
J Pharm Pharm Sci (www.cspsCanada.org) 17(3) 401 - 426, 2014 
 

 
 

401 

Liposomal Drug Delivery: A Versatile Platform for Challenging Clinical 
Applications  
 
Asadullah Madni1, Muhammad Sarfraz2, Mubashar Rehman1, Mahmood Ahmad1, Naveed Akhtar1, Saeed Ahmad1, Nayab 
Tahir1, Shakeel Ijaz1, Raida Al-Kassas3 and Raimar Löbenberg2 
 

1 Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine, the Islamia University of Bahawalpur, Pakistan. 2 

Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada. 3 School of 
Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand. 
 

Received, May 28, 2014; revised, June 6, 2014, accepted, August 1, 2014, Published August 3rd, 2014. 
 
ABSTRACT - Liposomes are lipid based vesicular systems that offer novel platform for versatile drug delivery 
to target cell. Liposomes were first reported by Bangham and his co-workers in 1964 (1). Since then, liposomes 
have undergone extensive research with the prime aim to optimize encapsulation, stability, circulation time and 
target specific drug delivery. Manipulation of a liposome’s lipid bilayer and surface decoration with selective 
ligands has transformed conventional liposomes into adaptable and multifunctional liposomes. Development of 
liposomes with target specificity provide the prospect of safe and effective therapy for challenging clinical 
applications. Bioresponsive liposomes offer the opportunity to release payload in response to tissue specific 
microenvironment. Incorporation of novel natural and synthetic materials has extended their application from 
stable formulations to controlled release targeted drug delivery systems. Integration and optimization of multiple 
features into one system revolutionized research in the field of cancer, gene therapy, immunotherapy and 
infectious diseases. After 50 years since the first publication, this review is aimed to highlight next generation of 
liposomes, their preparation methods and progress in clinical applications. 
 
This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For 

Readers”) may comment by clicking on ABSTRACT on the issue’s contents page. 
__________________________________________________________________________________________ 
 
INTRODUCTION 
 
Liposomes are lipid based vesicular systems in 
which a well-defined aqueous core is contained 
within a lipid bilayer. In May 1964, Alec D. 
Bangham and his colleagues reported spontaneously 
forming lipid vesicles and named them as “smectic 
mesophases” (1). These vesicle were named 
“Bangasomes” after the name of Bangham, the 
father of liposomes. In 1968, Weissmann coined a 
more descriptive term “liposomes”, an analogy to 
the term lysosomes (2). Liposomes were initially 
used as membrane models in biological studies. 
However, the cell-like structure of liposomes 
persuaded scientist to investigate liposomes as a 
tool to smuggle potent drug molecules into human 
body. In 1971, first report was published on the 
liposomal encapsulation of a therapeutic agent (3). 
Liposomes can load hydrophilic drugs in aqueous 
core and increase penetration through lipophilic 
physiological membranes while lipophilic drugs are 
contained inside the lipid bilayer and increase their 
solubility in the aqueous body fluids (4). Liposome 

demonstrates better protection from external 
degradation caused by enzymes (5) and because 
they are prepared from natural materials or their 
synthetic derivatives, liposomes are biocompatible 
and biodegradable (6). 

Conventional liposomes have some drawbacks. 
They are complex to produce, have less inherent 
stability and therefore, cannot be stored for a long 
time. Liposomes show rapid uptake by the reticulo-
endothelial system thus decreasing their circulation 
half-life. Leakage of loaded drugs from liposomes 
resulted in less drug loading efficiency. New 
materials and techniques employed in liposomal 
research may be toxic and non-biocompatible (7). 
Recently, it has been reported that repeated low 
dose injections may lead to accelerated blood 
clearance of liposome (8). 
_________________________________________ 
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To overcome these drawbacks, liposomes have 
undergone extensive research on surface 
modification, size optimization and understanding 
the disposition mechanism. 

The next generation of liposomes is 
characterized by high mechanical stability, ability to 
induce or inhibit the immune system, longer 
circulation times, improved loading efficiency, 
enhanced penetration and target specificity. 
Accordingly, liposomes have emerged as promising 
carriers for sensitive drugs and macro molecules. 
Indeed, progress in pharmacology has introduced a 
number of potent therapeutic agents that require 
drug carriers that are selective and bio-responsive. 
This challenge to control drug release has been a 
milestone in the development of next generation 
liposomes. The improvements in liposomes include 
long circulating or stealth liposomes that have been 
prepared by decorating liposome surface with 
hydrophilic polymers such as polyethylene glycol 
which reduces liposomes uptake by the reticulo-
endothelial system (9) and toxicity of encapsulated 

drugs (10). Stealth liposomes have long circulation 
life and constitute an integral part of controlled 
release multifunctional liposomes. On the other 
hand, PEGylation or stealthing strongly inhibits 
cellular uptake of liposomes which limits its 
application in macrophage and tumor targeting. The 
problem has been addressed by the development of 
cleavable PEG systems that can detach PEG in 
response to target tissue microenvironment (11). A 
negative charged DNA can bind a positively 
charged lipid forming cationic liposomes with 
reduced size and increased circulation time (12). 
Targeted specificity is achieved by anchoring 
targeting ligands which bind to the desired receptors 
(13). The number of lamellae or crosslinking of 
lipid controls the drug release rate from liposomes 
(14). Different drugs can be loaded in different 
lamella that enables sequential release of drugs and 
simplifies the treatment regimen (15). Liposomal 
microarrays have been employed for the detection 
of proteins and peptides in different body fluids 
(16). 

