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45 Abstract

46 Accumulating evidence suggests that changes in the metabolic signature of microglia 

47 underlie their response to inflammation. We sought to increase our knowledge of how 

48 pro-inflammatory stimuli induce metabolic changes. Primary microglia exposed to LPS 

49 expressed excessive fission leading to more fragmented mitochondria than tubular 

50 mitochondria. LPS mediated TLR4 activation also resulted in metabolic reprogramming 

51 from oxidative phosphorylation to glycolysis. Blockade of mitochondrial fission by Mdivi-

52 1, a putative mitochondrial division inhibitor led to the reversal of the metabolic shift. Mdivi-

53 1 treatment also normalized the changes caused by LPS exposure, namely an increase 

54 in mitochondrial ROS production and mitochondrial membrane potential as well as 

55 accumulation of key metabolic intermediate of TCA cycle succinate. Moreover, Mdvi-1 

56 treatment substantially reduced LPS induced cytokine and chemokine production. Finally, 

57 we showed that Mdivi-1 treatment attenuated expression of genes related to cytotoxic, 

58 repair and immunomodulatory microglia phenotypes in an in vivo neuroinflammation 

59 paradigm. Collectively, our data show that the activation of microglia to a classically pro-

60 inflammatory state associated with a switch to glycolysis that is mediated by mitochondrial 

61 fission, a process which may be a pharmacological target for immunomodulation.

62 Key words: inflammation, mitochondria, microglia, metabolism, mitochondrial fission

63 Main points:
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64 LPS induces mitochondrial fragmentation and a metabolic switch in microglia.

65 Blockade of fragmentation by Mdivi-1 reverses the metabolic shift, enhanced cytokine 

66 production, succinate accumulation in vitro and microglial activation in vivo. 
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67 Introduction

68 Microglia contribute to normal brain development, homeostasis and respond to 

69 pathological conditions by changing their phenotype from surveillance to pro-

70 inflammatory, repair, regenerative and immunomodulatory states (Greter, Lelios, & 

71 Croxford, 2015; Tay, Savage, Hui, Bisht, & Tremblay, 2017). Studies of adult and 

72 neonatal injury and disease have conclusively shown that changes in the phenotype of 

73 microglia play a role in almost all forms of neuropathology (Solito & Sastre, 2012). 

74 Transcriptome analysis of microglia exposed to inflammatory stimuli revealed transient 

75 upregulation of important and stimulus-specific metabolic pathways (Thion et al., 2018), 

76 strongly suggesting that energy metabolism is modulated during brain inflammation. 

77 Microglia activation in response to stimuli that includes pathogen associated proteins, 

78 such as lipopolysaccharide (LPS), is a metabolically energy expensive event (Moss & 

79 Bates, 2001). 

80 Mitochondria, which play a central role in energy metabolism, are dynamic organelles that 

81 undergo biogenesis, fission, fusion and mitophagy (autophagic degradation). The 

82 balance of these processes allows the reorganization of mitochondrial components and 

83 the elimination of damaged material, thereby maintaining a healthy mitochondrial 

84 population (Pickles, Vigie, & Youle, 2018; Wai & Langer, 2016) .  Recent studies have 

85 linked mitochondrial dynamics to energy demand, suggesting changes in mitochondrial 

86 architecture as a mechanism for bioenergetic adaptation to inflammation (Nasrallah & 
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87 Horvath, 2014). By favoring either elongated or fragmented structures, mitochondria can 

88 regulate bioenergetic ability and thereby cell fate through metabolic programming (Buck 

89 et al., 2016). Although mitochondrial morphological changes are observed in response to 

90 alterations in oxidative metabolism (Hackenbrock, 1966), little is known of its role in 

91 microglia activation. 

92 Microglia generate energy via both oxidative phosphorylation (OXPHOS) and glycolysis 

93 (Orihuela, McPherson, & Harry, 2016). OXPHOS occurs within the mitochondria and is 

94 more efficient for ATP synthesis in comparison to glycolysis. However, the preferential 

95 use of glycolysis over OXPHOS for ATP production enables activated microglia to 

96 produce ATP at a faster rate (Schuster, Boley, Moller, Stark, & Kaleta, 2015). Enhanced 

97 glycolysis supplies biosynthetic intermediates for cell growth and rapid production 

98 intermediates for cytokine production such as reactive oxygen species (ROS) thereby 

99 enabling effector functions (Chang et al., 2013; Everts et al., 2014). In macrophages or 

100 dendritic cells, pro-inflammatory stimuli cause them to undergo a metabolic switch from 

101 OXPHOS to glycolysis, a phenomenon similar to the Warburg effect (Kelly & O'Neill, 

102 2015). Microglia share many functions and characteristics with macrophages (Butovsky 

103 & Weiner, 2018) but they are from a distinct non-hematopoietic lineage, and whether a 

104 similar switch from OXPHOS to glycolysis has not been explored in microglia. 

105 We have previously found that both Toll-like receptor (TLR)-induced inflammation and 

106 mitochondrial dysfunction are involved in the development of neonatal brain injury 
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107 (Hagberg, Mallard, Rousset, & Thornton, 2014; Mottahedin et al., 2017). We have also 

108 found that mitochondrial ROS production and inflammation is increased after neonatal 

109 brain injury associated with altered Krebs cycle and succinate accumulation in the 

110 mitochondria (Koning et al., 2017). Activation of microglia results in an altered Krebs 

111 cycle, as a result of metabolic switch promoting inflammatory gene expression (Gimeno-

112 Bayon, Lopez-Lopez, Rodriguez, & Mahy, 2014; Leaw et al., 2017; Orihuela et al., 2016). 

113 Katoh et al.  found that that mitochondrial fission via the activation of DRP1 (by TLR4 

114 stimulation) increases mitochondrial fission but they did not look in to metabolism or 

115 cytokine production in microglia (Katoh et al., 2017). Here, we add data on how TLR4 

116 activation affects mitochondrial morphology, energy metabolism, ROS and cytokine 

117 production in microglia. This knowledge is important given the many roles of microglia in 

118 mediating host-defenses, and how these processes can mediate injury to the brain when 

119 activation is aberrant and prolonged. ROS signaling has been demonstrated to result in 

120 damage to cell components; at the same time ROS production is essential for host 

121 defenses (Y. Zhang et al., 2012). 

122 In this study, we investigated the link between mitochondrial architecture and metabolic 

123 reprogramming in primary microglia after induction to a prototypical pro-inflammatory 

124 activation state via LPS-mediated TLR4 activation. We also used the putative 

125 mitochondrial fission inhibitor, Mdivi-1 (Cassidy-Stone et al., 2008) to modulate 

126 mitochondrial dynamics in vitro and in vivo. We found that pro-inflammatory activation of 
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127 microglia changes the mitochondrial dynamics including a metabolic switch from 

128 OXPHOS to glycolysis and that Mdivi-1 reverses these effects and the expected LPS-

129 induced cytokine production and ROS production in vitro.  Further, we investigated the 

130 effect of Mdivi-1 in an in vivo paradigm of neuroinflammation and found that Mdivi-1 

131 reduced the expression of genes related to cytotoxic, repair and immunomodulatory 

132 microglia phenotypes. 

