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LIPSCHITZ FREE SPACES ISOMORPHIC TO THEIR INFINITE

SUMS AND GEOMETRIC APPLICATIONS

FERNANDO ALBIAC, JOSÉ L. ANSORENA, MAREK CÚTH, AND MICHAL DOUCHA

Abstract. We find general conditions under which Lipschitz-free spaces over
metric spaces are isomorphic to their infinite direct �1-sum and exhibit several
applications. As examples of such applications we have that Lipschitz-free
spaces over balls and spheres of the same finite dimensions are isomorphic,
that the Lipschitz-free space over Z

d is isomorphic to its �1-sum, or that the
Lipschitz-free space over any snowflake of a doubling metric space is isomorphic
to �1. Moreover, following new ideas of Bruè et al. from [J. Funct. Anal.
280 (2021), pp. 108868, 21] we provide an elementary self-contained proof

that Lipschitz-free spaces over doubling metric spaces are complemented in
Lipschitz-free spaces over their superspaces and they have BAP. Everything,
including the results about doubling metric spaces, is explored in the more
comprehensive setting of p-Banach spaces, which allows us to appreciate the
similarities and differences of the theory between the cases p < 1 and p = 1.

1. Introduction

In recent years, Lipschitz-free spaces over metric spaces have become one of the
most widely investigated class of Banach spaces. They are intimately connected
to the nonlinear geometry of Banach spaces and have proved a very useful tool in
their study, to the extent that they have become a topic towards which the modern
research focus in Banach space theory is shifting; see, e.g., the seminal paper [20],
the surveys [19, 21], or the monograph [38, Chapter 5].

The universal property of the norm of these spaces relates them to similar ob-
jects from different areas of mathematics such as, notably, optimal transport, where
the set of Radon probability measures with finite first momentum endowed with
the Wasserstein distance, known as the Wasserstein space (see the monograph by
Villani [37]), is canonically isometric to a set whose linear hull is dense in the corre-
sponding Lipschitz-free space (see [18, Theorem 4.1, Theorem 4.4, Theorem 4.5 and
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Theorem 6.1]). Another research subject closely connected to the study of approx-
imation properties of Lipschitz-free spaces which recently attracted a considerable
attention of many researchers (see [9] or [33]) is the topic of finding linear extension
operators between Banach spaces of Lipschitz functions (see, e.g., [29, Section 2.1]).

Even within Banach space theory, these spaces are known under several different
names, like Arens-Eells spaces [38] or transportation cost spaces [34] to name a
few. Here we will stick to the term Lipschitz-free space, which was the one used by
Godefroy and Kalton in [20] and which is now prevalent in the theory. For more
historical and terminological remarks we refer the reader to [34, Section 1.6].

There is an analogue of Lipschitz-free spaces in the more general framework of
p-Banach spaces for p ∈ (0, 1], namely, the Lipschitz free p-spaces over quasimetric
spaces, where the case p = 1 corresponds to the locally convex members of this
extended family, i.e., the standard Lipschitz-free Banach spaces over metric spaces.
Lipschitz free p-spaces over quasimetric spaces were introduced in [4] with the
purpose to build examples for each 0 < p < 1 of two separable p-Banach spaces
which are Lipschitz isomorphic but not linearly isomorphic. More recently, the
authors initiated a systematic study of the structure of this class of spaces in [2,3].

A specific feature of nonlocally convex p-Banach spaces that differentiates them
from Banach spaces is the lack of a duality theory, which forces the study of Lip-
schitz free p-Banach spaces over quasimetric (or metric) spaces to rely on more
geometrical methods. It turns out that this approach brings fresh wind even to
better understand the case p = 1, as it is supported by several new results obtained
in [2, 3].

In this paper we continue with this line of research. Our motivation is to gener-
alize several important structural results that have become a standard toolkit of a
Lipschitz-free space theorist. These include Lee and Naor’s result [33] on the exis-
tence of K-random partitions of unity with respect to any subspace of a doubling
metric space; Kalton’s result from [28] that every Lipschitz-free space embeds into
the infinite direct �1-sum of free spaces over its annuli; and Kaufmann’s results from
[29] that for every Banach space X the Lipschitz-free space over X is, on one hand,
isomorphic to its �1-sum and, on the other hand, isomorphic to the Lipschitz-free
space over its unit ball. We also extend the results from the paper [12], which
are formulated only in terms of the duals of Lipschitz-free spaces. Not only did
we succeed to prove analogues of all these results for Lipschitz free p-spaces with
p ∈ (0, 1] but, revisiting the topic, we actually found new results and applications
which are also of interest for the classical case p = 1.