 
 

 
Figure 1: Multi-functionality of liposomes: (a) Encapsulation of hydrophilic drug (red) and gas bubbles (blue) into an 
aqueous core and entrapment of lipophilic drug (green) inside the bilayer, (b) Stabilization of lipid bilayer with cholesterol 
(yellow) and attachment of hydrophilic polymer layer on the bilayer surface, (c) Liposome lipid bilayer is strengthened and 
stabilized by polymerization (red) or by incorporation of multivalent cations (blue), (d) bio-responsive destabilization of 
lipid bilayer in acidic pH (blue) or increased temperature achieved by magnetic agents (Blue), (e) negatively charged DNA 
molecules are attached to positively charged lipid molecules, (f) attachment of immunogenic or targeting ligands on the 
liposome surface. 
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Chimeric liposomes have been prepared by the 
combination of phospholipids with low quantities of 
other biomaterials to control physiochemical and 
structural properties of liposomes (17). Different 
imaging techniques and in silico models have been 
devised to predict or monitor biodistribution as well 
as quantitative structure-property relationship of 
liposomes (18-20). 

Almost 50 years after the discovery of 
liposomes, the US FDA has approved 13 liposomes 
based products for human use (Table 1). In 
addition, a large number of liposomal products are 
in different phases of clinical trials (21,22). The 
next generation of liposomes are prepared 
conventionally either by modification of 
conventional preparation methods or special 
laboratory techniques. Liposomes are prepared by a 
lipid hydration, ethanol injection, freeze-thawing 
and reverse phase evaporation. In the lipid 
hydration method, lipid is dissolved in an organic 
solvent followed by drying to form a thin lipid film. 
This lipid film is hydrated using an aqueous 
solution of a drug and vortexed to form liposome 
system. In the ethanol injection method, lipid is 
dissolved in ethanol and its solution injected into an 
aqueous buffer containing the drug. In the freeze-
thawing method, a lipid film is hydrated with an 
aqueous buffer solution and subjected to repeated 
cycles of freezing and thawing thus yielding a 

liposome system. In the reverse phase evaporation 
technique, a solution of a lipid and an organic 
solvent is added to an aqueous buffer solution to 
form a water in oil emulsion. This emulsion is 
subjected to evaporation under low pressure which 
results in the formation of a liposome system. 
Researchers have also designed in-house laboratory 
scale detection methods for the characterization and 
quality control of liposomes (23). However, the 
scale-up of these sophisticated laboratory methods 
to industrial production still needs to be addressed. 
Major issues in industrial manufacturing of 
liposomes include the presence of residual organic 
solvent, difficulty of controlling liposome size 
distribution and stability problems associated with 
sterilization processes (24). 

 
ADVANCEMENT IN LIPOSOME 
TECHNOLOGY 
In this section, attempts have been made to reviews 
the next generation of liposomes, their preparation 
methods and progress in clinical applications. 
 
Archeosomes: Archeosomes are liposomes made 
up of polar lipids of archaebacteria. Archaebacteria 
are extremophiles which can live in extremes of 
environment. Their cell membrane consists of ether- 
lipids which differs from other eukaryotic and 
prokaryotic membrane lipids.  

 
 

Table 1. Liposome based formulation available in market for clinical applications. 
Liposome Product  Active Ingredient Liposome Type Indication 
Ambisome Amphotericin B Liposome Fungal Infections 
Abelcet Amphotericin B Lipid Complex (not true 

liposomes) 
Fungal Infections 

Amphotec Amphotericin B Lipid Complex (not true 
liposomes) 

Fungal Infections 

DaunoXome Daunorubicin Liposome Blood Cancers 
Doxil Doxorubicin Stealth liposome Kaposi’s Sarcoma, Ovarian and 

Breast Cancer 
Lipo-dox Doxorubicin Stealth liposome  Kaposi’s Sarcoma, Ovarian and 

Breast Cancer 
Marqibo Vincristine Nano-size liposome Acute lymphoblastic leukaemia 
Myocet Doxorubicin Liposome Metastatic breast cancer 
Visudyne Verteporfin Liposome Photodynamic therapy 
Depocyt Cytarabine Liposome Neoplastic and lymphomatous 

meningitis 
DepoDur Morphine Liposome Pain management 
Epaxal Inactivated hepatitis A 

virus 
Virosome Hepatitis A 

Inflexal V Inactive hemaglutinine of 
Influenza virus   

Virosome Influenza 
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The incorporation of inherently stable archae lipids, 
archaeol (diether) lipids and caldarchaeol 
(tetraether) lipids makes archeosomes resistant to 
pH, temperature and oxidative stress (25-28). 
Tetraether lipids are bipolar unlike di-ether or other 
liposomal lipids which have one polar head (Figure 
2). Additionally, ether lipids of bacterial origin are 
recognized as foreign substance by human immune 
system eliciting strong immunoadjuvant effects to 
the encapsulated vaccine. 
 
Preparation: Polar lipids  from archeobacterium are 
extracted by solvent extraction. High amount of 
detergent is added to the lipid followed by 
evaporation of the solvent. This lipid detergent 
mixture is dissolved in anaqueous buffer and 
detergent is removed by dialysis (29). Archeosomes 
can be prepared from these archeae lipids by lipid 
hydration method (30). 
 
Applications: Archeosomes serve as carriers for 
vaccines to provide long circulation times. They can 
also act as adjutants for cell mediated immune 
responses (31-33). Tetraether archael lipidsare 
bipolar forming a stable archeosomes. Recent 
research has focused on manipulating synthetic 
analogues of archael ether lipids (34). The synthetic 
analogues  facilitate the  industrial production and 
purification of the finished product (35). 
 
 

Cochelates: 
Cochelates are cylindrical lipid bilayer assemblies 
prepared from preformed liposome in such a way 
that lipid bilayers of liposomes are stabilized with 
inorganic multivalent cations of zinc, calcium (36) 
and other organic multivalent cations (37). The 
multivalent cations act as bridging agent to hold 
lipid bilayers together which results in shrinkage of 
aqueous core (Figure 3).The unique solid structure 
of lipid bilayer is responsible for high mechanical 
strength and storage stability. The dried cochelates 
are stable at room temperature while cationic buffer 
solution of cochelate can be stored at 4°C for two 
years (38). In a similar study, multilamellar 
liposomes with covalently crosslinked lipid bilayers 
were reported for controlled release of anticancer 
drugs (10). 
 
