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Lipschitz continuous and compact composi-
tion operators in hyperbolic classes

Fernando Pérez-González, Jouni Rättyä and Jari Taskinen

Abstract. Natural metrics in the hyperbolic α-Bloch-, weighted Dirichlet-
and Qp-classes are introduced, and these classes are shown to be com-
plete metric spaces with respect to the corresponding metrics. Then
Lipschitz continuous and compact composition operators Cϕ(f) = f ◦ϕ

acting from the hyperbolic α-Bloch-class to the hyperbolic weighted
Dirichlet- or Qp-class are characterized by conditions depending on the
symbol ϕ only.

Mathematics Subject Classification (2010). Primary 47B38; Secondary
30D45, 30D50, 46E15.

Keywords. Composition operator, hyperbolic class, Lipschitz continu-
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1. Introduction

Hyperbolic function classes are subsets of the class B(D) of all analytic func-
tions f in the unit disc D such that |f(z)| < 1 for all z ∈ D. They are usually
defined by using either the hyperbolic derivative f∗(z) := |f ′(z)|/(1−|f(z)|2)
of f ∈ B(D), or the hyperbolic distance ρ(f(z), 0) := 1

2 log((1 + |f(z)|)/(1 −
|f(z)|)) between f(z) and 0.

Hyperbolic function classes, like the α-Bloch-class of those f ∈ B(D)
for which

‖f‖B∗

α
:= sup

z∈D

f∗(z)(1 − |z|2)α < ∞,

are not linear spaces. It is thus slightly surprising that a satisfactory theory
of analytic composition operators still exists for these classes. In this paper
we introduce natural metrics on the hyperbolic α-Bloch-, Qp- and Dirichlet-
classes, and show that these classes are complete metric spaces with respect
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to the corresponding metrics. The main observation of our paper is that, for
a composition operator Cϕ(f) := f ◦ ϕ induced by ϕ ∈ B(D), the Lipschitz-

continuity on hyperbolic classes plays the same role as the continuity or the
boundedness on the usual Banach-function spaces. This analogy even extends
to the study of compact operators (or completely continuous operators in the
language of general nonlinear functional analysis).

Yamashita was probably the first one to consider systematically hyper-
bolic function classes. He introduced and studied hyperbolic Hardy-, BMOA-
and Dirichlet-classes in [7, 8, 9, 10, 11, 12]. More recently, Smith studied inner
functions in the hyperbolic little Bloch-class [4], and the hyperbolic counter-
parts of the Qp-spaces were studied by Li [2] and Li et. al. [3]. Further,
hyperbolic classes even arise naturally in the study of composition operators
acting on Banach spaces of analytic functions in D. For example, a result
by Xiao shows that a composition operator Cϕ mapping from the classical
Bloch-space B to the conventional α-Bloch-space Bα is bounded if and only
if the symbol ϕ belongs to the hyperbolic α-Bloch-class B∗

α [5].
The paper is organized as follows. In Section 2 we introduce the hy-

perbolic α-Bloch-, weighted Dirichlet- and Qp-classes and natural metrics on
them. We also present the main results, the characterizations of Lipschitz
continuous and compact composition operators mapping from the hyperbolic
α-Bloch-class to the hyperbolic weighted Dirichlet- or Qp-class by conditions
depending on the symbol ϕ only. The proofs of the results are given in Sec-
tions 3–6 in the chronological order. Section 7 is devoted to several remarks
on possible choices of metrics.

2. Basic definitions and results

We denote by D = {z : |z| < 1} the unit disc of the complex plane, and B(D)
stands for the class of all analytic functions f in D for which |f(z)| < 1 for
all z ∈ D.

If (X, d) is a metric space, we denote the open and closed balls with
center x and radius r > 0 by B(x, r) := {y ∈ X : d(y, x) < r} and B̄(x, r) :=
{y ∈ X : d(y, x) ≤ r}, respectively. By C, c, C1 and so on we denote strictly
positive constants which may vary from place to place but not in the same
sequence of inequalities.

