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ABSTRACT

Quantum dots (QDs) and silica nanoparticles (SNs) are
new classes of fluorescent probes that overcome the
limitations encountered by organic fluorophores in bioassay
and biological imaging applications.  We encapsulated QDs
and SNs into liposomes and separated nanoparticle-loaded
liposomes from unencapsulated nanoparticles by size
exclusion chromatography. Fluorescence correlation
spectroscopy was used to measure the average number of
nanoparticles inside each liposome. Results indicated that
nanoparticle-loaded liposomes were formed and separated
from unencapsulated nanoparticles by using Sepharose gel.
As expected, fluorescence self-quenching of nanoparticles
inside liposomes was not observed. Each liposome
encapsulated an average of three QDs. Our work
demonstrated that nanoparticles could be successfully
encapsulated into liposomes and provided a methodology to
measure the nanoparticle quantity inside each liposome
with fluorescence correlation spectroscopy.

Keywords: liposomes, nanoencapsulation, quantum dots,
silica nanoparticles

1 INTRODUCTION

Fluorescent probes for biomolecular recognition have
been widely used in bioassays and biological imaging [1,2].
However, organic fluorophores have characteristics that
limit their effectiveness for these applications, including
poor photostability, low brightness, and limited ability for
multiplexed analysis [3,4]. QDs and SNs are new classes of
fluorescent probes that have the potential to overcome these
limitations. QDs (fluorescent semiconductor nanocrystals)
have broad excitation and size-dependent, tunable, narrow-
emission spectra that allow simultaneous excitation of
several different-colored QDs at a single wavelength with
little spectral emission overlap for multianalyte analysis [5-
7]. Also, QDs are about 20 times brighter and 100 times
more photostable in comparison with organic dyes such as
rhodamine [8]. Fluorescent SNs are synthesized with a sol-
gel technique in which organic dyes are covalently attached
to the silica precursor [9,10]. They are brighter and more
photostable than free organic dyes [10].

Liposomes are spherical vesicles consisting of
phospholipid bilayers surrounding an aqueous cavity.
Because dye-loaded liposomes provide greatly enhanced
signals and their bilayer membrane can protect the dye from
potentially quenching species [11], liposomes have been
successfully used as reporter particles in bioassays [12-14].
Several researchers reported that encapsulation of solid
particles into liposomes enhanced the overall mechanical
strength of the liposome structure [11,15,16]. Therefore,
fluorescent nanoparticle-loaded liposomes have the
potential to provide not only better fluorescent
characteristics but also better mechanical stability than
organic dye-loaded liposomes. In addition, the biomimetic
lipid bilayers of liposomes provide high biocompatibility
[17-19], thereby enhancing the effectiveness of fluorescent
nanoparticles on biological detection in vitro and in vivo.

In this study, we encapsulated QDs and SNs into
liposomes by the reverse-phase evaporation method.
Nanoparticle-loaded liposomes were separated from
unencapsulated nanoparticles by size-exclusion
chromatography and their characteristics were investigated.
Dual-color, two-photon fluorescence correlation
spectroscopy was used to determine the number of
nanoparticles inside each liposome.

2 EXPERIMENTAL SECTION

2.1 Reagents

Common laboratory reagents were purchased from
Sigma-Aldrich Co. (St. Louis, MO) or Fisher Scientific
(Pittsburgh, PA). Sepharose CL-2B and Sepharose CL-4B
were purchased from Sigma-Aldrich Co. (St. Louis, MO).
D i p a l m i t o y l p h o s p h a t i d y l c h o l i n e  ( D P P C ) ,
d i p a l m i t o y l p h o s p h a t i d y l g l y c e r o l  ( D P P G ) ,
dipalmitoylphosphatidylethanolamine-N-(biotin) (N-
biotinyl-DPPE), lissamine rhodamine B-DPPE,
nitrobenzoxadiazol-DPPE and polycarbonate syringe filters
of 0.4 and 0.2 mm pore sizes were purchased from Avanti
Polar Lipids (Alabaster, AL). Quantum dots (EviTags) were
purchased from Evident Technologies (Troy, NY). Silica
nanoparticles were kindly provided by Hooisweng Ow and
Ulrich Wiesner, Cornell University, Ithaca, NY.

NSTI-Nanotech 2005, www.nsti.org, ISBN 0-9767985-0-6  Vol. 1, 2005206



2.2 Encapsulant Preparation

A 0.8 mM QD solution and a 122 nM SN solution were
each prepared in HEPES buffer (0.01 M, pH 7.5, 0.2 M
NaCl, 0.01% sodium azide). Sucrose was used to adjust the
osmolality to 445 mOsmol/kg.

