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Abstract

The immunomodulatory properties of lipophosphoglycans (LPG) from New World species
of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the
causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconju-
gate is highly polymorphic among species with variation in sugars that branch off the con-
served Gal(B1,4)Man(a1)-PO, backbone of repeat units. Here, the immunomodulatory
activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous
leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally iso-
lated from the sand fly and the other (Josefa) was isolated from a human case. The ability of
purified LPGs from both strains was investigated during in vitro interaction with peritoneal
murine macrophages and CHO cells and in vivo infection with Lutzomyia migonei. In perito-
neal murine macrophages, the LPGs from both strains activated TLR4. Both LPGs equally
activate MAPKs and the NF-kB inhibitor p-IkBa, but were not able to translocate NF-kB. In
vivo experiments with sand flies showed that both stains were able to sustain infection in L.
migonei. A preliminary biochemical analysis indicates intraspecies variation in the LPG
sugar moieties. However, they did not result in different activation profiles of the innate
immune system. Also those polymorphisms did not affect infectivity to the sand fly.
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Author Summary

Leishmania amazonensis, a member of the Leishmania mexicana complex, is the causative
agent of localized cutaneous leishmaniasis (LCL) and anergic diffuse cutaneous leishmani-
asis (ADCL) [1,2]. It is widely distributed throughout the Amazon basin, where it infects a
wide range of terrestrial rodents and, less frequently, marsupials. Its main vector is Lutzo-
myia flaviscutellata (Diptera: Psychodidae) widely distributed in South America and a
recent study has predicted its expansion towards South of Brazil [3]. Moreover, Lutzomyia
migonei (Franga, 1920) can also harbor the infection of this species [4,5]. Although its
transmission to man is very uncommon, L. amazonensis triggers an incurable and dissemi-
nated form of cutaneous leishmaniasis [2,6]. However, most of the mechanisms involved
in L. amazonensis pathogenesis are still unknown, especially those related to surface mole-
cules. Glycoconjugates have been extensively characterized as important for the establish-
ment of infection as they protect the parasite from the early action of the host immune
system and therefore acting as invasive/evasive strategies. Consequently, we here present
the role of lipophosphoglycan (LPG) of L. amazonensis in the interaction with vertebrate
and invertebrate hosts.

Introduction

The major cell surface glycoconjugate of Leishmania is the lipophosphoglycan (LPG), impli-
cated in a wide range of functions, both in vertebrate and invertebrate hosts [7]. In the inverte-
brate host, LPG variations are important for Leishmania specificity to the sand fly [8], where
attachment of the parasite to a midgut receptor is a crucial event [9]. In the vertebrate host, the
main functions of this virulence factor during the earlier steps of infection include: protect the
parasite from complement-mediated lysis, attachment and entry into macrophages [10], able to
inhibit phagolysosomal fusion [11], modulation of nitric oxide (NO) production [12] and inhi-
bition of protein kinase C (PKC) [13]. Interestingly, although L. major LPG mutants (IpgI’)
were highly susceptible to complement mediated lysis, they were able to invade macrophages
reinforcing the role of other molecules and the host defenses during the interaction [11].

Many functions have been attributed to L. amazonensis LPG including induction of neutro-
phil extracellular traps (NETs) [14], induction of protein kinase R (PKR) [15], triggering and
killing of the parasite via Leukotriene B4 (LTB4) [16]. Although L. amazonensis LPG is impor-
tant in many steps of host infection, its role during the interaction with macrophages and sand
flies remains unknown.

LPG structures have been described for several dermotropic and viscerotropic Leishmania
[17-26]. LPGs have a conserved glycan core region of Gal(ct1,6)Gal(a1,3)Gald(B1,3)[Glc(o1)-
PO4]Man(al,3)Man(cl,4)-GlcN(o1) linked to a 1-O-alkyl-2-lyso-phosphatidylinositol
anchor. The salient feature of LPG is another conserved domain consisting of the Gal(1,4)
Man(a1)-PO, backbone of repeat units (n = ~15-30). The distinguishing feature of LPGs that
is responsible for the polymorphisms among Leishmania spp. is variable sugar composition
and sequence of branching sugars attached to the repeat units and cap structure [27]. For
example, the LPG of Leishmania major (Friedlin) has B-1,3 galactosyl side-chains, often termi-
nated with arabinose, whereas the LPGs of Leishmania donovani (Mongi) and L. infantum
(PP75 and BH46 strains) possess B-glucoses in their repeat units [17,20,24]. However, there is
no available information on the degree of variability in the LPG structure for L. amazonensis.