133 Materials and Methods

134 Animals of in vitro experiments

135 Pregnant C57BL/6 mice were sourced from Charles River Laboratories International 

136 (Sulzfeld, Germany). C57BL/6J-Tg(CAG-Cox8/EGFP)49Rin mice (Cox8/EGFP; 

137 RBRC02250)  expressing endogenous green florescent protein in cytochrome c oxidase, 

138 subunit VIIIa of mitochondria (Shitara et al., 2001) were obtained from Riken bio resource 

139 center, Japan.  Animals were housed and bred at the Experimental Biomedicine animal 

140 facility (University of Gothenburg, Gothenburg, Sweden) under specific pathogen free 

141 conditions on a 12 h light/dark 7 cycle with ad libitum access to standard laboratory chow 

142 (B&K, Solna, Sweden) and water. All experiments were approved by the local ethical 

143 committee at University of Gothenburg (No: 203-2014 and 32-2016) and performed 

144 according to the Guidelines for the care and use of Laboratory Animals.
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145 Microglial cell culture

146 Primary cultures of purified microglia were created from 1 to 3-day-old C57BL/6 or 

147 Cox8/EGFP mice of both sexes, as previously described (Dean et al., 2010) with minor 

148 adaptations. Following decapitation, the brain was isolated with the meninges removed 

149 and washed in ice-cold Hanks buffered salt solution (HBSS; Sigma–Aldrich, St Louis, MO, 

150 USA) supplemented with 100 U/mL penicillin and 100 µg/mL streptomycin (Sigma–

151 Aldrich). Forebrains were dissociated by gentle trituration in Dulbecco’s modified Eagle’s 

152 medium (DMEM; Sigma–Aldrich) supplemented with 20% heat-inactivated fetal bovine 

153 serum (FBS; Fischer Scientific, Goteborg, Sweden) and antibiotics. The cell suspension 

154 was passed through a 70 µm cell sieve (Falcon, Corning, USA), plated in 75-cm2 flasks 

155 with vented caps (Sarstedt, Germany) at a density of two brains/flask, and cultured 

156 undisturbed for seven days with HBSS/20% FBS/antibiotics. Medium was then replaced 

157 with HBSS/10% FBS/antibiotics, and cells were cultured for a further seven days. 

158 Microglia were selectively detached from the flasks by shaking (3 h, 370C, 250 rpm) on a 

159 rotary shaker and the microglia cell suspension was collected and centrifuged (250 g × 

160 10 min). The media were then removed, the pellet was suspended in DMEM/2% 

161 FBS/antibiotics and the number of cells were counted with an automated cell counter 

162 (Scepter; Millipore) and seeded into Seahorse XFe96 or 24 cell well plates (1× 105 cells 

163 per well). The purity of microglia cells was evaluated by immunocytochemical staining 

164 using antibodies against ionized calcium binding adapter molecule 1 (Iba1; 1:1000; Wako 

165 Pure Chemical Industries, Ltd., Richmond, VA, USA) and DAPI (1:1000; Sigma–Aldrich), 
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166 and was routinely greater than 99%. All incubations were performed at 37o C in a 

167 humidified atmosphere containing 5% CO2 and 95% air.

168 Sample Preparation for microscopy

169 Primary microglia cells cultured from Cox8/EGFP mice were used for mitochondrial 

170 morphology analysis. Microglia cells were washed with PBS and plated on precision cover 

171 glasses thickness No. 1.5H (tol. ± 5 μm) in a 24-well plate, with 1x105 cells per well, and 

172 left to adhere overnight at 37°C in a cell culture incubator. Cells were fixed with 4% 

173 paraformaldehyde in culture media for 10 min and then mounted in ProLong Diamond 

174 antifade reagent (Life Technologies, Grand Island, NY) according to the manufacturer's 

175 instructions.

176 Live cell imaging

177 Primary microglia cells were seeded on MatTek (MatTek , Ashland, MA) glass bottom 

178 culture dishes. Following cell adherence, cells were exposed to DMSO alone (control) or 

179 LPS 100ng/ml for 24h or cells were pre-treated with Mdivi-1 (25 µM; Sigma, St. Louis, 

180 MO, USA) for 1h followed by LPS (100ng/ml) exposure for 24hrs. Cells were washed 

181 gently three times with warm PBS. Further anti-bleaching live cell visualization medium 

182 (DMEMgfp-2, Evrogen) was added to the cells 30 min before imaging. Images were 

183 acquired with a Zeiss LSM 880 Airyscan super-resolution system with live cell capabilities 

184 and fitted with a fast-ASmodule (Carl Zeiss, Oberkochen, Germany). Microscopes were 
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185 equipped with an environmental chamber that maintained 370C with humidified 5% CO2 

186 gas during imaging.

187 Super-Resolution Structured illumination microscopy (SR-SIM) 

188 Super-resolution structured illumination microscopy (SR-SIM) on a Zeiss ELYRA PS.1 

189 microscope (Carl Zeiss Microscopy, Germany) was used to yield a 2-fold improvement in 

190 all spatial directions  (Huang, Bates, & Zhuang, 2009) beyond the classical Abbe-Rayleigh 

191 limit. GFP was imaged using a Plan-Apochromat 100×/1.4 oil objective, an excitation 

192 wavelength of 488 nm and an emission wavelength range of 495-575 nm. The SR-SIM 

193 images were acquired as z-stacks with three angles and five phases in each plane and 

194 the z-step between planes was 3.30 nm. SR-SIM processing was performed using the 

195 Zeiss Zen software package. 3D rendering was done using Volocity 6 (Perkin-Elmer) and 

196 figures were compiled using Photoshop CC software (Adobe Systems, San Jose, CA).

197 Mitochondrial morphology analysis

198 Primary microglia were treated with LPS, Mdivi-1 or DMSO as described previously and 

199 mitochondria were categorised based on length: fragmented (<1 µm), tubular (1–3 µm) 

200 and elongated (>3 µm), as described previously (Jahani-Asl et al., 2011). Over 20 cells 

201 were analysed in Control, LPS-treated, LPS plus Mdivi-1 in three independent 

202 experiments. Volocity 6 was used for 3D rendering and to quantify mitochondrial length, 

203 volume and number.
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204 Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate 

205 (ECAR)

206 Real-time measurements of oxygen consumption rates, and extracellular acidification 

207 rates, a measure of lactate production, were performed on an XFe96 Seahorse 

208 extracellular flux analyser (Seahorse Biosciences, North Billerica, MA). The optimal 

209 seeding density and test compound concentrations were empirically determined prior to 

210 initiation of experiments. According to the methods described in the XFe96 Extracellular 

211 Flux Analyzer User Manual (Seahorse Bioscience), preliminary studies were run with 

212 Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) to identify the optimal 

213 number of cells required to observe a sufficient shift in OCR and ECAR.  Once the cell 

214 number was decided, we determined the optimal working concentrations for each of the 

