more

comprehensive. Targeted approaches are performed by apply-

ing a predefined set of compounds with known fragmentation

behaviors and ideally also retention times. They can be carried
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out using a triple quadrupole MS in SRM mode, with just a

few or sometimes even only one lipid class considered per

HPLC run [46, 47]. Such a focused analysis also results in a

high degree of flexibility for developing custom lipid-class-

specific chromatography techniques. HILIC separation, on the

other hand, leads to clearly separated lipid classes and is ideal

for designing accurate time windows for SRM transitions, thus

enabling more SRM transitions to be squeezed in per HPLC

run [43]. Recently, parallel reaction monitoring with a Q-

Exactive instrument was shown to be a alternative method

with high mass resolution for the targeted determination of

sterols and sphingolipids [41, 48]. Furthermore, targeted Q-

TOF analysis based on full-scan high-resolutionMS/MS spec-

tra yielded the most gangliosides reported so far for biological

samples [19]. In the realm of nontargeted lipidomics, high

mass resolution is indispensable because increasing the mass

resolution and thus the mass accuracy greatly enhances iden-

tification certainty, which is of particular interest when

attempting to pin down unknown compounds. Furthermore,

the availability of fragment spectra and retention times mark-

edly improves the identification certainty (Fig. 3). Therefore,

numerous high-resolution lipidomics platforms have been

published, and all of them rely on data-dependent acquisition

(DDA) of MS/MS spectra [49–53]. Although the described

workflow is perfectly acceptable for nontargeted analysis,

the data acquired in such a manner can also be subjected to a

targeted analysis with predefined search lists of lipid masses

and eventually even their expected fragment masses [49, 54].

Thus, it is the data processing step that dictates whether a

large-scale targeted approach or even a completely

nontargeted approach is adopted. The big advantage of

completely nontargeted lipidomics is that it is able to poten-

tially highlight every compound in a sample and thus discover

hitherto unknown lipid species. The biggest limitations on the

comprehensiveness in this regard are the restricted capacity for

ionization, which is particularly true of ESI and ion storing

analyzers, as well as the suitability of the ionization technique,

where tradeoffs have to be made because not every ionization

technique is equally well suited to every lipid class. Another

limitation is lipid extraction, which inherently results in a bias

and may even exclude some lipid classes. These limitations

may be alleviated by using, for example, multiple extraction

methods for polar, nonpolar, and acidic lipids, which are then

acquired by ESI and APCI in positive and negative polarity

modes, and even split mass ranges, but the effort required also

increases dramatically when 12 or more LC-MS runs per sam-

ple are needed to ensure comprehensiveness. The good news

in this respect is that a comparison of the results from seven Q-

TOF models, a Q-Exactive, and a single time-of-flight (TOF)

mass spectrometer showed that there was no significant differ-

ence between these platforms, suggesting that the resulting up-

and downregulation patterns do not seem to be greatly influ-

enced by the choice of high-resolutionmass spectrometer [53].

The big challenge with every nontargeted approach is the step

from mere features to chemically and biologically meaningful

entities [55]. Although the beauty of nontargeted setups lies in

their reduction of sample complexity to just a small proportion

of all the features that are significantly up- and down regulat-

ed, it can still leave the mass spectrometrist with several hun-

dred features that must be identified and often manually eval-

uated. Needless to say, this is a very time-consuming process

that is still far from being automated. An interesting alternative

to nontargeted lipidomics is the recently published concept of

pseudo-targeted lipidomics [51], in which a nontargeted anal-

ysis is performed and the putative retention times and masses

of lipids not detected by the nontargeted approach are extrap-

olated from the detected lipids. Using in silico calculations, the

authors of [51] designed a multiple reaction monitoring

(MRM)-based targeted method utilizing a triple quadrupole

MS and involving 3377 MRM transitions in three separate

LC runs, and hoped to find additional previously undetected

lipids in their sample. This resulted in an increase from 494 to

823 detected lipid species in mouse serum. By the same token,

the concept of iterative exclusion omics involves performing

multiple injections of the same sample to expand its MS/MS

coverage in DDA mode [56]. This results in a significantly

increased lipid identification rate, and is particularly useful in

densely crowded elution ranges (e.g., the glycerophospholipid

region and the TG region).

Fig. 3 The upper panel shows an extracted-ion chromatogram of

glycerophosphoinositol, PI 37:4 (m/z 871.534 ± 5 ppm), acquired by an

Orbitrap instrument running at a resolution of 100,000 (m/z 400). The

lower panel shows the corresponding MS/MS spectrum at a retention

time of 19.82 min (CID fragmented). Neutral loss (NL) of carboxy and

inositol (Ino) or ketene and inositol can be discerned. Blue fragments of

20:4 acyl chains, red fragments of 17:0 acyl chains, green fragments of PI

head groups
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Supercritical fluid chromatography

In recent years, supercritical fluid chromatography (SFC) has

become a promising branch of chromatography used in the

field of lipidomics. The basic merits of SFC over conventional

HPLC are its faster elution times and higher chromatographic

resolution. For a long time, the compatibility of the mobile

phase (supercritical carbon dioxide) with ESI posed a major

issue from a robustness standpoint, but the addition of a com-

patible make-up liquid after the column greatly improved the

suitability of SFC for ESI [42, 57, 58]. For example, an ultra-

high performance SFC (UHPSFC) equipped with a HILIC

column was able to separate 25 lipid classes in a run time of

just 6 min [57]. When this method was compared to UHPLC,

it became evident that UHPSFC was able to identify 3.4 times

more lipid species in a chromatographic run time that was

40% shorter [42]. In a similar approach, Takeda et al. showed

that it is even possible to separate positional isomers of

lysoglycerophospholipids and monoacylglycerol and diacyl-

glycerol species on a diethylamino column when the runtime

was increased to 18 min [58].

Quantitative aspects

Great care needs to be taken when quantifying lipids by ESI-

MS because, compared to nuclear magnetic resonance spec-

troscopy (NMR), UV or flame-ionization (FID) ESI-MS de-

tection is much less scalable for a variety of reasons, including

the competitive nature of the ESI process and the isotopic

distribution and mass dependence of the fragmentation pat-

terns [59]. All of these obstacles can be circumvented by using

stable isotope-labeled internal standards that differ from the

target compounds in their physical properties (i.e., mass) but

not their chemical properties (retention, ionization, fragmen-

tation). In a perfect scenario, each target lipid would be re-

ferred to just one internal standard via a calibration curve that

covers the expected concentration range. However, the feasi-

bility of this approach is limited by the availability of the

internal standards, the costs involved, and the practicability

of running hundreds or even thousands of calibration curves

for each sample batch. Due to these limitations, just a handful

of internal standards are usually employed in lipidomics, mak-

ing the selection of appropriate internal standards a very im-

portant task [60]. Recently, commercial mixes of internal stan-

dards tailored to individual body fluids, tissues, and organisms

or intended for other purposes have become available. These

mixes contain internal standards in the expected concentration

ranges of the lipid classes typically found in the biological

matrix of interest. In shotgun lipidomics of polar lipids (e.g.,

glycerophospholipids), it is possible to achieve fairly accurate

quantification using just one internal standard per lipid class

so long as the quantification is done in a MS1 survey scan by

high-resolution instruments. This is because ionization effi-

ciency is dependent only on the polar head group (not the fatty

acyl tails) if the concentration of lipids is not too high

(avoiding aggregation). When precursor ion or neutral loss

scans are included in the quantification process, one internal

standard per lipid class is still sufficient as long as the mass

dependence of the fragmentation is circumvented by gradually

increasing the collision energy with increasing m/z of the pre-

cursor ion [60]. If the collision energy is not increased, at least

two internal standards and a correction function are necessary

[61]. Since neutral lipids such as TGs do not have a polar head

group to localize the charge, the dependence of the ESI effi-

ciency on the fatty acyl composition is more pronounced, so

more than one internal standard is needed per lipid class to

compensate for discriminatory ionization effects [60]. When

performing LC-MS-based lipidomics, at least four internal

standards per lipid class, ideally distributed across the whole

elution time range, are needed; even then, the data obtained

will be less accurate than that attained using a shotgun ap-

proach [44]. If the user is only interested in a limited number

of lipid species, a SRM method with high internal standard

coverage and extensive validation is of course the best choice

[62]. Hence, unless the user has unlimited resources, it is al-

ways highly advisable for them to figure out in advance what

the scope should be and which lipid species or lipid classes are

really of interest, as narrowing the focus will make the quan-

titative aspects more reliable. A solution worth considering in

this respect is a standardization method developed within the

last decade called lipidome isotope labeling of yeast (LILY),

which provides as many as 212 13C-labeled internal standards

[63]. In brief, Pichia pastoris is grown on 13C-enriched cell

culture medium, the almost fully 13C-labeled lipid content is

extracted, and the labeled lipidome is then used as an internal

standard mix for unlabeled lipids. Since there are more than

200 internal standard lipids in such an extract, very high in-

ternal standard coverage is achieved, which is particularly

useful for LC-MS based lipidomics. The drawback of this

method is that in order to accurately quantify all of the 13C-

labeled lipids in the standard mixture, they still need to be

compared with known amounts of their unlabeled analogs,

meaning that known amounts of all of the unlabeled reference

standards must be purchased. Aside from compensating for

the discriminating factors during ionization and fragmentation

(as discussed above), isotopic correction and the summation

of all possible isotopes of a compound are important steps to

ensure quantitative data [60]. When an instrument with a mass

resolution of below 250,000 is used or the chromatographic

resolution is insufficient, isotopic correction is needed to sep-

arate the monoisotopic and M + 2 mass peaks (–13C2H2– vs

–
12C2H4– moieties) of lipids that differ by only one double

bond. This mathematical correction results in accurate values

for both components of these mass peaks. After this process-

ing step, it is important to sum all the isotopologues of a lipid
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species. From a practical perspective, only the 13C isotopic

distribution needs to be considered, as all the other possible

isotopes have very low natural abundances and therefore do

not significantly influence the quantitative data.

