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Abstract

Metabolism and ATP levels within the oocyte and adjacent cumulus cells are associated with quality of oocyte and optimal development

of a healthy embryo. Lipid metabolism provides a potent source of energy and its importance during oocyte maturation is being

increasingly recognised. The triglyceride and fatty acid composition of ovarian follicular fluid has been characterised for many species

and is influenced by nutritional status (i.e. dietary fat, fasting, obesity and season) as well as lactation in cows. Lipid in oocytes is a

primarily triglyceride of specific fatty acids which differ by species, stored in distinct droplet organelles that re-localise during oocyte

maturation. The presence of lipids, particularly saturated vs unsaturated fatty acids, in in vitro maturation systems affects oocyte lipid

content as well as developmental competence. Triglycerides are metabolised by lipases that have been localised to cumulus cells as well

as oocytes. Fatty acids generated by lipolysis are further metabolised by b-oxidation in mitochondria for the production of ATP.

b-oxidation is induced in cumulus–oocyte complexes (COCs) by the LH surge, and pharmacological inhibition of b-oxidation impairs

oocyte maturation and embryo development. Promoting b-oxidation with L-carnitine improves embryo development in many species.

Thus, fatty acid metabolism in the mammalian COC is regulated by maternal physiological and in vitro environmental conditions;

and is important for oocyte developmental competence.
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Introduction

Successful reproduction is dependent on the ovulation
of an oocyte capable of undergoing fertilisation
and subsequent embryo and foetal development, and
requires the co-ordinated and stepwise growth and
maturation of the oocyte and its companion somatic
cells known collectively as the ovarian follicle. Ovarian
follicles grow from the dormant primordial stage in
which the oocyte is surrounded by a single layer of
granulosa cells to a preovulatory stage follicle. By this
stage, the fully grown oocyte has amassed nutrient
stores, mRNA, proteins and organelles, including large
numbers of mitochondria, and is surrounded by
specialised cumulus cells, a fluid-filled antral cavity
and a stratified epithelial layer of granulosa cells.
Ovulation of the cumulus–oocyte complex (or COC)
and the final stages of oocyte maturation are initiated by
a surge of luteinising hormone (LH), which signals to the
oocyte via the granulosa and cumulus cells to resume
meiosis and complete nuclear maturation to the
metaphase II (MII) stage of meiosis in preparation for
fertilisation. These rapid and tightly synchronised events,
which include granulosa cell proliferation, cumulus cell
matrix production and chromosome segregation, are
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energy-consuming processes and require adequate
generation of ATP from cellular energy stores.

The in vitro maturation of oocytes (IVM) involves
removal of the COC from the antral follicle before the LH
surge and stimulation of the final stages of maturation
in vitro, i.e. in the absence of the in vivo follicular
signals. Oocytes matured by IVM are however less likely
to develop to the blastocyst stage (Rizos et al. 2002,
Gilchrist & Thompson 2007) and result in higher rates of
miscarriage compared with oocytes that mature in
follicles in vivo (Buckett et al. 2008). The causal
mechanisms responsible for this poor oocyte quality
following IVM are not clear; however, oocyte develop-
mental competence is associated with the metabolism
and metabolic rate of the oocyte and its surrounding
cumulus cells (Biggers et al. 1967, Downs 1995, Sugiura
& Eppig 2005, Preis et al. 2007, Thompson et al. 2007).
Adequate levels of intracellular ATP are also required for
optimal oocyte developmental potential (Van Blerkom
et al. 1995) and therefore energy substrate supply to the
COC via the follicular fluid or culture medium during
in vivo maturation or IVM, respectively, is likely to affect
oocyte quality.

Lipids are hydrophobic or amphipathic molecules
with diverse biological roles that include being a rich
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source of energy, cell signalling mediators and the
foundation of plasma and organelle membranes. Fatty
acids are a class of lipid and function as structural
components of membranes, precursors for prostaglandin
synthesis and to anchor proteins to cell membranes.
Fatty acids are also stored intracellularly as triacylgly-
cerides within lipid droplets, providing a potent source
of energy upon demand; for instance, oxidation of
the fatty acid palmitate can generate 106 ATP molecules
compared with glucose oxidation which yields
w30 ATP molecules.

Important roles for fatty acids in the promotion of
embryo development have been clearly demonstrated
and comprehensively reviewed (McKeegan & Sturmey
2011); however, accumulating evidence indicates that
the metabolism of lipids by b-oxidation in the COC
before fertilisation also influences subsequent oocyte
developmental potential. Oocytes in particular but also
cumulus cells are well known to contain lipid droplets,
but how these are utilised during oocyte maturation is
only just emerging. Similarly, although lipid utilisation
by oocytes has been demonstrated primarily by indirect
methods (reviewed in Sturmey et al. (2009)), b-oxidation
within the whole COC has been directly documented
more recently and appears to be occurring in large part
in cumulus cells. Understanding these pre-conceptional
roles of fatty acids in both cumulus cells and oocytes is
essential in order to understand how physiological
alterations in follicular lipids, as well as the supply of
lipids as substrates for metabolism during IVM, impacts
the earliest stages of embryo development.
Fatty acid supply to the COC

