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Abstract. We show that if a distribution is locally spanned by Lipschitz
vector fields and is involutive a.e., then it is uniquely integrable giving rise to
a Lipschitz foliation with leaves of class C1,Lip. As a consequence, we show
that every codimension-one Anosov flow on a compact manifold of dimension
> 3 such that the sum of its strong distributions is Lipschitz, admits a global
cross section.

The main purpose of this paper is to generalize the theorem of Frobenius on in-
tegrability of smooth vector distributions and to give an application of the theorem
to the question of existence of global cross sections to Anosov flows. Accordingly,
the paper is divided into two parts, A and B.

A. Integrability of Lipschitz distributions

Let M be a C∞ n-dimensional Riemannian manifold equipped with a Lebesgue
measure.

Definition 1. We will say that a distribution (or plane field) E on M is Lipschitz
if it is locally spanned by Lipschitz continuous vector fields.

Recall that a map f between metric spaces (M1, d1) and (M2, d2) is called Lip-
schitz continuous (or simply Lipschitz) if there is a constant C > 0 such that
d2(f(p), f(q)) ≤ Cd1(p, q), for all p, q ∈ M1. By saying that a vector field X on
M is Lipschitz we mean that in some (and therefore in any) coordinate system, X
can be written in the form

X =
n∑
i=1

ai
∂

∂xi
,

where each ai is a Lipschitz function. Recall that a Lipschitz vector field is uniquely
integrable and each time t map of its flow is Lipschitz.

An important property of Lipschitz maps, discovered by H. Rademacher, is that
they are almost everywhere (relative to Lebesgue measure) differentiable in the
ordinary sense with locally essentialy bounded derivative. This property enables us
to extend the notion of Lie bracket to Lipschitz vector fields. Namely, if X,Y are
Lipschitz vector fields, and f is a C∞ function, we define

[X,Y ]f = X(Y f)− Y (Xf).
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Note that this expression makes sense and is defined a.e. because Xf and Y f are
Lipschitz functions. If in some local coordinates X and Y can be expressed as

X =
∑
i

ai
∂

∂xi
, Y =

∑
j

bj
∂

∂xj
,

then [X,Y ] in the same coordinate system looks like

[X,Y ] =
∑
i,j

(
ai
∂bj
∂xi
− bi

∂aj
∂xi

)
∂

∂xj
.

Notice that the coefficients of [X,Y ] are locally bounded functions.

Definition 2. Let E be a Lipschitz distribution on M . We will say that E is
involutive a.e. if for every two Lipschitz vector fields X,Y in E their bracket [X,Y ]p
belongs to Ep for a.e. p ∈M .

So, for instance, if X1, . . . , Xk is a local basis for E on some open set consisting
of Lipschitz vector fields, then E is involutive a.e. if and only if there exist locally
bounded functions clij such that

[Xi, Xj] =
k∑
l=1

clijXl.

We can now state the results of the first part of the paper.

Theorem A1. Let E be a k-dimensional Lipschitz distribution on a compact
smooth n-dimensional manifold M . If E is involutive almost everywhere, then
every point of M has a coordinate neighborhood (U ;x1, . . . , xn) such that:

(a) Each map xi : U → R is Lipschitz.
(b) The slices xk+1 = constant, . . . , xn = constant are integral manifolds of E.

Moreover, every connected integral manifold of E in U is of class C1,Lip and lies
in one of these slices.

Theorem A2. Let E be as above. Then through every point p of M passes a unique
maximal connected integral manifold of E, and every connected integral manifold
of E through p is contained in the maximal one.

Corollary A3. Let α be a 1-form on M which is everywhere nonsingular and
Lipschitz, and let E = Ker(α). Then E is uniquely integrable if and only if

α ∧ dα = 0

almost everywhere on M .

Proof of Theorem A1. The proof is by induction on k. In constructing the desired
coordinate system we closely follow Warner (see [Wa], Theorem 1.60), but when
certain difficulties arise due to nonsmoothness of E, we use some standard approx-
imation techniques to reach the correct conclusions.