Preparation: Cochelates are prepared by two 
methods from preformed liposomes. Method 1: The 
solution of multivalent cations is added to the 
suspension of prepared liposomes followed by 
sonication. The milky suspension of liposomes is 
converted to colorless solution of nano cocheltes as 
sonication proceeds (37). Method 2 (Hydrogel 
method): Liposome are suspended in an aqueous 
two-phase polymer solution. Cations diffuse from 
one polymer phase to the other polymer phase 
containing liposomes which results in cochelates 
formations. The precipitate is washed with cationic 
buffer to remove the residual polymers (39). 

 

 
Figure 2: Archeosomes made from tetraether (bipolar) and diether lipids. 
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Figure 3: Incorporation of cations into lipid bilayer to improve stability. 

 

 
Applications: Cochelates have been used for 
delivery of DNA and protein subunits. For mucosal 
and parenteral vaccine delivery, cochelates with 
virus antigen proteins are preferred over liposomes 
containing virus protein due to stronger immune 
response and longer circulation time (40). Oral 
cochelated Amphotericin B (CAMB) is 10 times 
more effective compared to conventional liposomes 
(41). Cochelates provide prolonged action of 
cationic antimicrobial peptides (AMPs) and 
alsocombat antibiotic resistance (42). In addition, 
presence of calcium cations in liposomes has been 
found to increase the fusion of fluid liposomes with 
bacterial cells thus enhancing the bactericidal 
activity in resistant strains (43). 
 
Cubosomes: 
Cubosomes are self-assembling cubic crystals of 
certain detergents with an intersecting network of 
water channels. Cubosomes do not fit properly 
under the strict definition of liposomes because they 
lack a well-defined aqueous core, but have attracted 
a vast research interest in lipid based drug delivery 
systems in the last decade (44,45). 
 

Preparation: Cubosomes are honeycomb like 
structures that are formed by dispersing amphiphilic 
lipids in the aqueous solution and a lipid bilayer is 
formed in three dimensional structures (46,47). 

Cubosomes have been developed by a 
fragmentation method and solvent precursor 
dilution method. In the fragmentation method, the 
lipids are heated above melting point in a glass vial 
and water (25% w/w of lipid) is gently layered on to 
the surface of the lipid. This system is incubated for 
three days to allow the formation of cubosomes. 
Addition of stabilizer and a homogenization step 
may be required to get desired formulation (48). In 
the solvent precursor dilution method, lipid and 
stabilizer are first dissolved in ethanol. This 
modified lipid mixture is than dissolved completely 
in chloroform as lipid and solubilizer are soluble in 
it. Chloroform is evaporated under a stream of 
nitrogen (N2) and 10uL aqueous drug solution is 
added to the lipid mixture. The liquid precursors are 
dispersed in deionized water with continuous 
stirring for 10 minutes (49). 
 

Applications: Cubosomes have been used for oral, 
parenteral, topically and ocular administration. 
Dexamethasone cubosomes for ophthalmic use are 
four to five times more effective than eye drops. 
Cubosomes have also demonstrated superior 
peptide delivery properties over liposomes, 
transferosomes and ethosomes (50). Recent 
research has demonstrated their successful 
application in the treatment of cancer (51,52). In 
addition, cubosomes are used for delivery of 
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vaccines (48) and diagnostics and separation 
techniques (53). Although the reports of therapeutic 
applications of cubosomes are increasing, there is 
negligible data on the cytotoxicity of cubosomes. 
Further studies are required on cubosomes toxicity 
to justify their application in medical field (54). 
 
Ethosomes: 
Ethosomes are transdermal liposomes containing 
hydroalcoholic core for enhanced penetration 
through the stratum corneum and other skin layers 
(Figure 4).  The presence of ethanol in core 
increases fluidity and penetration of ethosomes 
bilayer without affecting its stability. Ethosomes 
enhance transdermal delivery of drug by enhanced 
permeation in terms of depth and deposition 
behavior (55). Ethosomes are more effective in 
nanometer range and provide a noninvasive mean 
for enhancing skin permeation (56-60). 
 
Preparation: Hot and cold methods have been 
employed for ethosomes preparation. In the hot 
method, phospholipids are dispersed in water at 
40ºC. Drug is dissolved in ethanol and propylene 
glycol and this mixture is added into the 
phospholipids solution using magnetic stirring. In 
the cold method, phospholipids and drug are 
dissolved in ethanol and heated to 30oC. This 
mixture is added to the water maintained at 30oC.  
The ethosomes suspension is sonicated and 
extruded to produce homogeneous ethosomes 
(60,61). 

Applications: Ethosomes serves as carriers for 
transcutaneous immunization (62) and gene 
delivery (63). These are also employed for anti-
inflammatory (64,65), anti-psoriatic (66) and anti-
microbial therapeutics (67). Recent research has 
focused on binary ethosomes that contain polyols 
(such as propylene glycol) in addition to alcohol 
and water inside the ethosome core. Ethosomes and 
binary ethosomes have demonstrated superior 
penetration efficiency over conventional liposomes, 
transferosomes and other specialized drug delivery 
systems (68-71). 
 
Exosomes: 
Exosomes are phospholipid vesicles released by 
normal and tumor cells. In normal cells, they 
control cell-to-cell communication by paracrine 
signals to induce protein synthesis and alter the 
behavior and proliferation of surrounding cells. In 
tumor cells, they help in maintaining a tumor 
specific environment by paracrine signaling for 
promoting angiogenesis and lymphocyte apoptosis. 
These tumor derived exosomes have been isolated 
from patients and loaded with anticancer agents for 
individualized therapy of cancer. Their surface 
complexity and non-specificity hindered their use in 
drug delivery systems and trigger the development 
of exosome-mimetic, liposomes with functional 
components of exosomes (72-74). The endogenous 
origin of exosomes is advantageous over synthetic 
nanocarriers due to excellent biocompatibility and 
targeting potential (75). 
 

