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Lysine lipoylation is a special type of posttranslational modification in both prokaryotes’ and eukaryotes’ proteomics researches.
Such a modification takes part in several significant biological processions and plays a key role in the cellular level. In order to
construct and design an accurate classification algorithm for identifying lipoylation sites in the protein level, the computational
approaches should be taken into account in this field. Meanwhile, several factors plays different role in the identification of
modification sites. Considering such a situation, the foundational elements of the effective identification of modification sites are
the available feature description and the high effective classification. With these two elements, the distinguishing between the
lipoylation samples and the nonlipoylation samples can be treated as a typical classification issue in the field of machine learning.
In this work, we have proposed a method named LipoFNT, which employed the two featuring sets, including the Position-Specific
Scoring Matrix and bi-profile Bayesian, as the classification features. And then, the flexible neural tree algorithm is utilized to
deal with the imbalance classification issue in lipoylationmodification sample dataset.The proposedmethod can achieve 81.07% in
sn%, 80.29% in sp, 80.68% inAcc, 0.8076 in F1, and 0.6136 inMCC, respectively.Meanwhile, we have demonstrated the relationship
between the lengths of peptide and identification of modification sites.

1. Introduction

Lysine lipoylation can be regarded as one of the most
significant elements in the field of biology. Such a type of
modifications has high conservation. Therefore, the lysine
lipoylation is a special type of posttranslational modification
in both prokaryotes’ and eukaryotes’ proteomics researches
[1]. It was pointed out that lipoylation can be regarded as one
special process, which is the covalent attachment of lipoic
acid to 2-oxoacid dehydrogenasemultienzyme complexes [2–
5]. Such a type of modification is different from other PTM
types, which depend on the local amino acid residues, in the
level of protein sequence. Considering the high conservation
of lipoylation modification, such a type of modification can
hardly be influenced by the neighboring amino acid residues
in the level of protein sequences [6]. It was known that the
lysine lipoylation, which is one of the effective evolutionary
processions, appears in various enzymes, including pyruvate

dehydrogenase and other related enzymes, in many organ-
isms, including bacteria and mammals [7–9]. Meanwhile,
lipoylation plays the significant role in many key metabolic
pathways and protein interactions [10]. With several years’
efforts, some important researches have reported that the
modification has some relationships with several human dis-
eases. These diseases, including metabolic disorders, cancer,
viral infection, and Alzheimer’s disease [11–15], may cause
some negative and harmful influences in the human being.
Considering the above mentioned reasons, discovering the
biological function of such a modification can be helpful and
beneficial to understanding the causes of such mentioned
serious diseases in some degree. Nevertheless, large numbers
of lipoylation sites can hardly be effectively and accurately
identified in this field. Without identification of such a
modification sites, the molecular functions of lipoylation can
hardly be discovered and researched. So, such an issue can be
treated as one of the urgent topics in the related fields.
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Lipoylation can be regarded as one of the rare but highly
conserved lysine PTM types in the area of PTM researches.
With the increasing development of lipoylation, some impor-
tant issues have been reported. One of them is that there are
merely four types of multimeric metabolic enzymes among
the mammals. In these proteins, the majority of them are the
core metabolic landscape. It was pointed that the dysregula-
tion of such mitochondrial proteins may cause some human
metabolic disorders in some degrees and even some diseases.
Meanwhile, the most striking issue can be regarded as the
lipoylation itself. Therefore, with further in-depth study of
such high conserved lysine modification type, the addition
or removing of such a modification is all evolutionarily
conserved among the majority species in the level of protein.
In short, such amodification can be treated as one of themost
significant essential cofactors in the field of biology. So, we
will demonstrate the biological functions and significances
of such a modification. From these reasons, the significance
of understanding the regulation of such a modification may
be one of the necessary elements in the research of human
diseases.

According to the function of lipoylation, lipoamide can
be regarded as a cofactor central in the level of cellular
metabolism [7, 16]. The lipoylation is presented as a con-
served lysine PTM on essential multimeric metabolic com-
plexes, and this function group needs some enzymatic activ-
ities among these protein complexes [17, 18]. For instance,
both pyruvate dehydrogenase (PDH) and alpha-ketoglutarate
(KDH) complexes own the ability to regulate distinct carbon
entry points into the keymetabolic pathway of TCA. For both
the above mentioned complexes, lipoylation plays the critical
role in proper enzyme functions. Meanwhile, removing such
type of lysine modification may cause the inhabitation of
their activities in some degree. It was reported that the
evolutionary conservation of such type PTM of lipoylated
enzymes can range from a variety of species and make
some contributions in several core metabolic pathways in
the level of organisms [8, 9]. Such theme of conservation
can be treated as the lipoylated complexes [19, 20]. With
the striking evolutionary conservation of such lysine rare
modification, it was noted that these modified enzymes make
great contributions tomaintenance health and several serious
diseases [12, 13, 21].