215 stimulating compounds used in the mitochondrial function analysis (oligomycin, FCCP, 

216 and rotenone).  Cells were then plated into XFe96 cell culture plates (Seahorse 

217 Biosciences, North Billerica, MA) at a density of 10,000/well in 80 µl of DMEM (Sigma–

218 Aldrich, St Louis, MO, USA). Cells were allowed to adhere overnight in a 37°C incubator 

219 with 5% CO2. Following cell adherence, cells were exposed to a final concentration of 

220 Ultra-pure LPS 50 or 100ng/ml (Escherichia coli 055: B5, Biological Laboratories, 

221 Campbell, CA) or media alone (control) for 3, 6 or 24 h.  For mitochondrial fission blocking 

222 experiments, microglia cells were pre-treated with Mdivi-1 (25 µM) or DMSO for 1 h before 

223 LPS exposure. Media (80 µL) was removed followed by the addition of 200 µL XF base 

224 media (180 µl) supplemented with 10mM glucose, 5mM pyruvate, and 2mM glutamine for 
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225 OCR. For ECAR only 2mM glutamine was added following incubation in a non-CO2 

226 chamber for 1 h.

227 The day prior to the experiment, 200µl of XF calibration media was added to the XF 

228 sensor cartridges and kept in a non-CO2 incubator for 24h. XF sensor cartridges were 

229 loaded with test compounds and OCR/ECAR measured. OCR was measured by 

230 sequential injections of oligomycin (1μM final concentration, blocks ATP synthase to 

231 assess respiration required for ATP turnover), FCCP (carbonyl cyanide 4-

232 trifluoromethoxy-phenylhydrazone, 2μM final concentration, a proton ionophore 

233 uncoupler inducing maximal respiration), and rotenone plus antimycin A (1μM final 

234 concentration of each, which completely inhibits electron transport to measure non-

235 mitochondrial respiration).

236  ECAR was measured under glucose-starved microglia.  Basal glycolysis rate was 

237 determined by injecting glucose at a final concentration of 10mM. For estimating glycolytic 

238 capacity, oligomycin was injected at a final concentration of 5μM. Finally, 2-deoxyglucose 

239 (2-DG) was injected at a final concentration of 50mM to measure the non-glycolytic 

240 acidification. Each step had three cycles; each cycle consisted of 3 min mixing, 2 min 

241 incubation and 3 min measurement. All experiments were run in three replicates with 3-4 

242 sample per replicates. Cell counts were used to normalize OCR and ECAR.
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243 Multiplex cytokine assay

244 Bio-Plex Pro Mouse Cytokine Standard 23-Plex kit (Bio-Rad) was used to measure the 

245 concentrations of cytokines/chemokines in microglia-cultured media following the 

246 manufacturer’s protocol. Microglia conditioned media  was collected from microglia 

247 samples used in the OCR and ECAR experiments explained above. Samples were 

248 normalized to cell number (1x105; 1:10 in diluent buffer) and concentrations of IL-1α, IL-

249 1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-17a, eotaxin, 

250 granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-

251 stimulating factor (GM-CSF), interferon-gamma (IFN-γ), KC/chemokine (C-X-C motif) 

252 ligand 1 (CXCL1), monocyte chemotactic protein-1 (MCP-1)/chemokine (C-C motif) 

253 ligand 2 (CCL2), macrophage inflammatory protein 1α (MIP-1α)/CCL3, MIP-1β/CCL4, 

254 RANTES, and TNF-α were simultaneously quantified on a Bio Plex 200 System (Bio-Rad, 

255 Sweden) and data presented as Log10 of cytokine concentrations (picograms per 

256 millilitre).

257 Succinate level measurement

258 Microglia cells were pre-treated with vehicle (DMSO), Mdivi-1 (25 µM; Sigma, St. Louis, 

259 MO, USA) for 1h or dimethyl malonate (DMM; 10mM; Sigma, St. Louis, MO, USA) for 3h 

260 before stimulation with LPS (100 ng/ml) for 24 h. Succinate Colorimetric Assay Kit 

261 (Sigma-Aldrich Inc., St Louis, MO, USA) was used to determine the succinate 

262 concentrations according to the manufacturer's instructions. Microglia cells (1× 105 cells 
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263 per well) were rapidly homogenized on ice in 100μL of ice-cold succinate assay buffer 

264 and centrifuged at 10,000×g for 5 min to remove insoluble material. Then, cell 

265 homogenates were added into a 96-well plate in duplicate wells and mixed with reaction 

266 mix provided in with the kit, which results in a colorimetric product proportional to the 

267 succinate present. The resultant mixtures were further incubated at 37°C for 20 min. The 

268 succinate concentration was determined by the standard curve using spectroscopy at 

269 450nm wavelength.

270 Measurement of mitochondrial ROS production by live cell imaging.

271 Mitochondrial superoxide generation was assessed in live cells using MitoSOX (Molecular 

272 Probes), a fluorogenic dye that is taken up by mitochondria, where it is readily oxidized 

273 by superoxide (O2−.). MitoSOX Red reagent is a novel fluorogenic dye specifically 

274 targeted to mitochondria in live cells. Oxidation of MitoSOX Red reagent produces red 

275 fluorescence by superoxide but not by other ROS or Reactive Nitrogen Species-

276 generating systems. Primary microglia cells were seeded on MatTek (MatTek , Ashland, 

277 MA) glass bottom culture dishes (1x105cells/dish) and left to adhere overnight. Following 

278 treatments described above, live microglia were incubated with 5µM MitoSOX at 37oC for 

279 10 min. Cells were washed gently three times with warm PBS further anti-bleaching live 

280 cell visualization medium (DMEMgfp-2) was added to the cells 30 min before imaging. 

281 Airyscan super-resolution microscopy on a LSM 880 (Carl Zeiss Microscopy, Germany) 

282 with an onboard incubator at 37oC was used to acquire images using a 63× oil objective, 
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283 an excitation wavelength of 488nm. Airyscan-processing was done using the Zeiss Zen 

284 software package. MitoSox fluorescence was quantified using Volocity 6. 

285 Measurement of the mitochondrial membrane potential by live cell imaging.

286 JC-1 (Molecular Probes) is a cationic dye that exhibits mitochondrial membrane potential-

287 dependent accumulation in mitochondria, indicated by a fluorescence emission shift from 

288 green (~525 nm) to red (~590 nm). Mitochondrial depolarization is indicated by a 

289 decrease in the red to green fluorescence intensity ratio. The potential sensitive color shift 

290 is due to concentration dependent formation of red fluorescent aggregates. Primary 

291 microglia cells were seeded, incubated and treated as above. Following LPS exposure, 

292 the media  was removed cells were incubated with JC-1 (2μM final concentration) and 

293 incubated at 37°C, 5% CO2 for 20 min. Cells were washed gently three times with warm 

294 PBS and further anti-bleaching live cell visualization medium (DMEMgfp-2) was added to 

295 the cells 30 min before imaging. Images were scanned using an oil immersion, 63×, and 

296 1.3 NA objective. Samples were excited at wavelength of 488nm and emission 

297 wavelength of 547 and 617 nm. The confocal pinhole aperture was set to 50, and the 

298 voltage to the photomultiplier tubes of each channel was maintained at equal values. 

