Lipoprotein Subfractions and Glucose Homeostasis in Prediabetes and Diabetes in Taiwan

Hung Hsu ${ }^{1}$, Powen Hsu^{2}, Ming-Hui Cheng ${ }^{3}$, Yasuki Ito ${ }^{4}$, Eiichiro Kanda ${ }^{5}$, Ernst J Schaefer ${ }^{6}$ and Masumi Ai^{1}
${ }^{1}$ Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
${ }^{2}$ Department of General Internal Medicine, Lo-Hsu Medical Foundation Lotung Poh-Ai Hospital, Lotung, Yilan, Taiwan
${ }^{3}$ Department of Laboratory Medicine, Lo-Hsu Medical Foundation Lotung Poh-Ai Hospital, Lotung, Yilan, Taiwan
${ }^{4}$ Research and Development Center, Denka-Seiken Company, Ltd., Tokyo, Japan
${ }^{5}$ Department of Medical Science, Kawasaki Medical School, Kurashiki, Japan
${ }^{6}$ Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, and Tufts University School of Medicine, Boston, MA, USA

Abstract

Aims: Prediabetes and diabetes are associated with increased insulin resistance and decreased insulin production, dyslipidemia, and increased cardiovascular disease (CVD) risk. Our goals were to assess lipoprotein subfractions using novel assays in such subjects. Methods: Fasting normal, prediabetic, and diabetic Taiwanese men and women ($n=2,049$) had their serum glucose, glycosylated hemoglobin, insulin, total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), HDL3-C, apolipoprotein E-HDL-C, direct low-density lipoprotein cholesterol (LDL-C), small dense LDL-C (sdLDL-C), LDL-TG, and remnant lipoprotein cholesterol (RLP-C) levels measured using novel assays. HDL2-C, LDL-C, and large-buoyant LDL-C (lbLDL-C) were calculated.

Results: Prediabetic male and female subjects had significantly higher levels of TG, RLP-C, sdLDL-C, the sdLDL-C/LDL-C ratio, and LDL-TG than normal subjects, and statin treatment abolished this effect in men, but not in women. Diabetic male and female subjects had significantly higher TG and sdLDL-C/LDL-C ratios, and significantly lower levels of HDL-C, HDL2-C, HDL3-C, and apoE HDL-C than normal subjects, as did prediabetic women. Median direct LDL-C levels were $>100 \mathrm{mg} / \mathrm{dL}$ in all groups, even in those receiving statin therapy. Calculated LDL-C significantly underestimated direct LDL-C by $>10 \%$ in diabetic subjects.

Conclusions: Our data indicate that prediabetic subjects were more likely to have significantly elevated RLP-C, sdLDL-C, and LDL-TG, while diabetic subjects were more likely to have significantly decreased HDL-C, HDL2C, HDL3-C, and apoE HDL-C than normal subjects, and calculated LDL-C significantly underestimated their direct LDL-C. In our view, direct LDL-C and sdLDL-C should be measured and optimized in both diabetic and prediabetic subjects to reduce CVD risk.

Key words: Low-density lipoprotein triglyceride, Small dense low-density lipoprotein cholesterol, Type 2 diabetes mellitus, Prediabetes, Lipid-lowering medication

Introduction

Diabetes mellitus is a major risk factor for cardiovascular disease (CVD), and is associated with dyslipidemia characterized by increased serum levels of tri-
glycerides (TG), remnant lipoprotein cholesterol (RLPC), and small dense low-density lipoproteins (sdLDL), and decreased levels of high-density lipoprotein cholesterol (HDL-C) ${ }^{1-4)}$. Subjects with prediabetes are also at increased CVD risk, and often have dyslipidemia ${ }^{5}$.

[^0]Significant CVD risk factors in patients with diabetes include hypertension, smoking, increased levels of serum glucose and LDL-C, and decreased levels of HDL-C ${ }^{6}$. Lowering LDL-C levels with statin therapy has been associated with significant reductions in CVD events in patients with diabetes ${ }^{7-11)}$.

In the United States, it has been recommended that all patients with established CVD and diabetes over the age of 40 years with LDL-C levels $>70 \mathrm{mg} /$ dL, an LDL-C value $\geq 190 \mathrm{mg} / \mathrm{dL}$, or a ten-year CVD risk $\geq 7.5 \%$ be placed on statin therapy in addition to lifestyle modification in order to achieve a significant LDL-C reduction ${ }^{12-14)}$. More recently, it has been suggested that in addition to statins, the use of ezetimibe, and/or proprotein convertase subtilisin kexin 9 inhibitors can be considered to reduce LDL-C levels to <70 $\mathrm{mg} / \mathrm{dL}$ in CVD patients and $<100 \mathrm{mg} / \mathrm{dL}$ in highrisk patients including patients with diabetes ${ }^{15,16}$. In the United States, there are no recommendations with regard to TG targets ${ }^{12-16}$. In Taiwan, current recommendations with regard to LDL-C targets of therapy are the same as in the United States, but it was also recommended that TG levels be lowered to $<150 \mathrm{mg} /$ $\mathrm{dL}^{17,}{ }^{18}$. In Japan, it was recommended that CVD patients have their LDL-C values lowered to <100 $\mathrm{mg} / \mathrm{dL}$, and $<120 \mathrm{mg} / \mathrm{dL}$ for diabetics, and for both groups to get TG levels lowered to $<150 \mathrm{mg} / \mathrm{dL}^{19)}$. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Trial, it was documented that diabetic subjects on statin therapy did not get additional benefit from the addition of fenofibrate therapy, unless their TG levels were $>204 \mathrm{mg} / \mathrm{dL}$ and their HDL-C levels were $<35 \mathrm{mg} / \mathrm{dL}$. This latter group got a 28% risk reduction when fenofibrate was added to statin therapy as compared to placebo therapy ${ }^{20}$.

It has long been known that hypertriglyceridemia is associated with decreased HDL-C values, as well as increased levels of sdLDL-C ${ }^{21-233}$. This latter parameter can now be readily measured with an automated assay ${ }^{24}$. In addition, it has been reported that elevated levels of RLP-C, sdLDL-C, and LDL-TG, and decreased levels of HDL-C and its subfractions have been associated with increased CVD risk ${ }^{21-33)}$. However, these new assays have not been applied to a large diabetic and prediabetic population, especially in an Asian population.

Aim

Our purpose in the present study was to evaluate potential differences in the levels of RLP-C, direct LDL-C, large-buoyant LDL-C (lbLDL-C), sdLDL-C, HDL-C, HDL3-C, HDL2-C, and apoE-HDL-C among individuals with type 2 diabetes, prediabetes, or normal glucose tolerance using novel automated assays.

Another goal of this investigation was to examine relationships between lipoprotein subfractions and measures of glucose homeostasis, including insulin, and measures of insulin resistance and production in normal, prediabetic, and diabetic subjects in a large Asian population.

Methods

Our study population consisted of 2,049 men and women living in Yi-lan County in northern Taiwan. Residents of this province are native to the island of Taiwan and are not recent immigrants from mainland China or other parts of Asia. All subjects agreed to participate in this study using a standard study protocol and informed consent approved by the research committees of Luodong Poh-ai Hospital, Luodong, Taiwan and the School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan. (M2000-2350).

We recruited normal, prediabetic, and diabetic subjects from participants after testing and participation in a standard health examination as previously described ${ }^{34)}$. Subjects were classified as normal if their fasting serum glucose value was $<100 \mathrm{mg} / \mathrm{dL}$, as prediabetic if their value was in the $100-125 \mathrm{mg} / \mathrm{dL}$ range, and as diabetic if their value was $>125 \mathrm{mg} / \mathrm{dL}$ using the standard criteria. In order to increase our diabetic subjects, subjects with diabetes were also recruited from a clinic at Luodong Poh-ai Hospital, and were required to have a history of diabetes without any change in treatment including medications for at least 6 months. All diabetic patients received standardized therapies consistent with national Taiwanese, American Diabetes Association and European Association for the Study of Diabetes guidelines. All participants were classified as being obese if their body mass index (BMI) was $\geq 27 \mathrm{~kg} / \mathrm{m}^{2}$ (Taiwanese criteria), or in some analyses (see Supplemental Tables) as $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$ (Japanese criteria) ${ }^{35-37}$.

Subjects being treated for thyroid disease, or those with laboratory evidence of liver disease (transaminase value $>$ three times the upper limits of normal), or kidney disease (creatinine $>2.0 \mathrm{mg} / \mathrm{dL}$), or those receiving insulin therapy were excluded from the study. Among the participants, 667 were in the normal group, 345 were in the prediabetic group, and 1,037 were in the diabetic group. In all subjects, a standard history about health status and medication use was obtained, and a physical examination was carried out including measurements of height, weight, and blood pressure. Subjects with a significant history of CVD were excluded from this analysis.

Blood samples were collected from all participants after an overnight fast of 12 hours or more. Serum

Table 1. Characteristics of all male subjects $(n=1030)^{*}$

Variable	$\begin{gathered} \mathrm{NGT} \\ n=277 \end{gathered}$	$\begin{aligned} & \text { PreDM } \\ & n=200 \end{aligned}$	$\begin{gathered} \text { DM } \\ n=553 \end{gathered}$	P value		
				NGT vs PreDM	$\begin{gathered} \text { PreDM } \\ \text { vs DM } \end{gathered}$	$\begin{aligned} & \text { DM vs } \\ & \text { NGT } \end{aligned}$
Age, year	55.8 (20.3)	60.6 (18.6)	61.5 (14.6)	0.002	0.098	0.000
BMI, kg/m ${ }^{2}$	24.2 (4.2)	25.3 (3.9)	26.1 (4.8)	0.001	0.001	0.000
Obesity Prevalence	50 (18.1\%)**	53 (26.5\%)**	217 (39.2\%)**	0.001	0.001	0.000
Systolic BP, mmHg	123.0 (16.8)	128.0 (21.0)	130.0 (14.0)	0.004	0.738	0.002
Diastolic BP, mmHg	75.0 (13.8)	76.0 (16.0)	70.0 (10.0)	0.022	0.073	0.471
Fasting Glucose, mg/dL	93.0 (8.0)	105.0 (9.0)	133.0 (40.0)	0.000	0.000	0.000
HbA1c, \%	5.5 (0.4)	5.8 (0.4)	6.9 (1.3)	0.000	0.000	0.000
Insulin,	8.0 (1.5)	10.6 (21.2)	10.7 (10.4)	0.000	0.823	0.000
HOMA-IR	1.8 (1.7)	2.8 (2.2)	3.5 (3.6)	0.000	0.000	0.000
HOMA- β	100.4 (90.4)	86.5 (58.7)	58.9 (65.8)	0.018	0.000	0.000
Lipids and Lipoproteins						
Total cholesterol, mg/dL	192.0 (55.0)	189.5 (43.3)	171.0 (39.2)	0.507	0.000	0.000
Triglycerides, mg/dL	103.0 (75.0)	120.0 (87.0)	118.0 (94.0)	0.002	0.888	0.000
RLP-C, mg/dL	6.3 (7.3)	8.7 (10.7)	6.3 (9.1)	0.001	0.001	0.984
LDL-C, mg/dL	113.3 (46.7)	111.8 (43.7)	106.4 (32.7)	0.880	0.032	0.008
calculated LDL-C, mg/dL	115.2 (51.1)	109.4 (43.8)	93.2 (35.7)	0.176	0.000	0.000
sdLDL-C, mg/dL	29.5 (22.2)	34.5 (25.0)	32.7 (20.4)	0.018	0.251	0.052
sdLDL-C/LDL-C ratio	0.260 (0.111)	0.305 (0.150)	0.299 (0.153)	0.000	0.896	0.000
lbLDL-C, mg/dL	80.1 (34.1)	78.0 (33.8)	73.2 (27.0)	0.094	0.028	0.000
LDL-TG, mg/dL	22.2 (11.0)	23.3 (10.1)	19.4 (7.7)	0.006	0.000	0.000
Non-HDL-C, mg/dL	140.7 (54.8)	138.7 (41.6)	122.7 (38.1)	0.945	0.000	0.000
HDL-C, mg/dL	51.3 (17.2)	50.3 (16.1)	46.0 (13.5)	0.460	0.000	0.000
HDL2-C, mg/dL	26.9 (13.3)	27.0 (10.0)	25.1 (8.1)	0.447	0.069	0.005
HDL 3 -C, mg/dL	22.8 (5.1)	22.8 (5.2)	20.5 (5.2)	0.784	0.000	0.000
ApoE-HDL, mg/dL	4.6 (2.2)	4.7 (2.0)	3.9 (1.7)	0.879	0.000	0.000

[^1]glucose was measured using the hexokinase method, glycosylated hemoglobin using a turbidimetric inhibition immunoassay as previously described ${ }^{34)}$. Insulin levels were measured by chemiluminescence assay on a Siemens Centaur automated platform (Siemens Healthineers, Germany) with intra- and inter-assay coefficients of variation (CVs) of $<5 \%$. Serum creatinine, liver transaminases, TC, TG, HDL-C, HDL3-C, apoE-HDL-C, direct LDL-C, sdLDL-C, LDL-TG, and RLP-C were measured by automated standardized enzymatic analysis on a Cobas C501 analyzer (Roche Diagnostics, Germany). The specialized lipid assay kits were provided by the Denka-Seiken Corporation (Tokyo, Japan) as previously described ${ }^{24,31,32,38-43)}$. All specialized lipid assays had within and between run CVs were $<6.0 \%$, and in most cases $<3.0 \%$. Homeostasis
model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of insulin production (HOMA- β) were calculated from glucose and insulin levels using the following formulas: $\mathrm{HOMA}_{\beta}=$ [(insulin in $\mu \mathrm{U} / \mathrm{mL} \times 360) /($ glucose in $\mathrm{mg} / \mathrm{dL}-63)] \%$), and HOMA $_{\text {IR }}=[$ glucose in $\mathrm{mg} / \mathrm{dL} \times$ (insulin in $\mu \mathrm{U} /$ $\mathrm{mL}) / 405)]^{44,45)}$. lbLDL-C were calculated by subtracting sdLDL-C from direct LDL-C. HDL2-C were calculated by subtracting HDL3-C from HDL-C. LDL-C was calculated using the Friedewald formula by subtracting the sum of HDL-C and TG/5 from TC.