The L. major LPG was identified as potent agonist of Toll-like receptor 2 (TLR2) in human
natural killer (NK) cells and murine macrophages, triggering the production of TNF-o: and
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IFN-y through MyD88 [28,29]. Recently, the LPGs of two New World species (L. infantum
and Leishmania braziliensis) differentially activated TLR2. In this case, L. braziliensis LPG was
more pro-inflammatory being able to induce the translocation of NF-kB to the nucleus [30].

As a part of a wider project on the glycobiology of New World species of Leishmania, we
evaluated the role of L. amazonensis LPGs (PH8 and Josefa strains) during the interaction with
host cells and the sand fly L. migonei. The present study might help to improve our under-
standing on the immune modulation mediated by glycoconjugates of L. amazonensis, the etio-
logical agent of diffuse cutaneous leishmaniasis (DCL).

Materials and Methods
Ethics statement

The animals were kept in the Animal Facility of the Centro de Pesquisas René Rachou/FIO-
CRUZ. All animals were handled in strict accordance with animal practice as defined by Inter-
nal Ethics Committee in Animal Experimentation (CEUA) of Fundag¢io Oswaldo Cruz
(FIOCRUZ), Belo Horizonte, Minas Gerais (MG), Brazil (Protocol P-82/11-4). This protocol
followed the guidelines of CONCEA/MCT, the maximum ethics committee of Brazil. Knock-
out mice handling protocol was approved by the National Commission of Biosafety (CTNBio)
(protocol #01200.006193/2001-16).

Parasites, growth curves, and molecular typing

World Health Organization Reference strains of L. amazonensis (IFLA/BR/1967/PH8 and
MHOMY/BR/75/]Joseta) were used. The PH8 strain was originally isolated from the sand fly L.
flaviscutellata from Para State, Brazil, and the Josefa strain was isolated from a human case
from Bahia State, Brazil. Promastigotes were cultured in M199 medium supplemented with
10% fetal bovine serum (FBS), penicillin 100 units/mL, streptomycin 50 ug/mL, 12.5 mM gluta-
mine, 0.1 M adenine, 0.0005% hemin, and 40 mM Hepes, pH 7.4 at 26°C until late log phase
[21]. Parasites were seeded in triplicate (1 x 10° cells/mL), and growth curves of PH8 and Josefa
strains were determined daily using a Neubauer improved haemocytometer until cells reached
a stationary phase. Both strains exhibited a similar division profile reaching stationary phase
after 7 days of culture. For this reason the 6™ day was chosen for harvesting parasites for LPG
extraction and molecular typing (S1A Fig).

For molecular typing, genomic DNA was extracted from log-phase Leishmania using the
phenol/chloroform method (1:1) for amplification of the HSP70 fragment prior to digestion
with Haelll as previously described [31]. Positive controls included DNA from L. braziliensis
(MHOM/BR/75/M2903), L. infantum (MHOM/BR/74/PP75), Leishmania guyanensis
(MHOM/BR/75/M4147) and L. amazonensis (IFLA/BR/67/PHS8). After PCR-RFLP both L.
amazonensis strains were confirmed (S1B Fig).