If k = 1, the theorem follows directly from the flowbox theorem and the already
mentioned fact that Lipschitz vector fields generate Lipschitz flows.

So assume k ≥ 2 and that the theorem holds for k − 1. Given p ∈ M , let
(V ; y1, . . . , yn) be a C∞ coordinate neighborhood with yi(p) = 0 (1 ≤ i ≤ n),
on which E is spanned by Lipschitz vector fields X1, . . . , Xk. Without loss of
generality we may assume that X1(y1) ≥ 1 on V . Set Y1 = X1 and

Yi = Xi −
Xi(y1)

X1(y1)
X1,
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for 2 ≤ i ≤ k. Then Y1, . . . , Yk are linearly independent Lipschitz vector fields on
V spanning E|V . Let H be the slice y1 = 0 and let

Zi = Yi|H ,

for 2 ≤ i ≤ k. Then, by construction, Yi(y1) = 0 for 2 ≤ i ≤ k. So the vector fields
Z2, . . . , Zk are tangent to H and span a (k− 1)-dimensional Lipschitz distribution
F on H. We claim that F is involutive a.e. To see this, let ι : H → M be the
inclusion. Then Yi = ι∗(Zi), so

[Yi, Yj ] = ι∗([Zi, Zj ]).

Since for i, j ≥ 2,

[Yi, Yj ](y1) = Yi(Yjy1)− Yj(Yiy1) = 0,

there exist locally bounded functions clij , such that

[Yi, Yj ] =
k∑
l=1

clij · Yl,(1)

a.e. on U , where for i, j ≥ 2, c1ij = 0. Thus, since ι∗ is 1-1, we have

[Zi, Zj ] =
k∑
l=2

clij
∣∣
H
· Zl

a.e. on H (with respect to the (n− 1)-dimensional Lebesgue measure on H). So F
is involutive a.e. By induction hypothesis, there exists a coordinate neighborhood
(U ; z2, . . . , zn) of p with U ⊂ V , such that the slices

zk+1 = constant, . . . , zn = constant

are precisely the integral manifolds of F .
Let φt be the local flow of X1(= Y1) on U . There exists a neighborhood of p

which we (to simplify notation) also call U , such that the projection π : U → H∩U
along the orbits of φt is well defined and Lipschitz.

Now define maps from U to R by

x1(q) = t,

xj = zj ◦ π,
where x1(q) = t if and only if φ−t(q) ∈ H ∩ U . It is clear that (U ;x1, . . . , xn) is
a Lipschitz coordinate system. It remains to show that

Yi(xj) = 0

a.e. on U for 1 ≤ i ≤ k and k+ 1 ≤ j ≤ n. First let us approximate the functions
xj by smooth ones. Since the statements above are of local character, without
loss of generality we may assume that we are in Rn where we have the standard
mollifiers ηε at our disposal (see [EG] or [Zi]). Let xεj = xj ∗ ηε (the ∗ denotes
convolution). Then:

(i) Each xεj is of class C∞.
(ii) As ε→ 0, xεj → xj uniformly on compact sets.

(iii) As ε→ 0, Dαxεj → Dαxj in L1
loc and also pointwise almost everywhere, for

every “multiindex” α, |α| = 1.
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Furthermore, by the properties of convolution,

Y1(xεj) = (Y1xj) ∗ ηε
= 0

for all 2 ≤ j ≤ n and small ε > 0. Therefore Y1(Yix
ε
j) = [Y1, Yi](x

ε
j) (j ≥ 2). By

(1), we have

Y1(Yix
ε
j) =

k∑
l=2

cl1i · Ylxεj(2)

almost everywhere. Since Y1 is Lipschitz, the foliation of U by orbits of φt is
absolutely continuous which implies that for a.e. q ∈ H (with respect to the
(n− 1)-dimensional Lebesgue measure on H) the φt-orbit of q intersects any set of
set of n-dimensional Lebesgue measure zero along a set of 1-dimensional measure
zero. So integration of (2) along φs(q), 0 ≤ s ≤ t, yields

(Yix
ε
j)(φt(q))− (Yix

ε
j)(q) =

∫ t

0

k∑
l=2

cl1i(φs(q)) (Ylx
ε
j)(φs(q)) ds,(3)

for a.e. q ∈ H and a.e. t ∈ J(q), where J(q) is some open interval in R depending
on q.