299 Illumination was limited to periods of image acquisition.  Images were exactly in phase 

300 and represented the amount of monomeric and J-aggregate JC-1 fluorescence.
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301 Effect of Midivi-1 in an in vivo model of inflammation-mediated damage to the preterm 

302 brain

303 We employed a well characterized paradigm of systemic inflammation driven 

304 neuroinflammation (Favrais et al., 2011; Krishnan et al., 2017; Van Steenwinckel et al., 

305 2018), which is known to have effects on brain development and behavior consistent with 

306 those reported in infants and children born preterm(Ball et al., 2017; Raju, Buist, Blaisdell, 

307 Moxey-Mims, & Saigal, 2017) . Experimental protocols were approved by the institutional 

308 guidelines of the Institute National de la Santé et de la Recherche Scientifique (Inserm) 

309 France. The treatments was carried out as per previously described in full(Favrais et al., 

310 2011), with a shortened protocol described below. Assessment of gene expression were 

311 made only in male animals as female animals are not injured in this paradigm, mimicking 

312 the male predisposition to injury observed in male preterm born infants(Peacock, 

313 Marston, Marlow, Calvert, & Greenough, 2012). Briefly, mice received twice a day from 

314 P1 to P2 and once on P3 a 5-μl intra-peritoneal injection of 10 μg/kg/injection recombinant 

315 mouse IL-1β in phosphate buffered saline (PBS; R&D Systems, Minneapolis, MN) or PBS 

316 alone or P1–P3 pups were co-injected with IL-1β and 3 mg/kg/injection of Mdivi-1 (IP, 

317 5ul).

318 Isolation and ex vivo microglia and gene expression analysis

319 At P3,  brains were collected for cell dissociation and CD11B+ cell separation using a 

320 magnetic coupled antibody anti-CD11B (Miltenyi, MACS Technology) as previously 
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321 described in detail (Krishnan et al., 2017; Schang et al., 2014; Shiow et al., 2017). 

322 Microglia are the predominant CD11B cell in this model of injury by more than 100 fold 

323 compared to populations of either macrophage or neurtrophil (Krishnan et al., 2017).  

324 Total RNA was extracted from the CD11B+ microglia cells with the RNeasy mini kit 

325 (Qiagen, France), RNA quality and concentration were assessed by spectrophotometry 

326 (NanodropTM, Thermofisher Scientific, MA, USA). Reverse transcription was achieve 

327 with the iScriptTM cDNA synthesis kit (Bio-Rad, France) and RT-qPCR was performed in 

328 triplicate for each sample using SYBR Green Super- mix (Bio-Rad) as previously 

329 described (Chhor et al., 2013). Primers were designed using Primer3 plus software (See 

330 sequences in Sup. Table 1). Specific mRNA levels were calculated after normalization to 

331 Rpl13a mRNA (reference gene) based on previous reference gene suitability testing. The 

332 data are presented as relative mRNA units with respect to the control group (expressed 

333 as fold over control value). 

334 Statistics

335 All statistics are reported as mean ± SEM, performed using GraphPad Prism 7.0 

336 (GraphPad Software). Significance scores are * for p < 0.05, ** for p < 0.01, *** for p < 

337 0.001 and **** p<0.0001.

338

Page 18 of 54

John Wiley & Sons, Inc.

GLIA



19

339 Results

340 LPS exposure induces excessive mitochondrial fragmentation in microglial cells. 

341 Mitochondrial morphology was examined in primary microglia cells cultured from Cox8-

342 EGFP mice exposed to 50 or 100ng/mL LPS using 3D SR-SIM microscopy. The number 

343 of fragmented mitochondria was significantly increased in microglia cells stimulated with 

344 100ng/ml LPS for 24h (Fig 1c), and elongated and tubular mitochondria were decreased 

345 compared with untreated controls (Fig 1g). These findings are in line with previous studies 

346 in BV2 cells (Park et al., 2013) and primary microglia but with a higher dose of LPS 

347 (1ug/ml) (Katoh et al., 2017). There was no change in the morphology of cells stimulated 

348 with 50ng/ml LPS for 24h (Fig 1b,g).

349 LPS induces a switch from oxidative phosphorylation (OXPHOS) to glycolysis (metabolic 

350 reprogramming) in microglia cells.

351 Oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) was 

352 measured in real time as measures of mitochondrial respiration and glycolysis for 50ng/ml 

353 LPS (fig 2a-c & i-k) and 100ng/LPS (Fig. 2o-q & w-y) respectively (Wu et al., 2007) with 

354 the Seahorse XFe96. Basal OCR and ATP-linked OCR was significantly increased in 

355 microglia cells following exposure to 50ng/ml LPS for 6-24h compared to controls (Fig.2d-

356 e). FCCP-induced maximal OCR and spare respiratory capacity (SRC) decreased 

357 whereas leak-driven OCR significantly increased with exposure to 50ng/mL of LPS (Fig. 

358 2f-h). The ECAR parameters (glycolysis, glycolytic capacity and glycolytic reserve) were 
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359 increased following exposure to 50ng/ml LPS for 6-24hrs compared to controls (Fig. 2l-

360 n). These results show that a moderate dose of LPS increases both OCR and glycolysis. 

361 Exposure to 100ng/mL of LPS for 6h resulted in an increase in basal OCR, ATP-linked 

362 OCR and leak-linked OCR compared to controls (Fig. 2r-s). In contrast, there was a 

363 significant decrease in basal OCR and ATP linked OCR at 24h after 100ng/mL LPS  (Fig. 

364 2r,s,u). FCCP-induced maximal OCR and SRC significantly decreased at 24h 100ng/mL 

365 LPS (Fig. 2t-u). Glycolytic parameters increased with 100ng/ml LPS exposure for 3-24h 

366 compared with controls (Fig.2w-y). The overall decrease in OCR and increase in ECAR 

367 parameters with 100ng/ml LPS for 24h indicates a metabolic switch from OXPHOS to 

368 glycolysis.

369 Mdivi-1 treatment blocks LPS-induced mitochondrial fragmentation and ROS production.

370 Many conserved GTPase proteins are involved in mitochondrial fusion and fission 

371 dynamics such as mitofusins (MFN1 and MFN2) and dominant optic atrophy 1 (OPA1) 

372 are needed for the fusion of mitochondrial outer and inner membranes (Song, Ghochani, 

373 McCaffery, Frey, & Chan, 2009). Dynamin-related protein 1 (DRP1) and mitochondrial 

374 Fission 1 protein (FIS1) are the main mitochondrial fission mediators (Frezza et al., 2006). 

375 We used the mitochondrial fission inhibitor Mdivi-1 (Ruiz, Alberdi, & Matute, 2018) as the 

376 high (100 ng/ml)  dose of LPS induced an increase in fragmented mitochondria (Fig. 3b). 