Extraction and purification of LPG

For optimal LPG extraction, late log phase cells were harvested and washed twice with PBS
prior to extraction of LPGs (Fig 1). The LPG extraction was performed as described elsewhere
with solvent E (H,O/ethanol/diethylether/pyridine/NH,OH; 15:15:5:1:0.017) after a sequential
organic solvent extraction [32]. For purification, the solvent E extract was dried under N, evap-
oration, resuspended in 2 mL of 0.1 M acetic acid/0.1 M NaCl, and applied onto a column with
2 mL of phenyl-Sepharose, equilibrated in the same buffer. The column was washed with 6 mL
of 0.1 M acetic acid/0.1 M NaCl, then 1 mL of 0.1 M acetic acid and finally 1 mL of endotoxin
free water. The LPGs were eluted with 4 mL of solvent E then dried under N, evaporation. LPG
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Promastigotes L. amazonensis PHS and Josefa
(107-10% parasites)
Growth curve and Sand fly mn vivo infection
molecular typing

Pelleted at 3500g and washed with PBS

Extraction with chloroformy/methanol (3:2.v/v),

MgCl, (4mM), chloroform/methanol/water (10:10:3,by vol.) and
solvent E (H;O/ethanol/diethyl ether/pyricine NH,OH;
15:15:5:1:0.017,byvol.)

(3X10vol.)(2100 g, 10 min.)

Pellet Extract

Dried under N,

Phenyl-Sepharose

Immunoblotting Purified LPG
Macrophage assays MAPKs and
(NO and cytokine NF-«B analysis
production)

Fig 1. Procedures for extraction, purification, preliminary characterization of L. amazonensis LPG, interaction with vertebrate cells
and L. migonei. Late log phase cells were harvested and washed with PBS. For studies with vector, L. migonei midguts were dissected on
days 2 and 4 post feeding containing L. amazonensis from each strain. Parasite cell pellets were subject to extraction with organic solvents as
described elsewhere. For purification, the solvent E extract was dried under N, evaporation and applied into a phenyl-Sepharose column. The
purified LPG was used for biological and immunological assays.

doi:10.1371/journal.pntd.0004848.9001
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concentrations were determined as described elsewhere [33]. Prior to use on in vitro cells cul-
tures, LPGs were diluted in RPMI. All solutions were prepared in sterile, LPS-free distilled
water (Sanobiol, Campinas, Brazil). All extractions and purifications procedures are depicted
in Fig 1.

Immunoblotting and preliminary characterization of LPGs

Purified LPGs (5 ug) were subjected to dot-blot, blocked (1 h) in 5% milk in PBS and probed
for 1 h with monoclonal antibody (mAb) CA7AE (1:1000), that recognizes the unsubstituted
Gal(B1,4)Man repeat units [34]; mAb LT22 (1:1000) that recognizes B-glucose side chains and
WIC 79.3 (1:1000) that recognizes B-galactose side chains [21,35]. After three washes in PBS
(5 min), the membrane was incubated for 1 h with anti-mouse IgG conjugated with peroxidase
(1:5,000) and the reaction was visualized using luminol.

Purification of murine peritoneal macrophages and cell culture

Thioglycollate-elicited macrophages were extracted from C57BL/6 and C57BL/6 knockouts
TLR2 (-/-) and TLR4 (-/-) by peritoneal washing with ice cold RPMI and enriched by plastic
adherence (1 h, 37°C, 5% CO,). Cells (3 x 10° cells/well) were washed with fresh RPMI then
culture in RPMI, 2 mM glutamine, 50 U/mL of penicillin and 50 pg/mL streptomycin supple-
mented with 10% FBS in 96-well culture plates (37°C, 5% CO,). Cells were primed with inter-
feron-gamma (IFN-y) (3 IU/mL) for 18 h prior to incubation with LPGs from both strains

(10 ug/mL), live stationary Leishmania parasites (MOI 10:1) and lipopolysaccharide (LPS: 100
ng/mL) [30,36].

