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 ABSTRACT

Lipreading in combination with an acoustic indication of voice
fundamental frequency (F0) has been shown to greatly enhance
word recognition accuracy with sentence stimuli [1]. A possible
explanation for this effect is that F0 delivers information for
consonantal voicing. In Experiment 1, we showed with a
computational model how voicing information affects the
uniqueness of lipread words in a large phonemically transcribed
machine-readable lexicon. In Experiment 2, the same
computational methods were used to simulate the results
obtained by McGrath and Summerfield [2] for lipreading with
and without acoustic F0.  The model failed to account in full for
the behaviorally observed enhancements. It is suggested that
lexical biasing in word recognition can account for the
difference between the model and the behavioral results. (This
work was supported by NIH Grant DC-00695.)

1. INTRODUCTION

Even under optimal viewing conditions, not all phonetic
information is visible to the lipreader. As a result, the
information needed to perceive some phonemic distinctions is
not available.  For example, lipreaders may not perceive any
distinctions among productions of the consonants /b/, /p/, and
/m/. The loss of phonemic distinctions results in reduced
uniqueness for words in the lexicon [3,4]. Thus, understanding
spoken language is difficult for many deaf individuals. In order
to enhance lipreading by deaf individuals, investigators have
sought signals that can be transduced by an impaired auditory
system or by an alternate sensory system such as touch.

One such signal is voice fundamental frequency (F0). F0 is
generated at the glottis, which is invisible to the lipreader.
Several experiments have been reported in which simple
acoustic stimuli composed of pulses generated as a function of
F0 were presented to enhance lipreading. In these experiments,
adults with normal hearing improved as much as 40 percentage
points over lipreading alone when they lipread with the F0
supplement [1,2].

The observed enhancement is typically attributed to the fact that
F0 characteristics contribute to perception at several different
linguistic levels, including consonantal voicing distinctions [5],
lexical stress (e.g., CONvert versus conVERT), sentential stress

[6], word boundaries [7] and syntactic information [6]. However,
estimates of the contribution made by the different
characteristics associated with F0 to the overall enhancement
effect have not been obtained. Waldstein and Boothroyd [8] have
suggested that as much as one half of the observed enhancement
may be due to the information conveyed about the presence of
consonantal voicing. The current computational experiments
examined the contribution of  consonantal voicing to the
uniqueness of words in the lexicon.

1.1 Sources of Voicing in Lipreading

Because laryngeal vibrations are invisible, consonantal voicing
is frequently hypothesized to be completely absent from the
information available to the lipreader. Although this assertion
may be true for lipread consonant-vowel nonsense syllables, it is
not true for lipread words or sentences [9].

One source of consonantal voicing information is the preceding
vowel duration for post-vocalic consonants [10]. Vowel
durations are longer for voiced final consonants than for
voiceless consonants. Durational cues are potentially available to
the lipreader and are likely responsible for the partial visibility
of final consonant voicing reported by Hnath-Chisolm and
Kishon-Rabin [11]. Another source of consonantal voicing
information is the distribution of phoneme patterns in the words
of the language. For example, /b/ is distinguished from /p/ or /m/
in the English word “bought,” because “pought” and “mought”
are not words. Thus, the voicing distinction is available by virtue
of the lexicon’s structure. Of course, the voicing distinction is
not disambiguated via the lexicon’s structure for all words (e.g.
“bat”) [4].

2. EXPERIMENT 1

The goal of Experiment 1 was to model effects on the structure
of the lexicon brought about when visible speech is enhanced
with consonantal voicing information. Computational lexical
modeling techniques [4,12,13] were applied to obtain frequency-
weighted estimates of word uniqueness for lipreading alone (LA)
and lipreading with voicing information (L+V).

2.1 Methods

Lexical modeling was applied as follows: First, a phonemically
transcribed machine-readable lexical database was selected to



serve as a representative sample of the words in the language.
Along with a phonemic transcription, each word in the database
had an associated estimate of its frequency of occurrence in the
language. Second, transcription rules  were defined on the basis
of measures of phonetic similarity. The transcription rules were
in the form of single symbol substitutions for all phonemes in
phonemic equivalence classes. A phonemic equivalence class
comprised the set of phonemes rendered equivalent by the loss
of phonetic distinctiveness. (For example, when /b/, /p/, and /m/
are phonetically similar, a transcription rule is defined to
transcribe each occurrence of /b/, /p/, and /m/ into one symbol
representing the equivalence class.) Third, the lexical database
was then transcribed by applying the transcription rules. Lexical
equivalence classes were formed by collapsing across
identically transcribed words.  (For example, under the phoneme
equivalence class definition given above, “pat” and “bat” would
both fall into the same lexical equivalence class.)  Finally,
metrics were computed to compare the distribution of patterns in
the newly transcribed lexicon with the distribution of patterns in
the original lexicon.