Data are presented as the median values with inter-quartile ranges since many variables were not normally distributed. All statistical analyses were performed using SPSS version 22 (IBM, Armonk, NY). Mann-Whitney U testing was used to assess the sta-

Table 2. Characteristics of all female subjects $(n=1019)$ *

Variable	$\begin{gathered} \text { NGT } \\ n=390 \end{gathered}$	$\begin{gathered} \text { PreDM } \\ n=145 \end{gathered}$	$\begin{gathered} \text { DM } \\ n=484 \end{gathered}$	P value		
				NGT vs PreDM	$\begin{gathered} \text { PreDM } \\ \text { vs DM } \end{gathered}$	$\begin{aligned} & \text { DM vs } \\ & \text { NGT } \end{aligned}$
Age, year	51.7 (16.4)	61.5 (18.8)	63.7 (12.3)	0.000	0.018	0.000
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	22.8 (4.0)	23.8 (4.6)	25.5 (5.0)	0.001	0.000	0.000
Obesity Prevalence	36 (9.2\%)**	31 (21.4\%)**	172 (35.5\%)**	0.001	0.000	0.000
Systolic BP, mmHg	118.0 (19.0)	123.0 (16.0)	130.0 (14.0)	0.003	0.000	0.000
Diastolic BP, mmHg	69.0 (14.0)	71.0 (14.3)	70.0 (10.0)	0.028	0.076	0.000
Fasting Glucose, mg/dL	90.0 (9.0)	105.0 (11.0)	132.0 (41.0)	0.000	0.000	0.000
HbA1c, \%	5.5 (0.4)	5.9 (0.5)	7.0 (1.4)	0.000	0.000	0.000
Insulin,	8.3 (5.8)	12.7 (8.3)	13.2 (10.1)	0.000	0.251	0.000
HOMA-IR	1.8 (1.3)	3.3 (2.4)	4.3 (4.0)	0.000	0.000	0.000
HOMA- β	113.1 (76.4)	97.7 (67.8)	66.1 (68.0)	0.004	0.000	0.000
Lipids and Lipoproteins						
Total cholesterol, mg/dL	197.0 (48.8)	194.0 (42.0)	175.0 (36.3)	0.254	0.000	0.000
Triglycerides, mg/dL	86.5 (58.8)	116.0 (94.0)	119.0 (82.3)	0.000	0.983	0.000
RLP-C, mg/dL	5.3 (4.7)	7.9 (9.8)	6.2 (7.6)	0.000	0.000	0.000
LDL-C, mg/dL	117.0 (39.6)	114.3 (42.7)	106.6 (35.5)	0.448	0.007	0.000
calculated LDL-C, mg/dL	116.7 (42.9)	112.3 (42.1)	95.1 (34.7)	0.098	0.000	0.000
sdLDL-C, mg/dL	27.3 (17.1)	33.5 (21.4)	31.5 (19.6)	0.000	0.165	0.000
sdLDL-C/LDL-C ratio	0.231 (0.085)	0.287 (0.127)	0.290 (0.129)	0.000	0.813	0.000
lbLDL-C, mg/dL	87.9 (28.0)	80.6 (29.3)	74.5 (26.5)	0.001	0.002	0.000
LDL-TG, mg/dL	21.2 (10.0)	25.2 (10.5)	20.9 (8.3)	0.000	0.000	0.857
Non-HDL-C, mg/dL	134.4 (48.1)	139.3 (41.7)	121.6 (36.3)	0.335	0.000	0.000
HDL-C, mg/dL	59.2 (18.4)	52.2 (17.9)	52.5 (15.8)	0.000	0.962	0.000
HDL2-C, mg/dL	34.0 (14.7)	28.9 (11.8)	29.4 (11.0)	0.000	0.171	0.000
HDL3-C, mg/dL	25.0 (4.7)	23.9 (5.4)	22.8 (5.6)	0.018	0.001	0.000
ApoE-HDL, mg/dL	5.7 (2.3)	5.0 (2.0)	4.7 (1.9)	0.000	0.020	0.000

* Data are expressed as median (interquartile range).
${ }^{*}$ Data are expressed as number of obese participant (percentage of obese participants) ($\mathrm{BMI} \geq 27 \mathrm{~kg} / \mathrm{m}^{2}$).
Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides; non HDL-C, non HDL cholesterol;
tistical significance of differences for assessed variables between groups. Pearson's correlation coefficients were used for assessing the significance of correlations between variables. A P value of <0.05 was considered statistically significant.

Results

Data on all male ($n=1,030$) and female ($n=1,019$) participants are shown in Tables 1 and 2, respectively. Since this study focused on lipoprotein subfractions, data on male ($n=605$) and female ($n=622$) subjects off lipid-lowering medications are shown in Table 3 and 4 , respectively, while data on men $(n=347)$ and women ($n=339$) on statin therapy are shown in Tables 5 and 6, respectively. In addition, we tabulated relative
percentage differences between normal, prediabetic, and diabetic male and female subjects for all lipoprotein subfractions in all subjects, those off statins, and in those on statin therapy in Figs.1, 2, and 3, respectively. In addition, we have analyzed the effects of obesity classified as $\geq 27 \mathrm{~kg} / \mathrm{m}^{2}$ using the Taiwanese criteria in normal prediabetic and diabetic subgroups for men in Table 7, and for women in Table 8. Comparisons of normal, prediabetic, and diabetic men and women with and without obesity classified as $\geq 25 \mathrm{~kg} /$ m^{2} using Japanese criteria are shown in Supplemental Tables 1 and 2. Comparison of variables between participants with and without statin use are shown in Supplemental Table 3-5 (normal group in Supplemental Table 3, prediabetic group in Supplemental Table 4, and DM group in Supplemental Table 5).

Table 3. Characteristics of male subjects not on lipid medications $(n=605)$ *

Variable	$\begin{gathered} \text { NGT } \\ n=207 \end{gathered}$	$\begin{gathered} \text { PreDM } \\ n=117 \end{gathered}$	$\begin{gathered} \mathrm{DM} \\ n=281 \end{gathered}$	P value		
				NGT vs PreDM	$\begin{gathered} \text { PreDM } \\ \text { vs DM } \end{gathered}$	$\begin{aligned} & \text { DM vs } \\ & \text { NGT } \end{aligned}$
Age, year	52.2 (18.3)	54.5 (18.5)	61.9 (13.4)	0.017	0.000	0.000
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	23.9 (4.1)	25.3 (4.0)	25.4 (4.7)	0.000	0.710	0.000
Obesity Prevalence	$36(17.4 \%)^{* *}$	36 (30.8\%)**	94 (33.5\%)**	0.000	0.710	0.000
Systolic BP, mmHg	122.0 (15.8)	130.0 (22.0)	130.0 (14.0)	0.001	0.579	0.021
Diastolic BP, mmHg	74.0 (13.0)	77.0 (17.0)	76.0 (10.0)	0.006	0.280	0.187
Fasting Glucose, mg/dL	92.0 (7.5)	105.0 (10.0)	134.0 (35.0)	0.000	0.000	0.000
HbA1c, \%	5.5 (0.4)	5.8 (0.5)	6.9 (1.1)	0.000	0.000	0.000
Insulin,	7.9 (7.4)	10.6 (8.9)	10.5 (10.7)	0.000	0.934	0.000
HOMA-IR	1.8 (1.6)	2.7 (2.3)	3.3 (3.7)	0.000	0.006	0.000
HOMA- β	99.5 (96.2)	85.1 (63.5)	55.2 (61.7)	0.008	0.000	0.000
Lipids and Lipoproteins						
Total cholesterol, mg/dL	196.1 (50.5)	192.0 (32.0)	171.0 (33.0)	0.388	0.000	0.000
Triglycerides, mg/dL	103.0 (79.5)	133.0 (99.0)	116.0 (91.0)	0.006	0.316	0.013
RLP-C, mg/dL	6.3 (8.2)	10.1 (11.6)	5.6 (8.0)	0.001	0.000	0.061
LDL-C, mg/dL	116.7 (44.8)	115.5 (40.9)	107.2 (30.1)	0.686	0.003	0.000
calculated LDL-C, mg/dL	117.7 (47.3)	113.5 (39.9)	94.1 (31.0)	0.103	0.000	0.000
sdLDL-C, mg/dL	30.7 (22.9)	34.9 (26.1)	31.8 (18.8)	0.075	0.032	0.957
sdLDL-C/LDL-C ratio	0.256 (0.118)	0.310 (0.164)	0.288 (0.139)	0.004	0.386	0.003
lbLDL-C, mg/dL	84.9 (33.0)	79.7 (32.5)	74.6 (25.2)	0.115	0.021	0.000
LDL-TG, mg/dL	22.1 (11.3)	23.4 (10.9)	18.1 (6.6)	0.026	0.000	0.000
Non HDL-C, mg/dL	142.9 (52.2)	141.6 (33.2)	122.8 (30.9)	0.815	0.000	0.000
HDL-C, mg/dL	51.6 (18.1)	51.4 (18.0)	46.0 (13.6)	0.551	0.003	0.000
HDL2-C, mg/dL	27.6 (13.0)	26.3 (12.4)	25.2 (8.3)	0.448	0.238	0.015
HDL3-C, mg/dL	23.0 (5.8)	22.9 (5.5)	20.5 (5.1)	0.899	0.000	0.000
ApoE-HDL, mg/dL	4.6 (2.1)	4.8 (2.1)	3.7 (1.5)	0.857	0.000	0.000

* Data are expressed as median (interquartile range).
${ }^{*}$ Data are expressed as number of obese participant (percentage of obese participants) ($\mathrm{BMI} \geq 27 \mathrm{~kg} / \mathrm{m}^{2}$).
Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides

Correlations between variables for all subjects, men and women are shown in Supplemental Tables 6, 7, and 8.

For all subjects and for those not receiving or receiving statin therapy, the median BMI, obesity prevalence, systolic blood pressure, serum glucose, HbA1c, serum insulin, and calculated insulin resistance (HOMAIR) were all significantly higher in prediabetic and diabetic subjects than in normal subjects. In contrast, median calculated insulin production $\left(\mathrm{HOMA}_{\beta}\right)$ values were significantly lower in prediabetic and diabetic subjects than in normal, especially in those with diabetes (see Tables 1-6). Interestingly serum insulin levels were not significantly different between prediabetic and diabetic subjects in all categories, but there were significantly higher HOMAIR values and signifi-
cantly lower HOMA_{β} values in diabetic subjects than in normal subjects.

In all male prediabetic subjects, TG, RLP-C, sdLDL-C, sdLDL-C/LDL-C ratio, and LDL-TG values were all significantly higher than in normal subjects (see Table 1). In male prediabetics not on statin therapy, TG, sdLDL-C/LDL-C ratio, and LDL-TG values were all significantly higher than in normal subjects (see Table 3). In male prediabetics on statin therapy, all these significant differences were abolished (see Table 5). In all female prediabetic subjects, TG, RLPC, sdLDL-C, sdLDL-C/LDL-C ratio, and LDL-TG values were all significantly higher than in normal subjects, while lbLDL-C, HDL-C, HDL2-C, and apoE-HDL-C were all significantly lower than in normals (see Table 2). In female prediabetic subjects off statin

Table 4. Characteristics of female subjects not on lipid medications ($n=622$)*

Variable	$\begin{gathered} \text { NGT } \\ n=324 \end{gathered}$	$\begin{gathered} \text { PreDM } \\ n=90 \end{gathered}$	$\begin{gathered} \mathrm{DM} \\ n=208 \end{gathered}$	P value		
				NGT vs PreDM	$\begin{gathered} \text { PreDM } \\ \text { vs DM } \end{gathered}$	$\begin{aligned} & \text { DM vs } \\ & \text { NGT } \end{aligned}$
Age, year	49.3 (12.9)	54.7 (19.2)	63.6 (11.9)	0.000	0.000	0.000
BMI, kg/m ${ }^{2}$	22.5 (4.0)	24.1 (5.2)	24.8 (4.8)	0.000	0.285	0.000
Obesity Prevalence	25 (7.7\%)**	23 (25.6\%) ${ }^{* *}$	57 (27.4\%)**	0.000	0.285	0.000
Systolic BP, mmHg	117.0 (19.0)	120.0 (17.0)	130.0 (19.5)	0.025	0.001	0.000
Diastolic BP, mmHg	68.0 (14.0)	70.5 (11.8)	70.0 (10.0)	0.086	0.056	0.001
Fasting Glucose, mg/dL	89.5 (8.0)	105.0 (11.0)	132.0 (39.5)	0.000	0.000	0.000
HbA1c, \%	5.4 (0.4)	5.8 (0.7)	7.0 (1.2)	0.000	0.000	0.000
Insulin,	7.9 (5.6)	11.9 (8.2)	12.0 (9.4)	0.000	0.669	0.000
HOMA-IR	1.8 (1.3)	3.2 (2.2)	4.0 (3.6)	0.000	0.002	0.000
HOMA- β	110.7 (76.0)	95.7 (64.5)	60.9 (60.0)	0.003	0.000	0.000
Lipids and Lipoproteins						
Total cholesterol, mg/dL	198.0 (47.3)	194.5 (38.5)	178.0 (31.1)	0.678	0.000	0.000
Triglycerides, mg/dL	81.0 (57.5)	106.5 (82.8)	118.0 (75.0)	0.000	0.395	0.000
RLP-C, mg/dL	4.8 (4.2)	7.0 (8.4)	5.3 (6.1)	0.000	0.001	0.089
LDL-C, mg/dL	117.7 (39.2)	118.1 (39.5)	108.4 (29.7)	0.934	0.003	0.000
calculated LDL-C, mg/dL	117.4 (41.1)	113.5 (36.2)	99.0 (28.1)	0.521	0.000	0.000
sdLDL-C, mg/dL	26.5 (16.8)	32.5 (22.5)	29.4 (19.9)	0.001	0.179	0.010
sdLDL-C/LDL-C ratio	0.226 (0.081)	0.272 (0.103)	0.272 (0.124)	0.000	0.701	0.000
lbLDL-C, mg/dL	89.8 (27.4)	84.4 (22.7)	76.4 (24.1)	0.115	0.000	0.000
LDL-TG, mg/dL	20.1 (9.9)	23.3 (10.6)	19.3 (7.9)	0.000	0.000	0.194
Non HDL-C, mg/dL	133.4 (48.1)	139.7 (38.8)	124.4 (33.5)	0.216	0.000	0.000
HDL-C, mg/dL	59.9 (18.8)	53.6 (16.7)	50.3 (17.2)	0.000	0.061	0.000
HDL2-C, mg/dL	34.7 (16.1)	29.8 (13.7)	28.4 (11.8)	0.000	0.479	0.000
HDL 3 -C, mg/dL	25.1 (4.7)	23.9 (5.4)	22.2 (5.2)	0.186	0.000	0.000
ApoE-HDL, mg/dL	5.7 (2.3)	5.2 (2.3)	4.4 (2.0)	0.001	0.000	0.000

* Data are expressed as median (interquartile range).
** Data are expressed as number of obese participant (percentage of obese participants) ($\mathrm{BMI} \geq 27 \mathrm{~kg} / \mathrm{m}^{2}$).
Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides
therapy, TG, RLP-C, sdLDL-C, sdLDL-C/LDL-C ratio, and LDL-TG values were all significantly higher than in normals, while HDL-C, HDL2-C, and apoE-HDLC were all significantly lower than in normal subjects (see Table 4). In female prediabetic subjects on statin therapy, TG, RLP-C, and sdLDL-C/LDL-C ratio values were all significantly higher than in normal, while HDL-C, HDL2-C, and apoE-HDL-C were all significantly lower than in normal (see Table 6).