Cytokine and nitrite measurements

For CBA multiplex cytokine detection, cells were plated, primed as describe above and incu-
bated with LPGs and live stationary promastigotes (MOI 10:1) for 48 h. LPS was added as a
positive control and medium as negative control. Supernatants were collected and IL-1p, IL-6,
IL-10, IL-12p40 and TNF-o were determined using BD CBA Mouse Cytokine assay kits
according to the manufacturer’s specifications (BD Biosciences, CA, USA). Flow cytometry
measurements were performed on a FACSCalibur flow cytometry (BD Bioscience, Mountain
View, CA, USA). Cell-QuestTM software package provided by the manufacturer was used for
data acquisition and the Flow]Jo software 7.6.4 (Tree Star Inc., Ashland, OR, USA) was used for
data analysis. A total 1,500 events were acquired for each preparation. Results are representa-
tive of six experiments in duplicate. Nitrite concentrations were determinate by Griess reaction
(Griess Reagent System, 2009).

MAPKSs and NF-kB translocation assay

For MAPKSs, peritoneal murine macrophages were obtained as described above. They were
applied on 24 wells tissue culture plates (10° cells/well) for 18 h prior to assay. The cells were
washed with warm RPMI and incubated with LPG from both species for different times (5, 15,
30, 45 and 60 min) or with medium (negative control) or E. coli extracts (100 ng/mL, only 45
minutes) as positive control. p-p38, p-JNK, p-IxBo and total p38 were assayed as previously
described [25]. p-IkBa antibody was provided by Dr. L. P. de Sousa. NF-kB translocation using
CHO reporter lines (a kind gift by M. A. Campos) was determined as described elsewhere [30].
CHO reporter cells were plated (1 x 10° cells/well) in 24-well tissue culture dishes and the LPG
(0.02 and 0.2 ug/mL) from both strains was added in a total volume of 0.25 mL medium/well.
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The cells were examined by flow cytometry (BD Biosciences, CA, USA) and the analyses were
performed using CellQuestTM software.

Sand fly in vivo infection

Lutzomyia migonei (Baturite strain) sand flies were kept under laboratory conditions and were
fed on 30% sucrose solution for 3-4 days prior to experiments. The insects were artificially fed
using a chick skin membrane in a glass-feeder device. The chick skin membrane was provided
by the Animal Facility of Centro de Pesquisas René Rachou/FIOCRUZ under the Protocol LW
30/10. Heparinized mouse blood (drawn intracardially from Balb/C), with penicillin (100 U/
mL) and streptomycin (100 ug/mL) (37°C) containing 2 x 107/mL logarithmic phase promasti-
gotes (PH8 and Josefa strains) offered for 5 h under dark conditions [5]. Blood engorged flies
were separated and maintained at 26°C with 30% sucrose. Engorged sand flies had their mid-
guts dissected on days 2 and 4 post feeding. The midguts were homogenized in 30 pl of PBS
and the number of viable promastigotes determined by counting under a Neubauer improved
haemocytometer [24].

Statistical analyses

For nitrite, cytokine measurements and in vivo sand fly experiments, the Shapiro Wilk test was
conducted to test the null hypothesis that data were sampled from a Gaussian distribution [37].
For the non-parametric distribution, it was performed the Mann-Whitney test. Data were ana-
lyzed using GraphPad Prism 5.0 software (Graph Prism Inc., San Diego, Ca). P < 0.05 was con-
sidered significant.

Results

The LPGs from L. amazonensis strains display intraspecific
polymorphism

The purified LPGs from L. amazonensis PH8 and Josefa strains were differentially recognized
by the mAbs CA7AE and LT22 (S2 Fig). LPG from PHS strain was recognized by CA7AE and
LT22 as well as the positive control represented by L. infantum (BH46). However, a different
recognition profile was observed for the Josefa strain since its LPG was weakly recognized by
LT22 but not by CA7AE, indicating the presence of side-chains branching-off the repeat units.
Because CA7AE recognizes Gal($1,4)Man unsubstituted repeat units in LPG [34], these results
indicate that at least some of the repeat units are indeed unsubstituted in the LPG of PH8
strain. On the other hand, the presence of side-chains suggestive of glucoses, due to LT22 reac-
tivity, was detected in the LPGs of PH8 and Josefa strains. However, LT22 also recognized the
galactose-branched repeat units of L. major (strains FV1 and LV39) indicating cross-reactivity
of the antibodies, thus suggesting the presence of either glucose or galactose as side chains (52
Fig). These data suggested an intraspecific polymorphism in the LPGs of L. amazonensis
strains.