377 We examined the effect of pharmacologically blocking mitochondrial fission in LPS-

378 exposed microglia cells cultured from Cox8/EGFP mice by pre-treatment with 25 µM 
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379 Mdivi-1 for 1 h followed by incubation with LPS (100 ng/ml) for 24h. Results revealed that 

380 LPS-induced excessive mitochondrial fragmentation was significantly inhibited by Mdivi-

381 1 pre-treatment and normalized mitochondrial morphology (Fig. 3c). Mdivi-1 treatment 

382 before LPS exposure reduced the number of fragmented mitochondria and increased the 

383 number of tubular and elongated mitochondria to control levels (Fig. 3d) .

384 Mdivi-1 treatment normalized oxygen consumption and extracellular acidification rate in 

385 the microglia cells. 

386 Since Mdivi-1 restored mitochondrial morphology, we interrogated its effect on cellular 

387 respiration and ECAR-dependent glycolysis and glycolytic capacity (Fig. 4a, b, h, i).  

388 Mdivi-1 pre-treatment in cells exposed to LPS (100ng/ml for 6h) exhibited a decrease in 

389 the level of basal respiration and ATP-linked OCR to control levels compared to LPS 

390 treated cells (Fig. 4c-d). Conversely, Mdivi-1 treatment in cells exposed to 100ng LPS for 

391 24h led to an increase in basal and ATP-linked OCR compared to non-treated LPS 

392 exposed cells (Fig. 4c-d). Mdivi-1 treatment also increased FCCP-induced maximal OCR 

393 at 24h and leak-driven OCR compared to LPS exposed cells at both time points (Fig. 4e-

394 f). Administration of Mdivi-1 in combination with LPS normalized the spare respiratory 

395 capacity (Fig. 4g).  ECAR measurements showed that glycolysis and glycolytic capacity 

396 was significantly reduced to control levels in Mdivi-1 treated cells at 6 and 24h 100ng/ml 

397 LPS exposure (Fig.4h-k) compared to LPS exposed cells.
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398 Mdivi-1 reduces the LPS induced release of cytokines and chemokines.

399 To show how LPS activation was inducing an inflammatory reaction in the primary 

400 microglia and to test whether this was effected by Mdivi-1 we measured cytokine and 

401 chemokine response in microglia conditioned media after treatment with of LPS and or 

402 Mdivi-1 (supporting information Fig. S1 and S2). As expected both doses, of LPS led to 

403 a significant up-regulation of essentially all cytokines and chemokines compared to 

404 controls. In general there was much higher cytokine production in microglia exposed to 

405 100ng-24h LPS conditioned media compared to 50ng-24hr LPS. We next determined if 

406 blockage of mitochondrial fission also modulated LPS-induced expression of cytokine and 

407 chemokine mediators. Mdivi-1 significantly reduced the pro-inflammatory cytokines (IL-

408 1α, IL-6, TNF-α, IL-12(p40)), chemokines (G-CSF, CCL5, RANTES) and anti-

409 inflammatory cytokines (IL-10, IL-13) and the chemokines (monocyte chemotactic protein 

410 1 (MCP-1 β), in response to 100ng/ml of LPS for 24h.  The LPS-induced production of IL-

411 2, IL-5 and MIP1 α were not significantly reduced by Mdivi-1 (Fig.5).

412 Mdivi-1 suppresses LPS induced succinate production.

413 Succinate is a well-established pro-inflammatory metabolite that is known to accumulate 

414 during LPS induced macrophage activation (Mills et al., 2016) but the role of succinate 

415 during microglia activation needs further investigation. We found that LPS (100ng/ml) 

416 resulted in a significant increase of succinate (Fig.6a) accompanying the expression of 

417 pro/anti-inflammatory cytokines and chemokines.  Mdivi-1 pretreatment (Fig 6a) or 
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418 blocking succinate production by succinate dehydrogenase inhibitor (DMM,10mM) (Fig. 

419 6b) normalized succinate production. These results were further strengthened by the fact 

420 that  treatment with DMM or scavenging ROS production with NAC (10mM, 30 min) 

421 recapitulated the effects of Mdivi-1 (Fig.5) by reducing pro/anti-inflammatory cytokines 

422 and chemokine release (Supplementary figure S3). Excessive fission results in 

423 fragmented mitochondria and causes a metabolic shift in microglia (Khacho et al., 2014) 

424 from OCR to ECAR. This may result in increased succinate production which in turn acts 

425 as a feedback loop to amplify aberrant mitochondrial fission (Lu et al., 2018).

426 Inhibition of mitochondria fission by Mdivi-1 suppresses mitochondrial ROS production.

427 Mitochondrial ROS plays an important role in LPS-induced immune responses (Park et 

428 al., 2015). In order to examine the role of ROS production after LPS stimulation, 

429 mitochondrial ROS (mtROS) was measured with MitoSOX, a mitochondrial superoxide 

430 indicator. The fluorescence intensity of MitoSOX increased 24h after the LPS stimulation 

431 (100ng/ml, 24h) (Fig. 7). Treatment with Mdivi-1 (25 µM, 1h) before LPS exposure 

432 abolished the increase in MitoSOX fluorescence intensity observed 2h after the LPS 

433 stimulation. These results indirectly show that that mitochondrial fission (induced by TLR4 

434 stimulation) increases ROS production as shown in this study and others (Katoh et al., 

435 2017; Park et al., 2013).
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436 Mdivi-1 treatment attenuated LPS induced increase of mitochondrial membrane 

437 potential

438 Our data suggest that after LPS (100ng/ml) exposure for 24h microglia mainly depended 

439 on glycolysis for energy production. Therefore, we investigated the mitochondrial 

440 membrane potential using the mitochondrial membrane potential probe JC-1 in these 

441 conditions. We found that there was a consequent elevation of mitochondrial membrane 

442 potential and treatment with Mdivi-1 significantly reduced mitochondrial membrane 

443 potential (525/565 nm) ratio compared to LPS treated group (Fig. 8).

444 Mdivi-1 treatment attenuated microglial activation in a mouse paradigm of 

445 neuroinflammation. 

446 Based on our working hypothesis that Mdivi-1 can reduce the inflammatory reaction of 

447 microglia, we sought to investigate the potential for Mdivi-1 to reduce the activation of 

448 microglia in vivo (Favrais et al., 2011; Krishnan et al., 2017). We isolated microglia from 

449 the brains of animals at P3 following induction of systemically driven neuroinflammation 

450 and con-current treatment with Mdivi-1 from P1-P3. We analyzed the isolated microglia 

451 for gene expression of markers associated with functional phenotypes including cytotoxic 

452 (Nos2, Ptgs2, Cd32), repair and regeneration (Arg1, Lga3, Igf1), and immunomodulatory 

453 (Il1ra, Il4a, Socs3) phenotypes. Exposure to neuroinflammatory-stimuli affected the gene 

454 expression as expected (Krishnan et al., 2017), with increased expression of all of the 

455 genes except for the gene for IGF1, which was decreased. IGF1 is a pleotropic growth 
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456 factor necessary for myelonogenesis and known to be decreased by pro-inflammatory 

457 microglial activation (Wlodarczyk et al., 2017). Mdivi-1 treatment normalized to control 

458 (PBS) levels the expression of genes associated with  cytotoxicity and 

459 immunomodulation, but had no effect on IGF1 gene expression, and only partly recovered 

460 Galectin-3 gene expression (Lgal3), indicating that exposure to Mdivi-1, which inhibits 

461 mitochondrial fragmentation, modulates the microglial inflammatory response also in vivo 

462 (Fig. 9). 