Ion mobility spectrometry

Since ion mobility spectrometry (IMS) separation is based on

an alternative physicochemical concept, it constitutes a valu-

able complementary source of information when used in com-

bination with mass spectrometry and chromatography. In a

nutshell, in this technique, ions are moved by an electric field

against the flow direction of an inert drift gas, resulting in ion

separation based on their sizes and shapes. In contrast to size,

shape is not correlated with mass, so this introduces an addi-

tional separation dimension. Whereas differential ion mobility

spectrometry (DIMS) can be regarded as an additional ion

filter that selects only one type of ion at a time and where

the compensation voltage is scanned, drift time ion mobility

spectrometry (DTIMS) produces drift-time-separated ion sig-

nals, much like a TOF analyzer. When used in combination

with a shotgun approach, DIMS is able to separate lipid clas-

ses according to their compensation voltage, resulting in less

complex MS/MS spectra for isobaric or isomeric overlapping

lipids such as PE 38:4 and PC-O 36:4 at m/z 768.6 [64].

Besides its ability to separate isomeric and isobaric species

and thus reduce the complexity of fragment spectra, the big-

gest asset of IMS is its introduction of collision cross-sections

(CCS) as an additional complementary means of identifica-

tion. The CCS value is a measure of the shape- and size-

dependent mobility of an ion in IMS and is unique to every

compound. In recent years there have been major efforts to

establish lipid CCS databases for DTIMS and traveling wave

IMS [65–69]. Blazenovic et al., for example, proposed a sys-

tem of lipid annotation derived from accurate mass, retention

time, CCS, and degree of unsaturation values as well as the

number of carbons, which should promote the identification

certainty for lipids from untargeted workflows [65]. In a sim-

ilar fashion, Leaptrot et al. introduced an experimentally de-

rived database of CCS values of glycerophospholipids and

sphingolipids [67]. Their findings suggest that the main deter-

minant of the CCS value is not fatty acyl chain length but

rather the degree of fatty acyl unsaturation. For readers inter-

ested in the actual IMS workflows, Paglia et al. provide very

detailed protocols on various IMS-coupled mass spectrometry

methods [69]. Another good example of the integration of

IMS into LC-coupled systems is shown by Hinz et al., who

separated oxylipins and fatty acids using both chromatogra-

phy and IMS [70]. Since oxylipins show a particularly high

degree of isomerism, the acquisition of drift times can be a

helpful tool which may even enable the positions of hydroxy

groups on the fatty acyl chain to be determined. In addition to

databases with experimentally determined CCS values, there

are also tools such as the Lipid CCS Predictor for the in silico

prediction of CCS values based on SMILES structures [66,

71]. The Lipid CCS database currently contains over 15,000

lipids with over 60,000 corresponding CCS values determined

experimentally or predicted in silico.

MALDI-TOF and mass spectrometric imaging

Although the use of matrix-assisted laser desorption–time of

flight (MALDI-TOF) as a fast and robust analysis method for

lipids dates back to the late 1990s, it is still not widely used in

lipidomics [72]. The reasons for this are speculated to be the

absence of a chromatographic dimension, the lack of a reliable

fragmentation technique (unless a MALDI-TOF/TOF mass

spectrometer is used), and the limited resolution compared

to Q-TOF, Orbitrap, and FT-ICR analyzers. Nevertheless, with

the right choice of matrix, MALDI-TOF can quickly deliver

data. Examples of matrices that have been found to be advan-

tageous for the ionization of l ipids include 2,5-

dihydroxybenzoic acid, α-cyanocinnamic acid, and a mixture

of 9-aminoacridine and N-(1-naphthyl)ethylenediamine hy-

drochloride [73, 74]. Perhaps the biggest advantage of using

MALDI in lipidomics is its ability to provide two-dimensional

images of the distributions of lipids in tissues. To this end,

tissues (e.g., brain, kidney) are cryodissected into slices a

few micrometers thick, placed on a MALDI target, covered

with the MALDI matrix, and then scanned by the laser in two

dimensions, which results in pixels a few micrometers in size,

each of which represents one mass spectrum. The critical step

in this process is the deposition of the MALDI matrix, which

should be as homogeneous as possible and must not cause any

blurring of the image to ensure that accurate lateral resolution

is maintained. In recent years, the coupling of MALDI with

Orbitrap analyzers has enabled higher mass resolution and the

use of MS/MS spectra [75, 76]. This has facilitated the struc-

t u r a l d e t e rm i n a t i o n o f e v e n h i g h l y c omp l e x

sulfoglycosphingolipids with up to five hexose moieties

[76]. Laser capture microdissection is an interesting alterna-

tive to MALDI imaging in which micrometer pixels of tissue

slices are dissected by a laser, extracted, and analyzed by

shotgun lipidomics based on nano-ESI and Orbitrap technol-

ogy. This permits an increased amount of time for each pixel,

thus making it possible to perform various t-SIM and MS/MS

experiments that yield detailed lipidomic profiles [77].

Structure elucidation

When the positions and conformations of double bonds in

fatty acyl moieties are of interest, the platforms described thus

far are usually not suitable; more specific approaches must be
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employed. Based on charge remote fragmentation theory,

high-energy CID yields fragmentation patterns that are indic-

ative of the positions of double bonds in fatty acids [78].

Originally developed for sector instruments, the instrument

of choice for high-energy CID is now a MALDI-TOF/TOF

with a fragmentation energy of 20 keV. For example, when the

charge is localized in TG with Li+, there are a wealth of fatty

acyl fragments indicative of the double bond position and the

sn position of the fatty acyls [79]. An as-yet unresolved draw-

back of MALDI-TOF/TOF instruments is the isolation win-

dow of 4 m/z, which makes precursor ion selection problem-

atic for biological lipid samples. Although this kind of analy-

sis cannot be considered a high-throughput approach due to

the lack of automated spectral interpretation, it can still deliver

valuable in-depth information on selected lipids. Another spe-

cialized method for localizing double bonds and separating

regioisomers relies on the use of ozone as a reaction partner

for double bonds [80]. The final products, obtained via ozon-

ides and Criegee intermediates, are aldehydes and Criegee

ions, which are fatty acyls truncated exactly at the location

of the double bond, in a similar manner to lipid peroxidation

products. While this is an elegant method of determining

double-bond regioisomers, it requires an adaptation of the

instrument (the introduction of ozone into the collision cell)

that is not yet commercially available. The use of electron-

impact excitation of organic ions (EIEIO) at a kinetic energy

of 10 eV has shown promise for the determination of fatty acyl

sn positions, fatty acyl double-bond positons, and even

double-bond conformations in glycerophospholipids (includ-

ing plasmalogens), glycerolipids, and sphingolipids [81]. This

is achieved using a branched radiofrequency (RF) ion trap

EIEIO device that delivers selective fragments for separating

the aforementioned types of isomers. This technique has made

it possible to pin down the exact structural compositions of

various commercially available natural lipid extracts. When

aliphatic double bonds react with acetone and UV light in a

Paternò–Büchi reaction, the cycloaddition reaction products

generated are indicative of the location of the double bond,

and further fragmentation of the compound can be used to

pinpoint its position. This principle was utilized for an online

reactor containing an UV emitter, where it was positioned

between the chromatographic column and the ion source

[82]. Fragmentation of the Paternò–Büchi reaction products

ultimately results in fatty acyl moieties truncated at their

double-bond positions. The introduction of UV-induced pho-

todissociation (UVPD) with a 193-nm laser as a fragmentation

technique has added another promising lipodomics tool for

detailed structural elucidation. It was recently shown that

UVPD selectively induces the scission of bonds between vinyl

groups and their allylic methylene groups in phospholipids

and sphingolipids, thus allowing unambiguous assignment

of double-bond positions in fatty acyls and the long chains

of sphingolipids [83, 84].

LC-MS data processing

Advances in high-resolution mass spectrometry in combination

with UHPLC have resulted in better structural information but

also the generation of more data. Two main acquisition tech-

niques, DDA and DIA, are used in untargeted lipidomics ap-

proaches or targeted approaches with large in-silico-based lists.