LPGs from L. amazonensis strains equally activate NO and cytokine
production via TLR4

We investigated whether LPGs purified from different strains could have an impact on the par-
asite’s interaction with host cells, the ability to elicit NO and cytokine production by murine
macrophages. LPGs from both strains were incubated with murine peritoneal macrophages
from C57BL/6 and respective knockouts for TLR2 (-/-) and TLR4 (-/-). We did not detect any
production of the cytokines IL-1p, IL-10 and IL-12 (S3A-S3C Fig). Both LPGs and respective
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parasites were able to activate through TLR4, resulting in NO, TNF-a and IL-6 production (Fig
2A-2C) (P < 0.05). As expected, LPS (positive control) activated TLR4 in the TLR2 (-/-) (Fig
2A-2C).

LPGs from L. amazonensis equally activate MAPKs and the NF-kB
inhibitor p-IkBa via TLR4

No difference in MAPKs phosphorylation (p38 and JNK) and p-IxBo was observed after incu-
bation with LPGs from both strains. In peritoneal murine macrophages this activation was
mainly via TLR4 (Fig 3A and 3B). We also evaluated if the LPGs from these strains were able
to translocate NF-xB in CHO cells. No activation of NF-xB was detected in those cells (Fig 4).

Leishmania amazonensis strains equally infected the sand fly L. migonei

In vivo midgut infections of the sand flies were determined on days 2 and 4 post feeding, in
order to evaluate the number of parasites after the blood meal digestion, as well as, after its
excretion on day 3, where non-attached parasites are lost. Although a higher parasite density
was detected for PH8 strain on day 2 (P < 0.05), no statistical differences in the parasite densi-
ties from both L. amazonensis strains were observed on day 4, and both strains were able to col-
onize L. migonei midgut (P > 0.05, Fig 5).

Discussion

Leishmania amazonensis, etiologic agent of the cutaneous and anergic diffuse leishmaniasis, is
characterized by disseminated non-ulcerative skin lesions and constantly proportion of nega-
tive delayed hypersensitivity skin-test (DTH), resulting in a high resistance of this disease to
any type of chemotherapy [1,38,39]. In the Old and New World, parasite glycoconjugates have
being implicated in a variety of events during parasite-host interactions [40,41]. More recently,
the role of LPG and GIPLs in the L. braziliensis and L. infantum was determined, suggesting
that two distinct LPGs were able to differentially modulate macrophage functions [30,41].
Regarding L. mexicana complex, from where L. amazonensis is a member, a recently study has
demonstrated the inflammatory role of LPG [42]. This glycoconjugate naturally exposed to the
host immune system could contribute to the maintenance of infection by interfering with the
assembly immune response, like modulation of cytokine production and non-activation of
effectors cells. In the present work, we investigated whether LPGs from two L. amazonensis
strains would account for differences in the interaction with macrophages and L. migonei.

LPG polymorphisms are common in the composition of branching sugars attached to the
conserved repeat units of its backbone. While in the Old World species, a wide spectrum of
sugar composition and structure is commonly observed, in New World species only glucose
residues in the side chains of Leishmania were documented to date [17,21,23,24,43]. Our pre-
liminary characterization of the repeat units using specific antibodies suggested the existence
of intraspecies polymorphism in L. amazonensis LPGs with differences in the side-chains and
in the level of glycosylation. The LPG of PHS strain strongly reacted with CA7AE, that recog-
nizes the basic backbone of the repeat units is Gal(B)Man-PO, [21,34]. However, Josefa LPG
did not reacted with this antibody, thus suggesting the existence of sugars as side-chains in the
repeat units. This feature is commonly found in the LPG of L. major reference strain FV1,
which does not react with CA7AE [17]. In order to evaluate the quality of the sugars branch-
ing-off the repeat units, LT22 and WIC.79.3 antibodies were used to detect the presence of glu-
cose and galactose, respectively [21,35]. Based on L. major LPGs used as controls, they were
either recognized by those antibodies, suggesting cross-reactivity. Moreover, those data
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promastigotes and La Jos = L. amazonensis Josefa live promastigotes. Results represent the mean + SD of 6
experiments in duplicate, * = P< 0.05 was considered significant.