Lipid composition of ovarian follicular fluid and
relationship to serum

Free fatty acids (or non-esterified fatty acids (NEFA)) are
attached to serum albumin which acts as a carrier protein
rendering the insoluble fatty acid suitable for transport
through the circulation to tissues. However, the majority
of circulating fatty acids are in the form of carboxylic acid
derivatives including esters or amides. Fatty acids are
also stored as triacylglycerol molecules, or triglycerides,
in which three fatty acid molecules are attached to a
glycerol backbone; and these are carried throughout
the blood in lipoprotein particles, i.e. HDLs, LDLs and
VLDLs. Triacylglycerols and fatty acids are present in the
follicular fluid of numerous species and there is emerging
interest in understanding how these substrates are
ultimately utilised by ovarian somatic cells and oocytes
for energy production. Analyses of lipoproteins in human
follicular fluid in several studies corroborate that
HDLs but little or no LDL or VLDL are present (Simpson
et al. 1980, Perret et al. 1985, Volpe et al. 1991,
Jaspard et al. 1997). Follicular fluid HDL cholesterol is
positively correlated with serum HDL cholesterol
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(Gautier et al. 2010, Valckx et al. 2012), indicating that
HDL particles are serum derived and passively equili-
brated; however, there is no similar correlation for VLDL
cholesterol in follicular fluid and serum (Gautier et al.
2010). Thus, it is generally accepted that in mammals
HDL is the sole lipoprotein present in follicular fluid due
to the porosity of the follicle basement membrane which
is permeable to serum proteins up to 300 kDa in size
(Shalgi et al. 1973), thus excluding LDL and VLDL.
Interestingly, although LDL and/or VLDL are detected in
follicular fluid of some women (Von Wald et al. 2010)
and it is also reported that human granulosa-lutein cells
express lipoprotein marker ApoB-100 and assemble and
secrete in vitro-native VLDL particles similar to those in
serum, except with slightly higher triglyceride content
and less cholesterol (Gautier et al. 2010). Thus, LDL
and VLDL particles detected in follicular fluid may in fact
be generated by ovarian cells.

It is well understood that HDL particles have important
functions in granulosa and theca cell steroidogenesis,
serving as the predominant source of cholesterol (Azhar
et al. 1998, Hughes et al. 2011); yet studies examining
the effects of lipoproteins on oocyte developmental
competence are contradictory. Studies in the mouse
demonstrate the importance of HDL integrity for oocyte
competence; as knockout mice lacking the HDL
receptor scavenger receptor class B, member 1 (SRBI)
are infertile due to fertilised oocytes arresting before the
morula stage (Miettinen et al. 2001). These mice have
abnormally large circulating HDL particles and, inter-
estingly, restoration of SRBI expression in the liver alone
is sufficient to normalise HDL particle size and restore
fertility (Yesilaltay et al. 2006). Increased HDL in human
follicular fluid was associated with low embryo
fragmentation (Browne et al. 2008, 2009), suggesting
that HDL components play a cytoprotective role for the
oocyte. Similarly, high ApoB in human follicular fluid
is associated with better quality embryos and higher
pregnancy rates (Gautier et al. 2010). However, two
recent studies have shown that increased HDL and
ApoAI levels were associated with failure of oocytes to
cleave and decreased the numbers of good quality
embryos (Valckx et al. 2012, Wallace et al. 2012).
Furthermore, it is unclear whether lipoproteins found in
follicular fluid influence oocyte quality via their ability to
deliver lipid substrates such as triacylglycerol or whether
other components of these particles, namely the
surrounding apolipoproteins, which are known to have
scavenging properties, protect cells from oxidative stress.

Numerous studies have compared triacylglycerol and
free fatty acid levels between serum and follicular fluid.
In dairy cows, follicular fluid triacylglycerol and free
fatty acid (i.e. NEFA) levels were lower than but
significantly correlated with those in serum
(Leroy et al. 2004a,b). Linoleic, palmitic and oleic acid
(see Table 1) predominate in the total fatty acid fraction
of bovine follicular fluid (Homa & Brown 1992,
www.reproduction-online.org
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Table 1 The common name and structure of fatty acids.

Common
name Structure Saturation

Myristic acid 14:0 Saturated
Palmitic acid 16:0 Saturated
Stearic acid 18:0 Saturated
Oleic acid 18:1 (9) Monounsaturated
Linoleic acid 18:2 (9, 12) n-6 Polyunsaturated (PUFA)
a-linolenic

acid
18:3 (9, 12, 15) n-3 Polyunsaturated (PUFA)

Arachidonic
acid

20:4 (5, 8, 1, 14) n-6 Polyunsaturated (PUFA)

Adrenic acid 22:4 (7, 10, 13, 16) n-6 Polyunsaturated (PUFA)

These varying structures play important biological roles, but for the
purpose of energy production via oxidation, longer saturated fatty acids
yield more energy than shorter or unsaturated fatty acids.
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Tsujii et al. 2001). Oleic, palmitic and stearic acid were
the most prevalent free fatty acids in follicular fluid from
lactating cows, and were w40% of the levels in serum
(Leroy et al. 2005a). Free fatty acid levels may be related
to follicle maturation, as follicles with higher oestrogen:
progesterone (E2:P4) ratio have more palmitic and oleic
acids and less stearic and linoleic acids (Renaville et al.
2010). In human follicular fluid, recent analyses have
demonstrated that most serum metabolites including
triacylglycerol and free fatty acids are reflected in
follicular fluid, but at lower levels (Valckx et al. 2012).
Oleic, linoleic and palmitic acids are the most prevalent
free fatty acids in human follicular fluid and exhibit weak
but significant correlations with levels in serum
(Jungheim et al. 2011).

Thus, there is extensive information about the
prevalence of lipoproteins, triacylglycerol and free fatty
acids in the microenvironment of the COC, namely the
follicular fluid. However, whether lipoproteins act as a
major delivery system of lipids or whether other specific
lipid transport systems are required in cumulus cells
and/or the oocyte is not known. Furthermore, although
the fatty acid composition of follicular fluid of many
species has been characterised, it is unclear whether or
to what extent the metabolism of follicular fluid fatty
acids provides ATP to the cumulus cells and/or oocyte.
Importantly, no studies to date have demonstrated a
correlation of any specific follicular fluid fatty acids with
fertility outcomes.
Lipid droplets in oocytes

Oocytes are renowned as large cells containing lipid
stores and numerous studies have observed differences
in the darkness of the oocyte cytoplasm, even in oocytes
from the same ovary, and deemed it lipid. Bovine
oocytes classified into different ‘darkness categories’
were found to have differences in cleavage and
blastocyst development rates in vitro (Jeong et al.
2009). Comparison of bovine oocytes with light
www.reproduction-online.org
homogeneous cytoplasm and those with course dark
cytoplasm found that palmitic acid was equally
prevalent in both types, but that light oocytes contained
a higher percentage of oleic and linoleic (18:2) fatty
acids, while the darker oocytes had more saturated
stearic acid (Kim et al. 2001). Thus the optical density of
the ooplasm may indeed reflect its lipid, i.e. fatty acid,
content, and if so, suggests that lipid content contributes
to oocyte developmental competence.