Lexical Database. The method described above was applied to
the PhLex database [14], which comprises the 20,000 most
frequent words in [15] and the 12,118 words in [16]. All of
PhLex’s entries have transcriptions that include stress and
syllabification markers, and estimates of frequency of usage.
When word frequency information was not available for an
entry, frequency was set to 1. All frequencies were log-
transformed (base 10).

Transcription Rules. Sets of transcription rules were developed
using estimates of visual phonetic similarity obtained from
separate behaviorally obtained consonant and vowel confusion
matrices [17]. These estimates were submitted to separate
hierarchical cluster analyses using the average linkage between
groups method. Because perceptual data were not available for
/« j N/, theoretical estimates of similarity were employed.
Vowels and consonants were assumed to be maximally
dissimilar, except for the consonant /j/ which was included in the
vowel confusion matrix. (See Table 1.) The transcription rules
applied to 17 vowels, and 23 consonants.

Table 1 lists the sets of phonemic equivalence classes that were
used for the transcription rules for the LA condition. The table
shows that the number of equivalence classes increased at the
same rate for consonants and vowels, and that the increases
followed the hierarchical clustering results for between 2 and 19
clusters. The range between 10 and 19 clusters best
approximates the phoneme equivalence classes estimated for
lipreaders [4].

A second group of transcription rule sets was generated for the
L+V condition. This was accomplished by modifying each
equivalence class such that voiceless consonants never appeared
in the same equivalence class with a voiced or nasal consonant.
For example, the phonemic equivalence class {d,t,s,z} was
separated into two new equivalence classes, {t,s} and {d,z}.

Number of Phonemic
Equivalence Classes

Phonemic Equivalence Classes

19 {u,U,«r} { o,aU} { I,i} { e,E} { Q} { �I}
{�} { aI,«,A,Ã,j}{ b,p,m} { f,v} { l}
{n,k} { N,g} { h} { d} { t,s,z} { w,r}
{D,T} { S,tS,Z,dZ}

12 {u,U,«r} { o,aU} { I,i,e,E,Q} { �I}
{�,aI,«,A,Ã,j} { b,p,m} { f,v}
{ l,n,k,N,g,h} { d,t,s,z} { w,r} { D,T}
{ S,tS,Z,dZ}

10 {u,U,«r} { o,aU} { I,i,e,E,Q}
{�I,�,aI,«,A,Ã,j}{ b,p,m} { f,v}
{ l,n,k,N,g,h,d,t,s,z} { w,r} { D,T}
{ S,tS,Z,dZ}

2 {u,U,«r,o,aU,I,i,e,E,Q,�I,�,aI,«,A,Ã,j}
{b,p,m,f,v,l,n,k,N,g,h,d,t,s,z,w,r,D,T,S,
tS,Z,dZ}

Table 1.  Equivalence classes comprising transcription rules.

Application of Transcription Rules. Transcription rule sets for
both LA and L+V were applied to the PhLex database. Two
words were considered equivalent only when their phonemic,
and stress and syllabification patterns were identical. For
example, the noun “convert” and the verb “convert” were not
considered equivalent. Thus, these analyses assumed accurate
perception of lexical stress and syllabification.

Quantitative Analysis. Two commonly employed metrics were
computed to quantitatively analyze the distributions of patterns
in the transcribed lexicon [12,13]. Frequency-weighted percent
words unique was computed as
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where FU  is the sum of  the frequencies of occurrence for
unique words in the transcribed lexicon, and FL is the sum of
frequencies of occurrence of words in the original lexicon. The
frequency-weighted metric estimates the extent to which unique
words are encountered in everyday language.

Frequency-weighted expected class size is computed as
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where nE  is the total number of lexical equivalence classes, Ia  is
the number of words in equivalence class a, Fa  is the sum of
frequencies of occurrence of words in equivalence class a, and
FL  is the sum of the frequencies of occurrence of words in the
lexicon. The frequency-weighted metric estimates the average
size of the equivalence classes encountered in everyday
language.



2.2  Results and Discussion

Table 2 shows that consonantal voicing substantially increases
the percent unique words for every set of transcription rules. The
largest enhancement was 15 percentage points, when the number
of phonemic equivalence classes was 10 for LA and 15 for L+V.
We estimated that 10 equivalence classes is typical of relatively
inaccurate hearing lipreaders. The table also shows that many
words are not unique under the L+V condition, although a
substantial reduction in the frequency-weighted expected class
size occurs with consonantal voicing (L+V).

Number of
Phonemic

Equivalence
Classes

LA           L+V

Percent Unique
Words

LA         L+V

Expected Class
Size

LA         L+V

2 3 7 18 422.6 86.6

10 15 43 58 14.1 4.3

12 18 54 62 5.1 2.2

19 25 76 85 1.6 1.2

Table 2. Percent unique words and expected class size as a
function of LA versus L+V and number of phonemic
equivalence classes.