We get started with the notion of p-complementably amenable subspace with
constant K, which for p = 1 is equivalent to the existence of aK-random projection,
a notion suggested by Ambrosio and Puglisi from [6] and which in turn is motivated
by the notion of K-gentle partition of unity by Lee and Naor from [33]. Our
main general results, which are novel even for the case p = 1, are developed in
Section 3. The applications of our methods, some of which are new even for p = 1,
are explained in Section 4. Let us advance some of the most interesting practical
implementations of our results to the general theory:

• If M is a metric space and there is a point x ∈ M such that every annulus
centered at x contains only finitely many points, then for every p ∈ (0, 1] the
space Fp(M) admits a subsymmetric basis if and only if Fp(M) is isomorphic
to �p (see Proposition 4.7).
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• Generalizing [29, Theorem 3.1 and Corollary 3.3], if X is a Banach space and
M ⊂ X is closed under multiplication by nonnegative numbers, then

Fp(M) � Fp(BM) � Fp(M\BM) � �p(Fp(M))

for every p ∈ (0, 1] (see Theorem 4.15).
• For d ∈ N and p ∈ (0, 1] we have

Fp(R
d) � Fp(SRd+1)

(see Theorem 4.21).

In Section 5 we show that whenever N is a doubling metric space and M is a metric
space containing N then Fp(N ) is complemented in Fp(M) for every p ∈ (0, 1],
which in particular solves Question 6.7 from [2]. This is known for the case p = 1,
but we use an argument, based on ideas from [10], which is much simpler (and
self-contained) than the one used by other authors to prove it for p = 1. We
provide several applications to doubling metric spaces, amongst which we highlight
the following ones because of their interest. Note that best-known examples of
doubling metric spaces are subsets of R

d or, more generally, subsets of Carnot
groups.

• If (M, d) is a doubling metric space and α ∈ (0, 1), then

F(M, dα) � �1

(see Corollary 5.7). This improves a result that was known only for compact
doubling metric spaces (see [38, Theorems 4.38 and 8.49]).

• If M is a doubling self-similar metric space (like for instance a finite-dimensional
Banach space or more generally a Carnot group) and N ⊂ M is a net in M,
then

Fp(N ) � �p(Fp(N ))

for every p ∈ (0, 1], and
Lip0(M) � Lip0(N ).

Those results are improvements of [24, Theorem 7] and [12, Corollary 1.18].
• For every d ∈ N and p ∈ (0, 1] we have

Fp(Z
d) � Fp(N

d)

(see Theorem 5.12).

2. Notation and preliminaries

We use standard notation in Banach space theory as can be found in [5]. We refer
the reader to [3, Sections 2 and 4] for basic facts and notation concerning p-metric
spaces, p-Banach spaces, and Lipschitz free p-spaces over them for 0 < p ≤ 1.

We put
N∗ = {n ∈ Z : n ≥ 0}.

If (M, d, 0) is an arbitrary pointed p-metric space and A ⊆ (0,∞) (usually A is
an interval) we set

MA = {x ∈ M : d(0, x) ∈ A}
and

M∗
A = {0} ∪MA.

Given A ⊂ R and R > 0 we put

RA = {Rx : x ∈ A}.
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Given a quasi-Banach space X and A ⊂ X, we denote by [A] the closed linear
span of A. For m ∈ N we denote by κm(X) the smallest constant C ≥ 1 such that∥∥∥∥∥∥

m∑
j=1

xj

∥∥∥∥∥∥ ≤ C

m∑
j=1

‖xj‖, xj ∈ X.

Note that if X is a p-Banach space then κm(X) ≤ m1/p−1.
Given 0 ≤ p ≤ ∞ and a countable set N , (

⊕
n∈N Xn)p denotes the sum in the

sense of �p (c0 if p = 0) of the family of quasi-Banach spaces (Xn)n∈N . If all the
spaces Xn are equal to a single space X, we shall instead denote their p-sum by
�p(X). If N = {1, 2} we will simply put (X1⊕X2)p, and if the index p is irrelevant
or clear from the context X1 ⊕X2 will stand for (X1 ⊕X2)p.

Definition 2.1. Let 0 < p ≤ 1. We say that two p-metric spaces N and M are
K-Lipschitz isomorphic, where K ∈ [1,∞), if there are Lipschitz maps f : N → M
and g : M → N such that g ◦ f = IdN , f ◦ g = IdM and ‖f‖Lip‖g‖Lip ≤ K. If the
constant K is irrelevant, we say that N and M are Lipschitz isomorphic.

Definition 2.2. We say that two quasi-Banach spaces X and Y are K-isomorphic
and write X �K Y , where K ∈ [1,∞), if there are bounded linear maps S : X → Y
and T : Y → X such that T ◦ S = IdX , S ◦ T = IdY , and ‖T‖‖S‖ ≤ K. If the
constant K is irrelevant, we say that X and Y are isomorphic and write X � Y .

Remark 2.3. If two quasi-Banach spaces X and Y are K-isomorphic, we can choose
S as in Definition 2.2 with ‖S‖ = 1. Thus, ifX and Y are 1-isomorphic, in particular
they are isometric. In contrast, two 1-Lipschitz isomorphic p-metric spaces need
not be isometric, as shown, e.g., by the metric spaces [0, 1] and [0, 2] with the usual
distance.