In DDAworkflows, instruments automatically switch from MS

to MS/MSmode based on the intensity of the precursor ion and/

or a precursor ion target list. One limitation of DDA approaches

is that instruments are incapable of producingMS/MS fragments

for all precursor ions, which can lead to undersampling, especial-

ly of low-abundance precursors. Another issue is the contamina-

tion of false MS/MS fragments due to the precursor selection

window width (1 Da). There are two types of DIA strategies:

(i) all-ion fragmentation (AIF),MSALL, andMSE approaches; (ii)

sequential window acquisition of all theoretical fragment-ion

spectra (SWATH). The obvious limitation of all fragmentation

approaches is the lack of connection to the precursor ions, which

necessitates a sophisticated data processing tool. The difference

between SWATH and MSALL acquisition is that an additional

isolation window of 20–50 Da is used in SWATH approaches

across the entire mass range before fragmentation. This allows

the fragmentation to be linked to the precursor ion because of the

reduced number of interfering ions [85]. These two main ap-

proaches both generate a large amount of data. For example, a

data-dependent acquisition of a MTBE-extracted serum can in-

volve several thousand features associated with MS/MS frag-

ments. There are various bioinformatics software tools and pack-

ages that can handle datasets of this size. Such software packages

can be divided into three groups, A–C, according to their func-

tionality (see Fig. 4). There are “all-in-one” software solutions

(group A) such as Lipid Data Analyzer 2 [54] (LDA 2),

LipidMatch Flow [86], OpenMS [87], MS-DIAL [88], Liquid

[89], and Greazy/LipidLama [90], as well as the commercially

available software packages SimLipid (PREMIER Biosoft),

Lipidyzer (SCIEX), and LipidSearch (Thermo Scientific).

Group B represents data processing software such as MZmine

2 [91], LipidFinder [92, 93], and the XCMS family [94]

(XCMS/CAMERA/XCMS2). These are widely used to process

data and generate peak tables as input files for use with group C

software, which are highly specialized lipid annotation software

packages such as LipidMS [95], LipiDex [96], and LipidIMMS

(with an additional ion mobility dimension) [68]. Nevertheless,

the interpretation of MS data to retrieve all of its structural and

functional content is a challenging and evolving process.

Despite the diverse program landscape, data process pipelines

are similar or even cross-functional. In a first step, vendor-

specific raw files are converted into an accessible open format

(e.g., mzXML, mzML, MGF, or ABF). A commonly used solu-

tion here is MSConvert from Proteowizard [97] as implemented

or external tool.In this case 'implemented tool' means that it is the

first step in the automated workflow of a lipidomics software
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package (integrated into the software), and external tool means

that it also runs as stand alone file format converting software and

the converted data have to be manually fed into any subsequent

lipidomics software. In a second step, feature tables are generated

from raw files using algorithms, retention time alignment, addi-

tional filtering, and combination options (e.g., blank filtering,

isotope correction, combination of adducts and/or polarity).

Many different algorithms are available that use different ap-

proaches to achieve a common goal: to find as many features

as possible without incurring false positives. For example, LDA

uses a 3D algorithm that depends on m/z, retention time, and

intensity. The filtering option to verify isotopic peaks can be used

to identify and remove the common false-positiveM+ 2 isotope,

which actually corresponds to lipid species with one double bond

less [98]. XCMS uses the centWave [99] algorithm a density

based technique in the m/z domain to detect regions of interest

in combination with a wavelet basedtechnique to resolve chro-

matographic peaks. The additional OBI-warp algorithm [94] is

used to align retention time shifts. MZmine 2 [91] provides sev-

eral algorithms for which users can choose and optimize param-

eter values within a graphical user interface (GUI) based on the

quality of their MS data (e.g., peak shapes, mass resolution, or

background noise). LipidMatch [86] uses MZmine 2 for data

processing and offers blank filtering as well as LipiDex [96] to

reduce matrix-based false-positive features. In a third step, lipid

annotation can be performed with customizable precursor lists

based on databases containing lists derived experimentally or

using computational methods, such as LIPID MAPS [100],

LipidWeb (formerly LipidHome) [101], or Human

Metabolome Database [102] (HMDB), which are sources of

in-silico generated and/or experimentally detected lipids. Up to

the point that the precursor MS is annotated, there is no relevant

difference between lipidomics and metabolomics approaches.

All of these software packages are able to annotate lipid species

at the precursor MS level, but MS/MS spectral annotation has

also become indispensable for (i) differentiating between

coeluting isobaric lipids in order to correctly identify the different

lipids at the lipid species annotation level (e.g., PC 38:4), (ii)

obtaining deeper structural insights that are useful for identifying

fatty acyl/alkyl chains (e.g., PC 18:0_20:4), and (iii) differentiat-

ing between coeluting regioisomers (e.g., PC 18:0/18:2, PC 18:2/

18:0). There are several approaches that can be employed for the

MS/MS-based identification and annotation of lipids. LipidMS

[95], LipidMatch [86], LDA 2 [54], and LipidIMMS [103] apply

customizable fragmentation rules (m/z, intensity) to identify var-

ious lipid classes, acyl/alkyl chains, and potential sn-1 and sn-2

positions according to specific fragment intensities. Rule-based

methods work well, and can be devised manually based on in-

house experiments and the literature. The drawback of rule-based

methods is the effort required to implement adequate rules, be-

cause the type of mass spectrometer used, the fragmentation

techniques (CID, HCD) applied, and the collision energy must

be considered. Furthermore, these methods cannot be applied to

a novel class of targets. Another approach, which is used by

LipidDex and MS-Dial, is spectral similarity matching through

modified dot product algorithms. MS/MS fragmentations are

compared with libraries of experimental and/or computationally

generated MS/MS data such as the NIST TandemMass Spectral

Library, MassBank [104], Massbank of North America (MoNa),

LipidBlast [105], and Library Forge [106]. LIQUID uses a

trained scoring model based on the probability that a specific

fragment will be observed at a given intensity [89]. Greazy/

Fig. 4 Overview of data processing and lipid annotation software

grouped by functionality. Group A encompasses all-in-one software that

can handle the full process pipeline: conversion of vendor-specific raw

files (1); data processing, including peak detection and alignment as well

as peak filtering options (2); and lipid annotation at the precursor MS

level using web-based databases or precursor m/z lists and MS/MS

derived lipid annotation at the rules-based or spectral matching level

(3). Group B are software that are only used in lipidomics up to the

precursor annotation stage. Group B software are used in combination

with the highly specialized lipid annotation software that comprise group

C. * Commercial software intended for DDAa or DIAb workflows
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LipidLama offers a scoring model based on an identification

approach with an additional false-discovery rate function [90]

that can simplify manual verification.

The lack of experimentally obtained reference spectra for

tandem mass spectrometry causes problems when attempting

to identify unknown analytes or those with low concentra-

tions. A number of software tools called in-silico fragmenters

that employ a more computational approach have been devel-

oped to address this issue over the last decade. MetFrag2.2

[107] combines database searching and fragmentation predic-

tion to identify small molecules from MS and MS/MS data.

Reference data from PubChem, ChemSpider, the Kyoto

Encyclopedia of Genes and Genomes (KEGG), and offline

databases are supported. After performing combinatorial frag-

mentation in silico, candidates can be filtered and scored with

additional criteria such as retention time information, sub-

structures, elements, and reference information. Another

fragmenter, (Compound Structure Identification):FingerID”

(CSI:FingerID), uses support vector machines (SVMs) and pre-

dicts the presence of functional fragments and groups based on

provided MS spectra or compounds. These spectral fingerprints

and MS/MS fragmentation trees are used to rank the unknown

compound [108]. Competitive Fragmentation Modeling–ID

(CFM-ID) is used to predict ESI-MS/MS and electron ionization

(EI)-MS spectra using in-silico fragmentation techniques. A ref-

erence MS/MS spectral library containing over 51,000 known

compounds with sets of different collision energies was generat-

ed based on information from KEGG and HMBD and used to

predict unknown molecules [109]. Due to poor processing per-

formance for large segmented molecules such as lipids, rule-

based fragmentation was implemented in CFM-ID version 3.0

to predict theMS/MS spectra of 21 lipid classes, as well as a new

scoring system and a chemical classification algorithm. These

changes allow predicted ESI-MS/MS spectra of lipids to be ob-

tained 200 times faster and ten times more accurately than when

CFM-ID version 2.0 is used [110]. Thus, in-silico mass spec-

trometry is a fast-growing field, which should lead to advances

in novel compound prediction and identification. The steady

growth of databases and improvements to algorithms would also

be expected to enhance in-silico prediction accuracy in the future.

The quantification of experimental data is another important

aspect of lipidomics studies. Due to the lack of available isotopi-

cally labeled reference materials and the large number of

analytes, only relative (not absolute) quantification is possible

in most cases. This means that an amount of analyte is compared

to a defined amount of a reference analyte. Most lipidomics

studies involve the comparison of different biological groups,

so it can be argued that absolute quantities are not relevant, only

differences between the groups. However, in our opinion it is

important, if possible, to quantify or to normalize lipids in order

to compensate for ion suppression and ionization efficiency, as

this allows data from studies with different experimental condi-

tions and MS devices to be compared.