Using a variety of techniques, many studies have
quantified lipids in oocytes and determined that
triacylglycerol is the major constituent (reviewed in
Sturmey et al. (2009)). An early study determined that
‘ova’ isolated from the oviducts of mated mice contain
3.25 ng of lipid or 12.5% of the dry mass based on
sample weight before and after chloroform extraction
(Loewenstein & Cohen 1964). Since then lipid storage
in intracellular droplets has been identified by electron
microscopy of oocytes from many species, including
rabbit (Zamboni & Mastroianni 1966), cat (Martins et al.
2009), pig (Kikuchi et al. 2002) and cow (Kruip et al.
1983), with the lipid droplets often associated with
mitochondria. Lipophilic Nile red dye is also commonly
used to visualise lipid in oocytes; oocytes that have
darker cytoplasm have greater Nile red staining (Leroy
et al. 2005b). Decomposition of Nile red spectra was
used to quantify triacylglycerol, phospholipid and
cholesterol in oocytes and embryos (Romek et al.
2011); Nile Red staining of porcine oocytes followed
by florescence resonance energy transfer was used to
demonstrate that lipid droplets and mitochondria are
within w10 nm of each other (Sturmey et al. 2006).
BODIPY 493/503 is a neutral lipid dye that has more
recently been used to detect lipid droplets in oocytes and
demonstrate they are bounded by the lipid droplet
protein ADRP in both mouse and bovine (Yang et al.
2010, Aardema et al. 2011). Examination of lipid
droplets in an individual mouse oocytes by matrix-
assisted laser desorption/ionisation mass spectrometry
(MALDI-MS) (Ferreira et al. 2010) and syncotron Fourier
transform-infrared (FT-IR) and Raman microspectroscopy
demonstrated that the molecular composition of the lipid
deposits exhibits spatial organisation within the droplet
(Wood et al. 2008) and that mature oocytes which have
high developmental competence have a distinct lipid
profile compared with oocytes with immature chromatin
structures that are unable to complete meiosis and form
blastocysts (Ami et al. 2011). Overall, however, our
understanding of the mechanisms that control lipid
deposition in oocytes is in its infancy.

Interestingly, oocytes of different species exhibit
marked variations in lipid content. We have used
BODIPY 493/503 neutral lipid stain to illustrate these
differences in oocyte lipid content between several
species: mouse, cow, sheep, pig and humans (Fig. 1).
Pig oocytes are known to be lipid laden, with the
majority stored as neutral lipids, mainly triacylglycerol
Reproduction (2014) 148 R15–R27
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Figure 1 Lipid droplet localisation in mammalian oocytes. Images of
immature oocytes from humans (A), mouse (B), sheep (C), cow (D) and
pig (E) stained with BODIPY 493/503 neutral lipid dye. All procedures
were carried out in serum-free polyvinylpyrrolidone-(PVP; 0.2% w/v)-
containing medium or PBS. Cumulus–oocyte complexes were denuded
and oocytes fixed in 4% paraformaldehyde. Oocytes were permeabi-
lised for 30 min in 0.1% (w/v) saponin/0.1 M glycine in PBS and
intracellular neutral lipid stained with BODIPY 493/503
(Molecular Probes) 1 mg/ml in PBS for 1 h in the dark. Oocytes were
imaged by confocal microscopy (FluoView FV10i; Olympus), using
fixed, predetermined magnification and exposure settings.
Scale barZ60 mm. The human oocyte was obtained during routine IVF
procedures, and fixed and stained following its failure to fertilise.
Diffuse staining and morphology is likely due to the 24 h of in vitro
culture. Mouse oocyte was collected 48 h post-eCG (5 IU) stimulation.
Cow, sheep and pig oocytes for staining were collected from
abattoir material.
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and cholesterol, which were threefold more abundant
than phospholipids (Homa et al. 1986). Analysis of pig
oocytes revealed that palmitic acid followed by oleic
acid were the most abundant fatty acids, in terms of both
total lipids and neutral lipids; however, n-6 PUFAs such
as linoleic, arachidonic and adrenic acids also represent
a significant proportion of fatty acids (Homa et al. 1986).
Comparison of cow, pig and sheep oocytes revealed that
pig had the most triglyceride with w74 ng per oocyte,
about three times more than both cow and sheep
(McEvoy et al. 2000). Pig also had the most total fatty
acids (w160 ng per oocyte), which was 2.5-fold more
than cow and 1.8 times more than sheep. Palmitic,
stearic and oleic acids were the most abundant in
oocytes of cow, pig and sheep, but pig had higher
palmitic than oleic acids whereas cow and sheep had
greater relative oleic acid. Although oocyte size was not
taken into consideration, Nile red staining has also been
used to show that porcine oocytes have 2.4 times more
lipid than bovine oocytes which in turn have 2.8-fold
more than mouse oocytes (Genicot et al. 2005).

There has been relatively little analysis of lipid content
of human oocytes. One study analysed lipid content of
Reproduction (2014) 148 R15–R27
fertilisation-failed human oocytes pooled into groups of
ten and found that the major fatty acids were stearic
(38% of total fatty acids), palmitic (33%), oleic (10%),
myristic (4%) and linoleic (4%) acids. Saturated fatty
acids represented 79%, mono-unsaturated were 14%,
n-6 PUFA 5% and n-3 PUFA 1% (Matorras et al. 1998).
This study indicates that the types of lipids present in
human oocytes are relatively similar to those in the
oocytes of other species. Interestingly, the fatty acid
composition of the human oocytes was very different to
that of comparable female adipose tissue which was just
27% saturated fatty acid (Matorras et al. 1998). Similarly,
bovine oocytes (Wonnacott et al. 2010) and whole COCs
(Adamiak et al. 2006) are enriched in saturated fatty
acids compared with granulosa cells and plasma from
the same animals, suggesting selective uptake and/or
de novo fatty acid synthesis in oocytes as well as specific
energy storage and metabolism needs.