Now let ε→ 0. By (i)–(iii), we obtain

(Yixj)(φt(q))− (Yixj)(q) =

∫ t

0

k∑
l=2

cl1i(φs(q)) (Ylxj)(φs(q)) ds,(4)

for a.e. q ∈ H and a.e. t ∈ J(q). Since for 2 ≤ i ≤ k the vector fields Yi|H(= Zi)
belong to the distribution F , for k + 1 ≤ j ≤ n we have

(Yixj)(q) = (Zizj)(q)

= 0

a.e., because the slices zj = constant (k + 1 ≤ j ≤ n) are integral manifolds of F .
Fix q ∈ H so that (4) holds for a.e. t ∈ J(q). (There will be a set of full measure

of such q.) The right-hand side of (4) is a continuous function of t. Therefore the
functions t 7→ (Yixj)(φtq) (j fixed, k + 1 ≤ j ≤ n) are a.e. continuous and satisfy
the following (k − 1) × (k − 1) homogeneous system of linear integral equations
(along the orbit of q) with L∞ coefficients

Yixj =

∫ t

0

n∑
l=2

cl1i Ylxj ds.(5)

Let C(t) be the matrix with entries cl1i(φtq) and let

f(t) = (Y2xj(φt(q)), . . . , Ykxj(φt(q))) .

Then (5) becomes

f(t) =

∫ t

0

C(s)f(s)ds.

So

||f(t)|| ≤
∫ t

0

||C(s)|| · ||f(s)||ds.

As remarked above, f is continuous a.e. and ||C|| ∈ L∞. Gronwall’s inequality (see
[Hi], Theorem 1.5.7) implies f(t) = 0 a.e.
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This proves that Yixj = 0 a.e. It remains to show that the slices

xk+1 = constant, . . . , xn = constant

are integral manifolds of E.
Let S be one such slice. Then its tangent bundle can be expressed as

TS =
n⋂

j=k+1

Ker(dxj |S),

which clearly contains the vector fields Y1|S , . . . , Yk|S a.e. Thus TqS = Eq a.e. on
S. Since E is a continuous distribution defined on a compact space, we can extend
this relation over all of S. Thus S is an integral manifold of E. Note also that since
the tangent bundle of S is Lipschitz, it follows that S is a manifold of class C1,Lip.

This completes the first part of the proof.
It remains to show uniqueness of integral manifolds.
Let N be a connected integral manifold of E in U . Denote the projection Rn →

Rn−k to the last n − k coordinates by pr. If ϕ = (x1, . . . , xn) is the coordinate
map defined above, then

T (pr ◦ ϕ)(TN) = T (pr ◦ ϕ)(E |N )

= 0

a.e. on N . Since N is connected, it follows (see e.g. [Zi]) that pr ◦ ϕ = const a.e.
on N . By continuity, this equality holds everywhere on N , which implies that N is
contained in a slice xk+1 = const, . . . , xn = const.

This completes the proof.

Proof of Theorem A2 and Corollary A3. The proof of existence and uniqueness of
maximal integral manifolds in the classical case given in [Wa](Theorem 1.64) is
valid in our setting.

To prove Corollary A3, choose a continuous vector field X such that α(X) = 1.
Let Y and Z be arbitrary Lipschitz vector fields in E. Then

(α ∧ dα)(X,Y, Z) = α(X) dα(Y, Z)

= dα(Y, Z)

= Y (α(Z)) − Z(α(Y ))− α([Y, Z])

= −α([Y, Z]).

(A remark is in place here. The third equality above is well known for C1 forms.
However, since Lipschitz forms are nicely approximable by smooth forms, as demon-
strated above, this equality continues to hold almost everywhere for Lipschitz
forms.) So if α ∧ dα = 0 a.e., then [Y, Z]p ∈ Ep for a.e. p ∈ M , and the Corollary
follows from Theorems A1 and A2.