In all male diabetic subjects, TG, sdLDL-C/LDL-C ratio, and LDL-TG values were all significantly higher than in normal subjects, while direct LDL-C, calculated LDL-C, non-HDL-C, HDL-C, HDL2-C, HDL3C, and apoE-HDL-C were all significantly lower than in normal subjects (see Table 1). In diabetic men not on statin therapy, with very similar differences being
observed in diabetic men not on statin therapy versus normal subjects (see Table 5). In all female diabetics, TG, RLP-C, sdLDL-C, and sdLDL-C/LDL-C ratio values were all significantly higher than in nortmal subjects, while lbLDL-C, HDL-C, and apoE-HDL-C were all significantly lower than in normal subjects. In all female diabetics off statin therapy, TG, sdLDL-C, and sdLDL-C/LDL-C ratio values were all significantly higher than in normal subjects, while direct LDL-C, calculated LDL-C, lbLDL-C, non-HDL-C, HDL-C, HDL2-C, HDL3-C, and apoE-HDL-C were all significantly lower than in normal subjects. Interestingly, median direct LDL-C values in male and female diabetic subjects in all three categories ranged from 104.1$108.4 \mathrm{mg} / \mathrm{dL}$, whereas for calculated LDL-C, these values ranged from $90.7-99.0 \mathrm{mg} / \mathrm{dl}$, with an average

Table 5. Characteristics of male subjects on statins $(n=347)^{*}$

Variable	$\begin{aligned} & \text { NGT } \\ & n=62 \end{aligned}$	$\begin{gathered} \text { PreDM } \\ n=79 \end{gathered}$	$\begin{gathered} \text { DM } \\ n=206 \end{gathered}$	P value		
				NGT vs PreDM	$\begin{gathered} \text { PreDM } \\ \text { vs DM } \end{gathered}$	$\begin{aligned} & \text { DM vs } \\ & \text { NGT } \end{aligned}$
Age, year	66.0 (16.2)	66.0 (12.7)	62.4 (15.2)	0.911	0.030	0.089
BMI, kg/m ${ }^{2}$	24.7 (3.4)	25.0 (4.1)	26.6 (4.9)	0.923	0.000	0.001
Obesity Prevalence	14 (22.6\%)**	16 (20.3\%)**	88 (42.7\%)**	0.923	0.001	0.001
Systolic BP, mmHg	130.0 (15.3)	127.0 (12.0)	130.0 (10.0)	0.630	0.797	0.694
Diastolic BP, mmHg	75.0 (10.8)	75.0 (11.0)	70.0 (10.0)	0.742	0.878	0.447
Fasting Glucose, mg/dL	94.0 (7.0)	106.0 (8.5)	132.0 (39.8)	0.000	0.000	0.000
HbA1c, \%	5.6 (0.3)	5.9 (0.4)	6.8 (1.4)	0.000	0.000	0.000
Insulin,	8.5 (6.8)	11.2 (8.0)	10.4 (7.9)	0.000	0.369	0.000
HOMA-IR	1.9 (1.5)	3.0 (2.1)	3.5 (3.0)	0.000	0.081	0.000
HOMA- β	104.0 (68.5)	90.4 (51.9)	60.0 (56.7)	0.669	0.000	0.000
Lipids and Lipoproteins						
Total cholesterol, mg/dL	175.5 (57.2)	184.0 (56.0)	168.0 (50.8)	0.437	0.006	0.141
Triglycerides, mg/dL	100.5 (47.3)	111.0 (69.0)	118.0 (88.3)	0.119	0.478	0.014
RLP-C, mg/dL	5.7 (5.6)	7.4 (8.3)	7.3 (9.4)	0.066	0.779	0.096
LDL-C, mg/dL	102.1 (46.0)	106.7 (48.8)	104.7 (40.9)	0.540	0.881	0.451
calculated LDL-C, mg/dL	100.6 (51.9)	102.4 (46.3)	92.0 (41.7)	0.628	0.002	0.029
sdLDL-C, mg/dL	27.5 (15.0)	33.4 (22.4)	33.2 (21.0)	0.070	0.847	0.016
sdLDL-C/LDL-C ratio	0.265 (0.070)	0.288 (0.121)	0.304 (0.140)	0.054	0.486	0.003
lbLDL-C, mg/dL	76.0 (32.7)	73.8 (31.0)	72.4 (26.8)	0.639	0.557	0.389
LDL-TG, mg/dL	22.0 (8.2)	22.9 (8.8)	20.0 (8.1)	0.094	0.000	0.116
Non HDL-C, mg/dL	122.9 (51.7)	131.1 (50.3)	119.5 (44.6)	0.260	0.013	0.404
HDL-C, mg/dL	49.9 (16.0)	49.4 (13.8)	46.8 (14.1)	0.651	0.187	0.046
HDL2-C, mg/dL	26.4 (12.9)	27.1 (7.9)	25.4 (8.4)	0.648	0.430	0.201
HDL 3 -C, mg/dL	22.8 (4.2)	22.5 (5.3)	20.9 (5.3)	0.975	0.006	0.009
ApoE-HDL, mg/dL	4.5 (2.5)	4.6 (1.9)	4.1 (1.8)	0.884	0.011	0.009

[^2]underestimation of $11.5 \%(p<0.001)$.
For all groups, we have tabulated relative percent differences between normal, prediabetic, and diabetic male and female subjects for all lipid and lipoprotein subfractions (see Figs.1, 2, and 3). A number of different patterns emerged. One pattern is that prediabetic subjects had the greatest increases in RLP-C, sdLDL-C, and LDL-TG values, especially in female subjects, as compared with normal subjects. Another pattern that emerged is that diabetic subjects had the greatest decreases in HDL-C and its subfractions as compared with normal, especially in men. In women, significant decreases in HDL-C and its subfractions were observed in prediabetic subjects as compared with normal; however, this was not the case for prediabetic men. A final pattern that emerged was that calculated

LDL-C significantly underestimated direct LDL-C values in diabetic male and female subjects, with less discrepancy observed in normal and prediabetic subjects.

We examined the effects of obesity classified as having a BMI $>27 \mathrm{~kg} / \mathrm{m}^{2}$ versus being non-obese in normal, prediabetic, and diabetic men and women. The data are shown in Tables 7 and 8. In normal men, being obese resulted in significantly higher systolic blood pressure, insulin, HOMAı, HOMA ${ }_{\beta}$, TG, sdLDL-C, sdLDL-C/LDL-C ratio, non-HDL-C, and LDL-TG values, and significantly lower HDL-C, HDL2-C, and apoE-HDL-C as compared with non-obese normal subjects (see Table 7). In normal women, being obese resulted in the same differences except that TG and non-HDL-C levels were not significantly higher, but HDL3-C was significantly lower as compared with

Table 6. Characteristics of female subjects on statins $(n=339)^{*}$

Variable	$\begin{aligned} & \text { NGT } \\ & n=60 \end{aligned}$	$\begin{gathered} \text { PreDM } \\ n=52 \end{gathered}$	$\begin{gathered} \text { DM } \\ n=227 \end{gathered}$	P value		
				NGT vs PreDM	$\begin{gathered} \text { PreDM } \\ \text { vs DM } \end{gathered}$	$\begin{aligned} & \text { DM vs } \\ & \text { NGT } \end{aligned}$
Age, year	69.5 (13.0)	68.0 (12.8)	64.3 (13.1)	0.972	0.012	0.011
BMI, kg/m ${ }^{2}$	24.0 (4.1)	23.5 (4.5)	26.2 (5.4)	0.297	0.000	0.000
Obesity Prevalence	10 (16.7\%)**	$8(15.4 \%)^{* *}$	94 (41.4\%)**	0.297	0.001	0.001
Systolic BP, mmHg	129.5 (18.3)	130.0 (10.0)	130.0 (10.0)	0.793	0.840	0.814
Diastolic BP, mmHg	76.0 (10.5)	77.0 (12.0)	70.0 (10.0)	0.840	0.602	0.452
Fasting Glucose, mg/dL	92.0 (8.5)	104.5 (10.3)	131.0 (42.0)	0.000	0.000	0.000
HbA1c, \%	5.6 (0.5)	5.9 (0.4)	6.9 (1.3)	0.001	0.000	0.000
Insulin,	10.1 (7.6)	13.4 (10.2)	13.7 (10.5)	0.009	0.738	0.000
HOMA-IR	2.3 (1.7)	3.4 (2.6)	4.6 (3.9)	0.000	0.005	0.000
HOMA- β	128.9 (85.5)	116.4 (75.1)	69.2 (72.7)	0.097	0.000	0.000
Lipids and Lipoproteins						
Total cholesterol, mg/dL	193.8 (56.0)	193.5 (54.5)	172.0 (41.0)	0.433	0.007	0.000
Triglycerides, mg/dL	107.6 (68.3)	131.5 (106.3)	120.0 (78.0)	0.003	0.038	0.162
RLP-C, mg/dL	7.4 (5.8)	9.5 (14.6)	6.8 (8.7)	0.012	0.003	0.809
LDL-C, mg/dL	112.5 (40.6)	110.0 (49.0)	104.1 (39.6)	0.733	0.490	0.142
calculated LDL-C, mg/dL	111.2 (52.1)	102.9 (55.1)	90.7 (35.4)	0.261	0.015	0.000
sdLDL-C, mg/dL	30.0 (17.2)	35.8 (21.4)	32.8 (16.9)	0.077	0.181	0.371
sdLDL-C/LDL-C ratio	0.278 (0.091)	0.330 (0.136)	0.301 (0.131)	0.003	0.255	0.007
lbLDL-C, mg/dL	81.7 (31.4)	72.2 (29.5)	71.7 (27.8)	0.067	0.926	0.012
LDL-TG, mg/dL	23.8 (6.1)	26.9 (10.1)	21.7 (8.6)	0.105	0.000	0.015
Non HDL-C, mg/dL	135.9 (53.9)	138.5 (54.9)	117.3 (36.8)	0.972	0.002	0.001
HDL-C, mg/dL	58.2 (15.4)	51.0 (12.6)	54.0 (13.9)	0.002	0.044	0.042
HDL2-C, mg/dL	32.1 (11.1)	26.1 (9.1)	30.3 (10.2)	0.002	0.003	0.152
HDL 3 -C, mg/dL	24.9 (3.9)	22.8 (4.9)	23.4 (5.3)	0.092	0.875	0.025
ApoE-HDL, mg/dL	5.8 (2.0)	4.9 (1.4)	5.0 (1.8)	0.007	0.606	0.003

* Data are expressed as median (interquartile range).
** Data are expressed as number of obese participant (percentage of obese participants) ($\mathrm{BMI} \geq 27 \mathrm{~kg} / \mathrm{m}^{2}$).
Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides
normal subjects (see Table 8). In prediabetic men, being obese resulted in the same findings as for normal men, except that no significant differences with regard to HDL-C and its subfractions were noted as compared with non-obese prediabetic men. In prediabetic women, being obese resulted in only significantly higher systolic blood pressure, HbA1c, insulin, HOMAır, HOMA_{β}, but no other parameters, as compared with prediabetic, non-obese women (see Table 8). In diabetic men, being obese resulted in significantly higher insulin, HOMAIR, $H^{H O M A}$, TG, RLP-C, sdLDL-C, sdLDL-C/LDL-C ratio, LDL-TG, lbLDL-C, non-HDL-C, and significantly lower levels of HDL-C, HDL2-C, HDL3-C, and apoE-HDL-C, compared with non-obese diabetic men (see Table 7). In contrast, in diabetic women, being obese was only associated with significantly higher lev-
els of insulin and HOMA_{β}, and significantly lower levels of HDL2-C, as compared with non-obese diabetic women (see Table 8). Surprisingly, in this analysis, the presence of obesity had little effect on fasting glucose levels, possibly because group selections by gender were based on this parameter. Similar effects of obesity using the $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$ criteria were observed in all of the above subgroups (see Supplementary Tables 1 and 2). It should also be noted that, as previously mentioned, the prevalence of obesity was significantly higher in prediabetic and diabetic men and women versus controls as shown in Tables 1 and 2.

We also examined the effects of statin use in normal men and women (see Supplementary Table 3), in prediabetic men and women (see Supplementary Table 4), and in diabetic men and women (see Sup-
(A)

(B)

Fig. 1. (A) Percent differences of lipid variables in all male subjects with prediabetes (PreDM; white column) or diabetes (DM; black column) from non-diabetic. (B) Percent differences of lipid variables in all female subjects with prediabetes (PreDM; white column) or diabetes (DM; black column) from non-diabetic. Star sign (${ }^{*}$) indicate $p<0.05$
plementary Table 5). In normal men, statin use was significantly associated with being older, having a higher BMI, and having a higher prevalence of obesity as compared with non-users. In prediabetic men, statin use was significantly associated with being older and having lower RLP-C values than non-users. In diabetic men, statin use was significantly associated with higher BMI, obesity prevalence, LDL-TG, and apoE-HDL-C values as compared with non-users. In normal women, statin use was associated with significantly higher age, BMI, obesity prevalence, systolic blood pressure, diastolic blood pressure, glucose, HbA1c, insulin, HOMAIr, TG, lbLDL-C, and sdLDL/LDL-C ratio as compared with non-users. In prediabetic women,
statin use was significantly associated with higher age, systolic blood pressure, TG, RLP-C, sdLDL/LDL-C ratio, and LDL-TG as compared with non-users. In diabetic women, statin use was significantly associated with higher BMI, sdLDL/LDL-C ratio, LDL-TG, HDL-C, HDL3-C, and apoE-HDL-C as compared with non-users.

We have also examined correlations between parameters in men and women participating in this study (see Supplementary Tables 6, 7, and 8). We observed very strong correlations between TC, calculated LDLC, direct LDL-C, sdLDL-C, and LDL-TG, and somewhat weaker correlations between TC and HDL3-C, HDL-C, apoE HDL-C, and RLP-C. The strongest
(A)

(B)

Fig. 2. (A) Percent differences of lipid variables in male subjects without lipid medication with prediabetes (PreDM; white column) or diabetes (DM; black column) from non-diabetic. (B) Percent differences of lipid variables in all female subjects without lipid medication with prediabetes (PreDM; white column) or diabetes (DM; black column) from nondiabetic. Star sign $\left(^{*}\right)$ indicate $p<0.05$
positive correlations with TG levels were with RLP-C, LDL-TG, and sdLDL-C, as well as strong inverse correlation with HDL-C and somewhat weaker correlations with HDL3-C and apoE HDL-C. We also noted that insulin and HOMAIr values were significantly correlated with TG values, while НОМАв was modestly correlated with LDL-TG.

Discussion

In order to prevent CVD in prediabetic and diabetic subjects, not only glycemic control, but control of blood pressure and lipids and their subfractions are
also important. Our focus in this study was to carefully examine lipids and lipoprotein subfractions using standard and novel markers in subjects with prediabetes and diabetes as compared with normal subjects in a large Asian population of over 2,000 individuals. In addition, we examined these parameters in both men and women, as well as in those who are off and on lipid-lowering medication. In addition, we related these parameters to markers of glucose homeostasis, namely fasting values of glucose, insulin, $\mathrm{HbA1c}$, and calculated HOMAIr and HOMA_{β}. Our data reinforces the concept that both increased insulin resistance and decreased insulin production underlie the pathogene-

Fig. 3. (A) Percent differences of lipid variables in male subjects on statin treatment with prediabetes (PreDM; white column) or diabetes (DM; black column) from non-diabetic. (B) Percent differences of lipid variables in all female subjects on lipid medication with prediabetes (PreDM; white column) or diabetes (DM; black column) from non-diabetic. Star sign ${ }^{*}$) indicate $p<0.05$
sis of prediabetes and the transition to diabetes, and that obesity plays an important role in this process. Recent studies using novel automated assays indicate that elevated levels of sdLDL-C and LDL-TG provide significant information about CVD risk above and beyond standard risk factors, and this may be the case for decreased levels of HDL subfractions and apoE HDL-C as well ${ }^{27-33}{ }^{46}$. However, to our knowledge, such new assays have not been applied to a relatively large population of male and female prediabetic and diabetic subjects.