During the course of oocyte maturation, the intra-
cellular lipid stores undergo dramatic changes. In pig
oocytes, lipid droplets exhibit a pronounced peripheral
distribution pattern following maturation in vitro
(Sturmey et al. 2006). Bovine oocytes matured in vitro
exhibit a small but significant increase in the number of
lipid droplets compared with germinal vesicle stage (GV)
oocytes (Aardema et al. 2011). In mouse oocytes, lipid
droplets undergo structural reorganisation, aggregating
centrally during the course of maturation in vitro (Yang
et al. 2010) or in vivo (Wood et al. 2008, Wu et al. 2010).

Importantly, oocyte lipid content can be altered by the
environment in which the oocyte matures, particularly by
serum and lipid supplements used for IVM. Bovine oocytes
matured in 10% FCS have more triacylglycerol and more
cholesterol than those matured in serum-free conditions
(Kim et al. 2001). Similarly, mouse COC matured in 5%
serum contain more neutral lipid in the oocytes than those
matured in fatty acid-free media (Yang et al. 2010). From
these studies it is concluded that the increased oocyte
lipids in response to serum is due to simple diffusion.
However, serum also contains a number of growth factors,
cytokines and metabolites, which could increase intra-
cellular lipid via inducing transporter-mediated fatty acid
uptake and/or triglyceride biosynthesis. Furthermore,
these experiments utilised whole COCs and little is
known about how maturation in different in vitro
environments impacts cumulus cell lipid content. It is
also likely that cumulus cells directly influence oocyte
triacylglycerol and/or fatty acid deposition, similar to their
role in controlling oocyte cholesterol content (Su et al.
2008). In support of this, IVM of bovine oocytes in the
absence of cumulus cells results in decreased intracellular
lipid stores (Auclair et al. 2013), suggesting that in the
absence of cumulus cell-supplied metabolites the oocyte
has less capacity for lipid storage or may more heavily
utilise intracellular lipid stores for its energy requirements.

There is surprisingly little direct evidence for how
oocyte lipid content might influence developmental
www.reproduction-online.org
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competence under normal physiological circumstances.
There are examples of mouse oocytes, with poor
developmental competence having more lipid droplets
compared with developmentally competent oocytes;
however, the poor oocytes also exhibit other funda-
mental cytoplasmic differences (Kim et al. 2001, Monti
et al. 2013). Thus, further work is clearly needed to
understand whether oocyte (or cumulus cell) lipid
content may indeed be a biomarker of competence
and, more importantly, how physiological or in vitro
alterations to COC lipid content may impact embryo
development. It is notable that palmitic, stearic, oleic
and linoleic fatty acids are consistently the most
prevalent in oocytes across species, with saturated fatty
acids generally accounting for the vast majority of stores.
The variations in oocyte lipid content across different
species are perhaps indicative of distinct physiological
requirements during early embryo development.
Certainly, the long-chain fatty acids prevalent in
mammalian oocytes are energy rich and differing levels
of unsaturated fatty acids, such as oleic acid, could
influence cellular membrane fluidity. This is illustrated
by the fact that lipid content influences oocyte viability
following cryopreservation by changing membrane
integrity (reviewed in Zhang et al. (2012)).
Influences of physiological conditions on follicular
fluid and oocyte lipid content

Diet and body composition

As circulating lipid metabolites are often similarly
reflected in follicular fluid, it stands to reason that
physiological conditions in which serum lipids are altered
would affect lipid levels in the follicle and oocyte. Indeed,
there are many examples of diet and body composition
influencing the lipid content of follicular fluid and ovarian
cells, including oocytes. For instance, beef heifers given
dietary fish oil supplementation for 46 days exhibited
dose-dependent alterations in specific n-3 and n-6 fatty
acids in follicular fluid (Childs et al. 2008). Ewes fed a diet
supplemented with fish oil for 13 weeks had significantly
more 18:2 and 22:6 in follicular fluid and more 18:2,
18:3, 20:4, 22:4 and 22:6 in cumulus cells (Zeron et al.
2002). There were no differences detected in oocyte lipid
content, but oocytes from animals that fed fish oil had
better morphology and improved membrane integrity in
response to chilling (Zeron et al. 2002). Ewes fed a
combination of fish and vegetable oils containing n-3 and
n-6 PUFAs had increased n-3 and n-6 fatty acids in
granulosa cells and oocytes respectively (Wonnacott et al.
2010). Heifers with moderate body condition score had
less fatty acids in aspirated COCs than heifers with low
body condition score; and the inclusion of a lipid
supplement in the diet for 35 days increased the total
fatty acid content of whole COCs (Adamiak et al. 2006).
In contrast to experiments that increased or altered fat in
www.reproduction-online.org
the diet, cows that were fasted for 4 days also exhibited
increased NEFA in both plasma and follicular fluid
(Jorritsma et al. 2003, Aardema et al. 2013). Interestingly,
there are also seasonal changes in the fatty acid
composition of bovine ovarian follicles. Namely, the
levels of all fatty acids analysed were increased in
follicular fluid in winter compared with summer (Zeron
et al. 2001). Furthermore, granulosa cells and oocytes
isolated in summer had a higher percentage of saturated
membrane phospholipids, particularly palmitic acid,
while in winter they had a greater percentage of
unsaturated phospholipids, particularly 16:1, 18:1, 18:2
(Zeron et al. 2001). These differences significantly alter
the biophysical behaviour of the oocytes, but it is unclear
how this may be related to seasonal differences in diet and
the observed better developmental competence of
oocytes isolated in winter.

In addition to the large literature on ruminants, studies
on mice also demonstrate that diets rich in specific lipids
are associated with changes in the lipid content of ovarian
cells. Mice fed a high n-3 diet for 4 weeks had increased
n-3 fatty acid content in the ovary and this was associated
with altered oocyte mitochondrial distribution, increased
ROS levels and poorer embryo morphology and develop-
ment into blastocyst following fertilisation in vivo
(Wakefield et al. 2008). Mice fed a diet high in saturated
fat for 4 weeks exhibited marked lipid accumulation in
both oocytes and cumulus cells, as well as evidence of
lipotoxicity responses, which were associated with
impaired fertilisation in vivo (Wu et al. 2010). Overall,
these studies on animals show that dietary lipids can alter
the fatty acid composition of not only blood and follicular
fluid but also cumulus cells and oocytes. How these
changes relate to the observed changes in conception
rates and fertility in response to different dietary
paradigms is an important area of investigation. It is likely
that alterations in cellular fatty acid levels cause structural
changes in membranes that influence fluidity. Further-
more, exposure to excessive dietary saturated fat is
associated with oocyte mitochondrial damage, which is
in turn related to induction of oxidative stress (Igosheva
et al. 2010) and endoplasmic reticulum (ER) stress
(Wu et al. 2012); however, whether the alterations in
mitochondrial activity in these cases change ATP
generation has not been definitively shown.