463 Discussion

464 This study strengthens our knowledge of the links between mitochondrial architecture, 

465 inflammation and energy metabolism in microglial cells. We have shown that activation 

466 of microglia to a pro-inflammatory activation state increased mitochondrial fragmentation, 

467 which was accompanied by a reduction in oxidative phosphorylation and an increase in 

468 glycolysis, which was dose and time dependent. Pre-treatment with the putative 

469 mitochondrial division inhibitor, Mdivi-1, normalised LPS-induced mitochondrial 

470 fragmentation, normalised the cellular respiration and glycolysis to control levels. Mdivi-1 

471 greatly reduced LPS-induced cytokine production normalized LPS-induced ROS 

472 production and mitochondrial membrane potential. 

473 Neuroinflammation includes complex changes in microglial phenotypes, mediated by 

474 gene expression changes leading to the production of cytokines and chemokines and 

475 production of ROS. Altogether this triggers oxidative and nitrosative stress in the brain 
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476 (Bolouri et al., 2014; Hellström Erkenstam et al., 2016). We observed as expected that 

477 LPS-activated microglia produced a plethora of chemokines and cytokines and ROS. In 

478 this pro-inflammatory scenario, suppression of LPS-induced mitochondrial ROS plays a 

479 role in modulating the production of pro-inflammatory mediators by preventing MAPK and 

480 NF-κB activation suggesting a potential therapy for inflammation-associated degenerative 

481 neurological diseases (Park et al., 2015).

482 To understand LPS-induced changes in mitochondrial structure, we used high resolution 

483 3D ELYRA-SIM (Shim et al., 2012) to quantify mitochondrial morphology which revealed 

484 that high dose LPS for 24h increased fragmentation. A low dose of LPS caused an initial 

485 increase in OCR which was not accompanied by any change in mitochondrial 

486 morphology. However, a higher dose of LPS induced a decrease of OCR and a further 

487 increase of ECAR which triggered mitochondrial fission. Fragmented mitochondria 

488 constitute the preferred morphological state when respiratory activity is low (Westermann, 

489 2012). A high or moderate dose of LPS caused a decrease in respiration and cells 

490 became dependent on glycolysis favoring excessive fragmentation. The molecular 

491 mechanisms behind this response is not known but it has been proposed that the energy 

492 depletion elicits mitochondrial fragmentation and subsequent mitophagy (Youle & van der 

493 Bliek, 2012). Increased mitochondrial fragmentation due to excessive fission can 

494 exacerbate the inflammatory response of microglia (Ho et al., 2018) through modulation 

495 of DRP1 de-phosphorylation and elimination of ROS (Park et al., 2016).  We chose to use 
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496 Mdivi-1 a mitochondrial division inhibitor to study microglial metabolism as it related to 

497 mitochondrial morphology as  previous studies revealed that LPS exposure in microglia 

498 cells leads to activation of mitochondrial fission protein DRP1 (Katoh et al., 2017; Park et 

499 al., 2013).

500 Mdivi-1 is a widely accepted DRP-1 mediated mitochondrial fission inhibitor used in many 

501 studies (Baek et al., 2017; Peiris-Pagès, Bonuccelli, Sotgia, & Lisanti, 2018; So, Hsing, 

502 Liang, & Wu, 2012; Xie et al., 2013) . Our data supports the assertion that changes in 

503 mitochondrial dynamics may be needed for the expression of inflammatory mediators in 

504 activated microglia cells. Mdivi-1 has previously been shown to attenuate LPS-induced 

505 ROS and proinflammatory mediator production in a BV-2 microglial cell line (Park et al., 

506 2013) with a very high dose of 1ug/ml.  BV2 cells are similar to primary microglia (Henn 

507 et al., 2009), but they contain oncogenes that render them phenotypically different with 

508 regard to e.g. proliferation and adhesion (Horvath, Nutile-McMenemy, Alkaitis, & Deleo, 

509 2008). Our findings not only show that pre-treatment with Mdivi-1 reduced LPS-induced 

510 mitochondrial fragmentation and expression of pro-inflammatory mediators, but also 

511 normalized mitochondrial function in microglia. These data support the suggestion that 

512 increasing the fusion/fission ratio reduces the extent of neuroinflammation (Kim, Lee, 

513 Park, Kim, & Roh, 2016). To further support the potential validity of targeting fission as a 

514 therapeutic strategy, we tested the ability of Mdivi-1 to modify microglial activity in vivo. 

515 We used a paradigm of systemically driven neuroinflammation, wherein an IP injection of 
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516 the inflammatory agent interleukin-1β induces a highly complex neuroinflammatory 

517 reaction involving microglia (Krishnan et al., 2017; Van Steenwinckel et al., 2018). 

518 Supporting our in vitro data mdivi-1 was able to reduce the expression of genes 

519 associated with classically pro-inflammatory genes, and the anti-inflammatory activation 

520 state, which is associated with the in vivo inflammatory reaction.  

521 Previous work with BV2 demonstrated that LPS causes an inhibition of OXPHOS 

522 (Voloboueva, Emery, Sun, & Giffard, 2013). However, this study used a very high dose 

523 of LPS (1µg/ml) which is shown to elicit mitochondrial toxicity (Ahn et al., 2012). We 

524 demonstrate for the first time that a low or moderate dose of LPS (50ng/ml) results in an 

525 increase of ATP linked OCR and basal respiration in support of another study in skeletal 

526 muscle cells where they used a very low dose of LPS in isolated mitochondria (Frisard et 

527 al., 2015). High dose of LPS (100ng/ml) caused a decrease in FCCP induced maximal 

528 respiration and an increase in leak-driven respiration. A depletion of spare respiratory 

529 capacity was found at 6 and 24h following LPS exposure. However, we have noted no 

530 significant difference in cell viability or death after LPS.

531 OCR exhibited a biphasic response characterized initially by an increase of OCR in 

532 response to low LPS and then a marked drop of OCR after moderate to high doses of 

533 LPS whereas ECAR increased in proportion to the dose of LPS. We interpret the initial 

534 increase of OCR as a means to match an increased demand of ATP. However, as the 

535 pro-inflammatory stimulus becomes stronger it appears favourable to shift from 
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536 mitochondrial respiration to aerobic glycolysis (Warburg effect) in order to promote more 

537 rapid ATP production (Kelly & O'Neill, 2015; Orihuela et al., 2016) and synthesis of 

538 inflammatory mediators such as cytokines/chemokines and ROS (Kelly & O'Neill, 2015).  