In order to better discover and know the molecular
mechanisms of lipoylation, the main problem of identifi-
cation of such a modification site can be treated as the
classification issue, where positive samples and negative
samples own different scales. There are some elements of this
issue. Actually, some experimental methods and biological
approaches have been proposed in this field. However, both
the experimental and the biological ones can hardly meet
the needs, which seem to be time-consuming and waste
of resources in some degrees. Some PTM sites, including
phosphorylation [22–24], S-nitrosylation [25–28], succinyla-
tion sites [29, 30], hydroxylation sites [31, 32], crotonylation
[33, 34], sumoylation [35], glycosylation [36], ubiquitination
[37], prenylation [38], carbonylation [39], and methylation
[40–45], have successfully been classified with the methods
in silico. From these successful instances, we can easily
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Figure 1: Outlines of LipoFNT.

find out that several key elements of such a classification
issue should be pointed out. These key elements include the
feature evaluation, the model construction, the classification
model selections, and the measurements of classification.
On the other hand, the imbalance dataset, whose negative
samples are far larger than the positive ones, should be
considered.

In order to construct and design an accurate classification
algorithm for identifying lipoylation sites in the protein level,
as far as the researches covered, the foundational elements
of the effective identification of modification sites are the
available feature description and the high effective classi-
fication. With these two elements, distinguishing between
the lipoylation samples and the nonlipoylation samples can
be treated as a typical classification issue in the field of
machine learning. In this work, we have employed the
two featuring sets, including the Position-Specific Scoring
Matrix (PSSM) and bi-profile Bayesian, as the classification
features. And then, the flexible neural tree (FNT) algorithm
is utilized to deal with the imbalance classification issue
in lipoylation modification sample dataset. By combining
other featuring sets and other machine learning models, we
find out that the proposed method has better performances
than other art-of-the-state methods in the field of PTM
sites identification. What is more, we have demonstrated the
relationship between the lengths of peptide and identification
of modification sites. The steps can be shown in Figure 1. We
will introduce such work in the following section step by step
(http://121.250.173.184/).

2. Materials and Methods

2.1. Dataset. All employed protein sequences have been
sourced from the UniProt database (http://www.uniprot
.org/), which contains 576 lipoylated protein sequences.
At the same time, the sequence high-similarity should be
taken into account. Therefore, some necessary reduction
redundancy should be proposed to deal with this problem.

http://121.250.173.184/
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These employed protein sequences, whose similarities are
higher than 40%, should be removed with the tool of
the CD-HIT program [58, 59]. With this procession, we
achieve the nonredundant sample set, including 44 lipoylated
proteins covering 52 lipoylation sites and 1035 nonmod-
ification lysine sites. In order to reduce some unuseful
protein segments, we utilized the sliding window to cover
every lysine residue in the employed protein sequences. It
was pointed that the scale of sliding window should be
discussed in this work and we want to find the relationship
between the scales of sliding windows and the classification
performances. At the same time, some blank amino acid
position may appear in the sliding windows. In order to
deal with such phenomenon, the 𝑋 amino acid stands
for the blank amino acid position in the sample peptide
segments.

2.2. Feature Construction. The first featuring set is the PSSM
information of the identification of protein samples. With
the development of the processing biological sequences in
the field of bioinformatics, one of the most significant and
challenging issues in this field is the method to express the
biological sequences with different methods, including the
discrete methods and the vector methods. However, these
methods may keep some considerable sequence information
and key pattern properties. It was pointed that the vector
methods merely keep some foundational information and
lose several sequence pattern in the level of protein. In
order to avoid losing such information, the pseudo amino
acid composition [60, 61] or PseAAC [62] was utilized in
this work. Such a model has been widely utilized in the
field of biological sequences, including protein level, DNA
level and RNA level, and procession [63–66]. The “Pse-
in-One” [67] and its updated version “Pse-in-One2.0” [68]
can be treated as the most powerful tool in this area [68,
69].