It has long been known that diabetics have dyslipidemia with elevated TG, RLP-C, sdLDL-C, and
decreased HDL-C values as compared to controls ${ }^{1-4}$. However, these older observations were made with a more manual cumbersome method of measuring RLP-C and gradient gel technology for assessing LDL particle size. In addition, more recently, it has been documented that diabetic subjects on statin therapy get additional benefit from the addition of fenofibrate if they have fasting TG values $>204 \mathrm{mg} / \mathrm{dL}$ and HDL-C values $<35 \mathrm{mg} / \mathrm{dL}^{17,19)}$. It is also known that statins can have beneficial effects not only on calculated LDL-C, but also on TG, RLP-C, direct LDL-C, sdLDL-C, and sdLDL-C ${ }^{39)}$. While statins clearly have strikingly beneficial effects on CVD risk reduction in
Table 7. Effects of Obesity Status (Taiwanese Criteria) on Biochemical Variables in Normal, Prediabetic, and Diabetic Men*

Variables	NGT			PreDM			DM		
	$\begin{gathered} \mathrm{BMI}<27 \\ n=220 \end{gathered}$	$\begin{aligned} \mathrm{BMI} & \geqq 27 \\ n & =50 \end{aligned}$	P	$\begin{gathered} \mathrm{BMI}<27 \\ n=140 \end{gathered}$	$\begin{gathered} \mathrm{BMI} \geqq 27 \\ n=53 \end{gathered}$	P	$\begin{gathered} \mathrm{BMI}<27 \\ n=320 \end{gathered}$	$\begin{gathered} \mathrm{BMI} \geqq 27 \\ n=217 \end{gathered}$	P
Age, year	55.7 (20.7)	54.6 (19.4)	0.338	60.9 (17.9)	58.3 (20.7)	0.669	62.9 (14.9)	60.0 (13.8)	0.000
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	23.5 (3.4)	29.0 (2.5)	0.000	24.2 (2.9)	28.7 (3.3)	0.000	24.1 (2.8)	29.3 (3.1)	0.000
Systolic BP, mmHg	122.0 (16.0)	128.0 (19.8)	0.004	127.0 (19.5)	131.0 (25.5)	0.026	130.0 (10.5)	130.0 (16.0)	0.929
Diastolic BP, mmHg	74.0 (14.8)	78.0 (13.8)	0.017	75.0 (15.0)	79.5 (15.0)	0.055	70.0 (10.0)	70.0 (10.0)	0.522
Fasting Glucose, mg/dL	92.0 (8.0)	93.0 (7.5)	0.222	104.0 (8.3)	105.0 (13.0)	0.196	133.0 (38.3)	135.0 (41.0)	0.291
HbA1c, \%	5.5 (0.4)	5.6 (0.5)	0.140	5.8 (0.4)	5.8 (0.6)	0.289	6.8 (1.2)	7.1 (1.3)	0.008
Insulin,	7.0 (5.8)	13.6 (9.0)	0.000	10.0 (5.9)	17.1 (14.8)	0.000	8.8 (7.2)	14.7 (13.1)	0.000
HOMA-IR	1.6 (1.4)	3.1 (2.2)	0.000	2.6 (1.7)	4.6 (4.0)	0.000	2.8 (2.5)	4.9 (4.7)	0.000
HOMA- β	89.0 (70.5)	183.1 (116.2)	0.000	78.9 (49.1)	131.8 (106.6)	0.000	45.1 (47.7)	77.4 (73.9)	0.000
Lipids and Lipoproteins									
Total cholesterol, mg/dL	192.0 (53.5)	198.1 (65.1)	0.262	188.0 (44.3)	196.0 (37.0)	0.107	171.0 (38.3)	171.0 (43.2)	0.652
Triglycerides, mg/dL	99.0 (62.3)	144.5 (99.5)	0.000	111.5 (78.3)	147.0 (117.0)	0.046	110.0 (78.0)	134.0 (98.0)	0.000
RLP-C, mg/dL	6.0 (6.8)	10.1 (13.5)	0.405	7.4 (9.2)	11.8 (11.7)	0.132	5.6 (7.6)	8.0 (10.3)	0.000
LDL-C, mg/dL	111.4 (43.7)	116.8 (59.7)	0.087	108.5 (40.4)	120.5 (46.8)	0.057	106.3 (30.3)	108.8 (35.3)	0.507
calculated LDL-C, mg/dL	115.9 (50.7)	115.7 (48.0)	0.413	111.0 (44.5)	115.4 (41.1)	0.319	94.1 (31.4)	94.5 (37.8)	0.817
sdLDL-C, mg/dL	29.0 (20.5)	35.4 (35.0)	0.000	32.0 (20.7)	43.6 (26.3)	0.001	30.6 (18.8)	36.8 (22.6)	0.000
sdLDL-C/LDL-C ratio	0.256 (0.112)	0.301 (0.154)	0.001	0.289 (0.128)	0.327 (0.170)	0.008	0.2857 (0.137)	0.324 (0.193)	0.000
lbLDL-C, mg/dL	80.1 (34.1)	78.7 (39.1)	0.947	78.0 (31.6)	79.7 (36.7)	0.720	74.5 (26.2)	73.0 (29.6)	0.050
LDL-TG, mg/dL	21.8 (10.3)	25.4 (17.6)	0.000	22.4 (9.5)	27.3 (9.8)	0.003	18.8 (7.0)	20.7 (8.5)	0.001
Non-HDL-C, mg/dL	139.5 (52.8)	145.6 (58.9)	0.032	137.0 (42.5)	151.1 (39.3)	0.085	119.9 (36.7)	126.0 (36.7)	0.020
HDL-C, mg/dL	51.9 (17.4)	44.8 (16.1)	0.004	49.5 (16.4)	51.0 (15.4)	0.965	48.2 (13.9)	44.1 (11.4)	0.000
HDL2-C, mg/dL	27.9 (13.2)	24.3 (10.8)	0.001	26.7 (9.2)	28.1 (10.8)	0.962	26.4 (9.5)	23.6 (6.9)	0.000
$\mathrm{HDL}_{3}-\mathrm{C}, \mathrm{mg} / \mathrm{dL}$	23.0 (5.5)	22.3 (5.0)	0.312	22.7 (4.9)	22.9 (6.0)	0.985	21.0 (5.1)	19.9 (4.9)	0.002
ApoE-HDL, mg/dL	4.7 (2.1)	4.2 (2.4)	0.030	4.7 (2.0)	4.7 (2.1)	0.968	4.0 (1.7)	3.6 (1.5)	0.000

* Obesity criteria based on Taiwanese criteria of $<$ or $\geq 27 \mathrm{~kg} / \mathrm{m}^{2}$, and all data are expressed as median (interquartile range). The prevalence of obesity was $18.5 \%, 27.5 \%$, and 40.4% in the
Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides; non HDL-C, Non HDL cholesterol.
Table 8. Effects of Obesity Status (Taiwanese Criteria) on Biochemical Variables in Normal, Prediabetic, and Diabetic Women*

Variables	NGT			PreDM			DM		
	$\begin{gathered} \mathrm{BMI}<27 \\ n=345 \end{gathered}$	$\begin{gathered} \mathrm{BMI} \geqq 27 \\ n=36 \end{gathered}$	P	$\begin{gathered} \mathrm{BMI}<27 \\ n=107 \end{gathered}$	$\begin{aligned} \mathrm{BMI} & \geqq 27 \\ n & =31 \end{aligned}$	P	$\begin{gathered} \mathrm{BMI}<27 \\ n=301 \end{gathered}$	$\begin{gathered} \mathrm{BMI} \geqq 27 \\ n=172 \end{gathered}$	P
Age, year	51.2 (16.5)	54.9 (23.6)	0.074	60.0 (18.8)	66.2 (18.8)	0.326	64.5 (12.5)	62.0 (14.0)	0.000
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	22.4 (3.6)	28.7 (2.6)	0.000	22.8 (3.2)	28.6 (2.5)	0.000	23.8 (3.3)	29.2 (3.8)	0.000
Systolic BP, mmHg	117.5 (19.0)	120.0 (17.5)	0.014	122.0 (17.0)	127.5 (19.5)	0.001	130.0 (13.5)	128.0 (10.0)	0.078
Diastolic BP, mmHg	69.0 (14.0)	77.0 (13.5)	0.003	70.0 (13.0)	75.5 (14.3)	0.049	70.0 (10.0)	70.0 (10.0)	0.907
Fasting Glucose, mg/dL	90.0 (9.0)	90.5 (8.3)	0.642	105.0 (10.5)	105.0 (12.5)	0.262	131.0 (41.0)	133.0 (40.3)	0.129
HbA1c, \%	5.4 (0.5)	5.6 (0.4)	0.550	5.9 (0.6)	6.0 (0.6)	0.039	6.9 (1.3)	7.0 (1.3)	0.138
Insulin,	8.0 (5.3)	11.3 (6.1)	0.000	11.3 (7.1)	18.4 (10.0)	0.001	10.9 (8.7)	16.8 (11.8)	0.008
HOMA-IR	1.8 (1.3)	2.5 (1.2)	0.000	2.9 (2.0)	4.8 (2.8)	0.005	3.6 (3.3)	5.6 (5.3)	0.005
HOMA- β	110.7 (72.6)	139.9 (97.9)	0.004	88.7 (62.0)	135.2 (82.3)	0.000	55.2 (52.7)	87.6 (69.7)	0.341
Lipids and Lipoproteins									
Total cholesterol, mg/dL	198.0 (49.0)	191.5 (43.8)	0.106	193.0 (41.0)	204.0 (44.4)	0.863	178.0 (38.0)	172.5 (32.6)	0.146
Triglycerides, mg/dL	84.0 (57.0)	109.6 (55.5)	0.259	117.0 (111.0)	116.0 (62.0)	0.956	116.0 (83.0)	125.5 (84.0)	0.303
RLP-C, mg/dL	5.1 (4.7)	6.2 (6.1)	0.732	8.6 (11.7)	7.0 (9.0)	0.514	5.7 (6.8)	7.2 (9.0)	0.399
LDL-C, mg/dL	117.4 (40.0)	113.4 (33.1)	0.768	117.7 (42.4)	113.4 (36.4)	0.694	105.9 (38.2)	108.2 (32.4)	0.402
calculated LDL-C, mg/dL	117.2 (42.9)	112.5 (40.0)	0.364	110.4 (41.8)	115.6 (37.8)	0.501	96.9 (31.7)	94.1 (31.6)	0.090
sdLDL-C, mg/dL	27.2 (17.3)	27.5 (12.2)	0.958	34.7 (20.8)	31.7 (22.5)	0.221	30.7 (19.2)	32.3 (19.2)	0.186
sdLDL-C/LDL-C ratio	0.230 (0.086)	0.245 (0.061)	0.762	0.298 (0.141)	0.269 (0.126)	0.213	0.285 (0.126)	0.295 (0.150)	0.224
lbLDL-C, mg/dL	88.0 (28.8)	85.9 (22.9)	0.699	82.3 (31.7)	80.6 (23.4)	0.774	74.1 (27.7)	75.2 (26.2)	0.883
LDL-TG, mg/dL	20.6 (9.4)	25.0 (9.4)	0.008	25.2 (12.1)	25.7 (8.7)	0.749	20.7 (7.7)	21.4 (9.3)	0.121
Non HDL-C, mg/dL	134.3 (48.5)	131.9 (49.5)	0.678	138.0 (44.4)	145.4 (39.7)	0.733	122.3 (38.5)	120.6 (31.1)	0.310
HDL-C, mg/dL	59.9 (18.6)	54.4 (17.8)	0.003	53.5 (16.4)	50.7 (15.6)	0.158	52.8 (16.6)	51.3 (12.7)	0.165
HDL2-C, mg/dL	35.1 (15.5)	30.6 (12.7)	0.005	29.6 (12.4)	28.4 (8.9)	0.165	29.9 (12.1)	28.8 (9.3)	0.050
$\mathrm{HDL}_{3}-\mathrm{C}, \mathrm{mg} / \mathrm{dL}$	25.1 (4.5)	24.2 (5.9)	0.036	24.0 (5.6)	23.3 (4.5)	0.345	22.9 (5.6)	22.7 (5.3)	0.896
ApoE-HDL, mg/dL	5.8 (2.2)	5.1 (2.2)	0.004	5.1 (2.2)	4.7 (2.4)	0.118	4.7 (2.0)	4.7 (1.8)	0.366

[^3]prediabetics and diabetics, there is substantial residual risk seen in these subjects on statin treatment ${ }^{19}$.

In the present study, fasting triglycerides were significantly higher in male and female prediabetic and diabetic subjects as compared with controls in all subjects, as well as in those on and off lipid-lowering medications, except for male prediabetics and female diabetics on lipid-lowering therapy. RLP-C levels were highest in prediabetics, and in this group, lipid-lowering treatment abolished these differences in men, but not in women. It is known that RLP-C may be an especially important CVD risk factor in women, and it is possible that the addition of fibrates or omega-3 fatty acids on top of statin therapy may be very important to minimize CVD risk ${ }^{46}$. With regard to direct LDL-C, calculated LDL-C, and lbLDL-C differences between prediabetes and diabetics versus control subjects were relatively small. An important novel finding in this study was that calculated LDL-C, using the Friedewald formula, significantly underestimated direct LDL-C with the assay used by slightly more than 10%. We therefore recommend the use of direct LDL-C in this population because it is the primary target of lipid-lowering therapy.

It should also be noted that sdLDL has been shown to be the more atherogenic component of LDL. Prediabetic subjects were most likely to have increases in this parameter, as compared with control subjects. However, sdLDL-C differences were greater in female prediabetic and diabetic subjects than in men, and the use of statin therapy in these subjects did not abolish differences in women. These finding indicate that possibly, either more intensive statin therapy or additional treatments such as fibrates or omega- 3 fatty acids may be necessary to treat elevated TG-rich lipoproteins and sdLDL-C in prediabetic and diabetic subjects to minimize residual CVD risk ${ }^{477}$.

LDL-TG, a new CVD marker, was highest in the prediabetic subjects, and statin therapy did not minimize these differences. Since a recent study has shown that LDL-TG levels are higher in CHD than in controls, our findings may be one of the reasons why prediabetes is linked to atherosclerosis ${ }^{322}$. However, it was unexpected that LDL-TG levels were lower in this population in diabetic subjects than in normal subjects. We have observed a modest positive correlation between HOMA_{β} and LDL-TG, and since diabetics have lower HOMA_{β} values, this may account for this difference. Whether this finding is also true in other populations remains to be confirmed. It should be noted that insulin deficiency and decreased HOMA_{β} appears to be more common among Asian diabetics than that observed in western Caucasian populations where obesity and insulin resistance may be more
common ${ }^{47,48)}$. This may also explain why we see differences in LDL-TG values in this population between prediabetic and diabetic subjects.