Denoting f∗(z) = |f ′(z)|/(1− |f(z)|2), the hyperbolic derivative of f ∈
B(D), the hyperbolic α-Bloch-classes B∗

α and B∗
α,0 are defined as the sets of

those f ∈ B(D) for which

‖f‖B∗

α
:= sup

z∈D

f∗(z)(1 − |z|2)α < ∞

and

lim
|z|→1−

f∗(z)(1 − |z|2)α = 0,

respectively. The Schwarz-Pick lemma implies B∗
α = B(D) for all α ≥ 1 with

‖f‖B∗

α
≤ 1, and therefore the hyperbolic α-Bloch-classes are of interest only
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when 0 < α < 1. The usual α-Bloch-spaces (defined using the conventional
derivative f ′ instead of f∗) and their norms are denoted by the same symbols
but without ∗.

It is obvious that B∗
α is not a linear space since the sum of two functions

in B(D) does not necessarily belong to B(D). However, we can find a natural
metric in B∗

α by defining

d(f, g ;B∗
α) := dB∗

α
(f, g) + ‖f − g‖Bα

+ |f(0) − g(0)|

:= sup
z∈D

∣

∣

∣

∣

f ′(z)

1 − |f(z)|2
−

g′(z)

1 − |g(z)|2

∣

∣

∣

∣

(1 − |z|2)α

+ ‖f − g‖Bα
+ |f(0) − g(0)|

(2.1)

for f, g ∈ B∗
α. The presence of the conventional α-Bloch-norm here is perhaps

unexpected. It is motivated by Example 7 below. It shows the phenomenon
that, though trivially dB∗

α
(f, 0) ≥ ‖f‖Bα

for all f ∈ B∗
α, the same does no

more hold for the differences of two functions: there does not even exist a
constant C > 0 such that

sup
z∈D

∣

∣

∣

∣

f ′(z)

1 − |f(z)|2
−

g′(z)

1 − |g(z)|2

∣

∣

∣

∣

(1 − |z|2)α ≥ C‖f − g‖Bα
(2.2)

would hold for all f ,g ∈ B∗
α, 0 < α < 1. At the end of the paper we make

some further remarks on the choice of the metric, see Section 7.

Proposition 2.1. The class B∗
α equipped with the metric d(·, · ;B∗

α) is a com-
plete metric space. Moreover, B∗

α,0 is a closed (and therefore complete) sub-
space of B∗

α.

We now turn to consider hyperbolic Qp-classes. Recall that, for 0 ≤ p <
∞, the hyperbolic class Q∗

p consists of those f ∈ B(D) for which

‖f‖2
Q∗

p
:= sup

a∈D

∫

D

(f∗(z))
2
gp(z, a) dA(z) < ∞,

where dA is the normalized 2-dimensional Lebesgue measure on D, g(z, a) :=
− log |ϕa(z)| is the Green’s function of D and ϕa(z) := (a − z)/(1 − az) is
the automorphism of D which interchanges the origin and the point a ∈ D.
Moreover, f ∈ Q∗

p,0 if

lim
|a|→1−

∫

D

(f∗(z))
2
gp(z, a) dA(z) = 0.

The Schwarz-Pick lemma implies Q∗
p = B(D) for all p > 1, and therefore the

hyperbolic Qp-classes are considered only when 0 ≤ p ≤ 1. For f, g ∈ Q∗
p,

define their distance by

d(f, g ; Q∗
p) := dQ∗

p
(f, g) + ‖f − g‖Qp

+ |f(0) − g(0)|

:=

(

sup
a∈D

∫

D

∣

∣

∣

∣

f ′(z)

1 − |f(z)|2
−

g′(z)

1 − |g(z)|2

∣

∣

∣

∣

2

gp(z, a) dA(z)

)
1

2

+ ‖f − g‖Qp
+ |f(0) − g(0)|.

(2.3)
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Proposition 2.2. The class Q∗
p equipped with the metric d(·, · ; Q∗

p) is a com-
plete metric space. Moreover, Q∗

p,0 is a closed (and therefore complete) sub-
space of Q∗

p.