 
Figure 4: (a) Ethosomes with hydro-alcoholic (water and alcohol) core (b) Ethosomes with alcoholic core. (c) Passage of 
the ethosomes from outside the skin, through very small pores, into the inner site of the stratum corneum. 
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Preparation: Exosomes secreting cells are 
immortalized in vitro and exosomes are separated 
by differential centrifugation. Therapeutic agents 
are loaded into prepared exosomes by standard 
transfection techniques such as electroporation or 
lipofection. Electroporation is a physical method in 
which successive electric impulses are applied on 
exosomes which increase their permeability and 
entrapment of DNA molecules. Colloidal stability 
of exosomes after electroporation should be given 
keen consideration which is function of 
composition of media, exosomes concentration and 
charge applied (76). Lipofection is a chemical 
techniques in which positively charged lipids bind 
negatively charged DNA molecules (77). 
 

Applications: Exosomes are employed for the 
delivery of genes because of their intrinsic ability to 
cross biological barriers and their non-immunogenic 
nature (78). Suppression of the immune system by 
cancerous exosomes has been assumed to treat 
autoimmune diseases (77). Some researchers are 
thus focusing on targeted cancer vaccination and 
individualizing therapy with patient derived 
exosomes (79,80). 
 
Gas containing liposomes: 
These liposomes are modified to encapsulate a gas 
bubble that contains gas up to 80% of their inner 
capacity (81,82). Liposomes loaded with chemical 
agents such as ammonium chloride produce gas 
bubbles and cause the release of loaded therapeutic 
moiety (83). Targeted gas containing liposomes are 
currently being investigated for deep tissue tumor 
diagnosis (84).  
 

Preparation: Gas containing liposomes are 
prepared by the film hydration and freeze thawing 
method. The process is carried out in the presence 
of gas to be encapsulated under high pressure (84). 
 

Applications: Targeted gaseous liposomes are 
employed for tumor tissue detection. These 
liposomes oscillate under low frequency ultrasound 
thereby producing a characteristic echo which is 
different from the echo of surrounding tissues (81). 
Therapeutic drug molecules loaded to gas 
containing liposomes release the drug at a 
controlled rate by applying specific ultrasound 
frequency outside the body region (82). Nitric oxide 
containing liposomes have been used to induce 

relaxation of the vascular smooth muscles (83). 
Xenon gas is reported to be an effective and non-
toxic neuroprotectant agent when encapsulated in 
gaseous liposomes (85). 
 
Immunoliposomes: 
Surface ligands such as monoclonal antibodies 
when attached to the liposomes are effectively 
targeted to different body tissues (86). 
Immunoliposomes selectively bind to a receptor of 
target cell and become internalized, thereby 
increasingthe bioavailability of therapeutics. These 
Immunoliposomes confine the action of very toxic 
and/or potent pharmacological agents at target 
tissues and safeguard other body tissues from 
unnecessary exposure (86-88). Development of the 
immunoliposomes in the 1980s provided a 
milestone in the evolution of advanced 
multifunctional liposomes (Figure 5). 

 
Preparation: Antibodies or antibody fragments are 
conjugated on liposome surface by mixing isolated 
antibody fragments with already prepared cationic 
liposomes. These immune-cationic liposomes are 
then mixed with therapeutic drug solution to form a 
drug-loaded immunoliposomes (89). Recently, 
folate conjugated immunoliposomes have been 
prepared by one step microfluidic synthesis. In this 
method, folate conjugated phospholipid are passed 
through thermoplastic microfluidic device in a 
controlled laminar flow. This method can produce 
immunoliposomes in nano size range (90). 

 
Applications: Various monoclonal antibodies 
produced against different cancerous tissues 
have been used in cancer chemotherapy by 
formulating immunoliposomes. Multifunctional 
immuoliposomes have long circulation time 
and can carry more than one therapeutic and 
diagnostic agents (91). Immunoliposomes have 
successfully been targeted to tumor cells (92-
95), vascular endothelium (96) and infarcted 
heart tissue (97). Immunoliposome are meant to 
improve safety profile of potent drugs by 
limiting drug exposure to target sites but 
recently reported results of Shmeeda et al., 
(2013) found that liposomal zoledronic acid 
was almost 50 times more toxic than free 
zoledronic acid solution.  
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Figure 5: Bi-specific targeting by attachment of two different ligands; Immunoliposomes attached to receptors for targeting 
both ligands simultaneously. Immunoliposomes can bind and release drugs at tumor cells expressing any one receptor type 
(a) and (c) or both receptors simultaneously. 
 
 

Toxicity was found to be dose dependent and 
attributed to unexpectedly high macrophages 
activation (98). However, this enhanced toxicity 
might underlie entirely different mechanism 
because liposomal drugs, such as cisplatin, have 
been found to act differently than free drug at 
molecular level (99). Current research is focused on 
developing bispecific ligands for dual targeting of 
tumor cells with more specificity (100). Moreover, 
liposomes displaying antigenic proteins and glycan 
ligands for the inhibitory co-receptor CD22 have 
been reported to elicit only antigen specific immune 
response and prevent B cell mediated harmful 
immune responses (101). Harmful immune and 
inflammatory response to immunostimulatory 
agents can also be prevented by localized 
immunotherapy. One such strategy is the 
intratumoral injection of controlled size liposomes 
which allows dissemination of liposomal drugs into 
tumor tissue and tumor draining lymph nodes but 
prevents entry into systemic circulation due to large 
size of liposomes (102). 
 
Immunosomes and Virosomes: 
Immunosomes are prepared by attaching viral 
glycoproteins on liposome lipid bilayer. 
Immunosomes are nano-sized globular particles 
having uniform glycoprotein attachments (50-60 
nm) (103-105). Immunosomes are non-toxic 
vaccine carriers with strong immuno-adjuvant 
properties to stimulate or inhibit the humoral as 
well as cell mediated immunity. Research on 
immunosomes has led to the discovery of 

virosomes. Virosomes are substituted viral coats of 
lipids, glycoproteins, haemagglutinin and other 
antigenic components. Virosomes lack viral nucleic 
material and fail to replicate (106). Immunosomes 
differ from virosomes in their composition. 
Immunosomes are a type of liposomes that contain 
only certain isolated antigens of a virus while 
virosomes are complete virus shells with all viral 
lipids, glycoprotein and antigenic determinants 
(Figure 6). Usually, these terms are used 
interchangeably but the term virosome is preferred 
over immunosome to avoid any confusion with 
immunoliposomes. The surface fastened viral 
glycoproteins provide an indistinguishable structure 
to immunosome and virosome and is responsible for 
their immunogenic properties similar to the parent 
virus (107). 
 