539 We believe the Warburg effect is an important concept for understanding metabolic 

540 changes occurring during microglial activation. It is shown that also activation of 

541 macrophages or dendritic cells (DCs)  with LPS, induces a metabolic switch from 

542 OXPHOS to glycolysis (Krawczyk et al., 2010).  Metabolic shift may be facilitated by 

543 increased mitochondrial fission and/or reduced fusion mediated by DRP1 activation 

544 (Baker, Maitra, Geng, & Li, 2014). However, as glycolysis is less efficient at producing 

545 ATP than OXPHOS, this metabolic reorientation cannot solely be to meet energy 

546 demands. Glycolysis may also facilitate in cytokine production by producing intermediate 

547 metabolites (Mills et al., 2016). A previous study found that glycolysis was required to 

548 produce optimal IFN-γ during T cell activation and is translationally regulated by the 

549 binding of the glycolysis enzyme GAPDH to IFN-γ mRNA (Chang et al., 2013). 

550 Our results in microglia add to what has already been shown in DCs and macrophages  

551 (Williams & O’Neill, 2018),  specifically that pro-inflammatory activation resulted in 

552 increased succinate accumulation.  In dendritic cells (DCs) and macrophages this 

553 succinate accumulation was related to an altered Krebs cycle  and this was was 

554 normalized by Mdivi-1. Aberrant mitochondrial fission alters the Krebs cycle, by interfering 

555 with the processes after citrate and after succinate (Jha et al., 2015) by reducing of 
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556 cytochrome c oxidase and succinate dehydrogenase activity (B. Zhang et al., 2013). 

557 Impaired succinate dehydrogenase activity results in succinate accumulation due to 

558 impaired succinate to fumarate conversion (Mills et al., 2016). Accumulated succinate 

559 drives reverse electron transport (RET) to generate excessive mitochondrial ROS 

560 production (Chouchani et al., 2014; Niatsetskaya et al., 2012). Our data support this link 

561 between accumulation of succinate and ROS production, which was prevented by Mdivi-

562 1.

563 LPS induced an increase in membrane potential and proton with an increase in 

564 membrane potential. Proton leak is partly mediated by uncoupling proteins (UCPs) 

565 present in the mitochondrial inner membrane (Hass & Barnstable, 2016; Krauss, Zhang, 

566 & Lowell, 2005). It is shown that in primary microglia LPS induces an increase in UCP2 

567 levels and membrane potential. UCP2‐silenced microglia stimulated with LPS show a 

568 decrease in membrane potential (De Simone et al., 2015). In macrophages LPS 

569 stimulation repurpose their mitochondria from ATP production to succinate-dependent 

570 ROS generation, with glycolysis taking on the role of ATP generation. In this case 

571 mitochondria sustain a high membrane potential because protons generated by the 

572 electron transport chain to make ATP are no longer being consumed by mitochondrial 

573 ATP synthase (Mills et al., 2016). Macrophages can also reorganize their respiratory 

574 chain in response to a bacterial infection, decreasing  Complex I levels and increasing 

575 the activity of Complex II (Garaude et al., 2016). These changes boost production of pro-
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576 inflammatory cytokines such as interleukin 1β (IL-1β) and IL-10. Our data support these 

577 findings as normalizing mitochondrial membrane potential and ROS production with 

578 Mdivi-1 abolished pro- and anti-inflammatory cytokine and chemokine release. 

579 Aberrant activation of microglial affects neurodegenerative processes through various 

580 neurotoxic cascades. We have shown that pro-inflammatory microglial activation alters 

581 cellular bioenergetics by inducing mitochondrial dysfunction and promoting a switch to 

582 glycolysis, supported by excessive mitochondrial fragmentation and increased cytokine 

583 output. This is likely an adaptive mechanism as the transition of sensing and surveying 

584 microglia into an activated state is likely to be accompanied by significantly increased 

585 energy consumption. Preventing excessive mitochondrial fission in microglial cells 

586 stimulated with LPS using a fission inhibitor Mdivi-1 normalizes mitochondrial respiration 

587 and glycolysis and attenuates the release of cytokines/chemokines. These lines of  in 

588 vitro morphological and functional data and the in vivo data suggest that regulating 

589 mitochondrial dynamics may be a useful therapeutic modality for preventing neurological 

590 disorders caused by aberrant microglia activation.
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Fig:1 LPS induces dose-dependent mitochondrial fragmentation. Super-resolution microscopy reveals 

excessive mitochondrial fragmentation (a) Control (b) 50ng/ml LPS exposure for 24hrs (c) 100ng/ml LPS 

exposure for 24hrs (d-f) shows a higher magnification of the image in the white square in the upper panel. 

(g) Graphs showing results from an analysis of mitochondria morphology in primary microglia cells treated 

with LPS for 24h. The data are for at least 12 cells per condition in three independent experiments. Bar 

graphs expressed as mean ± SEM. ***P ≤ 0.001; student-t test calculating the difference between control 

and LPS treated groups. 
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Fig:2 LPS dependent metabolic shift. Low dose of LPS (50 ng/ml) induces an increase in mitochondrial 

respiration and glycolysis: 50ng/ml LPS treatment shows an increase in Basal OCR, ATP linked OCR (d-e) 

whereas FCCP linked maximal OCR (f) and spare respiratory capacity (g) decreased from 3- 24hrs. Leak-

driven OCR was also increased from 6-24hrs. Glycolytic parameters, based on ECAR, tended to increase 

from 3-24hrs (i-n). Whereas a high dose (100ng/ml) of LPS induces a time dependent metabolic shift. 

100ng/ml LPS treatment for 6h shows an increase in Basal OCR, ATP linked OCR, while LPS treatment for 

24h resulted in a decrease of Basal and ATP linked OCR (r-s). FCCP linked maximal OCR (t) and spare 

respiratory capacity (u) decreased from 6- 24hrs. Leak driven OCR was increased at 6 hrs (v). OCR and 

ECAR measured for 3,6 and 24hrs are expressed in bar graph format as the mean ± SEM n=9. *P ≤ 0.05; 

**P ≤ 0.01; ***P ≤ 0.001 student t test calculating the difference between control and LPS treated groups. 
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Fig.3 Pharmacologic blockade of DRP1 by Mdivi-1 re-established mitochondrial morphology. Mdivi-1 pre-

treatment (25µm) for 1hr followed by LPS (100ng/ml) exposure for 24h resulted in a decrease of 

fragmented mitochondria and an increase in tubular and elongated mitochondria (d).  A-Control cells treated 

with vehicle (DMSO), B- LPS (100ng/ml) exposure for 24h, C- LPS (100ng/ml)+ Mdivi-1. Bar graphs 

expressed as mean ± SEM. The data are for at least 12 cells per condition in three independent 

experiments. **P ≤ 0.01; ***P ≤ 0.001; student-t test calculating the difference between LPS and 

LPS+Mdivi-1 groups. 
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Fig.4 Mdivi-1 treatment reversed the metabolic shift. Inhibition of DRP1 by Mdivi-1 resulted in reduced basal 

OCR and ATP-linked OCR at 6h whereas Mdivi-1 increased basal OCR and ATP-linked OCR at 24h compared 

to 100ng/ml LPS exposure (c-d). LPS induced reduction in FCCP-induced maximal respiration and Leak-

driven OCR at 24hr, which was normalized by Mdivi-1(e-f). The LPS-evoked drop in SRC was prevented by 

Mdivi-1 (g). Midivi-1 normalized LPS-induced increased ECAR dependent glycolysis and glycolytic capacity (j-

h). OCR and ECAR measured for 3, 6 and 24hrs are expressed in bar graph format as the mean ± SEM n=6-

9. ***P ≤ 0.001;, student-t test calculating the difference between LPS and LPS+Mdivi-1 treated groups. 
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Fig.5 Mdivi-1 treatment abolished LPS induced exaggerated pro/anti cytokine and chemokine response. 