According to the definition in [3], a composition operator Cϕ : B∗
α → Q∗

p

is said to be bounded if there is a positive constant C such that ‖Cϕ(f)‖Q∗

p
≤

C‖f‖B∗

α
for all f ∈ B∗

α. Theorem 2.3 shows that Cϕ : B∗
α → Q∗

p is bounded if
and only if it is Lipschitz-continuous, that is, if there exists a positive constant
C such that

d(f ◦ ϕ, g ◦ ϕ ; Q∗
p) ≤ Cd(f, g ;B∗

α)

for all f, g ∈ B∗
α. By elementary functional analysis, a linear operator between

normed spaces is bounded if and only if it is continuous, and the bounded-
ness is trivially also equivalent to the Lipschitz-continuity. So, our result for
composition operators in hyperbolic spaces is the correct and natural gener-
alization of the linear operator theory.

Theorem 2.3. Let 0 < α ≤ 1 and 0 ≤ p ≤ 1. Then the following statements
are equivalent:

(1) Cϕ : B∗
α → Q∗

p is bounded;
(2) Cϕ : B∗

α → Q∗
p is Lipschitz continuous;

(3) sup
a∈D

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)2α
gp(z, a) dA(z) < ∞.

We now turn to consider compact operators.

Definition 2.4. We call an operator Cϕ : B∗
α → Q∗

p compact, if it maps any
ball in B∗

α onto a precompact set in Q∗
p.

This concept coincides with that of a completely continuous operator in
general nonlinear functional analysis (see e.g. [1], Definition 8.1.). However,
we prefer to use the term compact operator; recall that the operator is still
linear, though the underlying spaces are not.

The following observation is sometimes useful.

Proposition 2.5. If Cϕ : B∗
α → Q∗

p is compact, it maps closed balls onto
compact sets.

Compactness of composition operators can be characterized in full anal-
ogy with the linear case.

Theorem 2.6. Let 0 < α ≤ 1 and 0 ≤ p ≤ 1. Then the following statements
are equivalent:

(1) Cϕ : B∗
α → Q∗

p is compact;

(2) lim
r→1−

sup
a∈D

∫

|ϕ(z)|≥r

|ϕ′(z)|2

(1 − |ϕ(z)|2)2α
gp(z, a) dA(z) = 0.

Before proving the results presented in this section, we point out an
immediate consequence of the proofs of these results. Namely, if D∗

p denotes
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the hyperbolic weighted Dirichlet-class which consists of those f ∈ B(D) for
which

∫

D

(f∗(z))
2
(1 − |z|2)p dA(z) < ∞,

then the proof of Proposition 2.2 shows that D∗
p is a complete metric space

with respect to the metric

d(f, g ;D∗
p) := dD∗

p
(f, g) + ‖f − g‖Dp

+ |f(0) − g(0)|

:=

(

∫

D

∣

∣

∣

∣

f ′(z)

1 − |f(z)|2
−

g′(z)

1 − |g(z)|2

∣

∣

∣

∣

2

(1 − |z|2)p dA(z)

)
1

2

+ ‖f − g‖Dp
+ |f(0) − g(0)|.

Moreover, the proofs of Theorems 2.3 and 2.6 yield the following result.

Theorem 2.7. Let 0 < α ≤ 1 and −1 < p ≤ 1. Then the following statements
are equivalent:

(1) Cϕ : B∗
α → D∗

p is Lipschitz continuous;
(2) Cϕ : B∗

α → D∗
p is compact;

(3)

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)2α
(1 − |z|2)p dA(z) < ∞.