Definition 2.4. Given quasi-Banach spaces X and Y , a constant K ≥ 1, and a
linear map S : X → Y , we say that X is K-complemented in Y via S if there exists
a bounded linear operator T : Y → X with T ◦S = IdX and ‖S‖‖T‖ ≤ K. We will
say that X is K-complemented in Y , and write X �K Y , if there exists a linear
map S such that X is K-complemented in Y via S. If the constant K is irrelevant,
we will say that X is complemented in Y and write X � Y . If X is isomorphic to
a (not necessarily complemented) subspace of Y we will put X � Y .

Of course, a quasi-Banach space X is complemented in a quasi-Banach space Y
if and only if there is a quasi-Banach space X0 such that Y � X ⊕X0.

2.1. Complementable p-amenability. Suppose M and N are p-metric spaces,
0 < p ≤ 1. If f : M → N is Lipschitz, there is a unique bounded linear map
Lf : Fp(M) → Fp(N ) such that Lf (δM(x)) = δN (f(x)) for all x ∈ M. The
operator Lf is called the canonical linearization of f . If N is a subset of M
and p = 1, the canonical linearization Lj : F(N ) → F(M) of the inclusion map
j : N → M is an isometric embedding. Since this property does not carry out
to Lipschitz free p-spaces for p < 1 (see [3, Theorem 6.1 and Question 6.2]), we
introduce the following definition.

Definition 2.5. We say that a subset N of a p-metric space M is p-amenable in
M with constant C < ∞ if Lj is an isomorphism and ‖L−1

j ‖ ≤ C, where Lj is the
canonical linearization of the inclusion map j : N → M.
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Note that Lj(Fp(N )) needs not be a complemented subspace of F(M) even
when p = 1, in which case every subset N of a metric space M is p-amenable
with constant 1. Thus, we introduce the complemented version of the notion of
amenability.

Definition 2.6. We say that a subset N of a p-metric space M is complementably
p-amenable in M with constant C if Fp(N ) is C-complemented in Fp(M) via the
canonical linear map from Fp(N ) into Fp(M).

IfN is complementably p-amenable inM with constant C, thenN is p-amenable
in M with constant C. If there is a Lipschitz map r : M → N with r◦j = IdN , i.e.,
r is a Lipschitz retraction of M onto N , then N is complementably p-amenable in
M with constant ‖r‖Lip for every 0 < p ≤ 1 (see [3, Lemma 4.19]).

If N is (complementably) p-amenable in M with constant C, then N is (com-
plementably) p-amenable in M′ with constant C for every N ⊂ M′ ⊂ M. Finally,
note that if N is (complementably) p-amenable in M with constant C, then the
same holds for N , which easily implies that for any N ′ ⊂ M with N ′ = N , N ′ is
(complementably) p-amenable in M with constant C as well.

The following elementary lemma characterizes complementable p-amenability
and will be frequently used.

Lemma 2.7. Let (M, d, 0) be a pointed p-metric space. Suppose that N is a subset
of M with 0 ∈ N . Then N is complementably p-amenable in M with constant
C > 0 if and only if there exists a C-Lipschitz function f : M → Fp(N ) such that
f(x) = δN (x) for all x ∈ N .

Proof. One implication is trivial, so let us assume the existence of a C-Lipschitz
function f : M → Fp(N ) with f(x) = δN (x) for all x ∈ N . By the universal
property of Fp(M), there exists a linear operator Lf : Fp(M) → Fp(N ) with Lf ◦
δM = f and ‖Lf‖ = ‖f‖Lip. We have Lf ◦Lj(δN (x)) = f(x) = δN (x) for all x ∈ N
and so Lf ◦ Lj = IdFp(N ). �

Note that if N and M are metric spaces, then by [6, Definition 2.9], N admits a
K-random projection on M if there exists a K-Lipschitz function f : M → F(N )
such that f(x) = δN (x) for all x ∈ N . Hence, by Lemma 2.7, N is complementably
1-amenable in M with constant K if and only if N admits a K-random projection
on M.

When we are interested in studying the isomorphic structure of a Lipschitz free
p-space over a p-metric space M, by the following result we may choose to omit
finitely many points from M without altering the resulting Lipschitz free p-space
over M. Moreover, when discarding one point only, we obtain a uniform estimate
independent on the p-metric space (the exact value of the constant will not be
important).

Lemma 2.8. Let (M, d) be a p-metric space, 0 < p ≤ 1, and let x0 ∈ M. For
every C > 31/p · 52/p we have:

(i) M\ {x0} is complementably p-amenable in M with constant C.
(ii) If x0 ∈ M is an isolated point, or M is a metric space, then Fp(M) �C

R⊕Fp(M\ {x0}).
(iii) If M is an infinite metric space, then Fp(M) �C Fp(M\ {x0}).
(iv) If N ⊂ M is complementably p-amenable in M with constant K then N∪{x0}

is complementably p-amenable in M with constant KC.
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Proof. Pick ε ∈ (0, 21/p − 1). If x0 ∈ M is an isolated point, we pick 0 ∈ M\ {x0}
with d(x0, 0) < (1 + ε)1/p inf{d(x0, x) : x ∈ M \ {x0}}.