Microglia cells were pre-treated with Mdivi-1 (25µM) for one hour followed by LPS (100ng/ml) for 24h, MCM 

were collected and analysed by 23-plex cytokine assay. Heat maps show cytokine concentration (pg/ml). KC 

= keratinocyte chemoattractant. n=8 *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001;, student-t test calculating the 

difference between LPS and LPS+Mdivi-1 treated groups. 
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Fig.6 (A) Mdivi-1 normalized LPS induced succinate upregulation. Microglia cell homogenates of cells were 

analysed by succinate colorimetric assay. Microglia cells were pre-treated with Mdivi-1 (25uM; 1h) followed 

by LPS exposure of 100ng LPS for 24h resulted in significant downregulation of LPS induced succinate 

upregulation. Bar graph expressed as the mean ± SEM n=8. *P ≤ 0.05; student-t test calculating the 

difference between LPS and LPS+Mdivi-1 treated groups. (B) Succinate dehydrogenase inhibitor 

recapitulated the effects of Mdivi-1. Pre-treatment with dimethyl malonate (DMM, 10mM; 3h) prior to LPS 

exposure attenuated succinate accumulation. Bar graph format as the mean ± SEM n=9. *P ≤ 0.05, Turkeys 

post-hoc test using One-Way Anova revealed difference between control, control + DMM, LPS and LPS+DMM 

treated groups. 
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Fig.7 Mdivi-1 treatment abolished LPS induced mitochondrial ROS production. (A) Control (B) 100ng/ml LPS 

exposure for 24hrs (C) LPS+Mdivi-1 (D) Graphs showing results from an analysis of mitosox fluorescence by 

live cell airyscan microscopy. The data are for at least 12 cells per condition in three independent 

experiments. Bar graphs expressed as mean ± SEM. **P ≤ 0.01, student-t test calculating the difference 

between control LPS and Mdivi-1 treated groups. 
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Fig.8 Mdivi-1 treatment attenuated LPS induced increase of mitochondrial membrane potential: (a-c) Control 

(d-e) 100ng/ml LPS exposure for 24hrs (g-h) LPS+Mdivi-1. Graphs showing results from an analysis of JC1 

fluorescence 525/565 nm by live cell airyscan microscopy. The data are for at least 6 cells per condition in 

three independent experiments. Bar graphs expressed as mean ± SEM. **P ≤ 0.01, ***P ≤ 0.001, student-

t test. 
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Fig.9 (A) Schematic representation of the testing of the effects of Mdivi-1 on neuroinflammation induced 

microglial gene expression in vivo. (B) Mdivi-1 prevented many of the neuroinflammation (IL-1β-induced) 
alterations in gene expression. Relative gene expression of Ptsg2, Cd32, Nos2, Lgal3, Igf1, Arg1, Il4ra, Il1rn 

and Socs3 were assessed by qRT-PCR from MACS isolated CD11b+ microglia from P3 mice. Protein names 

for the genes are shown in brackets on the panels. The legend indicates that the first bar (blue) is the 

control (PBS injected group), the middle bar (red) is the neuroinflammatory challenge group, and that the 

right bar (green) is the group challenged with neuroinflammation but also treated with Mdivi-1. The dotted 

line highlights the gene expression in the control group.  Results are expressed as the mean ± SEM. There 

are 10-15 data points from three independent experiments per group. Data were analysed with a Kruskal–

Wallis ANOVA, P<0.001 with a Dunn’s test for comparison among groups: **p<0.01, *** p<0.001, **** 

p<0.0001. 
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Fig. S1 and S2 (Supplementary) LPS induces exaggerated cytokine, chemokine following LPS exposure. The 

medium of microglial cells exposed with LPS 50 and 100ng/ml were sampled after 3,6 and 24h of LPS 

exposure and analyzed by 23-plex cytokine assay. Heat maps show the Log10 of cytokine concentration 

(pg/ml). n=8 KC = keratinocyte chemoattractant. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; student-t test 

calculating the difference between control and LPS treated groups. 
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Fig.S3 (Supplementary) DMM or NAC attenuated LPS induces cytokine and chemokine production. Microglia 

cells were pre-treated with DMM (10mM, 3h) or NAC (10mM, 30 min) followed by LPS (100ng/ml) for 24hr, 

microglial culture medium was collected and analysed by 23-plex cytokine assay. Heat maps show cytokine 

concentration (pg/ml). KC = keratinocyte chemoattractant. n=8 *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001;, 

One-way anova and turkeys multiple test  calculating the difference between Control, LPS, LPS+Mdivi-1 and 

LPS+NAC treated groups. *- rep significant difference with respect to LPS and treatment groups. *- rep 

significant difference between treatment groups 
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����� Inducible nitric oxide synthase (iNOS) CCC TTC AAT GGT TGG TAC 
ATG G 

ACA TTG ATC TCC GTG ACA 
GCC 

NM_010927.3 

���	� Cluster of differentiation 32 (CD32) CTG GAA GAA GCT GCC AAA 
AC 

CCA ATG CCA AGG GAG ACT AA NM_010187.2 


���	� Cyclooxygenase)2 (Cox)2) TCA TTC ACC AGA CAG ATT 
GCT 

AAG CGT TTG CGG TAC TCA TT NM_011198.3 

���� Arginase)1 (Arg1) GTG AAG AAC CCA CGG TCT 
GT 

GCC AGA GAT GCT TCC AAC TG NM_007482.3 

������� Galectin)3 (Gal)3) GAT CAC AAT CAT GGG CAC 
AG 

ATT GAA GCG GGG GTT AAA GT NM_010705.3 

����� Insulin like growth factor 1 (IGF)1) TGG ATG CTC TTC AGT TCG 
TG 

GCA ACA CTC ATC CAC AAT GC NM_010512.4 

������ Interleukin 1 receptor antagonist (IL)1Rn) TTG TGC CAA GTC TGG AGA 
TG 

TTC TCA GAG CGG ATG AAG GT NM_031167.5 

������ Interleukin 4 receptor alpha (IL)4Rα) GGA TAA GCA GAC CCG AAG 
C 

ACT CTG GAG AGA CTT GGT 
TGG 

NM_001008700.3 

������ Suppressor of cytokines 3 (SOCS3) CGT TGA CAG TCT TCC GAC 
AA 

TAT TCT GGG GGC GAG AAG AT NM_007707.3 
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