Very little is known about how dietary lipids in
humans may affect follicular fluid or ovarian cell lipid
composition; however, differences in body composition
are associated with distinct alterations. In women
attending a fertility clinic, increased BMI (kg/m2) was
associated with increased levels of follicular fluid
triglyceride (Robker et al. 2009) that mirrors changes in
blood (Valckx et al. 2012). Free fatty acids in follicular
fluid do not seem to be tightly correlated with BMI
(Jungheim et al. 2011, Valckx et al. 2012), yet elevated
follicular free fatty acids have been associated with poor
cumulus–oocyte morphology (Jungheim et al. 2011),
Reproduction (2014) 148 R15–R27
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providing evidence that alterations in ovarian lipid
profile can impact the human COC during its matu-
ration. Furthermore, mouse oocytes exposed to human
follicular fluid that is high in free fatty acids and
triglycerides during maturation had increased oocyte
lipid content and impaired nuclear maturation (Yang
et al. 2010). Thus, it is becoming increasingly important
to better understand how the follicular environment is
affected by specific metabolic conditions; not only
obesity but also polycystic ovary syndrome (PCOS)
which is also associated with a more atherogenic lipid
profile, i.e. higher circulating triglycerides, cholesterol
and LDL and lower HDL (Valkenburg et al. 2008).
Lactation in dairy cows

With the onset of lactation, dairy cows experience
systemic negative energy balance that is associated with
dramatic elevations in circulating lipids as well as
follicular fluid lipid levels and this is emerging as a
significant negative influence on their fertility (Leroy et al.
2008a,b). The follicular fluid of both heifers and lactating
cows was shown to contain primarily linoleic, oleic,
stearic and palmitic acids: however, compared with
heifers, the cows had higher levels of at least 24 different
fatty acids in follicular fluid, particularly palmitic acid and
stearic acid and lower levels of docosahexaeonic acid
(Bender et al. 2010). In dairy cows, circulating triglycer-
ide levels decrease at parturition, while NEFA levels
increase dramatically, relative changes that are also
reflected in the follicular fluid (Leroy et al. 2004b).
By day 44 post-partum, follicular fluid NEFA levels have
increased to match that in serum, yet follicular fluid is
selectively enriched with palmitic, oleic and linoleic fatty
acids (Leroy et al. 2005a). These studies highlight that
serum NEFA levels are dynamic, increasing dramatically
at parturition; and that during lactation follicular fluid
NEFA also increase but display a distinct fatty acid profile
compared with serum (Leroy et al. 2005a, Bender et al.
2010). Oocytes of repeat breeder dairy cows were also
shown to contain significantly more lipid than oocytes
from virgin heifers, even though the COCs isolated from
both types of animals were classified as normal good
quality (Awasthi et al. 2010). Importantly, however, the
dairy cows in this study were also significantly older and
had a higher body condition score which could also affect
oocyte lipid content.

There is of interest in using different dietary supple-
ments, particularly those enriched with specific fatty
acids to improve fertility in dairy cows (Leroy et al.
2011). For instance, in addition to studies described
earlier, dairy cows fed a diet high in linoleic acid had an
increased proportion of this fatty acid in follicular fluid
and COCs, while cows fed a diet high in a-linolenic acid
had an increased proportion of a-linolenic acid in
follicular fluid, granulosa cells and aspirated COCs,
as well as improved cleavage rates following IVF
Reproduction (2014) 148 R15–R27
(Zachut et al. 2010). Thus dietary fat supplementation,
which is known to influence reproductive performance
in ruminants, particularly during lactation, may do so by
influencing follicular fluid and cellular lipid levels.
Effects of lipid supplementation during oocyte IVM

In vitro experiments examining the direct effects of
specific lipids on oocytes and early embryos are
beginning to shed light on the mechanisms by which
physiological conditions that alter circulating lipids
influence fertility. In particular, a large body of work
conducted in bovine oocytes is elucidating the
mechanisms by which elevations in specific fatty acids
contributes to reduced conception rates in dairy cows.
These experiments also emphasise how lipid substrates in
various in vitro oocyte maturation culture systems might
differentially affect oocyte maturation and embryo
development.

Although increased body fat is associated with higher
oocyte and neutral lipid content, there are conflicting
reports about whether oocyte IVM in the presence of
high lipid directly impacts oocyte lipid content. Mouse
COC exposed to follicular fluid that was high in both
triglycerides and free fatty acids had increased oocyte
neutral lipid content at the end of IVM compared with
those matured in lipid-poor follicular fluid (Yang et al.
2012). In contrast, treatment of bovine oocytes with
either stearic acid or palmitic acid during maturation did
not increase oocyte lipid content (Leroy et al. 2005a). A
more recent study has shown that bovine COCs exposed
to palmitic acid and stearic acid during maturation had
decreased oocyte lipid droplet size and number
compared with controls; and also that oleic acid
reversed these effects and at highest concentrations
even promoted oocyte lipid storage, i.e. increased
oocyte droplet size and number (Aardema et al. 2011).
However, when bovine COCs were treated with a
mixture of these three NEFAs (palmitic/stearic/
oleic acids) during IVM, oocyte lipid content was not
affected even though cumulus cells exhibited lipid
accumulation (Aardema et al. 2013). Addition of
conjugated linoleic acid (t10,c12CLA) to bovine COCs
during maturation increased t10,c12CLA content in both
cumulus cells and oocytes, but did not alter total fatty
acid levels (Lapa et al. 2011). These studies illustrate that
further work is needed to understand in which contexts
lipid exposure modifies oocyte lipid content.