Among the LC-MS/MS programs mentioned above (apart

from the commercial Lipidomics software solution), only

LDA 2 and LipidMatchNormalizer [111] (LMN) are designed

to allow comprehensive automated lipid quantification or rel-

ative quantification. LDA 2 provides a GUI and is optimized

for DDA methods. Excel-based precursor lists with optional

retention time settings are used to annotate lipid species at the

MS1 level [98], and rule-based decisions are applied at the

MS/MS level to confirm the annotation [54]. The software

comes with preadjusted parameters for various MS devices

and tested rules for several lipid classes, and is easy to cus-

tomize and expand according to individual requirements. In

order to facilitate user control of peak integration and annota-

tion, LDA 2 permits the visualization of precursor MS1 and

MS/MS spectra for easy manual verification and direct rule

adaptation. LDA 2 can use a sophisticated algorithm to select

the most appropriate standard for quantification among the

multiple standards available for each lipid class [98]. This

procedure minimizes ionization differences caused by the

use of gradient elution in liquid chromatography. In contrast

to the “all-in-one” approach of LDA 2, LMN can be used in

combination with any peak-picking and annotation software

such as MS-DIAL [88], XCMS [112], or MZmine [91]. There

is also a GUI-based solution that integrates MSConvert,

MZmine 2, and LipidMatch, called LipidMatch Flow.

LipidMatch Flow requires a few extracted blanks and pooled

quality control (QC) samples that are representative of all

biological samples in order to exclude matrix-based features

and create a target list, thus enhancing the peak integration

time. Quantification with LipidMatch Normalizer focuses on

a scoring system to assign the best lipid standard to the

analytes of interest. Therefore, it is important to carefully se-

lect relevant standards for each lipid class.

Batch normalization strategies

Untargeted lipidomic studies often include hundreds to thou-

sands of samples. Depending on the approach, experimental

measurements can often take a long time, and may even be

interrupted. Therefore, systematic errors can creep in to such

measurements due to, for example, time-dependent drift in the

instrumental sensitivity, batch-dependent effects such as

changes in pH and concentrations in solvents, or slight tem-

perature fluctuations. Ignoring such errors reduces the statis-

tical power of the search for significant differences between

the detected analytes and the associated phenotype [113].

There are multiple sample normalization strategies [114]; the

most popular utilize internal standard-based normalization or

QC-based normalization. The internal standard-based normal-

ization methods suppress systematic errors by using internal

standards to perform corrections. Several different software

tools with different approaches are available for internal
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standard-based normalization, such as B-MIS [115], NOMIS

[116], and CCMN [117]. As noted above, such methods have

been integrated into LDA 2 and LipidMatch Normalizer. The

other popular method is normalization based on QCs. These

QCs are usually pooled biological samples containing all the

characteristics of the biological sample under investigation.

QC measurements are performed approximately every tenth

sample and are used to normalize the data. There are various

methods that can be employed for QC-based normalization,

such as Batch Normalizer (based on LOESS regression) [118],

StatTarget (a Vectro-machine-based normalization method)

[119], and the systematic error removal using random forest

(SERRF [120]) technique.

Shotgun software

Shotgun lipidomics can enable faster sample acquisition

than LC-MS/MS lipidomics without the need for time-

consuming chromatography (e.g., < 3 min [32]), and of-

fers a very robust basis for quantification due to its stable

ionization environment. The effect of shotgun lipidomics

from a computational point of view is that much more

information is collected simultaneously, as the entire lipid

extract is ionized at once. This allows multiple injections

of samples to be performed for technical replicas and/or to

explore the effects of different experimental conditions.

Known problems with lipid aggregation and ion suppres-

sion can be reduced by using small sample volumes and

concentrations [121]. Multiple sample acquisition through

a multiplexed extraction approach [122] and intrasource

separation [123] (e.g., negative/positive ionization, base

addition, or sample derivatization) enhances ionization ef-

ficiency for different lipid classes on their chemical and

physical properties [123]. Therefore, the computational

challenges are even greater than those associated with

liquid chromatographic methods. In recent years, some

highly specialized software tools have been developed to

process shotgun lipidomics data. MDMS-SL (multidimen-

sional mass spectrometry-based shotgun lipidomics) is an

automated identification and quantification approach

based on array analysis [124]. The AMDMS-SL libraries

are based on “building blocks” that represent basic struc-

tures of lipid species, i.e., the head group, the backbone,

and the chains. The open source software LipidXplorer

[125] was developed by Shevchenko’s group. Based on

the Molecular Fragmentation Query Language (MFQL)

[126], this software allows the customizable input of

search parameters for individual user targets. The ac-

quired MS/MS spectra are converted to an open MS for-

mat, merged, and stored in a representative MasterScan

database entry. For lipid annotations, the MasterScan can

be screened simultaneously with MFQL queries. This

software is platform independent and can be employed

in DDA approaches involving high-resolution mass spec-

trometry and triple quadrupole mass spectrometry used in

combination with precursor ion and/or neutral loss scans.

Analysis of Lipid Experiments (ALEX) is another GUI-

based software framework developed for multiplexed

high-resolution shotgun lipidomics data. The framework

consists of six modules that perform tasks ranging from

data conversion to lipid quantification. One of its key

features is a lipid database that stores structural informa-

tion for 85 classes of lipids that encompass more than

20,000 lipid species [127].

Unlike ALEX and LipidXplorer, LipidHunter can be used

for both LC-MS/MS and shotgun lipidomics to identify

glycerophospholipids. Lipid identification is based on the

MS/MS rules for each lipid class. Neutral loss and product

ions can be associatedwith glycerophospholipid-specific class

fragments and fatty acyl chains on a user-defined “white list.”

Results can be matched with bulk and elemental composition

data derived from LIPID MAPS searches. A graphical report

and tabular information are provided for quality control and

data processing steps [128].

Pathway mapping in lipidomics

The aim of lipidomics is not only to detect differential inten-

sity patterns obtained under different experimental conditions,

but also their association within metabolic pathways.

Wheelock et al. showed a comprehensive overview of several

available pathway-mapping software packages and

visualization/manipulation toolboxes [129] (e.g., KEGG

[130], Cytoscape 3 [131], Ingenuity Pathway Analysis,

MetaCore™ [132], and VANTED [133]). Compared to other

omics fields, pathway mapping is still in its early stages in

lipidomics. KEGG provides several databases of biological

systems: KEGG GENES for genes and proteins, KEGG

LIGAND for endogenous and exogenous substances, KEGG

PATHWAY for molecular diagrams with pathway maps, and

KEGGBRITE for curated hierarchies of connections between

various biological objects [134]. A drawback of KEGG is that

its databases have thus far mainly focused on biosyntheses of

different lipid classes, not different lipid species. However,

experimental data from lipidomics at the lipid species level

are available. Filling this information gap is an ongoing pro-

cess. The LIPID MAPS consortium demonstrated the integra-

tion of lipidomics and transcriptomics data from time-

dependent differential treatments of RAW 264.7 cells. The

VANTED software package was used to map the reaction

network to information from the KEGG databases, the litera-

ture, and experimental data [135]. This work showed how

lipidomics data can be illustrated in lipid pathways/networks

at different concentration levels.
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Data quality and reporting

In 2005, the International Lipids Classification and

Nomenclature Committee (ILCNC) devised the first com-

prehensive classification system for lipids, which proved

to be a hallmark endeavor for the field [1] (Fig. 1). In

parallel, the LIPID MAPS consortium established the

LMSD, which is the most comprehensive compilation of

annotated lipids to date: it contains over 43,000 curated

and computationally generated lipid species [136]. Based

on these fundamental efforts, the shorthand nomenclature

for lipids proposed by Liebisch et al. takes into account

the MS-derived knowledge about a specific compound

[30]. The most important take-home message in this re-

spect is to report only what is unambiguously experimen-

tally proven. For example, a PC at m/z 760 can only be

reported as PC 16:0_18:1 when the correct fragments for

the head group and both fatty acyl residues have been

detected. Thus, according to the LMSD (e.g., PC 16:0/

18:1(9Z)), the annotation of lipid species is only possible

when the headgroup, the sn positions of fatty acyls, the

double-bond positions, and the conformations of the dou-

ble bonds are known, which is usually not the case.

Therefore, the proposed shorthand nomenclature fills the

gap in reported standards for ‘partially’ determined lipid

species with more than one possibly possible isomers.

Returning to the example depicted in Fig. 5, a neutral loss

scan with a triple quadrupole instrument would allow an-

notation at the lipid class level mass; the addition of either

chromatography or high mass resolution instrumentation

could potentially separate diacyl and ether PE species;

MS/MS spectra could confirm the headgroup, the constit-

uent fatty acyls (the fatty acyl/alkyl level), and even their

regioisomeric positions (the fatty acyl/alkyl position lev-

el); and the use of OzID, UVPD, IMS, or GC could po-

tentially even elucidate the positions and conformations of

double bonds. In summary, these classification and no-

menclature standards provide the foundations for moving

the field of lipidomics forward, as they enable a unified

language and unified reporting standards for the global

exchange of data in large-scale research consortia. In line

with this, the recently founded International Lipidomics

Society (ILS) is participating in joint efforts focusing on

the production of further guidelines on standardization,

data quality assessment, and clinical applications such as

the Lipidomics Standards Initiative (LSI), the Plasma

Lipidomics Reference Values Group, or method-

harmonizing ring trials [137, 138].