2.3 Preparation of Nanoparticle-Loaded
Liposomes

Liposomes were prepared using a modified version of
the reverse-phase evaporation method described by Siebert
et al. [20]. 45 mmoles DPPC, 5 mmoles DPPG, 5 mmoles N-
biotinyl-DPPE, and 45 mmoles cholesterol were dissolved
in 3 ml of a chloroform/methanol solution (volume ratio,
5:1). While sonicating the suspension at 45 oC, 0.6 ml of
encapsulant was added. Using a vacuum rotary evaporator,
the organic solvent was removed. Then, an additional 0.4
ml of encapsulant was added and the vacuum rotary
evaporator was applied again. After the liposomes were
formed, they were incubated for 30 min at 45 oC and,
finally, extruded 30 times through polycarbonate syringe
filters with 0.4 mm pore size. Samples for fluorescence
correlation spectroscopy were extruded with 0.4 and 0.2 mm
pore size in series.

2.4 Size Exclusion Chromatography of
Liposomes

Unencapsulated QDs were separated from the liposomes
by size exclusion chromatography using Sepharose CL-2B
column (25 x 1.5 cm). HEPES buffer (0.01 M, pH 7.5) was
used as the eluent containing 0.2 M NaCl and 0.01%
sodium azide. Sucrose was used to adjust the osmolality to
515 mOsmol/kg.  The flow rate was controlled at 25.1 ml/h.
The eluted liposomes were collected at 1 ml/tube by a
Retriever 500 fraction collector (ISCO, Lincoln, NE),
followed by fluorescence measurement using a RF-551
spectrofluorometric detector (Shimadzu, Kyoto, Japan).
Unencapsulated SNs were separated from the liposomes by
size exclusion chromatography using Sepharose CL-4B
column (25 x 1.5 cm). HEPES buffer (0.01 M, pH 7.5) was
used as the eluent containing 0.2 M NaCl and 0.01%
sodium azide. Sucrose was used to adjust the osmolality to
515 mOsmol/kg. The flow rate was controlled at 45.2 ml/h.
The eluted liposomes were collected at 1.5 ml/tube by a
Retriever 500 fraction collector, followed by fluorescence
measurement using a RF-551 spectrofluorometric detector.

2.5 Measurement of the Average Number of
Nanoparticles inside Each Liposome

We used two-photon fluorescence correlation
spectroscopy (FCS, DRBIO Webb Research Group, Cornell
University, Ithaca) to measure the number of fluorescent
particles in the focal volume, thereby calculating the sample

concentration [21]. Dual-color, cross-correlation
experiments were done to measure the intact liposome
concentration and nanoparticle concentration released by
the liposome lysis, enabling measurements of the
nanoparticle quantity inside each liposome. We
incorporated 0.4 mol% red lissamine rhodamine B (LRB)-
DPPE into the liposome bilayers for green QD
encapsulation and 0.4 mol% green nitrobenzoxadiazol-
DPPE for red SN encapsulation in the preparation of
nanoparticle-loaded liposomes described above. We lysed
liposomes by adding 495 mL of 30 mM n-OG to 5 mL
liposome solution.

3 RESULTS AND DISCUSSION

3.1 Size Exclusion Chromatography (SEC) of
QD-Loaded Liposomes

SEC is mainly affected by particle sizes and shapes. The
sizes of QDs and lipsomes are approximately 50 nm and
300 nm, respectively. We separated unencapsulated QDs
from the liposomes by SEC using Sepharose CL-2B. Figure
1 shows that QD-loaded liposomes were formed and
separated by Sepharose CL-2B. Because QD-loaded
liposomes contained fluorescent QDs, they produced higher
fluorescence intensity than the empty (buffer-loaded)
liposomes.  Empty liposomes were detectable by
fluorescence based on the property of large liposomes to
scatter light, the degree of which can be detected and
measured. The recovery of QDs from the column was poor
due to the adsorption of some QDs to the top of the column
matrix. Reynolds et al. also reported this problem while
separating polystyrene beads using a size-exclusion
column[22].

Figure 1. Elution profiles on Sepharose CL-2B of buffer-
loaded liposomes and QD-loaded liposomes detected by
fluorescence. The first peak at 20 ml corresponds to the
eluted liposomes and the second broad peak is the
unencapsulated QDs.
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3.2 Size Exclusion Chromatography of SN-
Loaded Liposomes

Because of the size difference between SNs (~20 nm)
and liposomes (~575 nm), we also used SEC to separate
unencapsulated SNs from SN-loaded liposomes. Instead of
Sepharose CL-2B, we used Sepharose CL-4B, which has
smaller pore sizes because SNs are smaller than QDs. The
elution profile of SN-loaded liposomes plotted in Figure 2
exhibits two distinct peaks at respective elution volumes of
16 and 32 ml, which correspond to liposome-entrapped and
free SNs. This also demonstrated that SN-loaded liposomes
were formed and separated well by Sepharose CL-4B. Like
QDs, the recovery of unentrapped SNs from the column
was also poor, thereby producing little fluorescence in
Figure 2.