Individual fatty acids clearly have distinct effects on
oocyte maturation and developmental competence.
Treatment of bovine COCs with either stearic acid or
palmitic acid (at relatively high doses based on levels in
dairy cow follicular fluid) during maturation inhibited
cumulus expansion, increased cumulus apoptosis and
delayed progression to MII (Leroy et al. 2005a). Treatment
of bovine COCs with a mixture of these NEFA (palmitic/
stearic/oleic acid) during IVM upregulated genes involved
www.reproduction-online.org
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Figure 2 Schematic of proposed mechanisms of mobilisation and
catabolism of free fatty acids in the cumulus–oocyte complex. (1) Free
fatty acids (FFAs) in follicular fluid are bound to albumin and likely
enter cells via fatty acid transporters or directly diffuse the lipid bilayer;
however, the exact mechanisms are not known. (2) The mobilisation
of triacylglycerol from lipoproteins in follicular fluid may occur via
extracellular lipoprotein lipase liberating FFAs, which are then
available for cellular uptake. (3) Intracellular triacylglycerol is stored in
cumulus cells and oocytes within lipid droplets surrounded by coat
proteins including Perilipin2 in oocytes. Upon activation, lipid droplet
proteins facilitate lipase-mediated hydrolysis of triacylglycerol and
release of FFAs. (4) Intracellular FFAs generated via either transport
or lipolysis are then available for metabolism via b-oxidation in
mitochondria.
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in energy metabolism and oxidative stress (lactate
dehydrogenase, glyceraldehyde 3-phosphate dehydro-
genase and glutathione peroxidase) in oocytes;
interestingly, these same genes were downregulated in
cumulus cells (Van Hoeck et al. 2013). Fertilisation of
these oocytes gives rise to blastocysts, with significantly
lower cell number and increased apoptosis (Van Hoeck
et al. 2011). Experiments on mouse indicate that saturated
fatty acids, namely palmitic acid, induce ER stress in
COCs and mitochondrial dysfunction in oocytes (Wu et al.
2012). Mouse COCs exposed to lipid-rich follicular fluid
had similarly increased expression of ER stress genes in
association with impaired nuclear maturation (Yang et al.
2012). Importantly, co-treatment with an ER stress
inhibitor during maturation reverses impaired cumulus
expansion, altered oocyte mitochondrial activity and poor
embryo development induced by high doses of palmitic
acid (Wu et al. 2012), demonstrating that the detrimental
effects of the high lipid environment are mediated through
a classic ER stress pathway. Whether fatty acids are
saturated or unsaturated also influences oocyte matu-
ration, with unsaturated fatty acids generally having
beneficial effects on subsequent embryo development.
IVM in the presence of conjugated linoleic acid
(t10,c12CLA) improves the morphology of bovine
blastocysts (Lapa et al. 2011). Similarly, treatment of
bovine COCs with linolenic acid improved maturation to
MII and promoted embryo development, effects that seem
to be mediated by its ability to influence prostaglandin
production (Marei et al. 2009) and increase active MAPK
signalling (Marei et al. 2010). Oleic acid reverses the
detrimental effects of palmitic acid and stearic acid on
cleavage, 8-cell and blastocyst rates (Aardema et al. 2011).
It appears, however, that even unsaturated fatty acids are
detrimental at high levels because linolenic acid at
increasing doses reduces cumulus expansion and
impaired maturation (Marei et al. 2009, 2010). Similarly,
exposure of maturing bovine oocytes to high dose of oleic
acid (1 mM in the presence of 10% serum) delayed
progression to MII and reduced subsequent fertilisation,
cleavage and embryo development (Jorritsma et al. 2004).

Importantly, blastocysts generated from oocytes
exposed to high lipid in vitro display distinct phenotypes,
particularly relating to metabolism. Bovine embryos
generated from oocytes that matured in high levels of
combination NEFA (palmitic/stearic/oleic acid) have
altered transcriptional activity of several genes including
higher glucose transporter SLC2A1 (Van Hoeck et al.
2011) and increased expression of two genes involved
in fatty acid synthesis, ACSL1 and GPR3 (ACCA)
(Van Hoeck et al. 2013). They do not consume more
glucose but exhibit altered amino acid turnover and
compromised oxidative metabolism; indicators of lower
embryo quality and viability (Van Hoeck et al. 2011).

Thus, specific fatty acids have distinct effects on
oocyte maturation and it is emerging that in general
saturated fatty acids, particularly palmitic acid and
www.reproduction-online.org
stearic acid, which are elevated in follicular fluid in
some metabolic contexts are detrimental, while the
presence of unsaturated NEFA such as oleic acid and
linoleic acid can, at least in some in vitro contexts,
counteract these detrimental effects and promote
developmental competence.
Triacylglycerol and fatty acid metabolism in the COC

Lipolytic metabolism of triacylglycerols

The utilisation of fatty acids for metabolic fuel necessitates
their hydrolysis of triacylglycerol from the glycerol
backbone, which is catalysed by lipases. Lipoprotein
lipase, an extracellular lipase tethered to capillary walls
by heparin sulphate proteoglycans and activated by
apolipoprotein ApoC-II on the surface of circulating
lipoproteins, hydrolyses lipoprotein triacylglycerol-
releasing free fatty acids, which can then be taken up
by cells (Fig. 2). Lipolysis of intracellular triacylglycerol
within lipid droplets is catalysed by intracellular lipases
including LIPE (formerly known as hormone-sensitive
lipase (HSL)) and adipocyte triglyceride lipase (ATGL).
Intracellular triacylglycerol stored within lipid droplets
is surrounded by a phospholipid monolayer and lipid
droplet coat proteins of the perilipin family, which
regulate droplet size and variously restrict access of
intracellular lipases to the neutral core or promote
lipolytic activity under the appropriate metabolic or
hormonal conditions. The intracellular lipases, Lipe and
Reproduction (2014) 148 R15–R27
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Lipc, have been detected in rat ovaries (Hixenbaugh et al.
1989, Lobo et al. 2009), with Lipe localising to the oocyte
and cumulus and granulosa cells of large antral follicles
(Lobo et al. 2009). Mice lacking the Lipe gene exhibit
a significant reduction in ovulation rate and increased
numbers of oocytes trapped in corpora lutea (Wade et al.
2002). The ovaries of these mice have no difference in the
number of mature antral follicles but decreased numbers
of corpora lutea that contribute to reduced P4 levels and
decreased fecundity (Wade et al. 2002).