Another factor that deserves attention in relation to data

quality is the in-source fragmentation of certain lipids that

can mimic other naturally occurring lipids, resulting in

misannotation. Typical examples would be the demethylation

of PC species, which falsely points to the existence of a phos-

phatidylethanolamine (PE) species; the hydrolysis of

glycerophospholipids, which falsely implies the existence of

lysophospholipids; or the loss of glycerophospholipid

headgroups, which falsely indicates the existence of PA

[139]. One simple way to spot these artefacts is to use chro-

matography, because when (for example) PC 34:1 and LPC

16:0 have the same retention time, the latter must be an in-

Fig. 5 Levels of lipid

identification derived from mass

spectrometric data, as exemplified

by the inherent ambiguities of a

phosphatidylethanolamine (PE)

species containing an odd-carbon-

numbered fatty acyl chain.

Various mass spectrometric tech-

niques yield different levels of

certainty, which in turn should be

reflected in the annotation

Züllig T. et al.2204



source fragmented product of the former. However, this type

of artefact can be avoided by carefully choosing and validat-

ing the ion source parameters [139].

Conclusion

With the development of new analytical methods and

workflows, it is becoming increasingly conceivable that the de-

termination of lipidomes of whole organisms on a molecular

basis will become feasible. This would have a tremendous im-

pact on the evolution of lipidomics, as it would provide far

greater insight into the underlying functional roles of lipids.

Nevertheless, there are certain prerequisites that must be met

before such an ambitious objective can be achieved. The first

andmost important ingredient is data processing; although prog-

ress has been made in this area over the last decade, we are still

waiting for fully automated software solutions such as those

used in proteomics, which would be particularly useful for prob-

ing structural features in detail at themolecular level. The second

major issue is quantification, which is most often inherently

linked to the nonquantitative nature of electrospray. While rela-

tive values are sufficient when comparing statistical groups,

methods that can deliver reliable quantitative values will be

needed if lipidomics is to develop into a field that can be applied

in clinical diagnosis and eventually even for prognosis. These

issues are, however, the focus of a great deal of ongoing re-

search. If these problems with annotation, standardization, auto-

mation, and quantification can be overcome, the full potential of

lipidomics will be unleashed for functional and clinical studies.

Acknowledgements Open access funding provided by Medical

University of Graz.

Author contributions The idea and concept for this article were con-

ceived by HK. Literature searching and manuscript drafting were per-

formed by HK and TZ. The manuscript was critically revised by MT.

Funding information This work was supported by the Austrian Federal

Ministry of Education, Science and Research (grant number BMWFW-

10.420/0005-WF/V/3c/2017).

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing

interests.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, pro-

vide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included

in the article's Creative Commons licence, unless indicated otherwise in a

credit line to the material. If material is not included in the article's

Creative Commons licence and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder. To view a copy of this

licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH,

Murphy RC, et al. A comprehensive classification system for

lipids. J Lipid Res. 2005;46(5):839–61.

2. Rustam YH, Reid GE. Analytical challenges and recent advances

in mass spectrometry based lipidomics. Anal Chem. 2018;90(1):

374–97.

3. Liebisch G, Drobnik W, Lieser B, Schmitz G. High-throughput

quantification of lysophosphatidylcholine by electrospray ioniza-

tion tandem mass spectrometry. Clin Chem. 2002;48(12):2217–

24.

4. Scherer M, Schmitz G, Liebisch G. High-throughput analysis of

sphingosine 1-phosphate, sphinganine 1-phosphate, and

lysophosphat idic acid in plasma samples by liquid

chromatography-tandem mass spectrometry. Clin Chem.

2009;55(6):1218–22.

5. Kim J, Hoppel CL. Comprehensive approach to the quantitative

analysis of mitochondrial phospholipids by HPLC-MS. J

Chromatogr B. 2013;912:105–14.

6. Okudaira M, Inoue A, Shuto A, Nakanaga K, Kano K, Makide K,

et al. Separation and quantification of 2-acyl-1-lysophospholipids

and 1-acyl-2-lysophospholipids in biological samples by LC-MS/

MS. J Lipid Res. 2014;55(10):2178–92.

7. Jurowski K, Kochan K, Walczak J, BaranskaM, Piekoszewski W,

Buszewski B. Analytical techniques in lipidomics: state of the art.

Crit Rev Anal Chem. 2017;47(5):418–37.

8. Wolf C, Quinn PJ. Lipidomics: practical aspects and applications.

Prog Lipid Res. 2008;47(1):15–36.

9. Vasconcelos B, Teixeira JC, Dragone G, Teixeira JA.

Optimization of lipid extraction from the oleaginous yeasts

Rhodotorula glutinis and Lipomyces kononenkoae. AMB

Express. 2018;8(1):126.

10. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and

purification. Can J Biochem Phys. 1959;37(8):911–7.

11. Lebaron FN, Folch J. The effect of pH and salt concentration on

aqueous extraction of brain proteins and lipoproteins. J

Neurochem. 1959;4(1):1–8.

12. Triebl A, Trotzmuller M, Eberl A, Hanel P, Hartler J, Kofeler HC.

Quantitation of phosphatidic acid and lysophosphatidic acid mo-

lecular species using hydrophilic interaction liquid chromatogra-

phy coupled to electrospray ionization high resolution mass spec-

trometry. J Chromatogr A. 2014;1347:104–10.

13. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke

D. Lipid extraction by methyl-tert-butyl ether for high-throughput

lipidomics. J Lipid Res. 2008;49(5):1137–46.

14. Lopez-Bascon MA, Calderon-Santiago M, Sanchez-Ceinos J,

Fernandez-Vega A, Guzman-Ruiz R, Lopez-Miranda J, et al.

Influence of sample preparation on lipidomics analysis of polar

lipids in adipose tissue. Talanta. 2018;177:86–93.

15. Satomi Y, Hirayama M, Kobayashi H. One-step lipid extraction

for plasma lipidomics analysis by liquid chromatography mass

spectrometry. J Chromatogr B. 2017;1063:93–100.

16. Lofgren L, Stahlman M, Forsberg GB, Saarinen S, Nilsson R,

Hansson GI. The BUME method: a novel automated

chloroform-free 96-well total lipid extraction method for blood

plasma. J Lipid Res. 2012;53(8):1690–700.

17. Vale G, Martin SA, Mitsche MA, Thompson BM, Eckert KM,

McDonald JG. Three-phase liquid extraction: a simple and fast

Lipidomics from sample preparation to data analysis: a primer 2205



method for lipidomic workflows. J Lipid Res. 2019;60(3):694–

706.

18. Fauland A, Trotzmuller M, Eberl A, Afiuni-Zadeh S, Kofeler H,

Guo XH, et al. An improved SPE method for fractionation and

identification of phospholipids. J Sep Sci. 2013;36(4):744–51.

19. Hajek R, Jirasko R, Lisa M, Cifkova E, Holcapek M. Hydrophilic

interaction liquid chromatography-mass spectrometry characteri-

zation of gangliosides in biological samples. Anal Chem.

2017;89(22):12425–32.

20. GriffithsWJ, Gilmore I, Yutuc E, Abdel-Khalik J, Crick PJ, Hearn

T, et al. Identification of unusual oxysterols and bile acids with 7-

oxo or 3β,5α,6β-trihydroxy functions in human plasma by

charge-tagging mass spectrometry with multistage fragmentation.

J Lipid Res. 2018;59(6):1058–70.

21. Wang M, Palavicini JP, Cseresznye A, Han X. Strategy for quan-

titative analysis of isomeric bis(monoacylglycero)phosphate and

phosphatidylglycerol species by shotgun lipidomics after one-step

methylation. Anal Chem. 2017;89(16):8490–5.

22. Clark J, Anderson KE, Juvin V, Smith TS, Karpe F, WakelamMJ,

et al. Quantification of PtdInsP3 molecular species in cells and

tissues by mass spectrometry. Nat Methods. 2011;8(3):267–72.

23. Lee JC, Byeon SK, Moon MH. Relative quantification of phos-

pholipids based on isotope-labeled methylation by nanoflow ul-

trahigh performance liquid chromatography-tandem mass spec-

trometry: enhancement in cardiolipin profiling. Anal Chem.

2017;89(9):4969–77.

24. Han XL, Gross RW. Electrospray-ionization mass spectroscopic

analysis of human erythrocyte plasma-membrane phospholipids.

Proc Natl Acad Sci U S A. 1994;91(22):10635–9.

25. Han XL, Gross RW. Shotgun lipidomics: electrospray ionization

mass spectrometric analysis and quantitation of cellular lipidomes

directly from crude extracts of biological samples. Mass Spectrom

Rev. 2005;24(3):367–412.

26. Liebisch G, Drobnik W, Reil M, Trumbach B, Arnecke R,

Olgemoller B, et al. Quantitative measurement of different cer-

amide species from crude cellular extracts by electrospray ioniza-

tion tandem mass spectrometry (ESI-MS/MS). J Lipid Res.

1999;40(8):1539–46.

27. Schwudke D, Oegema J, Burton L, Entchev E, Hannich JT, Ejsing

CS, et al. Lipid profiling by multiple precursor and neutral loss

scanning driven by the data-dependent acquisition. Anal Chem.

2006;78(2):585–95.

28. Hsu FF. Mass spectrometry-based shotgun lipidomics—a critical

review from the technical point of view. Anal Bioanal Chem.

2018;410(25):6387–409.