3. Proof of Proposition 2.1

For simplicity, denote d(f, g) := d(f, g ;B∗
α). Then clearly d(f, g) ≥ 0, d(f, g) =

d(g, f), d(f, h) ≤ d(f, g)+ d(g, h), and d(f, f) = 0, for all f, g, h ∈ B∗
α. It also

follows from the presence of the usual α-Bloch-term that d(f, g) = 0 implies
f = g. Hence, d is a metric on B∗

α.
Let (fn)∞n=1 be a Cauchy sequence in the metric space B∗

α, that is, for
any ε > 0 there is an N = N(ε) ∈ N such that d(fn, fm) < ε for all n,m > N .
Since (fn) ⊂ B(D), the family (fn) is uniformly bounded and hence normal
in D. Therefore there exists f ∈ B(D) and a subsequence (fnj

)∞j=1 such that
fnj

converges to f uniformly on compact subsets of D. It follows that also fn

converges to f uniformly on compact subsets, and by the Cauchy formula, the
same also holds for the derivatives. Let m > N . Then the uniform convergence
yields

∣

∣

∣

∣

f ′(z)

1 − |f(z)|2
−

f ′
m(z)

1 − |fm(z)|2

∣

∣

∣

∣

(1 − |z|2)α

= lim
n→∞

∣

∣

∣

∣

f ′
n(z)

1 − |fn(z)|2
−

f ′
m(z)

1 − |fm(z)|2

∣

∣

∣

∣

(1 − |z|2)α

≤ lim
n→∞

d(fn, fm) ≤ ε

(3.1)

for all z ∈ D, and it follows that ‖f‖B∗

α
≤ ‖fm‖B∗

α
+ε. Thus f ∈ B∗

α as desired.
Moreover, (3.1) and the completeness of the usual α-Bloch-space imply that
(fn)∞n=1 converges to f with respect to the metric d.

The second part of the assertion follows by (3.1).
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4. Proof of Proposition 2.2

As in the previous section we find that d(·, · ; Q∗
p) is a metric in Q∗

p. For the
completeness proof, let (fn) be a Cauchy sequence in Q∗

p. As in the proof of
Proposition 2.1 we find an f ∈ B(D) such that fn converges to f uniformly
on compact subsets of D. Let m > N and 0 < r < 1. Then Fatou’s lemma
yields

∫

∆(0,r)

∣

∣

∣

∣

f ′(z)

1 − |f(z)|2
−

f ′
m(z)

1 − |fm(z)|2

∣

∣

∣

∣

2

gp(z, a) dA(z)

=

∫

∆(0,r)

lim
n→∞

∣

∣

∣

∣

f ′
n(z)

1 − |fn(z)|2
−

f ′
m(z)

1 − |fm(z)|2

∣

∣

∣

∣

2

gp(z, a) dA(z)

≤ lim
n→∞

∫

D

∣

∣

∣

∣

f ′
n(z)

1 − |fn(z)|2
−

f ′
m(z)

1 − |fm(z)|2

∣

∣

∣

∣

2

gp(z, a) dA(z) ≤ ε2,

and by letting r → 1−, it follows that
∫

D

(f∗(z))
2
gp(z, a) dA(z) ≤ 2ε2 + 2

∫

D

(f∗
m(z))2gp(z, a) dA(z). (4.1)

This yields ‖f‖2
Q∗

p
≤ 2ε + 2‖fm‖2

Q∗

p
, and thus f ∈ Q∗

p. We also find that

fn → f with respect to the metric of Q∗
p.

The second part of the assertion follows by (4.1).

5. Proof of Theorem 2.3

It is known that Cϕ : B∗
α → Q∗

p is bounded if and only if (3) is satisfied [3].
Therefore it suffices to prove that the assertions (2) and (3) are equivalent.