(i) If x0 ∈ M is not an isolated point then M \ {x0} is complementably p-
amenable in M with constant 1, otherwise it is easy to see that the map f : M →
Fp(M \ {x0}) given by f(x) = δM\{x0}(x) for x ∈ M \ {x0} and f(x0) = 0 is

21/p-Lipschitz, which, using Lemma 2.7, gives (i).
(ii) and (iii) If x0 ∈ M is isolated then for all x ∈ M \ {0} we have

(2.1) dp(x0, 0) + dp(x, 0) ≤ dp(x0, x) + 2dp(x0, 0) ≤ (1 + 2(1 + ε)p)dp(x0, x),

which, by [2, Lemma 2.1], implies that Fp(M) �C′ R ⊕ Fp(M \ {x0}) for C ′ =

(1 + 2(1 + ε)p)1/p.
If x0 ∈ M is not an isolated point then Fp(M) is isometric to Fp(M\ {x0}).
In the case when M is a metric space then, by [2, Corollary 3.3], �p is D-

complemented in Fp(M \ {x0}) for every D > 21/p and so Fp(M \ {x0}) is

(1 + 2Dp)1/p-isomorphic to �p ⊕ Fp(M\ {x0}), which easily implies that Fp(M\
{x0}) �D′ R⊕Fp(M\ {x0}) for every D′ > (1 + 2Dp)2/p.

(iv) is easy if x0 ∈ N , so we may assume that this is not the case. By Lemma 2.7,
there is a K-Lipschitz map f : M → Fp(N ) with f(x) = δN (x) for all x ∈ N . Con-
sider f ′ : M → Fp(N ∪ {x0}) defined as f ′(x) = Lj(f(x)) for x ∈ M\ {x0}, where
Lj : Fp(N ) → Fp(N ∪{x0}) is the canonical linear map and f ′(x0) = δN∪{x0}(x0).

Now, using (2.1) we readily check that f ′ is (K(1 + 2(1 + ε)p)1/p)-Lipschitz, and
an application of Lemma 2.7 finishes the proof. �
2.2. The approximation property in quasi-Banach spaces. A quasi-Banach
space X is said to have the approximation property (AP for short) if there exists a
net (Tα)α∈A of finite-rank operators on X that converges to the identity map IdX
uniformly on compact sets. If moreover, the net satisfies

(2.2) lim inf
α

‖Tα‖ ≤ λ,

for some constant λ ∈ [1,∞), then we say that X has the λ-bounded approxima-
tion property (λ-BAP for short). If, in addition to (2.2) the operators of the net
commute, i.e., Tα ◦ Tβ = Tβ ◦ Tα for all α, β ∈ A, then X is said to have the
commuting λ-bounded approximation property (commuting λ-BAP for short). In
turn, if in addition to (2.2), the operators are projections, i.e., T 2

α = Tα for all
α ∈ A, we say that X has the πλ-property. We will refer to X simply as having
BAP if it has the λ-BAP for some λ > 0, and we will say that X has the metric
approximation property (MAP for short) if it has the 1-BAP. Similarly, if X has the
πλ-property for some λ we say that X has the π-property, and we say that X is the
metric π-property if it has the π1-property. It is obvious that any finite-dimensional
quasi-Banach space has the commuting MAP and the metric π-property.

A finite dimensional decomposition of a (separable) quasi-Banach space X is
a sequence (Xn)

∞
n=1 of finite-dimensional subspaces of X such that every x ∈ X

has a unique series expansion x =
∑∞

n=1 xn with xn ∈ Xn for all n ∈ N. If X
admits a finite dimensional decomposition we say that it has the finite dimensional
decomposition property (FDD property for short). A quasi-Banach space with the
FDD property has both the MAP and the metric π-property under a suitable
renorming.

For background on approximation properties we refer the reader to [13]. We
would like to point out, however, that [13] is written within the framework of Banach
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spaces and, since the Hahn-Banach theorem is heavily used, the proofs of some of the
results therein do not carry out automatically to non-locally convex quasi-Banach
spaces. In spite of that initial drawback, it happens that the dependence on the local
convexity of the space in the proofs of the most accessible characterizations of the
above-mentioned approximation properties can be circumvented, and so they still
hold in non-locally convex spaces. As the definitions that appear in the few papers
that touch the subject [11, 26, 27] are not unified, we will state the corresponding
characterizations and skip the details in order to not divert too far from the flow
of the article. A quasi-Banach space X has the AP if and only if for any compact
set K ⊂ X and every ε > 0 there is a finite-rank operator T : X → X with
maxx∈K ‖x− T (x)‖ ≤ ε. The space X has the λ-BAP if and only if for any ε > 0
such operators exist with the extra-property that ‖T‖ < λ + ε. To characterize
the πλ-property we must also demand that each operator T be a projection; and
to characterize commuting λ-BAP we must impose that the operators belong to a
given commuting set. A subset A of the algebra of bounded linear operators from
X into X is said to be commuting if T ◦ S = S ◦ T for all S, T ∈ A. These results
yield that if a quasi-Banach space X has the BAP (resp. π-property) there is a
smallest constant λ such that X has the λ-BAP (resp. πλ-property).