Preparation: Using the detergent solubilizing 
method, immunosomes are prepared by mixing viral 
surface proteins with liposomes. Virus 
hemagglutinin is prepared by solubilizing the virus 
cell with a 10 nM HEPES saline solution followed 
by centrifugation that separates the virus 
hemagglutinin. Its purified rosette is mixed with 
liposomes and incubated at 37oC for 30 min 
(105,108). Stability of immunoliposomes is also 
dependent upon the interaction between 
phospholipid head groups and viral proteins. 
Immunosomes consisting of binary lipid mixtures 
are more stable as compared to liposomes 
composed of single lipid type (109).
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Figure 6. (a) The whole influenza virus is converted into a virosome (b) The virosome retains only the outer shell and 
associated antigens. The immunosome is prepared by attaching virus glycoproteins antigens on the liposome surface (c). 
 

 
Application: Immunosomes and virsomes are 
vaccine carriers with strong adjuvant 
propertiesagainst AIDS, influenza, hepatitis and 
rabies viruses in mice. These carrier vaccines have 
also proved to be effective against these viral strains 
in ex-vivo and animal studies (110-114). The 
vaccines Epaxal (Hepatitis A) and Inflexal 
(Influenza) are already available for clinical use 
(Table 1). 
 
Immune stimulating complexes (ISCOMs) 
ISCOMs are vaccine adjuvants which induce a wide 
range of antibodies by humoral activation as well as 
strong cell mediated responses against antigen. 
Major structural components of ISCOMs are 
cholesterol, phospholipids and quiallaja saponins 
(Quil A).  They contain amphiphilic antigens like 
membrane proteins and in aqueous solution can be 
stored for years at cool temperature (115).  
 

Preparation: ISCOMs are prepared by ether 
injection method. Phospholipids and cholesterol are 
dissolved in ether and injected into aqueous solution 
containing Quil A. An optimal ratio (5:3:2) of 
Phospholipids, Quil A and cholesterol and injection 
rate ensures homogenous preparation (116). 
 

Applications: Immune stimulating complexes 
produce a wide range of antibodies by humoral and 
cell mediated responses making them a carrier of 
choice for vaccines against intracellular and chronic 
infections (117). PosintroTM denotes a new 
generation of ISCOMs with modified surface 
charge for enhanced penetration through the skin. 
Incorporation of positively charged cholesterol 

derivatives and DC-cholesterol reduces overall 
negative charge of the lipid bilayer. Thus, 
PosintroTM may follow the intracellular pathway of 
absorption by disrupting the stratum corneum (118). 
 
Lipoplexes 
Lipoplexes are formed when cationic lipids are 
coupled with a negatively charge of DNA 
molecules. Lipoplexes are considered toxic due to 
the presence of cationic lipids. Toxicity can be 
reduced by using compact plasmid DNA (pDNA). 
When an elongated DNA is transformed into a 
compact form, its overall negative charge decreases 
and lesser amount of cationic lipid is needed (119-
122). Effective lipoplex formulations require 
optimization of size and structure of the self-
assembled vesicles (123). Major disadvantage of 
lipoplexes is acute inflammatory response after 
administration. The sequential administration of 
plasmid DNA and lipoplexes as repeated doses has 
been found to minimize the acute inflammation and 
other lipoplexes associated toxicities (124). 
 

Preparation: pDNA is isolated from purified 
plasmid   using suitable techniques. Cationic 
liposomes are prepared by lipid hydration and 
sonicated until a clear translucent solution is 
formed. The pDNA solution is added to cationic 
liposomes and mixed gently. The obtained 
lipoplexes suspensions is stored at room 
temperature for 15–30 min before use (125). 
 

Applications: Lipoplexes are used for viral DNA 
transfection avoiding virus associated 
immunogenicity and oncogenecity. Lipoplexes are 



J Pharm Pharm Sci (www.cspsCanada.org) 17(3) 401 - 426, 2014 
 

 
 

410 

easier to produce compared to other viral carrier 
preparations (126-127). Incorporation of co-lipids 
such as dioleyl phosphatidylethanolamine (DOPE), 
cholesterol and some fatty acids have been reported 
to increase gene transfection rates. Co-lipids make 
lipoplexes more rigid and increase their size which 
facilitates their fusion with cell membranes and 
phagocytosis. Lipoplexes may also act as immune-
adjuvant when admixed with protein antigens. 
However, their adjuvant activity is primarily due to 
enhanced uptake of proteins by antigen presenting 
cells as compared to negatively charged liposomes 
that promote activation and maturation of antigen 
presenting cells (128). Recent research has focused 
on making lipoplexes more plasma friendly, 
optimizing morphological features which can 
control cellular uptake and intracellular disposition 
(129-130). The manipulation of co-lipids has led to 
improved transfection efficiency (131-132) and 
targeted delivery (133). 
 
Magnetic liposomes: 
These are the type of advanced liposomes which 
contain magnetic or paramagnetic entities such as 
gadolinium (Gd3+) and Iron (Fe3+/Fe2+), and are 
used for diagnostic imaging and targeted 
therapeutic delivery. Lipid-magnetite complexes are 
incorporated on the liposome surface (134) or in the 
lipid bilayer or aqueous core (135) (Figure 9). 
Magnetic liposomes also act as a contrast agent in 
MRI imaging (136).  
 

Preparation: Magnetic liposomes are prepared by a 
lipid hydration method. In this method, the lipid is 
dissolved in an organic solvent and dried to form a 
thin lipid film. A magnetizing agent is dissolved in 
water to form an aqueous magnetizing solution. The 
thin layer of lipid in the round bottom flask is 
hydrated with the aqueous magnetizing solution to 
form magnetic liposomes (137). 
 