Assume first that Cϕ : B∗
α → Q∗

p is Lipschitz continuous, that is, there
exists a positive constant C such that d(f ◦ ϕ, g ◦ ϕ ;Q∗

p) ≤ Cd(f, g ;B∗
α) for

all f, g ∈ B∗
α. Taking g = 0, this implies

‖f ◦ ϕ‖Q∗

p
≤ C(‖f‖B∗

α
+ ‖f‖Bα

+ |f(0)|) (5.1)

for all f ∈ B∗
α. The assertion (3) for α = 1 follows by choosing f(z) = z in

(5.1). If 0 < α < 1, then

|f(z)| =

∣

∣

∣

∣

∫ z

0

f ′(ζ) dζ + f(0)

∣

∣

∣

∣

≤ ‖f‖Bα

∫ |z|

0

dx

(1 − x2)α
+ |f(0)|

≤ (1 − α)−1‖f‖Bα
+ |f(0)|,

(5.2)

and therefore [6, Theorem 2.1.1] implies the existence of f, g ∈ B∗
α such that

(|f ′(z)| + |g′(z)|)(1 − |z|2)α ≥ C > 0 (5.3)

for all z ∈ D. Combining (5.1) and (5.3) we obtain

‖f‖B∗

α
+ ‖g‖B∗

α
+ ‖f‖Bα

+ ‖g‖Bα
+ |f(0)| + |g(0)|)

≥ C

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)2α
gp(z, a) dA(z)
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from which the assertion (3) follows.

Assume now that (3) is satisfied. The inequality (5.2) yields |f(ϕ(0))−
g(ϕ(0))| ≤ (1 − α)−1‖f − g‖Bα

+ |f(0) − g(0)|, and therefore

d(f ◦ ϕ, g ◦ ϕ ;Q∗
p) = dQ∗

p
(f ◦ ϕ, g ◦ ϕ) + ‖f ◦ ϕ − g ◦ ϕ‖Qp

+ |f(ϕ(0)) − g(ϕ(0))|

≤ dB∗

α
(f, g)

(

sup
a∈D

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)2α
gp(z, a) dA(z)

)

1

2

+ ‖f − g‖Bα

(

sup
a∈D

∫

D

|ϕ′(z)|2

(1 − |ϕ(z)|2)2α
gp(z, a) dA(z)

)

1

2

+ ‖f − g‖Bα
(1 − α)−1 + |f(0) − g(0)|

≤ C ′d(f, g ;B∗
α).

Thus Cϕ : B∗
α → Q∗

p is Lipschitz continuous, if (3) is satisfied.

6. Proofs of Proposition 2.5 and Theorem 2.6

As regards to Proposition 2.5, if B ⊂ B∗
α is a closed ball and g ∈ Q∗

p belongs
to the closure of Cϕ(B), we can find a sequence (fn)∞n=1 ⊂ B such that
fn ◦ ϕ → g in Q∗

p as n → ∞. But (fn)∞n=1 is a normal family, hence it has a
subsequence (fnj

)∞j=1 converging uniformly on the compact subsets of D to
an analytic function f . As in earlier arguments (see (3.1)) we get a pointwise
estimate which shows that f must belong to the closed ball B. On the other
hand, also the sequence (fnj

◦ ϕ)∞j=1 converges uniformly on compacta to an
analytic function, which is g. We get g = f ◦ϕ, i.e. g belongs to Cϕ(B). Thus,
this set is closed and also compact.

Let us turn to Theorem 2.6. We first assume that (2) holds. Let B :=
B̄(g, ̺) ⊂ B∗

α, where g ∈ B∗
α and ̺ > 0, be a closed ball, and let (fn)∞n=1 ⊂ B

be any sequence. We show that its image has a convergent subsequence in
Q∗

p, which proves the compactness of Cϕ by definition.

Again, (fn)∞n=1 ⊂ B(D) is a normal family, hence, there is a subsequence
(fnj

)∞j=1 which converges uniformly on compact subsets to an analytic func-
tion f . By the Cauchy formula for the derivative of an analytic function,
also the sequence (f ′

nj
)∞j=1 converges uniformly on compacta to f ′. It follows

that also the sequences (fnj
◦ ϕ)∞j=1 and (f ′

nj
◦ ϕ)∞j=1 converge uniformly on

compact subsets of D to f ◦ϕ and f ′ ◦ϕ, respectively. Moreover, f ∈ B ⊂ B∗
α
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since for any fixed R, 0 < R < 1, the uniform convergence yields

sup
|z|≤R

∣

∣

∣

∣

f ′(z)