In addition, direct LDL-C levels were also lower in diabetic subjects, however, sdLDL-C levels were higher or similar to controls, resulting in sdLDL-C/ LDL-C ratios in patients with T2DM that were significantly higher than in any other group. A previous study in a Japanese population has assessed cholesterol and TG in twenty lipoprotein subfractions, and documented that smaller LDL particles carry less TG than larger LDL and VLDL particles ${ }^{499}$. From this viewpoint, it makes sense that LDL-TG levels are lower in diabetics than in controls, since the number of sdLDL particles increases in patients with diabetes. Our overall data indicate that attempts to normalize sdLDL-C and LDL-TG levels in prediabetic and diabetic subjects need to be made to normalize their CVD risk.

Diabetics in our population and female prediabetics had significantly lower levels of HDL-C and HDL subfractions than controls, placing them at increased CVD risk. We have observed significant correlations between HDL-C, HDL $3-\mathrm{C}, \mathrm{HDL}_{2}-\mathrm{C}$, and apoE-HDLC , and noted significantly lower values in diabetic men and prediabetic and diabetic women as compared to controls. These differences persisted for all parameters in patients on lipid-lowering treatment, except for HDL2-C. It is still uncertain whether apoE-rich HDL particles are athero-protective. Similarly, there is an ongoing debate as to whether serum $\mathrm{HDL}_{3}-\mathrm{C}$ is cardioprotective. While serum glucose levels in prediabetes are not high enough to be diagnosed as diabetes, overall, their lipid values are similar to those in diabetics. Our findings on the pattern of lipid profiles support the concept that CVD risk in prediabetics may be as high as in those with diabetes.

The strength of this study is the relatively large number of participants in the 3 groups for both genders. Moreover, we examined subjects on and off statin therapy. The data trends were very similar in all groups. In addition, all subjects were on stable therapy for their lipid alterations as well as for diabetes if present for at least 6 months prior to the study. While absolute values of lipid parameters are known to be influenced by lipid medications, the trends and differences observed when normal, prediabetics, and diabetics were compared, was not greatly different. The participants with diabetes were also taking anti-diabetes medications, mostly metformin, but all subjects receiving insulin were excluded. Metformin and other glu-cose-lowering medication may affect lipid profiles, but do not cause rapid changes since their diabetic conditions were stable and their medications were not changed for at least 6 months. While we only studied a Tai-
wanese population, another limitation of this study, these findings need to be replicated in other populations using these newer lipoprotein assays. It should be noted that our study was cross-sectional, and prospective treatment studies in diabetics or prediabetics need to be performed on order to further assess potential changes in the various lipoprotein fractions measured.

Conclusion

In summary, we compared novel lipoprotein parameters in normal, prediabetic and diabetic subjects. Prediabetic subjects were more likely to have elevated TG, RLP-C, sdLDL-C, and LDL-TG, while diabetic subjects were more likely to have decreases in HDL-C and HDL subfractions than normal subjects. These findings indicate that in this large Asian population, prediabetes is associated with greater increases in atherogenic lipoproteins, while diabetes is more likely to be associated with low levels of HDL and its subfractions. These findings suggest that insulin resistance, as seen in prediabetics, plays an important role in modulating changes TG-rich lipoproteins, while both insulin resistance and impaired insulin production, as seen in the diabetic state, may be more important in the regulation of HDL and its subfractions. In our view, both increases in atherogenic lipoproteins and decreases in HDL and its subfractions modulates CVD risk. Weight loss may be the best strategy to improve these abnormalities, and in the case of atherogenic lipoproteins, the combination of statins, fibrates, and omega-3 fatty acids. Moreover, our data indicate that calculated LDL-C significantly underestimated direct LDL-C in subjects with diabetes. In our view, direct LDL-C and sdLDL-C should be measured and optimized in both diabetic and prediabetic subjects to reduce CVD risk.

Acknowledgements

The contribution of all participants in this study is gratefully acknowledged and gratefully appreciated. Also, the authors thank Dr. Margaret Diffenderfer for assistance in manuscript preparation.

Funding

This study was supported by the research funding of the Lotung Poh-ai Hospital, Lotung, Taiwan. The research project reference AEP2017070059

Conflict of Interests

YI is an employee of Denka-Seiken Corporation,

MA is supported by a research grant from DenkaSeiken Co., Tokyo, Japan. All other authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval

The research was approved by the ethics committee of the School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan. (Reference number: M2000-2350).

Contributorship

HH and MA designed and conducted the study. HH, PH, and MHC recruited study subjects and collected data. HH, EK, and MA, analyzed the data. HH, MA, and EJS wrote the first version of the manuscript. All authors reviewed and edited the manuscript and approved the final version of the manuscript.

References

1) Siegel RD, Cupples A, Schaefer EJ, and Wilson PW: Apolipoproteins, and low-density lipoprotein size among diabetics in the Framingham offspring study, Metabolism. 1996; 45: 1267-1272
2) Ai M, Tanaka A, Ogita K, Sekinc M, Numano F, Numano F, and Reaven GM: Relationship between plasma insulin concentration and plasma remnant lipoprotein response to an oral fat load in patients with type 2 diabetes, J Am Coll Cardiol. 2001; 38: 1628-1632
3) Schaefer EJ, McNamara JR, Shah PK, Nakajima K, Cupples LA, Ordovas JM, and Wilson PW: Elevated remnantlike particle cholesterol and triglyceride levels in diabetic men and women in the Framingham Offspring Study. Diabetes Care, 2002; 25: 989-994
4) Hirano T, Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb. 2018; 25: 771-782
5) Brannick B, and Dagogo-Jack S, Prediabetes and cardiovascular disease: pathophysiology and interventions for prevention and risk reduction. Endocrinol Metab Clin North Am. 2018; 47: 33-50
6) Turner RC, Millns H, Neil HAW, Stratton IM, Manley SE, Matthews DR, and Holman RR: Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ. 1998; 316: 823-828
7) Pyörälä K, Pedersen TR, Kjekshus J, Faergeman O, Olsson AG, and Thorgeirsson G: Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease: a subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care. 1997; 20: 614-620
8) Goldberg RB, Mellies MJ, Sacks FM, Moyé LA, Howard BV, Howard WJ, Davis BR, Cole TG, Pfeffer MA, and Braunwald E: Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myo-
cardial infarction survivors with average cholesterol levels: subgroup analyses in the cholesterol and recurrent events (CARE) trial. Circulation. 1998; 98: 2513-2519
9) Keech A, Colquhoun D, Best J, Kirby A, Simes RJ, Hunt D, Hague W, Beller E, Arulchelvam M, Baker J, and Tonkin A: Secondary prevention of cardiovascular events with long-term pravastatin in patients with diabetes or impaired fasting glucose: results from the LIPID trial. Diabetes Care. 2003; 26: 2713-2721
10) Collins R, Armitage J, Parish S, Sleigh P, and Peto R: MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003; 361: 20052016
11) Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HAW, Livingstone SJ, Thomason MJ, Mackness MI, Charlton-Menys V, Fuller JH, and CARDS Investigators: Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004; 364: 685-696
12) Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D'agostino RB, Gibbons R, Greenland P, Lackland DT, Levy D, O'Donnel CJ, Robinson JG, Schwartz JS, Shero ST, Smith SC, Sorlie P, Stone NJ, and Wilson PWF: 2013 ACC/ AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014; 63: 2935-2959
13) Stone NJ, Robinson JG, Lichtenstein AH, Merz CNB, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC, Watson K, and Wilson PWF: 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014; 63: 2889-2934
14) American Diabetes Association. Cardiovascular disease and risk management: standards of medical care in diabetes - 2018. Diabetes Care. 2018; 41: S86-S104
15) Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, Braunwald E, and Sabatine MS: Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA. 2016; 316 : 1289-1297
16) Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD, DePalma SM, Minissian MB, Orringer CE, SC Smith and Writing Committee: 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2016; 68: 92-125
17) DAROC Clinical Practice Guidelines for Diabetes Care2018, Taiwan, Diabetes Association of the ROC, 2018
18) Taiwan National Health Insurance Medication Prescription Guidelines- 2018, Section 2 - Cardiovascular-renal drugs, Taiwan, Ministry of Health and Welfare, National

Health Insurance Administration
19) Teramoto T, Sasaki J, Ishibashi S, Birou S, Daida H, Dohi S, Egusa G, Hiro T, Hirobe K, Iida M, Kihara S, Kinoshita M, Maruyama C, Ohta T, Okamura T, Yamashita S, Yokode M, and Yokote K: Executive summary of the Japan Atherosclerosis Society (JAS) guidelines for the diagnosis and prevention of atherosclerotic cardiovascular diseases in Japan - 2012 version. J Atheroscler Thromb. 2013; 20: 517-523
20) ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010; 362: 1563-1574
21) Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, and Krauss RM: Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA. 1988; 260: 1917-1921
22) Campos H, Genest JJ, Blijlevens E, McNamara JR, Jenner JL, Ordovas JM, Wilson PWF and Schaefer EJ: Low density lipoprotein particle size and coronary artery disease. Arterioscler Thromb. 1992; 12: 187-195
23) McNamara JR, Jenner JL, Li Z, Wilson PW, and Schaefer EJ: Change in LDL particle size is associated with change in plasma triglyceride concentration. Arterioscler Thromb. 1992; 12: 1284-1290
24) Hirano T, Ito Y, Saegusa H, Yoshino G: A novel and simple method for quantification of small, dense LDL. J Lipid Res. 2003; 44: 2193-2201
25) Ito Y, Fujimura M, Ohta M, Hirano T: Development of a homogeneous assay for measurement of small dense LDL cholesterol. CLIN CHEM. 2011; 57: 57-65
26) Koba S, Yokota Y, Hirano T, Ito Y, Ban Y, Tsunoda F, Sato T, Shoji M, Suzuki H, Geshi E, Kobayashi Y and Katagiri T: Small LDL-cholesterol is superior to LDL-cholesterol for determining severe coronary atherosclerosis. J Atheroscler Thromb. 2008; 15: 250-260
27) Ai M, Otokozawa S, Asztalos BF, Ito Y, Nakajima K, White CC, Cupples LA, Wilson PW, and Schaefer EJ: Small dense LDL cholesterol and coronary heart disease: results from the Framingham Offspring Study. Clin Chem. 2010; 56: 967-976
28) Arai H, Kokubo Y, Watanabe M, Sawamura T, Ito Y, Minagawa A, Okamura T, and Miyamato Y: Small dense low-density lipoproteins cholesterol can predict incident cardiovascular disease in an urban Japanese cohort: the Suita study. J Atheroscler Thromb. 2013; 20: 195-203
29) Hoogeveen RC, Gaubatz JW, Sun W, Dodge RC, Crosby JR, Jiang J, Couper D, Virani SS, Kathiresan S, Boerwinkle E, and Ballantyne CM: Small dense low-density lipo-protein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler Thromb Vasc Biol. 2014; 34: 1069-1077
30) Tsai MY, Steffen BT, Guan W, McClelland RL, Warnick R, McConnell J, Hoefner DM, and Remaley AT: New automated assay of small dense low-density lipoprotein cholesterol identifies risk of coronary heart disease: the Multi-ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2014; 34: 196-201
31) März W, Scharnagl H, Winkler K, Tiran A, Nauck M, Boehm BO, and Winkelmann BR: Low-density lipoprotein triglycerides associated with low-grade systemic inflam-
mation, adhesion molecules, and angiographic coronary artery disease, the Ludwigshafen Risk and Cardiovascular Health study. Circulation. 2004; 110: 3068-3074
32) Ito Y, Ohta M, Ikezaki H, Hirao Y, Machida A, Schaefer EJ, and Furusyo N: Development and population results of a fully automated homogeneous assay for LDL triglyceride. JALM. 2017; 2: 746-756
33) Saeed A, Feofanova EV, Yu B, Sun W, Virani SS, Nambi V, Coresh J, Guild CS, Boerwinkle E, Ballantyne CM, and Hoogeveen RC: Remnant-Like Particle Cholesterol, Low-Density Lipoprotein Triglycerides, and Incident Cardiovascular Disease. J Am Coll Cardiol. 2018; 72: 156169
34) Hsu P, Ai M, Kanda E, Yu NC, Chen HL, Chen HW, Cheng MH, Kohzuma T, Schaefer EJ, and Yoshida M: A comparison of glycated albumin and glycosylated hemoglobin for the screening of diabetes mellitus in Taiwan. Atherosclerosis, 2015; 242: 327-333
35) Obesity definition: Health Promotion Administration. Ministry of Health and Welfare, Taiwan ROC. (http:// health99.hpa.gov.tw/OnlinkHealth/BMI.html) last access 3rd January 2019
36) Chang HC, Yang HC, Chang HY, Yeh CJ, Chen HH, Huang KC, and Pan WH. Morbid obesity in Taiwan: Prevalence, trends, associated social demographics, and lifestyle factors. PLoS ONE 2017; 12: e0169577
37) Japan Society for the Study of Obesity. New Criteria for 'Obesity Disease' in Japan. The Examination Committee of Criteria for 'Obesity Disease' in Japan. Circ J. 2002; 66: 987-992
38) Otokozawa S, Ai M, Asztalos BF, White CC, DemissieBanjaw S, Cupples LA, Nakajima K, Wilson PWF, and Schaefer, E. J. Direct assessment of plasma low density lipoprotein and high density lipoprotein cholesterol levels and coronary heart disease: results from the Framingham Offspring Study. Atherosclerosis. 2010; 213: 251-255
39) Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18: 499-502
40) Hirao Y, Nakajima K, Machida T, Murakami M, Ito Y: Development of a novel homogeneous assay for remnant lipoprotein particle holesterol. JALM. 2018; 3: 26-36
41) Qi Y, Liu J, Wang W, Wang M, Zhao F, Sun J, Liu J and Zhao D: Apolipoprotein E-containing high-density lipo-
protein (HDL) modifies the impact of cholesterol-overloaded HDL on incident coronary heart disease risk: A community-based cohort study. J Clin Lipidol. 2018; 12: 89-98
42) Ito Y, Satoh N, Ishii T, Kumakura J, and Hirano T: Development of a homogeneous assay for measurement of high-density lipoprotein-subclass cholesterol. Clin Chim Acta. 2014; 427: 86-93
43) Takahashi Y, Ito Y, Sakurai T, Wada N, Nagasaka A, Fujikawa M, Chiba H, and Hui SP: A Two-step homogeneous assay for apoE-containing HDL-cholesterol. Ann Clin Biochem. 2018: 56; 123-132
44) Turner RC, Holman RR, Matthews D, Hockaday TDR, and Peto J: Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism. 1979; 28: 1086-1096
45) Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, and Turner RC: Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28: 412-419
46) Ai M, Otokozawa S, Asztalos BF, Nakajima K, Stein E, Jones PH, and Schaefer EJ: Effects of maximal doses of atorvastatin versus rosuvastatin on small dense low-density lipoprotein cholesterol levels. J Am Coll Cardiol. 2008; 101: 315-318
47) Ikezaki H, Ai M, Schaefer EJ, Otokozawa S, Asztalos BF, Nakajima K, Zhou Y, Liu CT, Jacques PF, Cupples LA, and Furusyo N : Ethnic differences in glucose homeostasis markers between the Kyushu-Okinawa Population Study and the Framingham Offspring Study. Sci Rep. 2016; 6: 36725
48) Ikezaki H, Ai M, Schaefer EJ, Otokozawa S, Asztalos BF, Nakajima K, Zhou Y, Liu CT, Jacques PF, Cupples LA, and Furusyo N : Cardiovascular disease prevalence and insulin resistance in the Kyushu-Okinawa Population Study and the Framingham Offspring Study. J Clin Lipidol. 2017; 11: 348-356
49) Furusyo N, Ai M, Okazaki M, Ikezaki H, Ihara T, Hayashi T, Hiramine S, Ura K, Kohzuma T, Schaefer EJ and Hayashi J: Serum cholesterol and triglyceride reference ranges of twenty lipoprotein subclasses for healthy Japanese men and women. Atherosclerosis, 2013; 231: 238245
Supplemental Table 1. Effects of Obesity Status (Japanese Criteria) on Biochemical Variables in Normal, Prediabetic, and Diabetic Men*