doi:10.1371/journal.pntd.0004848.9002

reinforced the presence of either glucoses or galactoses as side-chains in L. amazonensis LPGs.
A fully detailed biochemical analysis must await the results of further investigations.
Understanding variations and the LPG structures are crucial for the comprehension of the
mechanisms of how parasites survive under extremely adverse conditions. Although the role of
LPG in the interaction with the vertebrate host immune system has been studied, it is still
unclear how its polymorphism affects the parasite survival. L. amazonensis LPG induces release
of NETs and LTB4 production by neutrophils, thus contributing to diminish parasite burden
in the Leishmania inoculation site [14,16]. Additionally, L. mexicana LPG induce TNF-a and
IL-10 in monocytes, modulates IL-12 production and diminishes NF-xB nuclear translocation
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Fig 3. Activation of p38/JNK (A) and p-lkBa (B) in peritoneal murine macrophages (C57BL/6, TLR2 -/- and TLR4 -/-) by L.
amazonensis LPGs (PH8 and Josefa). Macrophages were stimulated for 5, 15, 30, 45 and 60 min with 10 pg/mL of LPG from L.
amazonensis PH8 and Josefa strains. Dually phosphorylated MAPKs (p38 and JNK) and p-IkBa were detected by Western blot analysis.
C- = negative control; C+ = E. coli extract, positive control (100 ng/mL, 45 min). Total p38 content was used as the normalizing protein.

doi:10.1371/journal.pntd.0004848.9003
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Fig 4. LPGs purified of L. amazonensis do not induce translocation of NF-kB through TLRs. CHO cells expressing TLR2 (TLR2
+), TLR4 (TLR4+), or neither (TLR2-/TLR4-) were either untreated (purple line) or treated (green line) with LPGs from both strains of L.
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doi:10.1371/journal.pntd.0004848.9004
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Fig 5. Development of L. amazonensis (PH8 and Josefa strains) in Lutzomyia migonei. Sand flies were
infected with promastigotes (2 x 107 parasites/mL) of PH8 and Josefa strains. Day 2 (2") parasites counted
before blood excretion; Day 4 (4™ parasites remaining after blood excretion. Results are representative of
two experiments and * = P < 0.05 was considered significant.

doi:10.1371/journal.pntd.0004848.9005

[44]. Here we show that LPGs from both L. amazonensis strains stimulates NO and cytokine
production (TNF-a and IL-6) by peritoneal murine macrophages via TLR4. A similar cytokine
production was also observed for other species such as L. braziliensis LPG, another important
dermotropic species. However, this activation was primarily via TLR2 [30]. The NO produc-
tion by macrophages play a central role in determining intracellular killing of Leishmania [45]
and the intact structure of LPG appears to be important for this activation [12,29]. In many
models, NO synthesis is dependent on a combination of IFN-y and TNF-o. via TLR-dependent
mechanisms as an important leishmanicidal effector complex to macrophages [46]. In conclu-
sion, the preliminary variations in the sugar motifs of LPG, did not result in any difference in
macrophage activation/signaling thus suggesting the role of conserved motifs such as the lipid
anchor [29].

Previous studies have demonstrated that different macrophage receptors mediate the uptake
and phagocytosis of Leishmania. The early recognition of pathogens by cells capable of synthe-
sizing cytokines is crucial for the adequate control of intracellular pathogens. Gene knockout
studies in mice have suggested that TLR signaling is essential for the immune response against
Leishmania parasites. Moreover, Leishmania LPGs and GIPLs are agonists of TLR2 and TLR4
[28-30,41,42]. Glyconjugates can modulate the host immune response and their activity seems
to be structure dependent. The L. braziliensis LPG exerts a pro-inflammatory interaction with
TLR2, inducing the production of NO and cytokines (IL-1B, TNF-o and IL-6). On the other
hand, the L. infantum LPG was shown to be immunosuppressive and did not induce NO, cyto-
kines and NF-xB translocation [30]. Our results indicate that LPG from both L. amazonensis
strains induce the production of NO and cytokines in IFN-y-primed macrophages via TLR4.
However in other members of the L. mexicana complex, L. mexicana LPG activates either
TLR2 or TLR4 leading to ERK and p38 MAPK phosphorylation and production of cytokines
in human macrophages [42].