1 − |f(z)|2
−

g′(z)

1 − |g(z)|2

∣

∣

∣

∣

(1 − |z|2)α

+ sup
|z|≤R

|f ′(z) − g′(z)|(1 − |z|2)α + |f(0) − g(0)|

= lim
j→∞

(

sup
|z|≤R

∣

∣

∣

∣

∣

f ′
nj

(z)

1 − |fnj
(z)|2

−
g′(z)

1 − |g(z)|2

∣

∣

∣

∣

∣

(1 − |z|2)α

+ sup
|z|≤R

|f ′
nj

(z) − g′(z)|(1 − |z|2)α + |f(0) − g(0)|

)

≤ ̺,

hence, d(f, g ;B∗
α) ≤ ̺.

Let ε > 0. Since (2) is satisfied, we may fix r, 0 < r < 1, such that

sup
a∈D

∫

|ϕ(z)|≥r

|ϕ′(z)|2

(1 − |ϕ(z)|2)2α
gp(z, a) dA(z) < ε.

By the uniform convergence, we may fix N1 ∈ N such that

|fnj
◦ ϕ(0) − f ◦ ϕ(0)| ≤ ε (6.1)

for all j ≥ N1.
The condition (2) is known to imply the compactness of Cϕ : Bα → Qp,

hence, possibly to passing once more to a subsequence and adjusting the
notations, we may assume that

‖fnj
◦ ϕ − f ◦ ϕ‖Qp

≤ ε (6.2)

for j ≥ N2, for some N2 ∈ N.
Since (fnj

)∞j=1 ⊂ B and f ∈ B, it follows that

sup
a∈D

∫

|ϕ|≥r

∣

∣

∣

∣

(fnj
)′(ϕ(z))

1 − |fnj
(ϕ(z))|2

−
f ′(ϕ(z))

1 − |f(ϕ(z))|2

∣

∣

∣

∣

2

|ϕ′(z)|2gp(z, a) dA(z)

≤ dB∗

α
(fnj

, f) sup
a∈D

∫

|ϕ|≥r

|ϕ′(z)|2

(1 − |ϕ(z)|2)2α
gp(z, a) dA(z)

≤ Cε

(6.3)

for C = 2̺. On the other hand, by the uniform convergence on compacta of
D, we can find an N3 ∈ N such that for all j ≥ N3,

∣

∣

∣

∣

(fnj
)′(ϕ(z))

1 − |fnj
(ϕ(z))|2

−
f ′(ϕ(z))

1 − |f(ϕ(z))|2

∣

∣

∣

∣

≤ ε

for all z with |ϕ(z)| ≤ r, hence, for such j,

sup
a∈D

∫

|ϕ|≤r

∣

∣

∣

∣

(fnj
)′(ϕ(z))

1 − |fnj
(ϕ(z))|2

−
f ′(ϕ(z))

1 − |f(ϕ(z))|2

∣

∣

∣

∣

2

|ϕ′(z)|2gp(z, a) dA(z)

≤ ε

(

sup
a∈D

∫

|ϕ|≤r

|ϕ′(z)|2

(1 − |ϕ(z)|2)2α
gp(z, a) dA(z)

)
1

2

≤ Cε,

(6.4)
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where C is the bound obtained from (3) of Theorem 2.3. Combining (6.1),
(6.2), (6.3) and (6.4) we deduce that fnj

→ f in Q∗
p.

As for the converse direction, let fn(z) := nα−1zn/2 for all n ∈ N ,
n ≥ 2. Then

‖fn‖B∗

α
= sup

z∈D

nα|z|n−1

1 − 2−2nn2(α−1)|z|2n
(1 − |z|2)α

≤ 3 sup
z∈D

nα|z|n−1(1 − |z|)α.
(6.5)

The function rn−1(1− r)α attains it’s maximum at the point r = 1−α/(α +
n − 1), and hence (6.5) has the upper bound

3nα
(

1 −
α

α + n − 1

)n−1

·

(

α

α + n − 1

)α

≤ 3.