Variables	NGT			PreDM			DM		
	$\begin{gathered} \mathrm{BMI}<25 \\ n=162 \end{gathered}$	$\begin{gathered} \mathrm{BMI} \geqq 25 \\ n=108 \end{gathered}$	P	$\begin{gathered} \mathrm{BMI}<25 \\ n=94 \end{gathered}$	$\begin{gathered} \mathrm{BMI} \geqq 25 \\ n=99 \end{gathered}$	P	$\begin{gathered} \mathrm{BMI}<25 \\ n=206 \end{gathered}$	$\begin{gathered} \mathrm{BMI} \geqq 25 \\ n=331 \end{gathered}$	P
Age, year	56.1 (21.0)	54.0 (20.7)	0.334	61.5 (19.3)	59.6 (18.0)	0.457	63.8 (15.9)	60.4 (14.2)	0.000
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	22.6 (2.6)	26.7 (3.1)	0.000	23.2 (2.4)	27.2 (3.1)	0.000	23.1 (2.1)	28.0 (3.7)	0.000
Systolic BP, mmHg	121.0 (17.0)	124.0 (16.0)	0.009	123.0 (20.0)	130.0 (23.8)	0.000	130.0 (11.0)	130.0 (14.0)	0.836
Diastolic BP, mmHg	71.0 (15.0)	77.0 (12.0)	0.002	74.0 (14.0)	80.0 (13.8)	0.002	70.0 (10.0)	70.0 (10.0)	0.375
Fasting Glucose, mg/dL	92.0 (8.0)	93.0 (7.0)	0.046	104.5 (8.0)	105.0 (9.0)	0.496	134.5 (42.8)	133.0 (36.5)	0.934
HbA1c, \%	5.5 (0.4)	5.5 (0.4)	0.215	5.8 (0.4)	5.8 (0.5)	0.671	6.8 (1.2)	7.0 (1.3)	0.078
Insulin,	6.3 (4.9)	11.9 (8.9)	0.000	8.8 (4.3)	13.0 (10.5)	0.000	7.5 (6.0)	13.3 (11.0)	0.000
HOMA-IR	1.4 (1.1)	2.6 (2.1)	0.000	2.3 (1.4)	3.5 (3.0)	0.000	2.6 (2.1)	4.4 (4.1)	0.000
HOMA- β	82.9 (61.0)	150.2 (111.6)	0.000	76.3 (39.0)	110.8 (81.4)	0.000	40.5 (44.5)	69.1 (66.4)	0.000
Lipids and Lipoproteins									
Total cholesterol, mg/dL	193.0 (53.0)	190.5 (58.3)	0.828	189.5 (45.3)	190.0 (41.0)	0.255	171.0 (37.8)	171.0 (42.0)	0.968
Triglycerides, mg/dL	94.0 (54.5)	125.0 (90.3)	0.000	108.0 (76.0)	142.0 (94.5)	0.004	102.0 (75.8)	128.0 (94.5)	0.000
RLP-C, mg/dL	5.7 (6.0)	8.3 (11.9)	0.593	7.1 (8.5)	10.1 (10.6)	0.018	5.0 (6.3)	7.9 (10.0)	0.002
LDL-C, mg/dL	111.4 (43.2)	113.8 (51.5)	0.480	107.3 (42.7)	118.3 (47.4)	0.031	106.8 (32.0)	106.6 (33.4)	0.448
calculated LDL-C, mg/dL	118.6 (50.1)	109.9 (46.5)	0.691	113.6 (43.4)	111.5 (42.5)	0.526	94.3 (30.6)	94.1 (36.1)	0.910
sdLDL-C, mg/dL	28.3 (18.8)	33.5 (29.1)	0.001	29.6 (19.8)	39.5 (24.1)	0.000	29.2 (18.7)	35.4 (21.9)	0.000
sdLDL-C/LDL-C ratio	0.247 (0.104)	0.289 (0.144)	0.000	0.272 (0.136)	0.317 (0.170)	0.003	0.267 (0.111)	0.320 (0.172)	0.000
lbLDL-C, mg/dL	81.9 (35.5)	77.8 (34.1)	0.170	78.1 (28.6)	79.5 (37.1)	0.631	75.5 (25.4)	72.1 (28.0)	0.028
LDL-TG, mg/dL	20.8 (10.3)	24.2 (11.4)	0.000	21.8 (8.1)	25.4 (10.1)	0.000	18.3 (7.6)	20.1 (7.8)	0.012
Non HDL-C, mg/dL	140.9 (53.8)	139.7 (58.9)	0.268	139.0 (42.3)	139.0 (45.8)	0.108	119.5 (33.9)	125.1 (37.4)	0.052
HDL-C, mg/dL	53.0 (19.1)	47.1 (16.7)	0.000	49.9 (18.0)	50.1 (14.2)	0.320	50.1 (15.0)	44.6 (11.5)	0.000
HDL2-C, mg/dL	29.1 (13.6)	24.4 (9.7)	0.000	26.8 (11.1)	27.1 (9.6)	0.475	27.4 (10.3)	24.0 (7.1)	0.000
$\mathrm{HDL}_{3}-\mathrm{C}, \mathrm{mg} / \mathrm{dL}$	23.3 (5.6)	22.3 (5.4)	0.172	22.8 (5.3)	22.5 (5.4)	0.190	21.1 (4.9)	20.3 (5.1)	0.012
ApoE-HDL, mg/dL	4.8 (2.3)	4.3 (2.2)	0.001	4.7 (2.2)	4.7 (1.9)	0.515	4.2 (1.8)	3.7 (1.5)	0.000

[^4]Supplemental Table 2. Effects of Obesity Status (Japanese Criteria) on Biochemical Variables in Normal, Prediabetic, and Diabetic Women*

Variables	Normal			PreDM			Diabetic		
	$\begin{gathered} \mathrm{BMI}<25 \\ n=291 \end{gathered}$	$\begin{gathered} \mathrm{BMI} \geqq 25 \\ n=90 \end{gathered}$	P	$\begin{gathered} \mathrm{BMI}<25 \\ n=88 \end{gathered}$	$\begin{gathered} \mathrm{BMI} \geqq 25 \\ n=50 \end{gathered}$	P	$\begin{gathered} \mathrm{BMI}<25 \\ n=214 \end{gathered}$	$\begin{gathered} \text { BMI } \geqq 25 \\ n=259 \end{gathered}$	P
Age, year	50.5 (16.7)	53.9 (19.8)	0.009	58.1 (18.2)	66.7 (17.2)	0.077	64.5 (13.2)	62.8 (12.9)	0.014
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	21.8 (2.9)	26.6 (2.2)	0.000	22.3 (2.6)	28.0 (3.8)	0.000	22.9 (2.6)	27.9 (3.9)	0.000
Systolic BP, mmHg	116.5 (20.0)	121.0 (13.0)	0.002	122.0 (20.0)	125.0 (16.0)	0.004	130.0 (14.0)	130.0 (15.0)	0.076
Diastolic BP, mmHg	68.0 (14.0)	73.0 (12.5)	0.000	70.0 (12.3)	72.0 (15.5)	0.260	70.0 (10.0)	70.0 (10.0)	0.728
Fasting Glucose, mg/dL	89.0 (8.0)	92.0 (8.0)	0.022	105.0 (11.3)	105.0 (10.8)	0.356	131.0 (39.5)	133.0 (41.0)	0.040
HbA1c, \%	5.4 (0.5)	5.6 (0.4)	0.001	5.9 (0.6)	6.0 (0.6)	0.012	6.9 (1.1)	7.0 (1.3)	0.037
Insulin,	7.5 (5.5)	10.7 (5.6)	0.000	11.1 (7.4)	14.8 (10.3)	0.002	9.4 (8.1)	15.7 (11.5)	0.000
HOMA-IR	1.6 (1.3)	2.3 (1.2)	0.000	2.8 (2.2)	4.0 (2.8)	0.011	3.3 (2.7)	5.3 (4.9)	0.000
HOMA- β	108.0 (71.9)	138.5 (102.6)	0.000	87.0 (59.5)	122.4 (74.0)	0.000	52.8 (49.3)	81.7 (77.6)	0.111
Lipids and Lipoproteins									
Total cholesterol, mg/dL	198.0 (49.0)	194.0 (47.9)	0.645	192.5 (42.8)	196.5 (45.0)	0.659	177.5 (35.1)	174.0 (38.5)	0.613
Triglycerides, mg/dL	80.0 (56.0)	108.6 (73.0)	0.000	114.5 (115.8)	126.0 (73.8)	0.295	116.0 (83.0)	122.0 (82.5)	0.133
RLP-C, mg/dL	4.7 (4.2)	6.8 (6.4)	0.980	7.9 (11.5)	9.0 (9.3)	0.626	5.4 (6.4)	6.8 (8.8)	0.129
LDL-C, mg/dL	115.0 (40.1)	119.6 (39.4)	0.180	117.6 (41.3)	113.9 (40.8)	0.918	105.1 (39.9)	108.4 (31.7)	0.219
calculated LDL-C, mg/dL	116.8 (41.4)	114.6 (45.5)	0.899	108.6 (41.3)	115.2 (38.7)	0.381	97.5 (32.0)	94.4 (32.5)	0.335
sdLDL-C, mg/dL	26.4 (15.0)	31.6 (19.4)	0.008	33.6 (20.5)	34.5 (22.5)	0.952	31.4 (18.8)	31.5 (20.2)	0.092
sdLDL-C/LDL-C ratio	0.226 (0.080)	0.256 (0.097)	0.003	0.294 (0.132)	0.275 (0.115)	0.913	0.285 (0.116)	0.293 (0.147)	0.122
lbLDL-C, mg/dL	87.8 (27.9)	87.5 (27.8)	0.824	82.6 (32.1)	80.6 (25.8)	0.920	72.3 (27.7)	75.6 (26.7)	0.673
LDL-TG, mg/dL	20.1 (8.3)	25.1 (9.1)	0.000	23.4 (11.1)	26.2 (8.8)	0.139	20.4 (7.6)	21.4 (8.6)	0.212
Non-HDL-C, mg/dL	131.3 (49.3)	137.3 (46.3)	0.241	135.8 (44.5)	145.2 (38.9)	0.217	121.6 (39.5)	122.0 (34.2)	0.988
HDL-C, mg/dL	60.8 (19.3)	55.6 (14.6)	0.000	53.8 (17.0)	51.1 (12.8)	0.030	53.0 (16.2)	51.8 (13.5)	0.157
HDL2-C, mg/dL	36.0 (16.2)	30.8 (12.1)	0.000	30.4 (12.7)	28.1 (9.2)	0.014	30.1 (12.4)	28.9 (9.7)	0.050
HDL $3-\mathrm{C}, \mathrm{mg} / \mathrm{dL}$	25.2 (4.6)	24.9 (4.3)	0.037	24.0 (5.4)	23.3 (5.2)	0.493	23.0 (5.7)	22.6 (5.5)	0.957
ApoE-HDL, mg/dL	5.9 (2.4)	5.3 (1.8)	0.000	5.3 (2.1)	4.8 (1.9)	0.029	4.7 (2.0)	4.7 (1.8)	0.479

[^5]Supplemental Table 3. Comparison of variables between normal participants with or without using statin*

Variables	Male Participants		p	Female Participants		p
	$\begin{aligned} & \text { Statin- } \\ & (n=207) \end{aligned}$	Statin + $(n=62)$		$\begin{aligned} & \text { Statin- } \\ & (n=324) \end{aligned}$	$\begin{aligned} & \text { Statin + } \\ & (n=60) \end{aligned}$	
Age, year	52.2 (18.3)	66.0 (16.2)	0.000	49.3 (12.9)	69.5 (13.0)	0.000
BMI, kg/m ${ }^{2}$	23.9 (4.1)	24.7 (3.4)	0.044	22.5 (4.0)	24.0 (4.1)	0.001
Obesity Prevalence	36 (17.4\%)**	14 (22.6\%)**	0.009	25 (7.7\%)**	10 (16.7\%)**	0.003
Systolic BP, mmHg	122.0 (15.8)	130.0 (15.3)	0.097	117.0 (19.0)	129.5 (18.3)	0.000
Diastolic BP, mmHg	74.0 (13.0)	75.0 (10.8)	0.348	68.0 (14.0)	76.0 (10.5)	0.020
Fasting Glucose, mg/dL	92.0 (7.5)	94.0 (7.0)	0.182	89.5 (8.0)	92.0 (8.5)	0.000
HbA1c, \%	5.5 (0.4)	5.6 (0.3)	0.584	5.4 (0.4)	5.6 (0.5)	0.000
Insulin,	7.9 (7.4)	8.5 (6.8)	0.494	7.9 (5.6)	10.1 (7.6)	0.004
HOMA-IR	1.8 (1.6)	1.9 (1.5)	0.578	1.8 (1.3)	2.3 (1.7)	0.001
HOMA- β	99.5 (96.2)	104.0 (68.5)	0.271	110.7 (76.0)	128.9 (85.5)	0.483
Lipids and Lipoproteins						
Total cholesterol, mg/dL	196.1 (50.5)	175.5 (57.2)	0.056	198.0 (47.3)	193.8 (56.0)	0.767
Triglycerides, mg/dL	103.0 (79.5)	100.5 (47.3)	0.260	81.0 (57.5)	107.6 (68.3)	0.000
RLP-C, mg/dL	6.3 (8.2)	5.7 (5.6)	0.309	4.8 (4.2)	7.4 (5.8)	0.842
LDL-C, mg/dL	116.7 (44.8)	102.1 (46.0)	0.194	117.7 (39.2)	112.5 (40.6)	0.285
calculated LDL-C, mg/dL	119.2 (44.3)	100.6 (51.9)	0.078	117.3 (40.7)	111.2 (52.1)	0.342
sdLDL-C, mg/dL	30.7 (22.9)	27.5 (15.0)	0.216	26.5 (16.8)	30.0 (17.2)	0.218
sdLDL-C/LDL-C ratio	0.256 (0.118)	0.265 (0.070)	0.460	0.226 (0.081)	0.278 (0.091)	0.000
lbLDL-C, mg/dL	84.9 (33.0)	76.0 (32.7)	0.324	89.8 (27.4)	81.7 (31.4)	0.019
LDL-TG, mg/dL	22.1 (11.3)	22.0 (8.2)	0.419	20.1 (9.9)	23.8 (6.1)	0.001
Non HDL-C, mg/dL	142.9 (52.2)	122.9 (51.7)	0.062	133.4 (48.1)	135.9 (53.9)	0.696
HDL-C, mg/dL	51.6 (18.1)	49.9 (16.0)	0.729	59.9 (18.8)	58.2 (15.4)	0.088
HDL2-C, mg/dL	27.6 (13.0)	26.4 (12.9)	0.961	34.7 (16.1)	32.1 (11.1)	0.074
HDL3-C, mg/dL	23.0 (5.8)	22.8 (4.2)	0.279	25.1 (4.7)	24.9 (3.9)	0.534
ApoE-HDL, mg/dL	4.6 (2.1)	4.5 (2.5)	0.962	5.7 (2.3)	5.8 (2.0)	0.354