Remark. Note that Corollary A3 as well as Theorems A1 and A2 do not follow from
Hartman’s version of Frobenius theorem (see [Ha], Theorem 3.1), because Hartman
requires that dα be continuous. In fact, Hartman deals with the Stokes exterior
differential of α, but it is possible to show that for Lipschitz forms the Stokes
differential coincides with the ordinary differential. (See, for instance, Whitney’s
book [Wh] and note that Lipschitz forms are “flat”.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1874 SLOBODAN SIMIĆ

B. Cross sections to Anosov flows

A nonsingular flow ft of class Cr (r ≥ 1) on a compact Riemannian manifold M
is called Anosov if there exist a continuous invariant splitting of the tangent bundle
of M , TM = Ess⊕Euu⊕RX (here X is the vector field generating the flow), such
that in the forward direction the tangent Tft to the flow exponentially contracts Ess

and exponentially expands Euu. (Note that, since M is compact, the Anosovness
of ft is independent of the choice of Riemannian metric.) Subbundles Ess and
Euu are called strong stable and strong unstable respectively. An Anosov flow is
called of codimension one if Ess or Euu is one dimensional. For basic results about
Anosov flows (such as unique integrability of Ess, Euu, Ess ⊕RX and Euu ⊕RX ,
etc.) the reader should consult [An] and [Pl]; for analogous results about Anosov
diffeomorphisms, see [Fr].

Let Esu denote the direct sum Ess ⊕ Euu. In general Esu is only a Hölder
continuous distribution (see, for instance, [HP]). In [Gh] E. Ghys showed that
if for a codimension one Anosov flow, Esu is of class C1 and dimM > 3, then
the flow admits a global cross section. Recall that a compact codimension-one
submanifold Σ of M is called a (global) cross section for a flow on M if it intersects
every orbit of the flow transversely and the orbit of every point in Σ intersects Σ
after some positive time. If an Anosov flow admits a global cross section Σ, then
the corresponding first return map f on Σ is an Anosov diffeomorphism. If the
Anosov flow is also of codimension one, then so is f and by the well-known result of
Newhouse (see [Nh]), Σ is homeomorphic to a torus and f is topologically conjugate
to a linear toral automorphism.

Verjovsky conjectured that as soon as dimM > 3, every codimension one Anosov
flow on M admits a global cross section. We prove a special case of this conjecture,
generalizing a result of Ghys (see [Gh]).

Recall that if A is a linear isomorphism of normed vector spaces, the conorm (or
minimum norm) of A is defined to be

m(A) = inf{||Av|| : ||v|| = 1}.
Now we can state the results of the second part of the paper.

Theorem B1. Let {ft} be an Anosov flow on a compact manifold M such that
Esu is Lipschitz and

µ := inf
x∈M

[m(Txfτ |Ess) ·m(Txfτ |Euu)] > 1,

for some τ > 0. Then {ft} admits a global cross section.

Theorem B2. Let {ft} be a codimension one Anosov flow on a compact manifold
M of dimension n > 3. If Esu is Lipschitz, then {ft} is topologically conjugate to
the suspension of a linear toral automorphism.

Proof of Theorem B1. To show the existence of a global cross section to an Anosov
flow it suffices to prove that Esu is an integrable distribution. For a proof of this
fact, see [Pl], Theorem 3.1.

We will need the following generalization of Lemma 1.2 from [Gh].

Lemma. Let Ei (i = 1, 2) be Euclidean spaces and assume the splitting Ei = Si⊕Ui
is orthogonal (i = 1, 2). Let f : E1 → E2 be a linear isomorphism such that
f(S1) = S2 and f(U1) = U2.
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(a) If µ := m(f |S1) m(f |U1), then for all ws ∈ S2 and wu ∈ U2

||f−1(ws ∧wu)|| ≤ 1

µ
||ws ∧ wu||.