Approximation properties are inherited by infinite sums and complemented sub-
spaces. For further reference we record these in the next two propositions.

Proposition 2.9. Let (Xn)
∞
n=1 be a sequence of quasi-Banach spaces with

sup
n

κ2(Xn) < ∞.

Suppose that each Xn has the AP (resp. λ-BAP, πλ-property, or commuting λ-BAP
for some λ ≥ 1). Then (

⊕∞
n=1 Xn)p has the AP (resp. λ-BAP, πλ-property, or

commuting λ-BAP) for all 0 ≤ p < ∞.

Proposition 2.10. Let Y be a quasi-Banach space with the AP (resp. λ-BAP for
some λ ≥ 1). Suppose that a quasi-Banach space X is K-complemented in Y . Then
X has the AP (resp. λK-BAP).

3. General techniques

In [28, §4], Kalton defined an operator T of norm 72 which maps any Lipschitz-
free space F(M) over a metric spaceM into the �1-sum of Lipschitz-free spaces over
annuli in M. This particular operator has seen many applications in the theory of
Lipschitz-free spaces. Let us single out the most significant ones.

• If M is a uniformly separated metric space, then F(M) is a Schur space with
the Radon-Nikodym property and the approximation property [28, Proposition
4.3].

• IfM is a countable compact metric space (or even a countable metric space whose
closed balls are compact) then F(M) has the metric approximation property
[15, 16] and the Schur property [23].

• If X is a Banach space then F(X) � �1(F(X)) � F(BX) [29].

This section is geared towards developing an extended version of this operator
that works both for p < 1 and also for the case p = 1. This is the subject of
Lemma 3.3. Our main outcomes will be a couple of complementability results
(namely, Theorem 3.5 and Theorem 3.6) as well as several general conditions under
which Lipschitz free p-spaces over metric spaces are isomorphic to their �p-sums
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(Theorem 3.8, Theorem 3.9, and Theorem 3.10). In subsequent sections we will
concentrate on new applications to the general theory, some of which were not
known even for the case p = 1.

Let (M, d) be a p-metric space, 0 < p ≤ 1. If (Mα)α∈Δ is a family of subsets of
M with 0 ∈ Mα for all α ∈ Δ, we can define a norm-one linear operator

(3.1) P :

(⊕
α∈Δ

Fp(Mα)

)
p

→ Fp(M), (μα)α∈Δ �→
∑
α∈Δ

Lα(μα),

where Lα is the canonical linear embedding from Fp(Mα) into Fp(M). We aim to
relate the Lipschitz free space over a p-metric space M to direct sums of Lipschitz
free p-spaces over subsets of M by means of such mappings. Our first proposition
is inspired by [28, §4].

Proposition 3.1. Let (M, d, 0) be a pointed p-metric space, 0 < p ≤ 1. Suppose
that N is a countable subset of Z and that (An)n∈N is a sequence of positive real
numbers such that d(0, x) ∈ ∪n∈NAn for all x ∈ M \ {0}, and

K = inf
m<n

inf An

supAm
> 1.

Then the operator P defined as in (3.1) corresponding to the family (M∗
An

)n∈N is
an isomorphism. In fact,

‖P−1‖ ≤ (Kp + 1)1/p(Kp − 1)−1/p.

Proof. For n ∈ N put rn = inf An and sn = supAn. If m < n, x ∈ MAm
, and

y ∈ MAn
we have

dp(0, x) ≤ spm =
spm
rpn

rpn ≤ K−pdp(0, y).

Hence, if we denote dp(0, y)/dp(0, x) = t,

dp(0, x) + dp(0, y) = (dp(0, y)− dp(0, x))
t+ 1

t− 1
≤ dp(x, y)

Kp + 1

Kp − 1
.

Since (MAn
)n∈N is a partition of M \ {0}, the result follows from [2, Lemma

2.1]. �

Proposition 3.1 leads us to consider maps as in (3.1) corresponding to families
of the form (M∗

An
)n∈Z with An = [cR2n, cR2n+1] for some 0 < c < ∞ and R >

1. However, when p < 1 it is unknown whether the canonical linear map from
Fp(∪n∈ZM∗

An
) into Fp(M) is an isomorphic embedding, therefore in order to obtain

useful information about this kind of mappings we need to develop complementary
techniques. Our approach here will consist of building, under suitable conditions
on the p-metric space M, both left and right inverses of operators as in (3.1)
corresponding to families of the form (M∗

An
)n∈Z with An = [cRsn, cRsn+1] for

some 0 < c, s < ∞ and R > 1.