The second one is the BPB feature set, which is a novel
type of encode method [70]. When it comes to the BPB, such
a feature depends on Bayesian’s theories. So, a sample was
given, which means peptide segments, that contains 𝑛 length
amino acid residues among it. The identified sample can be
classified into two types, including the positive type and the
negative one. Here, we define the positive type as the 𝐶𝑝
and the negative type as the 𝐶𝑛. In detail, the Cp means the
center lysine residue has the lipoylation modification in the
identified peptide segment and the 𝐶𝑛 stands for the fact that
center lysine residue cannot be modified with the lipoylation
in the classified peptide segment. With the rule of Bayesian’s,
assume the n amino acid residues are mutually independent;
the posterior’s probability of the peptide for the two types can
be shown as

𝑃 (𝐶𝑝 | 𝑃) = 𝑃 (𝑃 | 𝐶𝑝) 𝑃 (𝐶𝑝)𝑃 (𝑃)
= 𝑙𝑒𝑛𝑔𝑡ℎ∏
𝑖=1

𝑃 (𝑝𝑖 | 𝐶𝑝) 𝑃 (𝐶𝑝)𝑃 (𝑃)
(1)

𝑃 (𝐶𝑛 | 𝑃) = 𝑃 (𝑃 | 𝐶𝑛) 𝑃 (𝐶𝑛)𝑃 (𝑃)
= 𝑙𝑒𝑛𝑔𝑡ℎ∏
𝑖=1

𝑃 (𝑝𝑖 | 𝐶𝑛) 𝑃 (𝐶𝑛)𝑃 (𝑃)
(2)

And then, we can redefine the above mentioned in

log (𝑃 (𝐶𝑝 | 𝑃)) =
𝑙𝑒𝑛𝑔𝑡ℎ∑
𝑖=1

log (𝑃 (𝑝𝑖 | 𝐶𝑝))
− log (𝑃 (𝑃)) + log (𝑃 (𝐶𝑝))

(3)

log (𝑃 (𝐶𝑛 | 𝑃)) =
𝑙𝑒𝑛𝑔𝑡ℎ∑
𝑖=1

log (𝑃 (𝑝𝑖 | 𝐶𝑛)) − log (𝑃 (𝑃))
+ log (𝑃 (𝐶𝑛))

(4)

We assume the prior distribution can follow the uniform
distribution. Therefore, the probability of negative samples
and the probability of positive ones are equal. The decision
function can be demonstrated in

𝑓 (𝑃) = sgn (log (𝑃 (𝐶𝑝 | 𝑃)) − log (𝑃 (𝐶𝑛 | 𝑃)))
= sgn(𝑙𝑒𝑛𝑔𝑡ℎ∑

𝑖=1
log (𝑃 (𝑝𝑖 | 𝐶𝑝))

− 𝑙𝑒𝑛𝑔𝑡ℎ∑
𝑖=1

log (𝑃 (𝑝𝑖 | 𝐶𝑛)))

= sgn

𝑙𝑒𝑛𝑔𝑡ℎ∑
𝑖=1

(log (𝑃 (𝑝𝑖 | 𝐶𝑝)) − log (𝑃 (𝑝𝑖 | 𝐶𝑛)))

(5)

According to the Shao’s method, (5) can be redefined in

𝑓 (𝑃) = sgn (→𝑊 ⋅ →𝑃) (6)

2.3. Flexible Neural Tree. Flexible neural tree, which can be
regarded as one type of special alternative tree structural
neural network, was proposed by Chen [71, 72]. The model
owns the ability to construct the neural network with the
tree structure. Such a type of neural network has been
widely utilized in some classification issues in the field of
machine learning. The main steps of such an algorithm can
be demonstrated in the following section.

Initially, the utilizing instruction set for generating the
foundational elements in the FNT model can be demon-
strated in

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 𝑆𝑒𝑡 = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑡 ∪ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑆𝑒𝑡 (7)

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑡 = {+1, +2, . . . , +𝑚} (8)

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑆𝑒𝑡 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} (9)

where the instruction set contains two subsets, including
the operation set and the variable one. The operation set +𝑖
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includes several operation processions and the variable set𝑥𝑖 includes several values. At the same time, we can find out
that the operation set mainly can be utilized in the nonleaf
nodes and the variable set mainly can be utilized in the leaf
nodes in the tree structure neural network. In other words,
the variable set can be treated as the input of their neural
node and the operation set can be regarded as the neural node
in this model. And then, the employed flexible activation
function is described in

𝑓 (𝑚𝑖, 𝑛𝑖, 𝑥) = 𝑒−((𝑥−𝑚𝑖)/𝑛𝑖)2 (10)