(b) If dimEi = n − 1, dimU1 = 1 and ||f(w)|| ≤ ν||w||, for some ν > 0 and all
w ∈ S1, then

(det f) ||f−1(ws ∧ wu)|| ≤ νn−3||ws ∧ wu||,
for all ws ∈ S2, wu ∈ U2

Proof. (a) Let vs ∈ S1, vu ∈ U1 be arbitrary. Then

||f(vs ∧ vu)|| = ||f(vs)|| ||f(vu)||
≥ m(f |S1) m(f |U1) ||vs|| ||vu||
= µ||vs ∧ vu||.

Part (a) now follows if we take ws = f(vs) and wu = f(vu).
(b) Let vs, vu be as above. Choose unit vectors e3, . . . , en−1 in S1 such that

e1 = vu, e2 = vs, e3, . . . , en−1 is an orthogonal basis of E1. Then we have

||vu ∧ vs|| · det f = ||f(e1 ∧ . . . ∧ en−1)||

= ||f(vu ∧ vs)||
n−1∏
i=3

||f(ei)||

≤ νn−3||f(vu ∧ vs)||.

To complete the proof, take wu = f(vu), ws = f(vs).

Let us now prove Theorem B1. Define a 1-form α by requiring that

Ker(α) = Esu, α(X) = 1,

where X is the vector field which generates the flow. Since Esu is a Lipschitz
distribution, α is a Lipschitz form, so dα exists on an ft-invariant set of full measure
in M . Clearly, f∗t α = α for all t ∈ R. Since dα is the ordinary exterior differential,
it commutes with pullbacks by diffeomorphisms and it follows that f∗t (dα) = dα
for all t ∈ R.

Let x ∈ M be a point where dα is defined, and let ws ∈ Essx and wu ∈ Euux be
arbitrary. Part (a) of the Lemma implies that ||(f−τ )∗(ws ∧ wu)|| ≤ µ−1||ws ∧ wu||.
Therefore,

|dα(ws, wu)| = |f∗−kτ (dα)(ws, wu)|
= |dα ((f−kτ )∗ (ws ∧wu)) |
≤ ||dα||∞ µ−k ||ws ∧ wu||
→ 0

as k →∞. (Here ||dα||∞ denotes the L∞ norm of dα. Since α is Lipschitz and M is
compact, this norm is finite.) Similarly we can show that dαx(X, v) = 0 for almost
every x ∈M , where v ∈ Esu. (In fact, we don’t need the lemma to prove this. For
details see [Gh].) Therefore dα = 0 a.e. so by Theorems A1 and A2 it follows that
Esu is an integrable distribution. By the already mentioned result of Plante, the
flow admits a global cross section.
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Proof of Theorem B2. First note that if ft preserves a volume form on M , then
Theorem B2 follows directly from Theorem B1. If ft is not volume preserving,
denote by ∆(x, t) the determinant of Txft. Define the 1-form α as above and let
ν = supx∈M ||Txf1|Ess ||. Clearly, ν < 1.

Assume that Euu is 1-dimensional, let Y be a unit continuous vector field in Euu

(it is no loss of generality to assume that all the bundles are orientable) and let Z
be a continuous, not necessarily nonvanishing vector field in Ess. Define a function
h : M → R by

h(x) = dαx(Yx, Zx).

Then h ∈ L∞(M) and∫
M

|h(x)| dx =

∫
M

∆(x, t) |h(ftx)| dx

=

∫
M

∆(x, t) |dαftx(Yftx, Zftx)| dx

=

∫
M

∆(x, t) |(f∗−tdα)ftx(Yftx, Zftx)| dx

=

∫
M

∆(x, t) |(dα)x((f−t)∗(Y ∧ Z))| dx

≤ ||dα||∞
∫
M

∆(x, t) ||(f−t)∗(Y ∧ Z)|| dx

≤ C
∫
M

ν(n−3)t dx

= C volume(M) ν(n−3)t

→ 0

(6)

as t→∞. (Inequality (6) follows from part (b) of the Lemma.) Therefore h(x) = 0
a.e. Since dα(X, v) = 0 a.e. for v ∈ Esu, and since Z was arbitrary, it follows that
dα = 0 a.e., which completes the proof.
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