Definition 3.2. A family U of open sets in a topological space X is said to be
k-overlapping if each x ∈ X belongs at most to k members of U . We say that U is
a point-finite family if it is k-overlapping for some k ∈ N.
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Lemma 3.3. Suppose (M, d, 0) is a pointed metric space. Let k ∈ N, R > 1,
K1 > 0, and K2 > 0 be constants such that:

• (ψn)n∈N is a countable family of K1-Lipschitz maps from R into R which
are uniformly bounded by K2; and

• (In)n∈N :=
(
ψ−1
n (R \ {0})

)
n∈N

is k-overlapping.

Then for each 0 < p ≤ 1 there is a bounded linear operator

T : Fp(M) → X :=

(⊕
n∈N

Fp (M∗
RIn )

)
p

with

(3.2) T (δM(x)) = (ψn(logR d(0, x))δn(x))n∈N , x ∈ M \ {0},
where δn : M → Fp(M∗

RIn ) is any extension of the canonical embedding of M∗
RIn

into the Lipschitz free p-space over M∗
RIn . Moreover, ‖T‖ ≤ C for some C =

C(p, k,R,K1,K2).

Proof. For n ∈ N , put αn(x) = ψn(logR d(0, x)) if x ∈ M \ {0} and αn(0) = 0.
Without loss of generality we assume that δn(x) = 0 if x /∈ MRIn . Define f : M →
X by

f(x) = (fn(x))n∈N := (αn(x) δn(x))n∈N .

Let x, y ∈ M and assume without loss of generality that d(0, y) ≤ d(0, x). We
have

‖f(y)− f(x)‖ ≤ (2k)1/p sup
n∈N

‖fn(y)− fn(x)‖.

The p-subadditivity of the quasi-norm gives

‖fn(y)− fn(x)‖p = ‖(αn(y)− αn(x))δn(y) + αn(x)(δn(y)− δn(x))‖p

≤ |αn(y)− αn(x)|p ‖δn(y)‖p + |αn(x)|p‖δn(y)− δn(x)‖p

≤ |αn(y)− αn(x)|pdp(0, y) + |αn(x)|p‖δn(y)− δn(x)‖p.
Taking into account that log u ≤ u− 1 for all u ≥ 1 we obtain

|αn(y)− αn(x)| d(0, y) ≤ K1d(0, y) logR
d(0, x)

d(0, y)
≤ K1

d(0, x)− d(0, y)

logR
.

Since |αn(x)| ≤ K2, if x /∈ MRIn , or {x, y} ⊆ MRIn we have

|αn(x)| ‖δn(y)− δn(x)‖ ≤ |αn(x)| d(x, y) ≤ K2d(x, y).

Assume that x ∈ MRIn and y /∈ MRIn . If d(0, x) ≤ Rd(0, y) we have

|αn(x)| ‖δn(y)− δn(x)‖ = |αn(x)− αn(y)| d(0, x)
≤ R|αn(x)− αn(y)|d(0, y),

and if d(0, x) ≥ Rd(0, y),

|αn(x)| ‖δn(y)− δn(x)‖ = |αn(x)|
Rd(0, x)− d(0, x)

R− 1

≤ |αn(x)|R
d(0, x)− d(0, y)

R− 1

≤ K2R

R− 1
(d(0, x)− d(0, y)).
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Summing up, since d(0, x)− d(0, y) ≤ d(x, y), we get that f is C-Lipschitz for

(3.3) C = (2k)1/p
(

Kp
1

logp R
+max

{
Kp

1R
p

logp R
,

Kp
2R

p

(R− 1)p

})1/p

.

Thus, by [3, Theorem 4.5], there is a linear map T : Fp(M) → X such that T ◦δM =
f and ‖T‖ ≤ C. �

We use [a, b] for a closed real interval, and if either a or b are infinity, we replace
the corresponding bracket with a parenthesis.

Lemma 3.4. Let k ∈ N and r > 0. There is a constant C = C(k, r) such that
whenever (an, bn)n∈N is a k-overlapping family of open intervals in R with

R =
⋃
n∈N

[an + r, bn − r],

then there is a family (ψn)n∈N of C-Lipschitz functions from R into [0, 1] such that∑
n∈N

ψn(u) = 1, u ∈ R,

and, for n ∈ N , ψn(u) > 0 if and only if u ∈ (an, bn).

Proof. For each n ∈ N there is a 1-Lipschitz piecewise linear function φn : R → [0, r]
such that φn(u) = r if u ∈ [an+ r, bn− r], and φn(u) = 0 if and only if u /∈ (an, bn).
The map

Φ(u) =
∑
n∈N

φn(u), u ∈ R

is 2k-Lipschitz, and Φ(u) ∈ [r, kr] for every u ∈ R. Set

ψn =
φn

Φ
, n ∈ N.