Applications: Magnetic liposomes provide 
“clickable” release of therapeutic agents by 
applying an alternating magnetic field. Magnetic 
liposomes provide permeability and controllable 
release (138-139). Magnetic liposomes are 
decorated with various surface ligands, such as 
polyethylene glycol, as targeting ligands (140), and 
are bi-functional which means they can carry 
fluorescent probe and MRI contrast agents for 
imaging as well as functional DNA delivery to the 
same cell (141). Recent research has reported super 

magnetic liposomes to treat cancer tissues and their 
metastasis without involving surgery or 
chemotherapeutic agents (142). When targeted 
super magnetic liposomes are subjected to an 
alternating magnetic field, they produce local 
hypothermia (about 45oC) and cause tumor tissue 
necrosis (143). 
 
Niosomes: 
Niosomes are unilamellar or multilamellar vesicles 
composed of non-ionic surfactants (Figure 10). In 
niosomes, phospholipids bilayer is replaced by 
nonionic surfactants, making niosomes more stable 
and producing a longer shelf life. Niosomes can be 
administered through oral, intramuscular, 
intravenous and transdermal routes of 
administrations (144-147).  
 

Preparation: Niosomes can be prepared by 
conventional lipid hydration and ether injection 
method with slight modifications depending on 
noisome application. Size homogeneity can be 
achieved by using an extrusion method (148-150). 
 

Application: Niosome have been used for the 
treatment of leishmaniasis (151), cancer therapy 
(152,153), immune induction (154) and as carrier 
for diagnostic agents (155). Research has been 
focused on providing controlled release of 
antimicrobial agents, anti-inflammatory drugs, 
peptides and various macromolecules (156-160). 
Cationic niosomes have been prepared by the 
combination of cationic lipids and non-ionic 
surfactants in niosomes (161). Recently, novel 
multicomponent drug delivery systems have been 
prepared in which preformed niosomes were loaded 
into liquid crystal gel. Both components of this 
system were prepared from the same mixture 
anionic and non-ionic surfactant for enhanced drug 
permeation after topical application (162). 
 
pH sensitive liposomes: 
In viral infections, mild acidic conditions are 
responsible for fusion of virus envelopes with cell 
membranes. This observation led to the 
development of pH sensitive liposomes which 
release loaded therapeutics at acidic pH. Serum 
albumin and protein fragments have been reported 
to enhance liposome fusion at a lower pH of 6.5 
(163-166). However, pH sensitive liposomes 
provide bioresponsive delivery to tissues. Lower pH 
values destabilize the lipid bilayer and drug is 
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released at tumors, infections and inflammation 
(167-169). (Figure 9). Phosphatidylethanolamines 
and a stabilizing amphiphiles are used to stabilize 
liposomes at acidic pH (170-172). During 
endocytosis, the pH sensitive liposomes are exposed 
to the acidic environment of endosomes and may 
release their content inside the cells. 
 

Preparation: Freeze thawing and reverse phase 
evaporation methods are used for the preparation of 
pH sensitive liposomes. Lipids, co-lipids and 
PEGare dissolved in an organic solvent. In freeze 
thawing, the lipid suspension is frozen followed by 
thawing in a water bath. After ten freeze-thawing 
cycles, pH sensitive liposomes are formed (173). In 
the Reverse Phase Evaporation method, a lipid film 
is hydrated with another organic solvent followed 
by adding an aqueous saline solution of 
therapeutics. The emulsion is vortexed and the 
organic solvent is evaporated to form pH sensitive 
liposomes (174). 
 

Applications: pH sensitive fusogenic polymers have 
been subject of extensive research for the 
development of pH sensitive liposomes (175,176). 
Hydrophobic derivatives of natural polymers have 
been conjugated with phospholipids molecules. 
Such liposomes demonstrate excellent pH 
responsiveness in vitro and in vivo (177,178). 
Recent advancements have led to the development 
of ‘fliposomes’ which are more stable and show 

instant release in seconds (179). Fliposomes contain 
flipids, the lipids that undergo conformational 
switch at lower pH and destabilize the liposome 
bilayer (180). They are used for delivery of 
gemcitabine (169) and cisplastin (181). Research 
has been focused on the development of stealth and 
targeted pH sensitive liposomes (182). In addition, 
understanding the polymer backbone structure and 
resulting hydrophobic behavior can provide very 
helpful insights into membrane interactions and 
fusogenic activity of these liposomes (183,184). 
Juan et al (2012) have reported a pH sensitive 
liposome using NH4-HCO3 for the release of 
doxorubicin. Within the target cell, CO2 is liberated 
from NH4-HCO3 which lowers pH and enhance 
drug release (185). 
 
Polymerized liposomes: 
Leakages of therapeutics from the conventional 
liposomes which are toxic to the normal tissues 
poses a serious challenge to clinical applications. 
This problem can be solved by polymerization of 
the lipids in the liposome bilayer. These 
polymerized liposomes are completely stable, 
provide modified release and enhance the half-life 
of therapeutic agents (186-188). Polymerized 
liposomes should be differentiated from 
capsosomes. Capsosomes are not true liposomes but 
contain a polymeric capsule with multiple sub-
compartments composed of liposomes (Figure 7), 
(189). 

 

 
Figure 7: (a) A representation of polymerization of lipid molecules in liposome bilayer to increase the mechanical strength 
of lipid bilayer, (b) Capsosomes (not a liposome type), a polymer capsule containing numerous liposomes. 
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Preparation: Polymerized liposomes are prepared 
by film hydration method. Cholesterol is chemically 
combined with polymerizable monomer. 
Phospholipids and the monomeric cholesterol are 
mixed in chloroform and dried in a rotary 
evaporator to form a thin film. The lipid film is 
hydrated with an aqueous buffer and sonicated for 
30 minutes resulting in liposome formation. 
Polymerization of the lipid bilayer may be carried 
out by thermal, radiation or redox reaction. In 
thermal polymerization, the liposomes are heated to 
60-700C in the presence of free radical donor such 
as Azobis-isobutyronitde which initiates a 
polymerization reaction (190). In the radiation 
polymerization, liposomes are subjected to ultra 
violet (UV) radiations for 1-2 hours resulting in 
lipid polymerization (187). In the redox 
polymerization, redox initiator system consisting of 
ammonium per-sulphate and sodium meta-bi-
sulphite are added to liposome formulations and 
heated in the presence of N2to initiate 
polymerization. Residual polymeric monomers, 
reactants and un-entrapped drug are removed by 
dialysis (191). 
 