* Data are expressed as median (interquartile range).
** Data are expressed as number of obese participant (percentage of obese participants) (BMI $\geq 27 \mathrm{~kg} / \mathrm{m}^{2}$).
Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides

Supplemental Table 4. Comparison of variables between prediabetic participants with or without using statin*

Variables	Male Participants		p	Female Participants		p
	Statin - $(n=117)$	Statin + $(n=79)$		Statin - $(n=90)$	Statin + $(n=52)$	
Age, year	54.5 (18.5)	66.0 (12.7)	0.000	54.7 (19.2)	68.0 (12.8)	0.000
BMI, kg/m ${ }^{2}$	25.3 (4.0)	25.0 (4.1)	0.067	24.1 (5.2)	23.5 (4.5)	0.079
Obesity Prevalence	$36(30.8 \%)^{* *}$	16 (20.3\%)**	0.888	23 (25.5\%) ${ }^{* *}$	$8(15.4 \%)^{* *}$	0.371
Systolic BP, mmHg	130.0 (22.0)	127.0 (12.0)	0.309	120.0 (17.0)	130.0 (10.0)	0.041
Diastolic BP, mmHg	77.0 (17.0)	75.0 (11.0)	0.170	70.5 (11.8)	77.0 (12.0)	0.136
Fasting Glucose, mg/dL	105.0 (10.0)	106.0 (8.5)	0.563	105.0 (11.0)	104.5 (10.3)	0.158
HbAlc, \%	5.8 (0.5)	5.9 (0.4)	0.807	5.8 (0.7)	5.9 (0.4)	0.544
Insulin,	10.6 (8.9)	11.2 (8.0)	0.319	11.9 (8.2)	13.4 (10.2)	0.566
HOMA-IR	2.7 (2.3)	3.0 (2.1)	0.449	3.2 (2.2)	3.4 (2.6)	0.899
HOMA- β	85.1 (63.5)	90.4 (51.9)	0.254	95.7 (64.5)	116.4 (75.1)	0.065
Lipids and Lipoproteins						
Total cholesterol, mg/dL	192.0 (32.0)	184.0 (56.0)	0.306	194.5 (38.5)	193.5 (54.5)	0.234
Triglycerides, mg/dL	133.0 (99.0)	111.0 (69.0)	0.119	106.5 (82.8)	131.5 (106.3)	0.002
RLP-C, mg/dL	10.1 (11.6)	7.4 (8.3)	0.029	7.0 (8.4)	9.5 (14.6)	0.012
LDL-C, mg/dL	115.5 (40.9)	106.7 (48.8)	0.579	118.1 (39.5)	110.0 (49.0)	0.124
calculated LDL-C, mg/dL	114.1 (38.0)	106.9 (47.7)	0.912	113.5 (36.2)	106.3 (55.2)	0.055
sdLDL-C, mg/dL	34.9 (26.1)	33.4 (22.4)	0.369	32.5 (22.5)	35.8 (21.4)	0.271
sdLDL-C/LDL-C ratio	0.310 (0.164)	0.288 (0.121)	0.356	0.272 (0.103)	0.330 (0.136)	0.002
lbLDL-C, mg/dL	79.7 (32.5)	73.8 (31.0)	0.902	84.4 (22.7)	72.2 (29.5)	0.004
LDL-TG, mg/dL	23.4 (10.9)	22.9 (8.8)	0.259	23.3 (10.6)	26.9 (10.1)	0.168
Non HDL-C, mg/dL	141.6 (33.2)	131.1 (50.3)	0.320	139.7 (38.8)	138.5 (54.9)	0.614
HDL-C, mg/dL	51.4 (18.0)	49.4 (13.8)	0.846	53.6 (16.7)	51.0 (12.6)	0.054
HDL2-C, mg/dL	26.3 (12.4)	27.1 (7.9)	0.851	29.8 (13.7)	26.1 (9.1)	0.059
$\mathrm{HDL}_{3}-\mathrm{C}, \mathrm{mg} / \mathrm{dL}$	22.9 (5.5)	22.5 (5.3)	0.888	23.9 (5.4)	22.8 (4.9)	0.205
ApoE-HDL, mg/dL	4.8 (2.1)	4.6 (1.9)	0.919	5.2 (2.3)	4.9 (1.4)	0.259

* Data are expressed as median (interquartile range).
** Data are expressed as number of obese participant (percentage of obese participants) (BMI $\geq 27 \mathrm{~kg} / \mathrm{m}^{2}$).
Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides

Supplemental Table 5. Comparison of variables between diabetic participants with or without using statin*

Variables	Male Participants		p	Female Participants		p
	$\begin{aligned} & \text { Statin - } \\ & (n=281) \end{aligned}$	$\begin{aligned} & \text { Statin + } \\ & (n=206) \end{aligned}$		$\begin{aligned} & \text { Statin- } \\ & (n=208) \end{aligned}$	$\begin{aligned} & \text { Statin + } \\ & (n=227) \end{aligned}$	
Age, year	61.9 (13.4)	62.4 (15.2)	0.521	63.6 (11.9)	64.3 (13.1)	0.286
BMI, kg/m ${ }^{2}$	25.4 (4.7)	26.6 (4.9)	0.007	24.8 (4.8)	26.2 (5.4)	0.001
Obesity Prevalence	$94(33.5 \%)^{* *}$	88 (42.7\%)**	0.001	57 (27.4\%) ${ }^{* *}$	94 (41.4\%)**	0.058
Systolic BP, mmHg	130.0 (14.0)	130.0 (10.0)	0.945	130.0 (19.5)	130.0 (10.0)	0.352
Diastolic BP, mmHg	76.0 (10.0)	70.0 (10.0)	0.419	70.0 (10.0)	70.0 (10.0)	0.257
Fasting Glucose, mg/dL	134.0 (35.0)	132.0 (39.8)	0.311	132.0 (39.5)	131.0 (42.0)	0.618
HbAlc, \%	6.9 (1.1)	6.8 (1.4)	0.657	7.0 (1.2)	6.9 (1.3)	0.189
Insulin,	10.5 (10.7)	10.4 (7.9)	0.495	12.0 (9.4)	13.7 (10.5)	0.644
HOMA-IR	3.3 (3.7)	3.5 (3.0)	0.611	4.0 (3.6)	4.6 (3.9)	0.757
HOMA- β	55.2 (61.7)	60.0 (56.7)	0.522	60.9 (60.0)	69.2 (72.7)	0.155
Lipids and Lipoproteins						
Total cholesterol, mg/dL	171.0 (33.0)	168.0 (50.8)	0.214	178.0 (31.1)	172.0 (41.0)	0.971
Triglycerides, mg/dL	116.0 (91.0)	118.0 (88.3)	0.579	118.0 (75.0)	120.0 (78.0)	0.126
RLP-C, mg/dL	5.6 (8.0)	7.3 (9.4)	0.133	5.3 (6.1)	6.8 (8.7)	0.073
LDL-C, mg/dL	107.2 (30.1)	104.7 (40.9)	0.087	108.4 (29.7)	104.1 (39.6)	0.655
calculated LDL-C, mg/dL	94.1 (30.9)	92.7 (40.5)	0.141	101.0 (27.1)	91.3 (34.7)	0.099
sdLDL-C, mg/dL	31.8 (18.8)	33.2 (21.0)	0.056	29.4 (19.9)	32.8 (16.9)	0.039
sdLDL-C/LDL-C ratio	0.288 (0.139)	0.304 (0.140)	0.298	0.272 (0.124)	0.301 (0.131)	0.011
lbLDL-C, mg/dL	74.6 (25.2)	72.4 (26.8)	0.394	76.4 (24.1)	71.7 (27.8)	0.304
LDL-TG, mg/dL	18.1 (6.6)	20.0 (8.1)	0.003	19.3 (7.9)	21.7 (8.6)	0.000
Non HDL-C, mg/dL	122.8 (30.9)	119.5 (44.6)	0.257	124.4 (33.5)	117.3 (36.8)	0.454
HDL-C, mg/dL	46.0 (13.6)	46.8 (14.1)	0.587	50.3 (17.2)	54.0 (13.9)	0.034
HDL2-C, mg/dL	25.2 (8.3)	25.4 (8.4)	0.736	28.4 (11.8)	30.3 (10.2)	0.144
HDL3-C, mg/dL	20.5 (5.1)	20.9 (5.3)	0.409	22.2 (5.2)	23.4 (5.3)	0.002
ApoE-HDL, mg/dL	3.7 (1.5)	4.1 (1.8)	0.039	4.4 (2.0)	5.0 (1.8)	0.000

* Data are expressed as median (interquartile range).
** Data are expressed as number of obese participant (percentage of obese participants) (BMI $\geq 27 \mathrm{~kg} / \mathrm{m}^{2}$).
Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides
Supplemental Table 6. Correlations in all subjects***

	TG	RLP-C	LDL-C	Calculated LDL-C	sdLDL-C	$\begin{gathered} \text { sdLDL-C/ } \\ \text { LDL-C } \end{gathered}$	lbLDL-C	LDL-TG	HDL-C	HDL2-C	$\mathrm{HDL}_{3}-\mathrm{C}$	ApoEHDL
Age	-0.013	-0.01	$-0.143^{* *}$	$-0.142^{* *}$	$-0.088^{* *}$	-0.008	-0.131**	-0.024	$-0.105^{* *}$	-0.052*	-0.196**	$-0.135^{* *}$
BMI	$0.205^{* *}$	$0.089 * *$	0.026	$-0.084^{* *}$	$0.174^{* *}$	0.23 **	$-0.087^{* *}$	$0.138^{* *}$	-0.274**	$-0.288^{* *}$	$-0.153^{* *}$	-0.254**
Systolic BP	$0.152^{* *}$	$0.089 * *$	0.014	-0.009	$0.154^{* *}$	0.219**	-0.088**	$0.165^{* *}$	$-0.153^{* *}$	$-0.174^{* *}$	-0.043	$-0.136^{* *}$
Diastolic BP	$0.118{ }^{* *}$	0.051	0.052	0.033	$0.157^{* *}$	0.176 **	-0.037	$0.145^{* *}$	$-0.131^{* *}$	-0.164**	0.001	-0.106**
Fasting Glucose	$0.245^{* *}$	$0.097^{* *}$	-0.055*	-0.194**	$0.154^{* *}$	0.26**	-0.183**	0.013	-0.129**	$-0.117^{* *}$	$-0.115^{* *}$	$-0.158^{* *}$
HbAlc	$0.198 * *$	0.071 **	-0.052*	$-0.186^{* *}$	$0.126^{* *}$	0.21 **	$-0.16^{* *}$	-0.007	-0.15 **	$-0.132^{* *}$	$-0.142^{* *}$	$-0.183^{* *}$
Insulin	$0.228^{* *}$	$0.115^{* *}$	-0.009	$-0.07{ }^{* *}$	$0.115^{* *}$	$0.182^{* *}$	-0.094**	$0.134^{* *}$	-0.178**	$-0.167^{* *}$	-0.146**	$-0.168^{* *}$
HOMA-IR	$0.272^{* *}$	$0.138^{* *}$	-0.024	-0.101**	$0.116^{* *}$	0.196**	-0.114**	$0.109^{* *}$	$-0.152^{* *}$	$-0.141^{* *}$	$-0.128^{* *}$	-0.149**
HOMA- β	$0.104^{* *}$	$0.107^{* *}$	0.036	0.024	0.063 **	0.059**	0.004	$0.173^{* *}$	-0.11**	-0.099**	-0.099**	-0.09**
Total cholesterol	$0.189^{* *}$	$0.197^{* *}$	0.779**	$0.907^{* *}$	$0.603^{* *}$	$0.167^{* *}$	0.626**	$0.461^{* *}$	0.323 **	0.214**	$0.473^{* *}$	$0.438 * *$
TG		$0.618^{* *}$	0.023	$-0.084^{* *}$	$0.513^{* *}$	0.737**	$-0.333^{* *}$	$0.534^{* *}$	-0.292**	$-0.323^{* *}$	-0.122**	$-0.207^{* *}$
RLP-C	0.618**		0.069 **	0.027	$0.377^{* *}$	$0.481^{* *}$	-0.173**	$0.332^{* *}$	$-0.102^{* *}$	$-0.121^{* *}$	-0.025	-0.035
LDL-C	0.023	0.069 **		$0.779^{* *}$	$0.694^{* *}$	$0.106^{* *}$	0.86**	$0.476^{* *}$	$0.136^{* *}$	$0.064^{* *}$	0.26**	$0.241^{* *}$
Calculated LDL-C	$-0.084^{* *}$	0.027	0.779**		$0.447^{* *}$	$-0.065^{* *}$	$0.772^{* *}$	$0.381^{* *}$	$0.111^{* *}$	0.026	0.276**	$0.208^{* *}$
sdLDL-C	0.513**	$0.377^{* *}$	$0.694^{* *}$	$0.447^{* *}$		0.76**	0.23**	0.677**	$-0.083^{* *}$	$-0.178 * *$	0.168**	0.05*
sdLDL-C/LDL-C	0.737**	0.481 **	0.106**	$-0.065^{* *}$	0.76**		-0.396**	$0.532^{* *}$	$-0.256^{* *}$	$-0.328^{* *}$	-0.003	$-0.156^{* *}$
lbLDL-C	$-0.333^{* *}$	$-0.173^{* *}$	0.86**	$0.772^{* *}$	0.23 **	-0.396**		$0.164^{* *}$	$0.243 * *$	$0.213^{* *}$	$0.232^{* *}$	0.291 **
LDL-TG	$0.534^{* *}$	$0.332^{* *}$	$0.476^{* *}$	$0.381 * *$	$0.677^{* *}$	$0.532^{* *}$	0.164**		$-0.202^{* *}$	$-0.257^{* *}$	-0.003	$-0.08^{* *}$
non HDL-C	$0.311^{* *}$	$0.247^{* *}$	$0.770^{* *}$	0.920 **	$0.668^{* *}$	0.275 **	$0.568{ }^{* *}$	$0.564^{* *}$	-0.044**	-0.144**	0.207**	$0.089^{* *}$
HDL-C	-0.292**	$-0.102^{* *}$	0.136**	$0.111^{* *}$	-0.083**	-0.256**	$0.243^{* *}$	$-0.202^{* *}$		0.961 **	0.76**	$0.971^{* *}$
$\mathrm{HDL}_{2}-\mathrm{C}$	-0.323**	$-0.121^{* *}$	0.064**	0.026	-0.178**	$-0.328^{* *}$	0.213**	$-0.257^{* *}$	0.961 **		$0.551^{* *}$	$0.904^{* *}$
HDL_{3}-C	-0.122**	-0.025	0.26**	0.276**	0.168**	-0.003	0.232**	-0.003	0.76**	$0.551^{* *}$		0.809**
ApoE-HDL	$-0.207^{* *}$	-0.035	$0.241^{* *}$	$0.208^{* *}$	0.05*	$-0.156^{* *}$	$0.291^{* *}$	$-0.08^{* *}$	0.971 **	$0.904^{* *}$	$0.809^{* *}$	