Figure 2. Elution profiles on Sepharose CL-4B of buffer-
loaded and SN-loaded liposomes detected by fluorescence.

3.3 Characterization of Nanoparticle-Loaded
Liposomes

Although both QD-loaded and SN-loaded liposomes
were extruded through polycarbonate syringe filters with
0.4 m m pore size, the mean diameter of QD-loaded
liposomes was measured by a particle size analyzer to be
291 nm, while that of SN-loaded liposomes was 575 nm. It
seems that the size of nanoparticle-loaded liposomes cannot
be controlled as precisely as organic dye-loaded liposomes
by the extrusion method. It is possible that because
nanoparticles are much larger than organic dyes, they exert
a greater effect on the liposome size during the extrusion.

The absorption and emission spectra of both types of
nanoparticle-loaded liposomes were measured by a
spectrophotometer and spectrofluorometer, respectively.
Since liposomes scatter light, their absorption spectrum is
just a measure of scattered light. The shorter the
wavelength, the higher the intensity. The absorption
intensity of liposomes, therefore, increased with decreasing
wavelength. Diederichs also reported similar properties of
the absorption spectrum of liposomes [23]. On the other
hand, liposome-entrapped nanoparticles retained similar
fluorescent emission spectra to free nanoparticles.

While the fluorescence of organic dyes in the liposomes
is self-quenched, liposome-encapsulated nanoparticles
produced a relatively high signal. We were interested in
comparing the fluorescence of intact vs. lysed nanoparticle-
loaded liposomes. Our results showed no significant
fluorescence difference between them (data not shown).
This is a great benefit for bioassays since liposome lysis
will not be needed for fluorescence measurement. Also,
fluorescent signals can be detected when liposome lysis is
not feasible, such as in a test strip assay. Conventionally,
the signal of organic dye-loaded liposomes on the test strip
can only be read by color intensity [13,14]. Due to the
absence of self-quenching in nanoparticle-loaded
liposomes, the fluorescence intensity in a test strip assay
can be detected, thereby providing much higher sensitivity.

3.4 Number of Nanoparticles inside Each
Liposome Based on FCS

FCS is a technique that analyzes fluorescence intensity
fluctuations arising from molecules diffusing in and out of a
microscopic detection volume of about 10-15 liter defined by
a tightly focused laser beam [24,25]. In dual-color, cross-
correlation FCS, the fluorescence signals from the two
fluorophores are recorded simultaneously, and the
fluctuations in the fluorescence signal of one fluorophore
are correlated with those of the other fluorophore [26]. If
fluorescent nanoparticles are encapsulated inside dye-
labeled liposomes, they will pass through the FCS detection
volume together, resulting in coincident fluctuations in both
detector channels, which can be detected by cross-
correlation analysis of fluctuations in the two channels.

The green curve in Figure 3 shows the cross-correlation
between QDs and liposomes in the intact liposome sample,
which indicates that QDs were encapsulated inside the
liposomes. After liposome lysis, cross-correlation
amplitude was observed to be zero due to the dissociation
between QDs and lysed liposomes.

For measuring the quantity of QD-loaded liposomes and
released QDs after liposome lysis, autocorrelation analysis
was used. The amplitude of the autocorrelation curve at t =
0 is inversely proportional to the average number of
fluorescent molecules in the detection volume. This
provides a direct measure of the concentration [27]. Figure
4 shows the autocorrelation curves of QD-loaded liposomes
and released QDs in the same concentration of liposomes.
The concentrations of QD-loaded liposomes and released
QDs were 0.32 and 0.94 nM, respectively. Hence, we
calculated that each liposome contained an average of three
QDs. Unfortunately, we could not measure the SN quantity
inside each liposome due to the spectral overlap between
SNs and nitrobenzoxadiazol-liposomes.

Although liposomes did not provide much signal
amplification due to the small number of QDs encapsulated,
they still provided protection and biocompatibility for QDs
during biological detection in vitro and in vivo. In addition,
the low number of encapsulated QDs can be explained by
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the large size (~50 nm diameter) and low concentration (0.8
m M) of QDs solution (encapsulant) for liposome
preparation.

Figure 3. Cross-correlation curves of intact and lysed QD-
loaded liposomes.

Figure 4. Autocorrelation curves of intact QD-loaded
liposomes and released QDs after liposome lysis.

4 CONCLUSION

We successfully encapsulated QDs and SNs into
liposomes. No self-quenching effect was observed for
either QD-loaded or SN-loaded liposomes. When a 0.8 mM
QD solution was used for liposome preparation, each QD-
loaded liposome contained an average of three QDs based
on dual-color fluorescence correlation spectroscopy. In the
future, smaller and more highly concentrated QDs will be
used for liposome encapsulation to increase the quantity of
quantum dots inside each liposome.
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