Lipase activity has been measured in bovine oocyte
and cumulus cells during IVM and was found to be
higher in the oocyte compared with cumulus cells
(Cetica et al. 2002). During maturation, lipase activity
remained constant in the oocyte while decreased in the
cumulus cells (Cetica et al. 2002). Whether these cell-
specific patterns of lipolysis hold true in species other
than bovine is yet to be determined. Further evidence for
triacylglycerol catabolism within the oocyte is the
reduction in total intracellular lipid content that is
observed during the course of maturation in porcine
(Sturmey & Leese 2003, Alvarez et al. 2012) and bovine
oocytes (Ferguson & Leese 1999, Kim et al. 2001).

Thus, lipase enzymes and activity are detected in
COCs and likely to be regulated during the course of
maturation. Based on their roles in other cells, it is
proposed that extracellular lipases may mediate the
transfer of fatty acids from follicular fluid lipoproteins
into cumulus cells and that intracellular lipases via inter-
actions with lipid droplet proteins, such as Perilipin-2,
which is expressed in oocytes (Yang et al. 2010, Aardema
et al. 2011), release fatty acids from stores in the oocyte
(Fig. 2). Mechanistic studies are needed, however, to
clarify this as well as to demonstrate whether modulation
of triacylglycerol metabolism in the COC would have a
significant impact on oocyte developmental competence
and embryo development.
Metabolism of fatty acids for the production of ATP

Fatty acids for energy production are transported into the
cells from circulation via fatty acid transporter proteins
or direct diffusion through the lipid bilayer; thus, NEFA in
follicular fluid may also enter cumulus cells and oocytes
via similar mechanisms (Fig. 2). However, whether
cumulus cells and oocytes preferentially uptake fatty
acids from the extracellular milieu or generate fatty acids
intracellularly from lipid droplet stores is not known and
almost certainly would be differentially regulated in
different hormonal and nutritional contexts. Subsequent
to either mechanism, however, the catabolism of fatty
acids to yield ATP occurs in the mitochondrial matrix via
b-oxidation. The oxidation of fatty acids within ovulated
mouse oocytes was first implied in a study by Hillman &
Flynn (1980), in which incorporation of 14C-palmitic
acid into oocytes was reported. This was confirmed by
a study demonstrating that b-oxidation, measured as
Reproduction (2014) 148 R15–R27
metabolism of 3H-palmitic acid, dramatically increases
during COC maturation in vitro with a significant
proportion of this metabolism occurring in the oocyte,
although the majority is within the cumulus cells
(Dunning et al. 2010).

Only a few studies to date have investigated the
expression profile of genes involved in the regulation
of b-oxidation and how these change during oocyte
development and nuclear maturation. Cpt1b, whose
gene product is responsible for the entry of long-chain
fattyacids into the mitochondria, is significantly induced in
mouse COCs in the peri-ovulatory maturation phase
in vivo (Dunning et al. 2010). The expression of Cpt1b
within the mouse oocyte itself at the MII stage has alsobeen
reported (Gentile et al. 2004). Recently, gene transcripts
involved in b-oxidation, including acyl-CoA synthetases,
acyl-CoA dehydrogenases and enoyl-CoA hydratase, have
been detected in human oocytes and cumulus cells
(Montjean et al. 2012). Activity of these enzymes involved
in the b-oxidation spiral have also been detected in human
oocytes and, interestingly, found to be negatively associ-
ated with maternal age (Yazigi et al. 1993).
Necessity for lipid metabolism in oocyte
developmental potential

b-oxidation is likely to be important in the acquisition of
oocyte developmental competence and female fertility.
Ablation of Acox1, a gene involved in b-oxidation of
very long-chain fatty acids, leads to sterility in female
mice associated with smaller ovaries (Fan et al. 1996);
however, the physiological mechanism linking Acox1
function and female sterility is yet to be investigated.
There is also an interesting case study of a female patient
with a functional mutation in the CPTII gene, seeking
fertility treatment (Hull et al. 2009). The oocytes and
embryos of this patient were predicted to have CPTII
enzyme deficiency until activation of the embryonic
genome at the 8-cell stage and as such the culture media
were adjusted to include more glucose for the culture of
intact COCs and increased levels of pyruvate for
cleavage stage embryos (Hull et al. 2009). While two
previous intrauterine insemination cycles had failed,
ICSI using carbohydrate-supplemented media resulted in
the birth of a singleton baby, suggesting that plasticity
in embryo metabolism allows for increased glycolysis to
support development when b-oxidation is compromised.

b-oxidation is reduced in both oocytes and cumulus
cells that mature in vitro compared with COCs matured
in vivo, demonstrating that this metabolic pathway is
acutely regulated by follicular factors at the time of
ovulation. b-oxidation (oxidation of 14C-palmitic acid) in
cat oocytes maturing in vitro was significantly less than
oocytes that had matured in vivo (Spindler et al. 2000).
In rhesus monkey, microarray analysis found that several
lipid metabolism genes, including some involved in
b-oxidation, were dysregulated in cumulus cells
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following IVM compared with those matured in vivo
(Lee et al. 2011). In porcine oocytes, levels of ACSL3 and
ACADL, which activate long-chain fatty acids before
their entry into mitochondria and catalyse the first step in
the b-oxidation spiral respectively, were found to be
dysregulated in another model of poor oocyte develop-
mental competence (Yuan et al. 2011). Recently we have
found that mouse COCs matured in vitro metabolise
fatty acid at less than half the rate of COCs matured
in vivo, in association with dysregulated expression of at
least 15 genes involved in fatty acid activation, transport
and oxidation (Dunning et al. 2014).