Applications: Polymerized liposomes can be used 
for parenteral, oral and mucosal delivery of various 
diagnostic (191-193) and therapeutic agents. These 
are employed as vaccines and for the delivery of 
allergens, carbohydrates and antimicrobial agents 
(194-196). Polymerized liposomes are prepared in 
nanometer size range with multifunctional variants 
for controllable release responsive to pH and 
magnetic fields (197-200). In a recent study, 
liposomes were functionalized with surface 
adsorption of chitosan followed by polymerization 
of lipid bilayer. 

Proliposomes: 
Proliposomes are dry and free flowing particles 
consisting of phospholipids coatings on water 
soluble powder particles. These lipid particles yield 
homogenous suspension of liposomes when 
dissolved in an aqueous solution. Proliposomes 
solve the problem associated with sterilization of 
liposomes as they have a high storage stability and 
provide simple large-scale production (201-203). 
Recently, liquid proliposomes have been reported 
that spontaneously form liposomes upon hydration 
(204) (Sun et al., 2013). 
 
Preparation: Proliposomes are prepared by film 
deposition on the carrier method (Figure 8). Dried 
powder is placed in a round bottom flask and 
maintained at 30-40oC. Drug and phospholipids are 
dissolved in an organic solvent. This organic 
solution is added in aliquots to a continuously 
rotating bed of dry powder. Complete drying of 
organic solvent occurs for each aliquot addition. 
The resulting proliposomes can be lyophilized or 
desiccated overnight to yield a fine free flowing 
powder (205). Proliposomes can also be prepared 
by fluid bed coating, spray drying and freeze-
thawing depending upon the type of drug and its 
application (206). 

Liquid proliposomes were prepared by 
dissolving hydrophobic drug, phospholipid, sodium 
deoxycholate, poloxamer and polyethylene glycol 
in ethanol. This light yellowish liquid was filled in 
hard gelatin capsule and dried. These liquid 
proliposomes will yield liposomes when manually 
mixed with distilled water (204). 

 
 

 
Figure 8: Synthesis of proliposomes. (a) A lipid is mixed with a solid substrate which forms lipid coated solid particles. (b) 
Upon hydration, solid substrate is dissolved and lipids arrange to form liposomes. 
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Applications: The administration of dry 
proliposomes via inhalation provide enhanced 
bioavailability and sustained therapeutic effects 
(207,208). Proliposomes are reconstituted into a 
prescribed solvent to yield a liposome system. 
Effervescent proliposomes provide carbon dioxide 
upon dissolution (209). Proliposomes show great 
flexibility in the route of administration including 
reconstituted parenteral, oral, topical, intranasal 
administration and as dry powder aerosol (210). 
Proliposomes have successfully been used for 
enhancing bioavailability of anticancer drugs and 
other therapeutic agents (211-213). 
 
Temperature sensitive liposomes: 
Temperature sensitive lipids are stable at body 
temperature and undergo phase transition from gel 
to liquid at higher temperatures and provide a 
successful mean for targeted delivery (214). 
Temperature sensitive liposomes circulate 
throughout the body but when they reach an area of 
significant hyperthermia, they release therapeutics 

due to increased fluidity of the lipid bilayer (Figure 
9).  
 
Preparation: Temperature sensitive liposomes are 
prepared with slight modifications of the reverse 
phase evaporation and lipid hydration method. In 
both methods, temperature sensitive lipids are 
mixed in an organic solvent followed by 
evaporation of the solvent in a rotary evaporator. In 
the hand shake method, the lipid film is hydrated 
with an aqueous solution containing a therapeutic 
agent and a surfactants. The system is heated above 
their phase transition temperature to yield 
temperature sensitive liposomes (215). In the 
reverse evaporation method, the lipid film is re-
dissolved in an organic solvent followed by the 
addition of an aqueous saline solution containing 
the therapeutic moiety. The mixture is heated to 
60oC and vortexed for 30 seconds. The organic 
solvent is removed by rotary evaporation to yield 
temperature sensitive liposomes (216).

 

 
Figure 9. A representation of clickable drug release from magnetic, pH sensitive and temperature sensitive liposomes. (a) 
Magnetite materials (MRI contrast agents) are loaded in the bilayer and core, or attached to the lipid molecules. Under an 
externally applied alternating magnetic field, liposomes become leaky and release the loaded drug. (b) pH sensitive 
liposomes contains pH sensitive lipids in their bilayer which lose their geometric conformation at acidic pH and release the 
drug. (c) Temperature sensitive liposomes are activated by local or artificially applied hyperthermia and drug release is 
achieved. 
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Applications: Traditional temperature sensitive 
liposomes (TTSL) have been used to target tumor 
cells as a result of relatively high temperature 
compared to normal body tissues (217,218). TTSLs 
require a temperature of 42oC to 45oC for effective 
therapeutic release, which is impossible in In-vivo 

conditions normally. This problem has been solved 
by the development of low temperature sensitive 
liposomes (LTSL) which are stable at 37oC and 
show complete release of therapeutics at 39oC 
(219,220). Another attempt is the development of 
new temperature sensitive liposomes (NTSL) (221) 
to control the release of therapeutic agents 
maintaining mild external hyperthermia generated 
by focused ultrasound (222), radiofrequency waves 
(223) and alternating magnetic field (224,225). 
Recently, two steps hyperthermia has been reported 
to enhance antitumor activity of the encapsulated 
drugs. First hyperthermia (41°C) induced 
hyperpermeable tumor vasculature which persisted 
for 8 hours while second hyperthermia (42°C or 
above) induced drug release from temperature 
sensitive liposomes (226). 
 