Thus, although it has been shown that LPG of Leishmania activates TLRs and that the
engagement of these receptors is important for the infection, the complete intracellular
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processes that are involved in this activation remain unknown. Here we bring some light into
the effects of LPG on MAPK and NF-«B signaling, a kinase and transcription factor known for
their crucial role in immune defense against pathogens [44,47-49]. According to previous
reports, infection by L. amazonensis altered phosphorylation of ERK1/2 in response to LPS in
murine macrophages [50] and also activates a transcriptional repressor of the NF-«xB [48,51].
Consistent with those observations, here LPGs from both L. amazonensis strains also activated
p-IxBa, a NF-xB translocation inhibitor, via TLR4. Since no further NF-xB translocation was
detected in the CHO cells, a possible mechanism that has been suggested favors its inhibition
by p50/p50 NF-xB homodimer [55]. Moreover, L. donovani and L. major infection caused
inactivation of ERK1/2 and p38, respectively, which was accompanied by the inhibition of tran-
scription factors also modulation of cytokine production [52,53]. In contrast to GIPLs (with
fail to activate MAPKSs) [41], our data show that LPG from both L. amazonensis strains is
equally activating MAPKs (p38 and JNK) and p-IxBa in peritoneal murine macrophages via
TLR4 (Fig 3). On the other hand, these LPGs do not activate the NF-«B translocation. These
and our results strongly suggest that Leishmania species have distinct mechanism of modulat-
ing the signaling pathways during immunopathological events.

The role of LPG during the interaction with the invertebrate host is a very controversial sub-
ject and it has been extensively investigated using in vitro and in vivo models [8,21,24,54,55].
Although the in vitro system has limitations [56], this model provided important evidence for
parasite attachment in the sand fly midgut using many restricted and specific vector as classi-
fied elsewhere [57,58]. For example, successful binding to the midgut was reported using the
Old World pairs L. major/Phlebotomus papatasi [8,54], L. major/Phlebotomus duboscqi [59]
and L. tropica/Phlebotomus sergenti [60]. Perhaps, due its similarity to L. major LPG, who also
possesses terminal B-galactosyl residues, L. turanica LPG may also be important for develop-
ment in P. papatasi [61,62]. Moreover, the role of LPG has been questioned in permissive vec-
tors such as Lutzomyia longipalpis and Phlebotomus perniciosus, where LPG mutants of L.
mexicana and L. major were able to sustain infection in those vectors [63]. Recently, an alterna-
tive mechanism was suggested that flagellar protein FLAG1/SMP1 has been also implicated as
an attachment binding candidate for specific and restricted vectors. In this work, a competitive
binding assays using an antibody against FLAG1/SMP1 inhibited interaction using the pair L.
major and P. papatasi. However, no effect was observed for permissive L. longipalpis [64].

The significance of LPG modifications was investigated during in vivo interaction of L. ama-
zonensis with L. migonei. Although L. amazonensis is naturally transmitted by L. flaviscutellata,
the absence of a colony led us to use an alternative sand fly, which had been previously shown
to successfully harbor this parasite and L. braziliensis [5]. Since this species, although sus-
pected, is not yet considered a natural proven vector of L. amazonensis, a high parasite doses
was artificially offered to the sand flies. In spite of a loss after the 3™ day, parasite multiplica-
tion inside the alimentary tract of the L. migonei was successful for both L. amazonensis strains.
To survive, the parasites need avoid a number of barriers including the lethal effects of digestive
enzymes in the early blood-fed midgut and the excretion with the digested blood meal
[5,7,65,66]. The strong correlation between the excretion of blood meal and the sudden loss of
promastigotes suggests that the inability of Leishmania strains to persist in an inappropriate
sand fly is related to their failure to remain anchored to the gut wall via specific attachment
sites [22,67]. Nevertheless, L. migonei was able to sustain infection with both of the L. amazo-
nensis strains tested, regardless of the type of LPG. It seems likely that L. migonei together with
L. longipalpis might be considered a permissive vector as previously suggested [57,58,68]. How-
ever, the fully development of those two L. amazonensis strains should be further investigated.