Next, the output of each neural node can be calculated with
the method of recursion. For each operation set element +i,
the total excitation can be calculated in

𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖 = 𝑖∑
𝑗=1

𝜔𝑗 × 𝑦𝑗 (11)

where 𝑦𝑗 (𝑗 = 1 2 . . . 𝑖) are the input to node +i. The
output of the node +i is then calculated in

𝑜𝑢𝑡𝑖 = 𝑓 (𝑚𝑖, 𝑛𝑖, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖) = 𝑒−((𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖−𝑚𝑖)/𝑛𝑖)2 (12)

2.4. PerformanceMeasurements. When it comes to themodel
performances, somewell-knownmethods should be listed. In
this work, some typical measurements, including sensitivity,
specificity, accuracy, F1 scores, and Matthew’s Correlation
Coefficient (MCC) [73, 74], of the identification of modi-
fication sites issue should be listed. At the same time, the
AUC [75] should also be employed to test the performance
of imbalance classification problem and that is the negative
samples size is much bigger than that of the positive ones.

In this classification problem, samples can be defined into
two types, including the positive samples and the negative
samples. According to the definition of the classified samples,
they can cause the four results in the common situation. If
the modification sample is classified as the modification one,
this result can be named as TP, which stands for true positive.
If the modification sample is classified as the nonmodifi-
cation one, this result can be named as FP, which stands
for false positive. With the concept, the nonmodificiation
sample with classified modification one is the TN and the
nonmodification sample with classified nonmodification is
the FN. According to the number of TP, TN, FP, and FN,
we can easily obtain these formulations, including sensitivity,
specificity, accuracy, F1 scores, and MCC. And the detailed
information is shown in

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁𝑃 +𝑁 (13)

𝑆𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (14)

𝑆𝑝 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 (15)

𝐹1 = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 (16)
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Figure 2: The ROC values of each length.

𝑀𝐶𝐶
= 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁)

(17)

where 𝑃means the number of positive samples and𝑁means
the number of negative samples.

3. Results and Comparisons

3.1. Performance of LipoTree. In this section, we want to find
out the available length of the sliding window in each sample.
Meanwhile, the employ several lengths, which range from 3
to 29, whose center sites are lysine residues were pointed out.
Therefore, the radius of each sample can be selected from 1
to 14.The ROC curves of each length can be demonstrated in
Figure 2.

From Figure 2, we find out that the 14 employed lengths
play different role in the classification of such medication
type. At the same time, such classification issue can be treated
as one of the typical imbalance classification issues in the field
of machine learning. Considering such a situation, the ROC
(receiver operating characteristic) curves can be known as
one reasonable measurement to deal with such problem. It
was pointed that while the length is equal to 23, the AUC
value, which is the area under ROC curve, can reach the
highest value. So, we can get the conclusion that such a
length can be treated as themost available length among these
employed lengths with the method of FNT and the feature of
PSSM and BPB combination.

In order to demonstrate the performances of such algo-
rithm, some typical feature descriptions have been employed
to be compared with such an algorithm and several art-of-
the-state methods have also been compared with such an
algorithm in this field.

From Table 1, we can easily find that several typical
feature description methods, including binary encoding,
amino acid composition, grouping amino acid composi-
tion, physicochemical properties, KNN features, secondary
tendency structure, Bi-gram [76], and Tri-gram [77], have
been employed to be compared with proposed algorithm
in this work. From Table 1, we can get the performances
where the proposedmethod can achieve 81.07% in sn, 80.29%



Complexity 5

Table 1: The Performances of Different Features.

Features Sn(%) Sp(%) Acc(%) F1 MCC

Binary Encoding 56.36 75.80 66.08 0.6243 0.3279

AA Composition 64.84 62.79 63.82 0.6418 0.2764

Grouping AA Composition 71.78 72.04 71.91 0.7187 0.4382

Physicochemical Properties 75.53 73.93 74.73 0.7493 0.4947

KNN Features 74.94 65.85 70.40 0.7168 0.4096

Secondary Tendency Structure 69.96 77.40 73.68 0.7266 0.4749

PSSM 71.20 79.39 75.30 0.7424 0.5076

BPB 72.81 78.51 75.66 0.7495 0.5140

Bi-gram 75.17 76.81 75.99 0.7579 0.5199

Tri-gram 77.28 78.27 77.78 0.7766 0.5555

Proposed Algorithm 81.07 80.29 80.68 0.8076 0.6136

Table 2: The Performances of Different Methods.