As a consequence, the sequence (fn)∞n=1 belongs to the ball B̄(0, 3) ⊂ B∗
α.

We are assuming that Cϕ maps the closed ball B̄(0, 3) ⊂ B∗
α into a com-

pact subset of Q∗
p, hence, there exists an unbounded increasing subsequence

(nj)
∞
j=1 such that the image subsequence (Cϕfnj

)∞j=1 converges with respect
to the norm. Since, both (fn)∞n=1 and (Cϕfnj

)∞j=1 converge to the zero func-
tion uniformly on compact subsets of D, the limit of the latter sequence must
be 0. Hence,

‖nα−1
j ϕnj‖Q∗

p
→ 0, (6.6)

as j → ∞.

Let rj := 1− 1/nj . For all numbers a, rj ≤ a < 1, we have the estimate

nα
j anj−1

1 − anj
=

nα
j anj−1

(1 − a)
nj−1
∑

k=0

ak

≥
nα

j anj−1

(1 − a)nj

≥
nα−1

j (1 − 1/nj)
nj−1

1 − a
≥

1

e

1

(1 − a)α
.

(6.7)

Using (6.7) we obtain

‖nα−1
j ϕnj‖2

Q∗

p
≥ sup

a∈D

∫

|ϕ|≥rj

∣

∣

∣

∣

∣

nα
j ϕ(z)nj−1

1 − |ϕ(z)nj |2

∣

∣

∣

∣

∣

2

|ϕ′(z)|2gp(z, a) dA(z)

≥ sup
a∈D

1

4e2

∫

|ϕ|≥rj

|ϕ′(z)|2

(1 − |ϕ(z)|2)2α
gp(z, a) dA(z),

(6.8)

and the condition (2) follows by combining (6.6) and (6.8).

7. Remarks on the choice of the metrics

There is a good motivation to include the conventional α-Bloch-norm in the
definition of the metric in B∗

α. Although clearly ‖f‖B∗

α
≥ ‖f‖Bα

for all f ∈ B∗
α,
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the same does no more hold for the differences of two functions: there does
not even exist a constant C > 0 such that

sup
z∈D

∣

∣

∣

∣

f ′(z)

1 − |f(z)|2
−

g′(z)

1 − |g(z)|2

∣

∣

∣

∣

(1 − |z|2)α ≥ C‖f − g‖Bα

would hold for all f ,g ∈ B∗
α, 0 < α < 1, as Example 7 shows. Before going to

that we make some related remarks.

Remarks. 1. The term ‖f − g‖Bα
of the metric is explicitely needed in

the proof of Theorem 2.3, see (5.2).
The statement of Theorem 2.3 would hold true, if the metric d(·, · ;B∗

α)
of B∗

α were replaced by the semimetric dB∗

α
and if the same were done in the

space Q∗
p. Of course, this would have the drawback that the spaces would no

more be Hausdorff.
2. In view of Example 7, the identity mapping B∗

α → Bα would not
be Lipschitz-continuous, unless we included ‖f − g‖Bα

in (2.1). This would
not be satisfactory, since the very basic idea here is to show that Lipschitz-
continuity is the correct generalization of the concept of continuity from the
Banach spaces to hyperbolic classes, at least in the study of composition
operators.

3. We do not know, if the metric d(f, g ;B∗
α) is equivalent to the metric

d∗(f, g) := dB∗

α
(f, g)+ |f(0)−g(0)| on the class B∗

α, i.e. if these metric spaces
have the same open and closed sets.

We do not know, if the identity mapping (B∗
α, d∗) → Bα is still contin-

uous.
By the way, to see that d∗ is indeed a metric on B∗

α, the only non-trivial
step is to prove that d∗(f, g) = 0 implies f = g in D. If d∗(f, g) = 0, then
f(0) = g(0) and

f ′(z)

1 − |f(z)|2
=

g′(z)

1 − |g(z)|2

for all z ∈ D, in particular f ′(0) = g′(0). If f ′ has no zeros (and therefore g′

neither), then

f ′(z)

g′(z)
=

1 − |f(z)|2

1 − |g(z)|2
∈ R

+

for all z ∈ D, and it follows that f = C1g + C2, where C1 ∈ R
+ and C2 ∈ C.