Some studies have determined that polymorphisms in the phosphoglycan domains of LPG
might be crucial for Leishmania promastigotes to attach to the midgut and to maintain vector
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infection after blood meal excretion [9]. Additional support is based on the altered behavior of
LPG deficient L. donovani and L. major mutant promastigotes (Ipg-) who showed diminished
capacity to maintain infection within the sand fly midgut [54,69]. Furthermore, it was recently
presented the occurrence of intraspecies polymorphism in L. infantum LPG. Also, the biologi-
cal role of the three LPG types (I, II and III) was studied during the interaction with the vector
L. longipalpis [24]. Consistent with our results, all strains could successfully sustain infection in
this vector, indicating that LPG polymorphisms did not affect this process. In spite of having a
strong evidence for the existence of a midgut receptor for LPG, there is no current information
in L. migonei. Indeed, the only known receptor was described for L. major, a galectin receptor
found in the midgur of P. papatasi binding to LPG B-galactose residues [9,70]. The existence of
midgut glycoproteins bearing terminal N-acetylgalactosamine in sand fly was also suggested as
a putative parasite ligand [71].

Here we describe for the first time the immunomodulary properties of two LPGs isolated
from different hosts. Those LPGs were equally able to trigger NO and cytokine (TNF-o and IL-
6) production via TLR4. The preliminary differences in carbohydrate structure did not seem to
affect the interaction of these strains with macrophages and the sand fly vector.

Supporting Information

S1 Fig. Growth curves of L. amazonenss. (A) L. amazonensis (PH8 and Josefa strains) were
grown in M199 medium and counts determined daily (initial concentration of 1 x 10°/mL).
(B) Restriction fragment length polymorphisms of 120 bp kDNA amplicons from Leishmania
obtained with restriction enzyme Hae III and analyzed on silver-stained 10% polyacrylamide
gel. MM: 50 bp molecular size marker; lanes: Lb-L. braziliensis (MHOM/BR/75/M2903), Li-L.
infantum (MHOM/BR/74/PP75); La-L. amazonensis reference (IFLA/BR/67/PH8), PH8 -L.
amazonensis PH8 (IFLA/BR/67/PHS8) and Jos-L. amazonensis Josefa (MHOM/BR/75/Josefa).
(TIF)

S2 Fig. Dot-blots of Leishmania LPGs using different m Ab antibodies. Purified LPGs from
L. amazonensis strains (PH8 and Josefa), L. infantum (BHA46 strain) and L. major strains (FV1
and LV39) were probed with the mAbs CA7AE (1:1000), LT22 (1:1000) and WIC 79.3
(1:1000). Peroxidase-conjugated anti-mouse IgG (1:5000) was used as secondary antibody. The
reaction was developed with luminol.

(TIF)

S3 Fig. Cytokine production by IFN-y primed macrophages stimulated with LPG and live
parasites. Cells were pre-incubated with IFN-y (3 IU/mL) for the 18 h then 10 pg/mL of LPG,
and supernatants used for cytokine IL-10 (A), IL-1B (B) and IL-12 (C) measurements were col-
lected 48 h latter. Fresh medium alone was used as negative control cells and LPS (100 ng/mL)
as a positive control. Cytokine concentrations were determined by flow cytometry.

C = negative control; LPG PH8 = L. amazonensis LPG PHS strain; LPG Jos = L. amazonensis
LPG Josefa strain; La PHS = L. amazonensis PHS live promastigotes and La Jos = L. amazonen-
sis Josefa live promastigotes. Results represent the mean + SD of 3 experiments in duplicate, EL
P< 0.05 was considered significant.
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