Studies using pharmacological inhibitors have
confirmed the essential role of b-oxidation in both
oocyte nuclear maturation and the acquisition of
developmental competence. b-oxidation is required for
the resumption of meiosis and nuclear maturation in the
mouse (Downs et al. 2009, Paczkowski et al. 2013,
Valsangkar & Downs 2013), bovine and porcine oocyte
(Paczkowski et al. 2013). Furthermore, inhibition of
b-oxidation during oocyte maturation in numerous
species demonstrates that this form of metabolism is
important for subsequent embryo development. Imma-
ture bovine oocytes exposed to methyl palmoxirate,
which inhibits CPT1, exhibit reduced oxygen consump-
tion and impaired capacity to develop to the blastocyst
stage (Ferguson & Leese 2006). Similarly, treatment of
porcine oocytes during maturation with methyl palmoxi-
rate or mercaptoacetate, an inhibitor of 3-hydroxyl CoA
dehydrogenase in the b-oxidation spiral, resulted in
impaired fertilisation and decreased blastocyst develop-
ment (Sturmey et al. 2006). We have shown similar
sensitivities of mouse oocytes to the inhibition of
b-oxidation, in which treatment of COCs with etomoxir,
an inhibitor of Cpt1, results in a significant decrease in
b-oxidation and significantly fewer blastocyst embryos
following fertilisation (Dunning et al. 2010).

The requirement for b-oxidation during oocyte matu-
ration for subsequent embryo development in the mouse
is interesting in light of their comparatively low levels of
intracellular lipid stores compared with bovine and
porcine oocytes (reviewed in Sturmey et al. (2009) and
see Fig. 1). However, triacylglycerol stores are energy
dense and metabolism of a relatively small amount of
lipid produces large amounts of ATP; thus despite the low
levels of stored lipid in the mouse oocyte, it appears to be
essential for oocyte maturation and quality.
Promoting b-oxidation to improve oocyte
developmental outcomes

Upregulation of b-oxidation in COCs in vitro has also
been used to demonstrate the importance of this
metabolic pathway for developmental competence.
Carnitine is an essential co-factor required for the entry
of long-chain fatty acids into the mitochondrion.
Supplementation of culture medium with L-carnitine
www.reproduction-online.org
significantly increases b-oxidation in mouse COCs
maturing in vitro and in follicles grown in vitro (Dunning
et al. 2010, 2011). This increased level of b-oxidation
was associated with a significant improvement in oocyte
quality as demonstrated by the ability of fertilised
oocytes to reach the blastocyst stage of development
(Dunning et al. 2010, 2011) and a higher number of cells
allocated to the inner cell mass (Dunning et al. 2010).
Others have also demonstrated a clear benefit of
L-carnitine on oocyte maturation and developmental
competence during IVM of porcine oocytes (Hashimoto
2009, Somfai et al. 2011, Wu et al. 2011, You et al.
2012) which are heavily laden with intracellular lipid.
L-carnitine supplementation is associated with redis-
tribution of intracellular lipid droplet in bovine oocytes
(Chankitisakul et al. 2013), a reduction in intracellular
lipid content in porcine oocytes (Somfai et al. 2011) and
a significant increase in oocyte mitochondrial activity in
mouse (Wu et al. 2012), bovine (Hashimoto 2009) and
porcine (Somfai et al. 2011) oocytes. In addition, we
have shown that L-carnitine, in the absence of other
energy substrates, significantly improves embryo
development in both mouse (Dunning et al. 2010) and
bovine (Sutton-McDowall et al. 2012) pre-implantation
embryos, indicating that L-carnitine stimulates meta-
bolism of intracellular lipid stores. In other studies,
L-carnitine supplementation was associated with
decreased oocyte cytoskeletal damage (Mansour et al.
2009) and reversed the negative effects of repeated
superovulation, i.e. the decreased number and abnormal
distribution of mitochondria and impaired development
to blastocyst (Miyamoto et al. 2010).

While L-carnitine has known anti-oxidant properties,
its ability to upregulate b-oxidation and improve oocyte
quality suggests that the beneficial effects of L-carnitine
during oocyte maturation are attributable, at least in part,
to its role in promoting lipid metabolism. Furthermore,
human oocytes and cumulus cells lack transcripts for the
genes involved in the biosynthetic pathway for carnitine
production (Montjean et al. 2012). In vivo carnitine is
most likely to be sourced from the follicular fluid from
which levels are abundant and reflect those that found
in serum (Dunning & Robker 2012, Montjean et al.
2012, Valckx et al. 2012); however, in vitro cultures of
COCs would lack carnitine and are likely to be deficient
in b-oxidation. Thus the potential to improve human
oocyte quality during IVM by modulating b-oxidation,
including with L-carnitine warrants further investigation.
Summary

Lipid metabolism is induced in COCs during maturation
and beneficial to oocyte developmental potential;
however, to date the characterisation of lipases and key
b-oxidation enzymes involved has been limited. Inhibitor
studies have demonstrated that lipolysis and b-oxidation
within the maturing COC significantly influence
Reproduction (2014) 148 R15–R27
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subsequent embryo development. Yet it is not clear which
are the essential regulatory gene products associated with
oocyte developmental competence and optimal pre-
implantation embryo development. Thus, further studies
are required to elucidate the complete expression profile
of metabolic regulatory genes during folliculogenesis,
particularly during the final stages of COC maturation
which will also help to identify the lipid types most
important to the peri-conception oocyte.

Lipoproteins derived from blood are prevalent in
follicular fluid and may contribute to oocyte develop-
ment. Whether lipoproteins transport triacylglycerides to
ovarian cells for energy production similar to their roles in
other cells is less clear, but there is mounting evidence for
this as an important metabolic pathway in maturing
ovarian follicles. Within cells, triacylglycerides are stored
in lipid droplets and these are prevalent and being
characterised molecularly in the oocytes and cumulus
cells of many species. Much remains to be determined
about how the metabolism of triacylglycerides by lipolysis
and fatty acids by b-oxidation is regulated in cumulus
cells and oocytes and the relative importance of this form
of energy production for female fertility.

Specific fatty acids, particularly saturated vs unsatu-
rated, have clearly distinct effects on oocyte maturation
and developmental competence. Thus, oocyte and
embryo development in vitro may be optimised through
the provision of appropriate energy substrates and
essential co-factors. Similarly, the influence of physio-
logical conditions, such as diet, on the supply of fatty
acids to the COC in vivo warrants further investigation.
Through greater understanding of the in vivo regulation of
lipid levels, lipid metabolism and essential co-factors,
strategies may be developed to improve oocyte develop-
mental potential in domestic animals and alleviate
sub-fertility in women.
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