We have ψn(u) ∈ [0, 1] for all n ∈ N and all u ∈ R. Let n ∈ N and u, v ∈ R. We
have

|ψn(u)− ψn(v)| =
|φn(u)Φ(v)− φn(u)Φ(x) + φn(u)Φ(u)− φn(v)Φ(u)|

Φ(u)Φ(v)

≤ φn(u)|Φ(v)− Φ(u)|+ |φn(u)− φn(v)|Φ(u)
Φ(u)Φ(v)

≤ 2kr + kr

r2
|u− v|

=
3k

r
|u− v|. �

Theorem 3.5. Suppose (M, d, 0) is a pointed metric space. For some constants
k ∈ N and r > 0 let (In)n∈N be a k-overlapping countable family of sets in R for
which there is ([an, bn])n∈Nwith (−r+an, r+bn) ⊆ In for all n ∈ N . Then if R > 1
we have

Fp(M)�C

⊕
n∈N

Fp (M∗
RIn )

for all 0 < p ≤ 1, where C = C(p, k,R, r) (in particular, the value of the constant
C does not depend on the metric space M).
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Proof. Let (ψn)n∈N be the family of Lipschitz functions whose existence is guaran-
teed by Lemma 3.4 with respect to the intervals (Jn)n∈N , where Jn = (−r+an, r+
bn). Consider the operator

T : Fp(M) → Y :=

(⊕
n∈N

Fp(M∗
RJn )

)
p

provided by Lemma 3.3. Let P be the operator defined as in (3.1). Let S be the
canonical embedding of Y into

⊕
n∈N Fp

(
M∗

RIn

)
. For x ∈ M we have

P (S(T (δ(x)))) =

(∑
n∈N

ψn(logR d(0, x))

)
δ(x) = δ(x).

By linearity and continuity, P ◦ S ◦ T = IdFp(M). �

Theorem 3.6. Let (M, d, 0) be a pointed metric space. Suppose that

• (In)n∈N is a countable sequence of subsets of R for which there is a pairwise
disjoint family (Jn)n∈N of open intervals such that if Jn = (an, bn), then
In ⊆ [an + r, bn − r] for some r > 0;

• There is R > 1 such that M∗
RIn is complementably p-amenable in M∗

RJn

with constant K > 1 for all n ∈ N .

Then via the canonical operator defined in (3.1)we have(⊕
n∈N

Fp(M∗
RIn )

)
p

�C Fp(M)

for all 0 < p ≤ 1, where C = C(p, r, R,K) (in particular, the value of the constant
C does not depend on the metric space M).

Proof. For n ∈ N pick a 1-Lipschitz function ψn : R → [0, r] such that ψ(u) = 1 if
u ∈ [an + r, bn − r] and ψn(u) = 0 if u /∈ Jn. Let

T : Fp(M) →
(⊕

n∈Z

Fp(M∗
RJn )

)
p

be the linear map defined as in (3.2). By Lemma 3.3, T is bounded. Let P
be the operator defined as in (3.1) corresponding to the family (M∗

RIn )n∈N . By
assumption, there are linear maps (En)n∈N from Fp(M∗

RJn ) into Fp(M∗
RIn ) with

‖En‖ ≤ K and En ◦ Lj = Id. Then the linear map

E :

(⊕
n∈N

Fp(M∗
RJn )

)
p

→ X :=

(⊕
n∈N

Fp(M∗
RIn )

)
p

defined by E = (En)n∈Z is bounded by K. Denote by δn the δ-function in M∗
RIn

and by Ik(h) the sequence (hn)n∈N defined by hk = h and hn = 0 is n �= k. If
x ∈ MRIn , taking into account that ψn(u) = 1 if u ∈ In and that ψn(u) = 0 if
u /∈ Jn we obtain

In(δn(x)) P�→ δM(x)
T�→ In(Lj(δn(x)))

E�→ In(δn(x)).

Therefore E ◦ T ◦ P = IdX . �
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Since we are dealing with complementability relations between quasi-Banach
spaces, Pe�lczyński’s decomposition method (see, e.g., [5, Theorem 2.2.3]) will be
a key ingredient in our arguments. In particular, the following lemma will be
frequently used.

Lemma 3.7. Let (J,≤) be a partially ordered set, let 1 ≤ K < ∞ be a constant
and let (Xk)k∈J be a family of q-Banach spaces, 0 < q ≤ 1, such that Xk is K-
complemented in Xj whenever i ≤ j. For i = 1, 2, let Ni be a countable set, and
let φi : Ni → J be such that for every j ∈ J and F ⊂ Ni finite there is n ∈ Ni \ F
with j ≤ φi(n). For each p ∈ [0,∞] set

Xi =

(⊕
n∈Ni

Xφi(n)

)
p

, i = 1, 2

(with the convention that �p(X) means c0(X) if p = 0). Then there is a constant
C depending only on K, q, and p such that X1 �C X2 �C �p(X1).

Proof. Let O be the set of all sequences φ : N → J such that for every j ∈ J and
every k ∈ N there is n ∈ N with k < n and j ≤ φ(n). For φ ∈ O put

Xφ =

( ∞⊕
n=1

Xφ(n)

)
p

.