Method Sn(%) Sp(%) Acc(%) F1 MCC

DNABIND [46] 69.78 70.97 70.38 0.7020 0.4075

DNAbinder [46] 69.89 73.79 71.84 0.7128 0.4371

DBD-Threader [47] 57.79 94.71 76.25 0.7087 0.5649

DNA-Prot [47] 67.81 80.71 74.26 0.7249 0.4893

iDNA-Prot [48] 76.71 75.52 76.12 0.7626 0.5223

DBPPred [49] 79.37 74.82 77.10 0.7760 0.5425

PLMLA [50] 65.80 69.71 67.76 0.6711 0.3554

Phosida [51] 78.61 84.91 81.76 0.8117 0.6365

LysAcet [52] 77.50 75.14 76.32 0.7660 0.5265

EnsemblePail [53] 77.31 72.24 74.78 0.7540 0.4961

PSKAcePred [54] 71.20 69.87 70.54 0.7073 0.4107

BRABSB [55] 81.09 72.28 76.65 0.7762 0.5349

SSPKA [56] 75.81 79.57 77.69 0.7726 0.5542

SMOTE [57] 80.91 79.18 80.05 0.8022 0.6010

Proposed Algorithm 81.07 80.29 80.68 0.8076 0.6136

in sp, 80.68% in Acc, 0.8076 in F1, and 0.6136 in MCC,
respectively. At the same time, we can get the conclusion
that these typical and classical features play various roles in
this classification issue. However, these features can hardly
overcome the distance between the sensitivity and specialty
in this classification issue.

From Table 2, we can get the information that several art-
of-the-statemethods, which includeDNABIND,DNAbinder,
DBD-Threader, DBPPred, and other approaches in this field,
have been compared with the proposed algorithm. From the
comparison, we can get the result that BRABSB can get the
highest performance in sensitivity and the Phosida can play
the most available results in specificity. It was pointed that
the proposed algorithm can get the most ideal performances,
while the length is equal to 23.

4. Conclusions and Discussions

In this study, a novel predictor named LipoFNT was devel-
oped to predict lysine lipoylation sites with the elements
of bi-profile bayes feature encoding and flexible neural tree
algorithm. As far as we are concerned, this is the first time

flexible neural tree has been utilized in the classification of the
lipoylation samples and nonlipoylation samples. Experimen-
tal results and performances showed that LipoFNT achieved
an excellent performance and could be a useful bioinfor-
matics algorithm for accurate identification of lipoylation
sites.

From the above research, we can find out that there are
3 candidate lengths among all the employed lengths in this
work. The top 3 lengths are 19, 23, and 25. In this section, we
will discuss the performances of the top 3 lengths. And some
art-of-the-statemethods and features can be compared in this
work. And the detailed information is shown in Tables S1–S6.
It is shown that each sample can be calculated by the F-score
with the BPB features [78, 79], which can be demonstrated in
Table 3.With the candidate lengths, we can find that the most
available length is 23. In this length, the proposedmethod can
achieve well performances.

Meanwhile, some significant elements of lipoylated lysine
site identification should be taken into account. First of
all, the reasonable and effective features should be discov-
ered and described in this classification issue. The features
mainly have important influences on the sample valuation.
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Table 3: The BPB features ranked by F-score method.

Order Amino Acid F-score Order Amino Acid F-score

1 P8 3.8179 18 N4 0.9171

2 P10 3.5179 19 N11 0.9002

3 P9 3.4917 20 N-5 0.8227

4 P7 3.2817 21 N-7 0.8007

5 P14 3.0281 22 N13 0.7258

6 P12 2.8719 23 N-9 0.7091

7 P11 2.6971 24 N-3 0.6172

8 P2 2.2071 25 N-6 0.5817

9 P3 2.1718 26 N-9 0.5618

10 P5 1.9771 27 N2 0.4281

11 P6 1.7881 28 N-1 0.3171

12 P-10 1.6817 29 N-12 0.2812

13 P-4 1.5171 30 N-5 0.0017

14 P-9 1.2171 31 N1 0.0007

15 N5 1.1881 32 N-2 0.0002

16 N9 1.0117 33 P0 -1

17 N7 1.0021 34 N0 -1

The second step is the speed and accurate classification
model. The classification model may have the ability to
overcome some shortcomings and limitations on the fea-
tures. In other words, the construction classification model
may reduce some redundant and useless features and more
effectively utilize some key features in the classification
model. The last but not least step is the available sample
length selection. The available length can reduce some use-
less features and low-useful neighbor amino acid residues
influences.
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