3. EXPERIMENT 2

Experiment 2 was conducted to compare modeled LA and L+V
with empirically obtained results from McGrath and
Summerfield’s [2] Experiment 1. In their experiment, the
number of keywords correct in sentences was measured for LA
and L+V. In analyzing their data, McGrath and Summerfield
split their subjects into three groups based on lipreading ability
(poor, average, and good). They found that the magnitude of
enhancement increased as a function of lipreading ability.
Column 4 of Table 3 gives the percent keywords correct for
poor, average, and good lipreaders in their study (see Figure 1 in
[2]) in LA and L+V conditions.

3.1 Methods

Word set. McGrath and Summerfield employed the Bamford-
Kowal-Bench (BKB) standard sentence lists [18]. Only the BKB
keywords were analyzed here, as was the case in [2]. Of the
1,050 keywords, five were eliminated from the analysis, because
they did not exist in any form in the PhLex database. Of the
remaining 1,045 words, morphological changes were required on
12 words (8 singularizations, 1 pluralization, 4 verb tense
changes) in order to find appropriate entries in PhLex. Each
keyword token was counted. Thus, if a word occurred in several
sentences, it contributed proportionally to the results.

Procedure. Three different sets of phonemic equivalence classes
were selected to simulate the three levels of lipreaders in

McGrath and Summerfield [2]. Ten phonemic LA equivalence
classes (with corresponding 14 L+V equivalence classes) were
used to model poor lipreaders’ performance; twelve LA
phonemic equivalence classes (18 L+V) were used to estimate
average lipreaders’ performance; and nineteen LA phonemic
equivalence classes (25 L+V) were used to estimate good
lipreaders’ performance. (See Table 1 for the 10, 12, and 19 LA
equivalence classes.) These six rule sets were applied to the
extracted BKB keywords and to the entire PhLex database.

Quantitative Analysis. A BKB words was counted as
recognized if its transcribed form was unique in the
corresponding transcription of PhLex. Percent correct was
obtained by dividing the total number of transcribed unique
words by the total number of words in the BKB keyword list.

Average equivalence class size for BKB words was computed
under the assumption that subjects selected their response words
from their total lexicons.  Thus, the average equivalence class
size was computed by summing those equivalence class sizes for
the classes that contained BKB words in the transcribed PhLex
and dividing by the total number of BKB words.

3.2 Results

Number of
Phonemic

Equivalence
Classes

LA     L+V

Modeled
Percent
Correct

LA     L+V

Average
Equivalence
Class Size

LA       L+V

Percent
Correct

McGrath &
Summerfield

       LA    L+V

10 15 12 18 34.9 10.2 Poor   9 11

12 18 18 26 12.1 4.5 Avg. 21 38

19 25 45 60 2.6 1.6 Good 42 69

Table 3. Modeled percent words correct, average equivalence
class size, and percent words correct [2], as a function of LA
versus L+V and number of phoneme equivalence classes.

The results of Experiment 2 are shown in Table 3.  The table can
be used to obtain the modeled enhancement (L+V minus LA) for
BKB words, which is approximately half that of the
enhancement reported by [2] for average and good lipreaders.
For example, the modeled enhancement for good lipreaders was
15 percentage points (60 minus 45), but the behaviorally
obtained enhancement was 27 percentage points (69 minus 42).
On the other hand, McGrath and Summerfield’s poor lipreaders
scarcely benefited from F0, whereas in the model the
enhancement was 6 percentage points. The results on average
equivalence class size show that consonantal voicing resulted in
substantial reduction in class size.

4. GENERAL DISCUSSION

Experiment 1 showed that consonantal voicing fails to
disambiguate a majority of visually ambiguous words. At the



same time, the L+V transcriptions do substantially reduce the
number of words in equivalence classes.

Experiment 2 showed that for the small set of keywords in the
BKB sentence lists, L+V results in an increase in unique words
over the LA transcriptions. However, the results of Experiment 2
did not account fully for the McGrath and Summerfield data,
which showed greater enhancements with the acoustic F0
supplement in behavioral tests.

Several different factors could contribute to the McGrath-
Summerfield results and [1,8], including effects due to syntactic
and semantic levels of processing.  However, we are intrigued
with another possible contributor to word identification with F0,
which is suggested by the foregoing analyses of word
equivalence class size. Contemporary models of word
recognition incorporate frequency weighted decision rules [19].
Under conditions of ambiguity, the decision rule results in the
selection of the most frequent word. Thus, accurate word
recognition can occur as a function of both perceptual
uniqueness and lexical biasing. Under the lipreading with F0
condition, lexical biasing could resolve the remaining ambiguity
of words, particularly in sentence sets designed to sample
frequent words, as in the BKB sentences.
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