Pearson correlations. bMI, body mass index; BP, blood pressure; HbAlc, glycated hemoglobin. HOMA-IR, homeostatic model assessment on Insulin Resistance: HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small

	TG	RLP-C	LDL-C	Calculated LDL-C	sdLDL-C	$\begin{gathered} \text { sdLDL-C/ } \\ \text { LDL-C } \end{gathered}$	lbLDL-C	LDL-TG	HDL-C	HDL2-C	$\mathrm{HDL}_{3}-\mathrm{C}$	ApoE- HDL
Age	$-0.159^{* *}$	-0.063*	$-0.129^{* *}$	-0.099**	$-0.205^{* *}$	-0.172**	-0.024	$-0.152^{* *}$	-0.016	0.076*	$-0.206^{* *}$	-0.068*
BMI	$0.225^{* *}$	0.068*	0.05	-0.055	$0.221^{* *}$	$0.271^{* *}$	-0.092**	$0.143^{* *}$	$-0.26^{* *}$	$-0.272^{* *}$	$-0.145^{* *}$	$-0.225^{* *}$
Systolic BP	0.092*	0.052	0.043	0.017	$0.147^{* *}$	$0.167^{* *}$	-0.047	$0.148^{* *}$	-0.003	-0.035	0.068	0.019
Diastolic BP	0.089*	-0.002	0.088	0.079	0.15**	$0.128^{* *}$	0.013	$0.137^{* *}$	-0.057	-0.104*	0.069	-0.017
Fasting Glucose	$0.199^{* *}$	0.064*	-0.074*	$-0.193^{* *}$	$0.109^{* *}$	$0.221^{* *}$	-0.176**	-0.047	$-0.108^{* *}$	-0.082**	$-0.128^{* *}$	$-0.145^{* *}$
HbAlc	$0.114^{* *}$	0.014	-0.035	-0.154**	0.074*	0.13 **	-0.1**	-0.091**	-0.099**	-0.064*	-0.138**	-0.142**
Insulin	$0.195^{* *}$	0.08*	0.041	-0.059	$0.142^{* *}$	0.16**	-0.047	$0.123^{* *}$	$-0.18^{* *}$	$-0.161^{* *}$	$-0.159^{* *}$	$-0.166^{* *}$
HOMA-IR	$0.203^{* *}$	$0.081^{* *}$	0.009	-0.099**	$0.131^{* *}$	$0.173^{* *}$	$-0.082^{* *}$	0.08**	-0.176**	-0.151**	-0.169**	$-0.175^{* *}$
HOMA- β	$0.104^{* *}$	0.048	0.071*	0.04	0.091 **	0.065*	0.03	$0.161^{* *}$	-0.13 **	$-0.125^{* *}$	-0.096**	$-0.098^{* *}$
Total cholesterol	$0.192^{* *}$	$0.217^{* *}$	$0.785^{* *}$	$0.905^{* *}$	$0.628^{* *}$	0.201 **	$0.595 * *$	$0.503^{* *}$	0.331 **	$0.204^{* *}$	$0.484^{* *}$	$0.459^{* *}$
TG		$0.564^{* *}$	0.015	$-0.12^{* *}$	$0.548 * *$	$0.771^{* *}$	$-0.373^{* *}$	0.6**	$-0.263^{* *}$	$-0.311^{* *}$	-0.072*	$-0.164^{* *}$
RLP-C	0.564**		$0.113^{* *}$	0.059	$0.408^{* *}$	$0.477^{* *}$	$-0.142^{* *}$	0.377**	-0.067*	$-0.093 * *$	0.012	0.01
LDL-C	0.015	$0.113^{* *}$		0.78**	$0.673^{* *}$	0.084**	$0.848 * *$	$0.461^{* *}$	$0.157^{* *}$	0.084**	$0.258 * *$	0.269 **
Calculated LDL-C	-0.12 **	0.059	0.78**		$0.438^{* *}$	-0.077*	$0.767^{* *}$	$0.427^{* *}$	$0.135^{* *}$	0.043	$0.285^{* *}$	$0.239^{* *}$
sdLDL-C	$0.548 * *$	$0.408^{* *}$	$0.673^{* *}$	0.438**		$0.767^{* *}$	$0.178 * *$	0.681**	-0.021	$-0.138^{* *}$	$0.234^{* *}$	0.13**
sdLDL-C/LDL-C	$0.771^{* *}$	$0.477^{* *}$	$0.084^{* *}$	-0.077*	$0.767^{* *}$		$-0.438^{* *}$	$0.545^{* *}$	$-0.181^{* *}$	$-0.28^{* *}$	0.091 **	-0.065*
lbLDL-C	$-0.373^{* *}$	$-0.142^{* *}$	0.848 **	$0.767^{* *}$	$0.178 * *$	$-0.438^{* *}$		$0.125^{* *}$	$0.224^{* *}$	0.21 **	$0.175^{* *}$	$0.265 * *$
LDL-TG	0.6**	$0.377^{* *}$	0.461 **	$0.427^{* *}$	$0.681^{* *}$	$0.545^{* *}$	$0.125^{* *}$		$-0.167^{* *}$	$-0.233^{* *}$	0.028	-0.031
non HDL-C	0.296	0.253	0.777	0.917	0.672	0.276	0.551	0.592	-0.001	-0.118	0.246	0.146
HDL-C	$-0.263 * *$	-0.067*	$0.157^{* *}$	$0.135^{* *}$	-0.021	-0.181**	0.224**	$-0.167^{* *}$		0.951 **	0.759**	$0.968 * *$
HDL2-C	-0.311**	$-0.093^{* *}$	0.084**	0.043	-0.138**	$-0.28^{* *}$	0.21 **	$-0.233^{* *}$	0.951 **		$0.521^{* *}$	$0.883 * *$
HDL3-C	-0.072*	0.012	0.258**	0.285**	$0.234^{* *}$	0.091 **	$0.175^{* *}$	0.028	$0.759^{* *}$	$0.521^{* *}$		0.813**
ApoE-HDL	$-0.164^{* *}$	0.01	$0.269^{* *}$	$0.239^{* *}$	0.13 **	-0.065*	$0.265^{* *}$	-0.031	$0.968^{* *}$	$0.883^{* *}$	$0.813^{* *}$	

Pearson correlations. bin body mass index; BP, blood pressure; HbAlc, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance. HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; IbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small
Supplemental Table 8. Correlations in female subjects***

	TG	RLP-C	LDL-C	Calculated LDL-C	sdLDL-C	$\begin{gathered} \text { sdLDL-C/ } \\ \text { LDL-C } \end{gathered}$	lbLDL-C	LDL-TG	HDL-C	HDL2-C	$\mathrm{HDL}_{3}-\mathrm{C}$	ApoE- HDL
Age	0.138**	0.047	$-0.156^{* *}$	-0.184**	0.03	0.177**	$-0.237^{* *}$	$0.104^{* *}$	$-0.181^{* *}$	-0.154**	$-0.186^{* *}$	-0.194**
BMI	0.176 **	$0.105^{* *}$	0.014	$-0.103^{* *}$	$0.116^{* *}$	$0.165^{* *}$	-0.062	$0.148^{* *}$	$-0.236^{* *}$	-0.254**	$-0.108^{* *}$	-0.224**
Systolic BP	$0.173^{* *}$	$0.114^{* *}$	-0.001	-0.026	$0.136^{* *}$	$0.236^{* *}$	-0.093*	0.176**	-0.197**	-0.209**	-0.083*	-0.185**
Diastolic BP	0.107*	0.087*	0.034	0.001	$0.131^{* *}$	$0.171^{* *}$	-0.041	$0.147^{* *}$	-0.098*	$-0.125^{* *}$	0.017	-0.082*
Fasting Glucose	0.288**	0.13**	-0.034	$-0.193^{* *}$	$0.195^{* *}$	$0.302^{* *}$	$-0.184^{* *}$	0.076*	-0.13 **	-0.13 **	$-0.086^{* *}$	$-0.155^{* *}$
HbAlc	$0.289^{* *}$	$0.136^{* *}$	-0.068*	$-0.218^{* *}$	$0.181^{* *}$	0.306**	$-0.221^{* *}$	$0.085^{* *}$	$-0.193^{* *}$	$-0.188^{* *}$	$-0.138^{* *}$	$-0.221^{* *}$
Insulin	$0.267^{* *}$	$0.153^{* *}$	-0.05	$-0.082^{* *}$	0.1 **	$0.221^{* *}$	$-0.14^{* *}$	$0.143^{* *}$	-0.206**	-0.196**	-0.157**	-0.199**
HOMA-IR	$0.341^{* *}$	$0.193 * *$	-0.049	$-0.105^{* *}$	$0.114^{* *}$	$0.239^{* *}$	$-0.148^{* *}$	0.13 **	$-0.163^{* *}$	$-0.158^{* *}$	-0.12**	$-0.16^{* *}$
HOMA- β	$0.119^{* *}$	$0.162^{* *}$	0.012	0.008	0.055	0.074*	-0.022	$0.187^{* *}$	-0.137**	$-0.118^{* *}$	$-0.135^{* *}$	$-0.123^{* *}$
Total cholesterol	$0.204^{* *}$	$0.184^{* *}$	0.775**	$0.913^{* *}$	$0.598^{* *}$	0.158**	$0.654^{* *}$	$0.411^{* *}$	$0.287^{* *}$	$0.188^{* *}$	$0.441^{* *}$	0.399**
TG		$0.684^{* *}$	0.037	-0.035	$0.468^{* *}$	0.69**	$-0.277^{* *}$	$0.471^{* *}$	$-0.308^{* *}$	$-0.326^{* *}$	$-0.153^{* *}$	$-0.23 * *$
RLP-C	0.684**		0.021	-0.018	0.336**	$0.486^{* *}$	$-0.206^{* *}$	$0.285^{* *}$	$-0.129^{* *}$	$-0.141^{* *}$	-0.054	-0.066*
LDL-C	0.037	0.021		$0.779^{* *}$	$0.727^{* *}$	$0.144^{* *}$	0.876**	0.49**	$0.108^{* *}$	0.034	0.26 **	$0.216^{* *}$
Calculated LDL-C	-0.035	-0.018	$0.779^{* *}$		$0.463^{* *}$	-0.042	0.779**	$0.334^{* *}$	0.072*	-0.01	0.26**	$0.171^{* *}$
sdLDL-C	$0.468^{* *}$	$0.336 * *$	$0.727^{* *}$	$0.463^{* *}$		$0.753^{* *}$	0.306**	$0.683^{* *}$	$-0.115^{* *}$	$-0.196^{* *}$	$0.133^{* *}$	0.012
sdLDL-C/LDL-C	0.69 **	$0.486^{* *}$	$0.144^{* *}$	-0.042	0.753**		$-0.328^{* *}$	$0.541^{* *}$	$-0.299^{* *}$	$-0.349^{* *}$	-0.064*	$-0.203^{* *}$
1bLDL-C	$-0.277^{* *}$	-0.206**	0.876 **	$0.779^{* *}$	$0.306^{* *}$	$-0.328^{* *}$		0.2 **	$0.231^{* *}$	$0.184^{* *}$	$0.268{ }^{* *}$	0.29**
LDL-TG	$0.471^{* *}$	$0.285^{* *}$	0.49**	$0.334^{* *}$	$0.683^{* *}$	$0.541^{* *}$	0.2**		$-0.277^{* *}$	$-0.323^{* *}$	-0.06	$-0.161^{* *}$
non HDL-C	0.331	0.242	0.784	0.924	0.667	0.280	0.591	0.535	-0.089	-0.179	0.173	0.039
HDL-C	$-0.308^{* *}$	-0.129**	$0.108^{* *}$	0.072*	$-0.115^{* *}$	-0.299**	$0.231^{* *}$	-0.277**		$0.965^{* *}$	$0.737^{* *}$	0.97**
HDL2-C	$-0.326^{* *}$	$-0.141 * *$	0.034	-0.01	-0.196**	-0.349**	0.184**	$-0.323^{* *}$	$0.965^{* *}$		$0.532^{* *}$	0.908**
$\mathrm{HDL}_{3}-\mathrm{C}$	-0.153**	-0.054	0.26 **	0.26**	$0.133^{* *}$	-0.064*	0.268**	-0.06	0.737**	0.532**		$0.786^{* *}$
ApoE-HDL	-0.23 **	-0.066*	$0.216^{* *}$	$0.171^{* *}$	0.012	$-0.203^{* *}$	0.29 **	$-0.161^{* *}$	0.97 **	$0.908^{* *}$	$0.786^{* *}$	

Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic
model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small

[^0]: Address for correspondence: Masumi Ai, Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan E-mail: ai.vasc@tmd.ac.jp
 Received: December 2, 2018 Accepted for publication: January 14, 2019
 Copyright@2019 Japan Atherosclerosis Society
 This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.

[^1]: * Data are expressed as median (interquartile range).
 ${ }^{* *}$ Data are expressed as number of obese participant (percentage of obese participants) (BMI $\geq 27 \mathrm{~kg} / \mathrm{m}^{2}$).
 Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides

[^2]: * Data are expressed as median (interquartile range).
 ${ }^{* *}$ Data are expressed as number of obese participant (percentage of obese participants) (BMI $\geq 27 \mathrm{~kg} / \mathrm{m}^{2}$).
 Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides

[^3]: * Obesity criteria based on Taiwan definitions of $<$ or $\geq 27 \mathrm{~kg} / \mathrm{m}^{2}$, and data are expressed as median (interquartile range). The prevalence of obesity was $6.8 \%, 22.5 \%$, and 36.4% in the NGT,

 Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides; non HDL-C, Non HDL cholesterol.

[^4]: * Obesity criteria based on Japanese criteria of $<$ or $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$, and all data are expressed as median (interquartile range). The prevalence of obesity was $40.0 \%, 51.3 \%$, and 61.6% in the

 Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance; preDM, pre-diabetes mellitus; RLP-C, remnant lipoprotein cholesterol; sdLDL-C, small dense LDL cholesterol; TG, triglycerides; non HDL-C, Non HDL cholesterol.

[^5]: * Obesity criteria based on Japanese criteria of $<$ or $\geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}$, and all data are expressed as median (interquartile range). The prevalence of obesity was $26.4 \%, 36.2 \%$, and 54.8% in the NGT, prediabetic, and diabetic subjects, respectively.
 Apo, apolipoprotein; BMI, body mass index; BP, blo

 Apo, apolipoprotein; BMI, body mass index; BP, blood pressure; DM, diabetes mellitus; HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment on Insulin Resistance; HOMA- β, homeostatic model assessment on beta-cell; HDL-C, HDL cholesterol; lbLDL-C, large buoyant LDL cholesterol; LDL-C, LDL cholesterol; NGT, normal glucose tolerance;