29. Horing M, Ejsing CS, Hermansson M, Liebisch G. Quantification

of cholesterol and cholesteryl ester by direct flow injection high-

resolution Fourier transform mass spectrometry utilizing species-

specific response factors. Anal Chem. 2019;91(5):3459–66.

30. Liebisch G, Vizcaino JA, Kofeler H, Trotzmuller M, Griffiths WJ,

Schmitz G, et al. Shorthand notation for lipid structures derived

from mass spectrometry. J Lipid Res. 2013;54(6):1523–30.

31. Almeida R, Pauling JK, Sokol E, Hannibal-Bach HK, Ejsing CS.

Comprehensive lipidome analysis by shotgun lipidomics on a hy-

brid quadrupole-orbitrap-linear ion trap mass spectrometer. J Am

Soc Mass Spectrom. 2015;26(1):133–48.

32. Bielow C, Mastrobuoni G, Orioli M, Kempa S. On mass ambigu-

ities in high-resolution shotgun lipidomics. Anal Chem.

2017;89(5):2986–94.

33. SchuhmannK, Srzentic K, Nagornov KO, ThomasH, Gutmann T,

Coskun U, et al. Monitoring membrane lipidome turnover bymet-

abolic (15)N labeling and shotgun ultra-high-resolution Orbitrap

Fourier transform mass spectrometry. Anal Chem. 2017;89(23):

12857–65.

34. Southam AD, Weber RJ, Engel J, Jones MR, Viant MR. A com-

plete workflow for high-resolution spectral-stitching

nanoelectrospray direct-infusion mass-spectrometry-based meta-

bolomics and lipidomics. Nat Protoc. 2016;12(2):310–28.

35. Gao F, McDaniel J, Chen EY, Rockwell HE, Nguyen C, Lynes

MD, et al. Adapted MS/MS(ALL) shotgun lipidomics approach

for analysis of cardiolipin molecular species. Lipids. 2018;53(1):

133–42.

36. Abbassi-Ghadi N, Jones EA, Gomez-Romero M, Golf O, Kumar

S, Huang J, et al. A comparison of DESI-MS and LC-MS for the

lipidomic profiling of human cancer tissue. J Am Soc Mass

Spectrom. 2016;27(2):255–64.

37. Klein DR, Feider CL, Garza KY, Lin JQ, Eberlin LS, Brodbelt JS.

Desorption electrospray ionization coupled with ultraviolet photo-

dissociation for characterization of phospholipid isomers in tissue

sections. Anal Chem. 2018;90(17):10100–4.

38. Holcapek M, Liebisch G, Ekroos K. Lipidomic analysis. Anal

Chem. 2018;90(7):4249–57.

39. Danne-Rasche N, Coman C, Ahrends R. Nano-LC/NSI MS re-

fines lipidomics by enhancing lipid coverage, measurement sensi-

tivity, and linear dynamic range. Anal Chem. 2018;90(13):8093–

101.

40. Lisa M, Holcapek M. Characterization of triacylglycerol enantio-

mers using chiral HPLC/APCI-MS and synthesis of enantiomeric

triacylglycerols. Anal Chem. 2013;85(3):1852–9.

41. Peng B, Weintraub ST, Coman C, Ponnaiyan S, Sharma R, Tews

B, et al. A comprehensive high-resolution targeted workflow for

the deep profiling of sphingolipids. Anal Chem. 2017;89(22):

12480–7.

42. Lisa M, Cifkova E, Khalikova M, Ovcacikova M, Holcapek M.

Lipidomic analysis of biological samples: comparison of liquid

chromatography, supercritical fluid chromatography and direct in-

fusion mass spectrometry methods. J Chromatogr A. 2017;1525:

96–108.

43. Cifkova E, Holcapek M, Lisa M, Ovcacikova M, Lycka A, Lynen

F, et al. Nontargeted quantitation of lipid classes using hydrophilic

interaction liquid chromatography-electrospray ionization mass

spectrometry with single internal standard and response factor

approach. Anal Chem. 2012;84(22):10064–70.

44. Fauland A, Kofeler H, Trotzmuller M, Knopf A, Hartler J, Eberl

A, et al. A comprehensive method for lipid profiling by liquid

chromatography-ion cyclotron resonance mass spectrometry. J

Lipid Res. 2011;52(12):2314–22.

45. Knittelfelder OL, Weberhofer BP, Eichmann TO, Kohlwein SD,

Rechberger GN. Aversatile ultra-high performance LC-MS meth-

od for lipid profiling. J Chromatogr B. 2014;951-952:119–28.

46. Triebl A, Weißengruber S, Trötzmüller M, Lankmayr E, Köfeler

HC. Quantitative analysis of N-acylphosphatidylethanolamine

molecular species in rat brain using solid phase extraction com-

bined with reversed phase chromatography and tandem mass

spectrometry detection. J Sep Sci. 2016;39:2474–80.

47. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers

DS,Merrill AH, et al. Lipidomics reveals a remarkable diversity of

lipids in human plasma. J Lipid Res. 2010;51(11):3299–305.

48. Schott HF, Krautbauer S, Horing M, Liebisch G, Matysik S. A

validated, fast method for quantification of sterols and gut

microbiome derived 5α/β-stanols in human feces by isotope dilu-

tion LC-high-resolution MS. Anal Chem. 2018;90(14):8487–94.

49. Triebl A, Trotzmuller M, Hartler J, Stojakovic T, Kofeler HC.

Lipidomics by ultrahigh performance liquid chromatography-

high resolution mass spectrometry and its application to complex

biological samples. J Chromatogr B. 2017;1053:72–80.

50. Sala P, Potz S, Brunner M, Trotzmuller M, Fauland A, Triebl A,

et al. Determination of oxidized phosphatidylcholines by hydro-

philic interaction liquid chromatography coupled to Fourier trans-

form mass spectrometry. Int J Mol Sci. 2015;16(4):8351–63.

51. Xuan Q, Hu C, Yu D, Wang L, Zhou Y, Zhao X, et al.

Development of a high coverage pseudotargeted lipidomics

Züllig T. et al.2206



method based on ultra-high performance liquid chromatography-

mass spectrometry. Anal Chem. 2018;90(12):7608–16.

52. Contrepois K, Mahmoudi S, Ubhi BK, Papsdorf K, Hornburg D,

Brunet A, et al. Cross-platform comparison of untargeted and

targeted lipidomics approaches on aging mouse plasma. Sci Rep.

2018;8(1):17747.

53. Cajka T, Smilowitz JT, Fiehn O. Validating quantitative untargeted

lipidomics across nine liquid chromatography-high-resolution

mass spectrometry platforms. Anal Chem. 2017;89(22):12360–8.

54. Hartler J, Triebl A, Ziegl A, Trotzmuller M, Rechberger GN,

Zeleznik OA, et al. Deciphering lipid structures based on

platform-independent decision rules. Nat Methods. 2017;14(12):

1171–4.

55. Triebl A, Hartler J, Trötzmüller M, Köfeler HC. Lipidomics: pros-

pects from a technological perspective. Biochim Biophys Acta.

2017;1862(8):740–6.

56. Koelmel JP, Kroeger NM, Gill EL, Ulmer CZ, Bowden JA,

Patterson RE, et al. Expanding lipidome coverage using LC-MS/

MS data-dependent acquisition with automated exclusion list gen-

eration. J Am Soc Mass Spectrom. 2017;28(5):908–17.

57. Lisa M, Holcapek M. High-throughput and comprehensive

lipidomic analysis using ultrahigh-performance supercritical fluid

chromatography-mass spectrometry. Anal Chem. 2015;87(14):

7187–95.

58. Takeda H, Izumi Y, Takahashi M, Paxton T, Tamura S, Koike T,

et al. Widely-targeted quantitative lipidomics method by supercrit-

ical fluid chromatography triple quadrupole mass spectrometry. J

Lipid Res. 2018;59(7):1283–93.

59. Khoury S, Canlet C, LacroixMZ, Berdeaux O, Jouhet J, Bertrand-

Michel J. Quantification of lipids: model, reality, and compromise.

Biomolecules. 2018;8(4).

60. Wang M, Wang C, Han X. Selection of internal standards for

accurate quantification of complex lipid species in biological ex-

tracts by electrospray ionization mass spectrometry—what, how

and why? Mass Spectrom Rev. 2017;36(6):693–714.

61. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD.

Quantitative analysis of biological membrane lipids at the low

picomole level by nano-electrospray ionization tandemmass spec-

trometry. Proc Natl Acad Sci USA. 1997;94(6):2339–44.

62. Kauhanen D, Sysi-Aho M, Koistinen KM, Laaksonen R, Sinisalo

J, Ekroos K. Development and validation of a high-throughput

LC-MS/MS assay for routine measurement of molecular

ceramides. Anal Bioanal Chem. 2016;408(13):3475–83.

63. Rampler E, Criscuolo A, Zeller M, El Abiead Y, Schoeny H,

Hermann G, et al. A novel lipidomics workflow for improved

human plasma identification and quantification using RPLC-

MSn methods and isotope dilution strategies. Anal Chem.

2018;90(11):6494–501.

64. Keating JE, Glish GL. Dual emitter nano-electrospray ionization

coupled to differential ion mobility spectrometry-mass spectrom-

etry for shotgun lipidomics. Anal Chem. 2018;90(15):9117–24.