But f ′(0) = g′(0) yields C1 = 1 and then f(0) = g(0) ensures that C2 = 0,
so f(z) = g(z) for all z ∈ D. If f ′ has a zero of order m in a point a ∈ D,
then also g′ must have a zero of the same order m in a ∈ D, and it follows
that f ′/g′ is positive and real in some neighborhood of a. One again deduces
f = C1g + C2, where C1 ∈ R

+ and C2 ∈ C, and it follows that f = g in D.
4. There are related open questions for the Q∗

p and Dirichlet-classes.
The above results hold true, if the term ‖f − g‖Qp

is dropped out from the
definition of the metric of Q∗

p and that of the Dirichlet-classes. We prefer to
keep the terms, for aesthetic reasons if nothing else. See also the remark 2
above.
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Example. Pick up the positive numbers ak and bk, k = 1, 2, such that ak 6= bk,

a2

1 − a2
1

=
b2

1 − b2
1

and a1 + 3a2 < 1 , b1 + 3b2 < 1. (7.1)

For example, let a1 = 1/10 = a2, b1 = 1/2 and b2 = 5/66. Define, for all
j ∈ N,

fj(z) := a1 + a2(1 − z + j−1)β , gj(z) := b1 + b2(1 − z + j−1)β ,

where β is chosen such that 0 < (1 − α)/2 < β < 1 − α < 1. For all j, these
functions belong to B∗

α,0. Now

‖fj − gj‖Bα
= sup

z∈D

|f ′
j(z) − g′j(z)|(1 − |z|2)α

= sup
z∈D

(a2 − b2)β|1 − z + j−1|β−1(1 − |z|2)α,

and this approaches to +∞ as j → ∞, since a2 6= b2 and β − 1 + α < 0.
On the other hand, the functions fj and gj are analytic in the closed

unit disc, and therefore the asymptotic relation
∣

∣

∣

∣

f ′
j(1)

1 − |fj(1)|2
−

g′j(1)

1 − |gj(1)|2

∣

∣

∣

∣

= O

(

1

j2β−1

)

, j → ∞,

can be verified by a direct calculation. If 0 < α < 1
2 , then we may choose β

such that 2β−1 > 0, and it follows that dB∗

α
(fj , gj) is uniformly bounded for

all j. The general case 0 < α < 1 can be proved by applying

c1ε
β−1

1 − c2 + c3εβ
=

c1ε
β−1

1 − c2
+ O(ε2β−1),

valid for small ε. This together with (7.1) yield
∣

∣

∣

∣

∣

f ′
j(z)

1 − |fj(z)|2
−

g′j(z)

1 − |gj(z)|2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a2β(1 − z + j−1)β−1

1 − (a2
1 + 2a1a2(1 − z + j−1)β + a2

2(1 − z + j−1)2β)

−
b2β(1 − z + j−1)β−1

1 − (b2
1 + 2b1b2(1 − z + j−1)β + b2

2(1 − z + j−1)2β)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a2β(1 − z + j−1)β−1

1 − a2
1

+ O((1 − z + j−1)2β−1)

−
b2β(1 − z + j−1)β−1

1 − b2
1

+ O((1 − z + j−1)2β−1)

∣

∣

∣

∣

∣

≤ β

∣

∣

∣

∣

∣

a2

1 − a2
1

−
b2

1 − b2
1

∣

∣

∣

∣

∣

(1 − z + j−1)β−1 + O((1 − z + j−1)2β−1)

= O((1 − z + j−1)2β−1),
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where O((1− z + j−1)2β−1) denotes expressions which can be bounded by a
constant (independent of z or j) times |1−z+j−1|2β−1. Since 2β−1+α > 0 by
the assumption, it follows that the quantity dB∗

α
(fj , gj) is uniformly bounded

for all j.
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