Transferosomes: 
These are ultra-deformable and stable advance 
liposomes which can cross the pores of the stratum 
corneum. The degree of deformability of 
transferosomes is directly related to their 
bioavailability. Transferosomes are prepared from 
different ratios of phosphatidylcholine and 
surfactants. Surfactants act as edge-activators and 

incorporate deformability into transferosomes 
(Figure 10). By changing the type and ratio of 
surfactant, one can optimize the vesicle 
morphology, size and therapeutic loading 
(227,228). The addition of permeation enhancers 
into transferosomes further improves therapeutic 
delivery through the skin (229). 
 
Preparation: Transferosomes are prepared by a 
film hydration method. Lipids and surfactants are 
dissolved in an organic solvent. The organic solvent 
is evaporated using a rotary evaporator to form a 
lipid film. This film is hydrated with an aqueous 
buffer and sonicated for 5 minutes to obtain 
transferosomes (230). 
 

Applications: Transferosomes have been used to 
deliver macromolecules which are difficult to be 
transported by other dosage forms. Transulin is 
transferosomal insulin complex which shows in 

vivo delivery similar to subcutaneous insulin and 
lacks the problem associated with non-compliance 
of injections (231). Recent research has shown that 
corticosteroids might be ideal candidate for 
transferosomal delivery (232-234). 

Different types of next generation liposomes or 
their combination present exciting solutions for 
diagnostic as well as therapeutic applications. Table 
2 summarizes challenging disease conditions that 
have been broadly investigated with liposomes 
based therapy.  

 
 

 
Figure 10. (a) Represents transferosomes formed by mixing surfactants and lipids (b) represents Niosomes containing 
bilayer of surfactant molecules only. 
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Table 2. Clinical diseases and the liposomes drug delivery 
Therapeutic Application Type of liposome Novelty in Drug Delivery 
Cancer Chemotherapy 
 

Cochelates Cation-stabilized liposomes prolong circulation time of  
anticancer drugs 

Niosomes Improve stability of encapsulated anticancer drug and 
final product due to bilayer of stable non-ionic 
surfactants 

pHsensitive liposome Release of drugs at tumor sites in acidic enviorments. 
Polymerized Liposomes Polymerization of lipid bilayer  
Temperature sensitive 
liposomes 

Lipid bilayer destabilizes at elevated temperature of 
tumors 

Immunoliposomes Tumor targeted delivery of chemotherapeutic agents via 
ligends 

Magnetic Liposomes Drug loaded magnetic liposomes can be localized by 
external magnetic field to provide clickable drug release 

Vaccine 
 

Archeosome Archaeal bacteria contains ether lipids which are stable 
and act as self-adjuvants for vaccines 

Cocheltaes Cations stabilized liposomes provide long circulation 
time and used to encapsulated protein antigens 

ISCOMs Quillaja Saponins act as self-adjuvant for vaccines 
Polymerized Liposome Polymerization of lipid bilayer 
Transferosomes Increased penetration of vaccines in transcutaneous 

immunization 
Immunosomes and 
Virosomes 

Virus antigens on the surface provide adjuvant property 
and help in adapting virus like entrance into cells 

Exosomes Their free movement in tumor microenvironment 
provides efficient delivery of anticancer drugs and 
vaccines to cancer cells. 

Gene Therapy 
 

Lipoplexes Bilayer of positively charged lipids encapsulate and 
binds negative charged DNA on its surface 

Exosomes Intrinsic ability to cross biological barriers and enter 
cells effective delivery of DNA through transfection  

 
Antimicrobials 
 

Niosomes Improved the stability of encapsulated antimicrobial 
drugs and final product due to stable bilayer of non-
ionic surfactants  

Polymerized Liposome Polymerization of the lipid bilayer protects the 
encapsulated drugs from degradation 

Ethosomes Anti-inflammatory and antifungal drugs for skin and 
deep tissuesdelivery. 

Sensitive and 
macromolecules 
 
 
 
 
 
 
  

Polymerized Liposome Polymerization of the lipid bilayer protects sensitive 
molecules from degradation 

Gas containing liposomes Encapsulate novel therapeutic  gasses 

Proliposomes Sensitive molecules are stored in dry state to improve 
stability and withstand storage conditions 

Cubosomes 
 
  

More resistant to degrading factors and provide oral, 
parenteral, ocular and topical delivery of sensitive 
molecules 
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Topical drug delivery 
 
 

Transferosomes Surfactants in lipid bilayer provide flexibility and 
improve penetration through skin. Increased skin 
penetration of insulin and used for transcutaneous 
immunization. 

Ethosomes Transcutaneous immunization and topical delivery of 
anti-inflammatory drugs 

Diagnostic Techniques Magnetic liposomes Paramagnetic agents loaded on liposomes act as contrast 
agent for MRI 

Immunoliposomes Ligands such monoclonal antibodies are attached to 
liposome surface to target cancerous tissues expressing 
tumor specific receptors. This confines 
chemotherapeutics release to tumor tissues. 

Gas containing liposomes Contain gas bubbles that echo ultrasound waves 
 
 
CONCLUSION 
 
Liposomes have emerged as one of the most studied 
novel drug delivery system in the last two decades. 
Liposomes have revolutionized medical research for 
cancer chemotherapy, gene therapy, vaccines, 
antimicrobial and diagnostic agents. The US FDA 
has approved thirteen liposome formulations for 
clinical use and many other have been tested in 
clinical trials. Highly potent chemotherapeutic 
agents encapsulated in stealth liposomes offer long 
circulation time. Immunoliposomes with various 
targeting ligands deliver the payload specifically to 
target tissues and safeguard other normal tissues 
from toxic effects. Liposome encapsulated drugs 
have shown much high efficacy as compared to 
other conventional drug delivery systems. The main 
advantage of modern liposomes lies in their 
sustained action, enhanced bioavailability, high 
cellular uptake and targeted delivery of therapeutic 
agents. However, industrial scale up of 
sophisticated laboratory preparation methods is still 
a challenge to be addressed. 
 
Keywords: liposomes, cancer treatment, drug 
targeting, micelle systems, drug delivery, clinical 
applications. 
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