65. Blazenovic I, Shen T, Mehta SS, Kind T, Ji J, Piparo M, et al.

Increasing compound identification rates in untargeted lipidomics

research with liquid chromatography drift time-ion mobility mass

spectrometry. Anal Chem. 2018;90(18):10758–64.

66. Zhou Z, Tu J, Zhu ZJ. Advancing the large-scale CCS database for

metabolomics and lipidomics at the machine-learning era. Curr

Opin Chem Biol. 2018;42:34–41.

67. Leaptrot KL, May JC, Dodds JN, McLean JA. Ion mobility con-

formational lipid atlas for high confidence lipidomics. Nat

Commun. 2019;10(1):985.

68. Zhou Z, Shen X, Chen X, Tu J, Xiong X, Zhu ZJ. LipidIMMS

analyzer: integratingmulti-dimensional information to support lip-

id identification in ion mobility-mass spectrometry based

lipidomics. Bioinformatics. 2019;35(4):698–700.

69. Paglia G, Astarita G. Metabolomics and lipidomics using

traveling-wave ion mobility mass spectrometry. Nat Protoc.

2017;12(4):797–813.

70. Hinz C, Liggi S, Mocciaro G, Jung S, Induruwa I, Pereira M, et al.

A comprehensive UHPLC ion mobility quadrupole time-of-flight

method for profiling and quantification of eicosanoids, other

oxylipins, and fatty acids. Anal Chem. 2019;91(13):8025–35.

71. Zhou Z, Tu J, Xiong X, Shen X, Zhu ZJ. LipidCCS: prediction of

collision cross-section values for lipids with high precision to sup-

port ion mobility-mass spectrometry-based lipidomics. Anal

Chem. 2017;89(17):9559–66.

72. Schiller J, Arnhold J, Benard S, Muller M, Reichl S, Arnold K.

Lipid analysis by matrix-assisted laser desorption and ionization

mass spectrometry: a methodological approach. Anal Biochem.

1999;267(1):46–56.

73. Leopold J, Popkova Y, Engel KM, Schiller J. Recent develop-

ments of useful MALDI matrices for the mass spectrometric char-

acterization of lipids. Biomolecules. 2018;8(4).

74. Wang J, Wang C, Han X. Enhanced coverage of lipid analysis and

imaging by matrix-assisted laser desorption/ionization mass spec-

trometry via a strategy with an optimized mixture of matrices.

Anal Chim Acta. 2018;1000:155–62.

75. Ellis SR, Paine MRL, Eijkel GB, Pauling JK, Husen P, Jervelund

MW, et al. Automated, parallel mass spectrometry imaging and

structural identification of lipids. Nat Methods. 2018;15(7):515–8.

76. Jirasko R, Holcapek M, Khalikova M, Vrana D, Student V,

Prouzova Z, et al. MALDI Orbitrap mass spectrometry profiling

of dysregulated sulfoglycosphingolipids in renal cell carcinoma

tissues. J Am Soc Mass Spectrom. 2017;28(8):1562–74.

77. Knittelfelder O, Traikov S, Vvedenskaya O, Schuhmann A,

Segeletz S, Shevchenko A, et al. Shotgun lipidomics combined

with laser capture microdissection: a tool to analyze histological

zones in cryosections of tissues. Anal Chem. 2018;90(16):9868–

78.

78. Cheng C, Pittenauer E, Gross ML. Charge-remote fragmentations

are energy-dependent processes. J Am Soc Mass Spectrom.

1998;9(8):840–4.

79. Pittenauer E, Allmaier G. The renaissance of high-energy CID for

structural elucidation of complex lipids: MALDI-TOF/RTOF-MS

of alkali cationized triacylglycerols. J Am Soc Mass Spectrom.

2009;20(6):1037–47.

80. Brown SHJ, Mitchell TW, Blanksby SJ. Analysis of unsaturated

lipids by ozone-induced dissociation. BBA-Mol Cell Biol Lipids.

2011;1811(11):807–17.

81. Baba T, Campbell JL, Le Blanc JCY, Baker PRS, Ikeda K.

Quantitative structural multiclass lipidomics using differential

mobility: electron impact excitation of ions from organics

(EIEIO) mass spectrometry. J Lipid Res. 2018;59(5):910–9.

82. Zhang W, Zhang D, Chen Q, Wu J, Ouyang Z, Xia Y. Online

photochemical derivatization enables comprehensive mass spec-

trometric analysis of unsaturated phospholipid isomers. Nat

Commun. 2019;10(1):79.

83. Ryan E, Nguyen CQN, Shiea C, Reid GE. Detailed structural

characterization of sphingolipids via 193 nm ultraviolet photodis-

sociation and ultra high resolution tandem mass spectrometry. J

Am Soc Mass Spectrom. 2017;28(7):1406–19.

84. Williams PE, Klein DR, Greer SM, Brodbelt JS. Pinpointing dou-

ble bond and sn-positions in glycerophospholipids via hybrid

193 nm ultraviolet photodissociation (UVPD) mass spectrometry.

J Am Chem Soc. 2017;139(44):15681–90.

85. Fenaille F, Barbier Saint-Hilaire P, Rousseau K, Junot C. Data

acquisition workflows in liquid chromatography coupled to high

resolution mass spectrometry-based metabolomics: where do we

stand? J Chromatogr A. 2017;1526:1–12.

86. Koelmel JP, Kroeger NM, Ulmer CZ, Bowden JA, Patterson RE,

Cochran JA, et al. LipidMatch: an automated workflow for rule-

Lipidomics from sample preparation to data analysis: a primer 2207



based lipid identification using untargeted high-resolution tandem

mass spectrometry data. BMC Bioinformatics. 2017;18(1):1–11.

87. Pfeuffer J, Sachsenberg T, Alka O, Walzer M, Fillbrunn A, Nilse

L, et al. OpenMS—a platform for reproducible analysis of mass

spectrometry data. J Biotechnol. 2017;261(May):142–8.

88. TsugawaH, Cajka T, Kind T,MaY, Higgins B, IkedaK, et al. MS-

DIAL: data-independent MS/MS deconvolution for comprehen-

sive metabolome analysis. Nat Methods. 2015;12(6):523–6.

89. Kyle JE, Crowell KL, Casey CP, FujimotoGM, KimS,Dautel SE,

et al. LIQUID: an-open source software for identifying lipids in

LC-MS/MS-based lipidomics data. Bioinformatics. 2017;33(11):

1744–6.

90. Kochen MA, Chambers MC, Holman JD, Nesvizhskii AI,

Weintraub ST, Belisle JT, et al. Greazy: open-source software

for automated phospholipid tandem mass spectrometry identifica-

tion. Anal Chem. 2016;88(11):5733–41.

91. Pluskal T, Castillo S, Villar-Briones A, Orei M. MZmine 2: mod-

ular framework for processing, visualizing, and analyzing mass

spectrometry-based molecular profile data. BMC Bioinformatics.

2010;11:395.

92. Fahy E, Alvarez-Jarreta J, Brasher CJ, Nguyen A, Hawksworth JI,

Rodrigues P, et al. LipidFinder on LIPID MAPS: peak filtering,

MS searching and statistical analysis for lipidomics.

Bioinformatics. 2019;35(4):685–7.

93. O'Connor A, Brasher CJ, Slatter DA, Meckelmann SW,

Hawksworth JI, Allen SM, et al. LipidFinder: a computational

workflow for discovery of lipids identifies eicosanoid-

phosphoinositides in platelets. JCI Insight. 2017;2(7):e91634.

94. Mahieu NG, Genenbacher JL, Patti GJ. A roadmap for the XCMS

family of software solutions in metabolomics. Curr Opin Chem

Biol. 2016;30:87–93.

95. Alcoriza-Balaguer MI, Garca-Caaveras JC, Lpez A, Conde I, Juan

O, Carretero J, et al. LipidMS: an R package for lipid annotation in

untargeted liquid chromatography-data independent acquisition-

mass spectrometry lipidomics. Anal Chem. 2019;91(1):836–45.

96. Hutchins PD, Russell JD, Coon JJ. LipiDex: an integrated soft-

ware package for high-confidence lipid identification. Cell Syst.

2018;6(5):621–5 e5.

97. Adusumilli R, Mallick P. Data conversion with proteoWizard

msConvert. Methods Mol Biol. 2017;1550:339–68.

98. Hartler J, Trotzmuller M, Chitraju C, Spener F, Kofeler HC,

Thallinger GG. Lipid Data Analyzer: unattended identification

and quantitation of lipids in LC-MS data. Bioinformatics.

2011;27(4):572–7.

99. Tautenhahn R, Bottcher C, Neumann S. Highly sensitive feature

detection for high resolution LC/MS. BMC Bioinform. 2008;9:1–

16.

100. Fahy E, Sud M, Cotter D, Subramaniam S. LIPID MAPS online

tools for lipid research. Nucleic Acids Res. 2007;35:W606–12.

101. Foster JM, Moreno P, Fabregat A, Hermjakob H, Steinbeck C,

Apweiler R, et al. LipidHome: a database of theoretical lipids

optimized for high throughput mass spectrometry lipidomics.

PLoS One. 2013;8(5):e61951.

102. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-

Fresno R, et al. HMDB 4.0: the Human Metabolome Database for

2018. Nucleic Acids Res. 2018;46(D1):D608–D17.

103. Zhou Z, Shen X, Chen X, Tu J, Xiong X, Zhu ZJ. LipidIMMS

analyzer: integratingmulti-dimensional information to support lip-

id identification in ion mobility-mass spectrometry based

lipidomics. Bioinformatics. 2019;35(4):698–700.

104. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, et al.

MassBank: a public repository for sharing mass spectral data for

life sciences. J Mass Spectrom. 2010;45(7):703–14.

105. Kind T, Okazaki Y, Saito K, Fiehn O. LipidBlast templates as

flexible tools for creating new in-silico tandem mass spectral li-

braries. Anal Chem. 2014;86(22):11024–7.

106. Hutchins PD, Russell JD, Coon JJ. Mapping lipid fragmentation

for tailored mass spectral libraries. J Am Soc Mass Spectrom.

2019;30:659–68.

107. Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S.

MetFrag relaunched: incorporating strategies beyond in silico

fragmentation. J Cheminform. 2016;8:3.

108. Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching

molecular structure databases with tandem mass spectra using

CSI:FingerID. Proc Natl Acad Sci. 2015;112:12580–5.

109. Allen F, Pon A, Wilson M, Greiner R, Wishart D. CFM-ID: a web

server for annotation, spectrum prediction and metabolite identifi-

cation from tandem mass spectra. Nucleic Acids Res. 2014;42:

W94–9.

110. Djoumbou-Feunang Y, Pon A, Karu N, Zheng J, Li C, Arndt D,

et al. CFM-ID 3.0: significantly improved ESI-MS/MS prediction

and compound identification. Metabolites. 2019;9(4):72.

111. Koelmel JP, Cochran JA, Ulmer CZ, Levy AJ, Patterson RE,

Olsen BC, et al. Software tool for internal standard based normal-

ization of lipids, and effect of data-processing strategies on

resulting values. BMC Bioinformatics. 2019;20(1):217.

112. Benton HP,WongDM, Trauger SA, Siuzdak G. XCMS2: process-

ing tandem mass spectrometry data for metabolite identification

and structural characterization. Anal Chem. 2008;80:6382–9.

113. Sampson JN, Boca SM, Shu XO, Stolzenberg-Solomon RZ,

Matthews CE, Hsing AW, et al. Metabolomics in epidemiology:

sources of variability in metabolite measurements and implica-

tions. Cancer Epidemiol Biomark Prev. 2013;22(4):631–40.

114. Li B, Tang J, Yang Q, Li S, Cui X, Li Y, et al. NOREVA: normal-

ization and evaluation of MS-based metabolomics data. Nucleic

Acids Res. 2017;45(W1):W162–W70.

115. Boysen AK, Heal KR, Carlson LT, Ingalls AE. Best-matched in-

ternal standard normalization in liquid chromatography-mass

spectrometry metabolomics applied to environmental samples.

Anal Chem. 2018;90(2):1363–9.

116. Sysi-Aho M, Katajamaa M, Yetukuri L, Oresic M. Normalization

method for metabolomics data using optimal selection of multiple

internal standards. BMC Bioinformatics. 2007;8:93.

117. Redestig H, Fukushima A, Stenlund H, Moritz T, Arita M, Saito

K, et al. Compensation for systematic cross-contribution improves

normalization of mass spectrometry based metabolomics data.

Anal Chem. 2009;81(19):7974–80.

118. Wang SY, Kuo CH, Tseng YJ. Batch Normalizer: a fast total abun-

dance regression calibration method to simultaneously adjust

batch and injection order effects in liquid chromatography/time-

of-flight mass spectrometry-basedmetabolomics data and compar-

ison with current calibration methods. Anal Chem. 2013;85(2):

1037–46.

119. Luan H, Ji F, Chen Y, Cai Z. statTarget: a streamlined tool for

signal drift correction and interpretations of quantitative mass

spectrometry-based omics data. Anal Chim Acta. 2018;1036:66–

72.

120. Fan S, Kind T, Cajka T, Hazen SL, TangWHW, Kaddurah-Daouk

R, et al. Systematic error removal using random forest for normal-

izing large-scale untargeted lipidomics data. Anal Chem.

2019;91(5):3590–6.

121. Yang K, Han X. Accurate quantification of lipid species by

electrospray ionization mass spectrometry—meet a key challenge

in lipidomics. Metabolites. 2011;1(1):21–40.

122. Jiang X, Cheng H, Yang K, Gross RW, Han X. Alkaline

methanolysis of lipid extracts extends shotgun lipidomics analy-

ses to the low-abundance regime of cellular sphingolipids. Anal

Biochem. 2007;371(2):135–45.

123. Han X, Yang J, Cheng H, Ye H, Gross RW. Toward fingerprinting

cellular lipidomes directly from biological samples by two-

dimensional electrospray ionization mass spectrometry. Anal

Biochem. 2004;330(2):317–31.

Züllig T. et al.2208



124. Yang K, Cheng H, Gross RW, Han X. Automated lipid identifica-

tion and quantification by multidimensional mass spectrometry-

based shotgun lipidomics. Anal Chem. 2009;81(11):4356–68.

125. Herzog R, Schwudke D, Shevchenko A. LipidXplorer: software

for quantitative shotgun lipidomics compatible with multiple mass

spectrometry platforms. Curr Protoc Bioinformatics. 2013;43:

14.2.1–30.

126. Herzog R, Schwudke D, Schuhmann K, Sampaio JL, Bornstein

SR, Schroeder M, et al. A novel informatics concept for high-

throughput shotgun lipidomics based on the Molecular

Fragmentation Query Language. Genome Biol. 2011;12(1):R8.

127. Husen P, Tarasov K, Katafiasz M, Sokol E, Vogt J, Baumgart J,

et al. Analysis of lipid experiments (ALEX): a software frame-

work for analysis of high-resolution shotgun lipidomics data.

PLoS One. 2013;8(11):e79736.

128. Garwolinska D, Hewelt-Belka W, Namiesnik J, Kot-Wasik A.

Rapid characterization of the human breast milk lipidome using

a solid-phase microextraction and liquid chromatography-mass

spectrometry-based approach. J Proteome Res. 2017;16(9):

3200–8.

129. Wheelock CE, Wheelock AM, Kawashima S, Diez D, Kanehisa

M, van Erk M, et al. Systems biology approaches and pathway

tools for investigating cardiovascular disease. Mol BioSyst.

2009;5(6):588–602.

130. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M,

et al. KEGG for linking genomes to life and the environment.

Nucleic Acids Res. 2008;36:D480–4.

131. Su G, Morris JH, Demchak B, Bader GD. Biological network

exploration with Cytoscape 3. Curr Protoc Bioinformatics.

2014;47:8.13.1–24.

132. Ekins S, Bugrim A, Brovold L, Kirillov E, Nikolsky Y,

Rakhmatulin E, et al. Algorithms for network analysis in

systems-ADME/Tox using the MetaCore and MetaDrug plat-

forms. Xenobiotica. 2006;36(10–11):877–901.

133. Junker BH, Klukas C, Schreiber F. VANTED: a system for ad-

vanced data analysis and visualization in the context of biological

networks. BMC Bioinformatics. 2006;7:109.

134. Kanehisa M, Sato Y. KEGG mapper for inferring cellular func-

tions from protein sequences. Protein Sci. 2019.

135. Gupta S, Maurya MR, Merrill AH Jr, Glass CK, Subramaniam S.

Integration of lipidomics and transcriptomics data towards a sys-

tems biology model of sphingolipid metabolism. BMC Syst Biol.

2011;5:26.

136. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, et al.

LMSD: LIPID MAPS structure database. Nucleic Acids Res.

2007;35:D527–32.

137. Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP,

Abdullah L, et al. Harmonizing lipidomics: NIST interlaboratory

comparison exercise for lipidomics using SRM 1950-metabolites

in frozen human plasma. J Lipid Res. 2017;58(12):2275–88.

138. Burla B, Arita M, Arita M, Bendt AK, Cazenave-Gassiot A,

Dennis EA, et al. MS-based lipidomics of human blood plasma:

a community-initiated position paper to develop accepted guide-

lines. J Lipid Res. 2018;59(10):2001–17.

139. Gathungu RM, Larrea P, Sniatynski MJ, Marur VR, Bowden JA,

Koelmel JP, et al. Optimization of electrospray ionization source

parameters for lipidomics to reduce misannotation of in-source

fragments as precursor ions. Anal Chem. 2018;90(22):13523–32.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-

tional claims in published maps and institutional affiliations.

Lipidomics from sample preparation to data analysis: a primer 2209


	Lipidomics from sample preparation to data analysis: a primer
	Abstract
	Introduction
	Sample processing
	Sample homogenization
	Liquid–liquid extraction
	Solid-phase extraction
	Derivatization

	Direct infusion lipidomics
	LC-MS
	Supercritical fluid chromatography

	Quantitative aspects
	Ion mobility spectrometry
	MALDI-TOF and mass spectrometric imaging
	Structure elucidation
	LC-MS data processing
	Batch normalization strategies
	Shotgun software
	Pathway mapping in lipidomics
	Data quality and reporting
	Conclusion
	References