We must prove that Xφ �C Xψ � �p(Xφ) for all φ, ψ ∈ O and some C = C(p,K).
For j ∈ J and φ ∈ O put

N(φ, j) = |{n ∈ N : φ(n) = j}|.
The symmetry of the norm of �p yields that:

(i) Xφ � Xψ isometrically if N(φ, j) = N(ψ, j) for all j ∈ J ; and
(ii) Xφ is 1-complemented in Xψ if N(φ, j) ≤ N(ψ, j) for all j ∈ J .

Using (i) and the fact that an iteration of an �p-norm is an �p-norm we have:

(iii) �p(Xψ) � Xψ isometrically if N(ψ, j) = ∞ for all j ∈ J .

From our assumption we readily infer:

(iv) Xφ is K-complemented in Xψ if φ(n) ≤ ψ(n) for all n ∈ N.

Pick ψ ∈ O such that |N(ψ, j)| = ∞ for all j ∈ J . Let φ ∈ O. By (iii), �p(Xψ) � Xψ

isometrically. By (ii), Xφ is 1-complemented in Xψ. The definition of O yields
the existence of an increasing sequence (kn)

∞
n=1 and a map α : N → N such that

ψ(n) ≤ ρ(n) = φ(kn) for all n ∈ N. By (ii) and (iv), Xψ is K-complemented in Xρ,
which in turn is 1-complemented in Xφ. By Pe�lczyński’s decomposition method,
Xφ �C Xψ for some constant C depending on K, q, and p. �

Next we see a few instances of situations where we may combine the results from
this subsection.

Theorem 3.8. Suppose M is an infinite metric space. Let 0 < p ≤ 1, R > 1, λ, μ,
K1, K2, K3 > 1 and α > 0. There is a constant C such that, if An = (c1R

n, c2R
n]

for n ∈ N∗, then Fp(M) �C �p(Fp(M)) and

Fp(M) �C

(⊕
n∈N

Fp

(
M∗

Aφ(n)

))
p

�C

(⊕
n∈N

Fp

(
MAφ(n)

))
p

,
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whenever N is a countable set, φ : N → N∗ is unbounded, 0 < c1 < c3 < c2 < ∞
satisfies logR(c2/c1) > λ and logR(c3/c1) > α, and (M, d, 0) is an infinite pointed
metric space such that

• d(0, x) > c1 for all x ∈ M \ {0};
• Fp(MAn

) is K1-complemented in Fp(MAm
) for all n,m ∈ Z with 0 ≤ n ≤

m;
• Fp(M(c1,c3]) is K2-complemented in Fp(MA0

); and

• If Bn = (c1μ
−1Rn, c2μR

n], then, for n large enough, MAn
is comple-

mentably p-amenable in MBn
with constant K3.

Theorem 3.9. Suppose M is an infinite metric space. Let 0 < p ≤ 1, R > 1, λ, μ,
K1, K2, K3 > 1 and α > 0. There is a constant C such that Fp(M) �C �p(Fp(M))
and, if An = (c1R

−n, c2R
−n] for n ∈ N∗, then

Fp(M) �C

(⊕
n∈N

Fp

(
M∗

Aφ(n)

))
p

�C

(⊕
n∈N

Fp

(
MAφ(n)

))
p

,

whenever N is a countable set, φ : N → N∗ is unbounded, 0 < c1 < c3 < c2 < ∞
satisfy logR(c2/c1) > λ, and logR(c3/c1) > α, and (M, d, 0) is an infinite pointed
metric space such that

• d(0, x) ≤ c2 for all x ∈ M \ {0};
• Fp(MAn

) is K1-complemented in Fp(MAm
) for all n,m ∈ Z with 0 ≤ n ≤

m;
• Fp(M(c3,c2]) is K2-complemented in Fp(MA0

); and

• If Bn = (c1μ
−1R−n, c2μR

−n], then MAn
is complementably p-amenable in

MBn
with constant K3 for n large enough.

Theorem 3.10. Let (M, d, 0) be an infinite pointed metric space. Let 0 < p ≤ 1.
Given constants R > 1, λ > 1, μ > 1, K1 > 1, and K2 > 1 there is a constant
C = C(p,R, λ, μ,K1,K2) such that

Fp(M) �C �p(Fp(M)) �C �p(Fp(M∗
(c1,c2]

)) �C �p(Fp(M(c1,c2]))

whenever c1 > 0 and c2 > 0 satisfy logR(c2/c1) ≥ λ, and

• if An = (c1R
n, c2R

n], then Fp(MAn
) �K1

Fp(MA0
) for all n ∈ Z; and

• if Bn = (c1μ
−1Rn, c2μR

n), then MAn
is complementably p-amenable in

MBn
with constant K2 for all n ∈ Z.

Proof of Theorems 3.8, 3.9 and 3.10. As the proofs of Theorems 3.10 and 3.9 are
similar, we shall only take care of the proof of Theorem 3.8. By Lemma 2.8 we have
(for possibly larger constants K1, K2 and K3) that Fp(M∗

An
) is K1-complemented

in Fp(M∗
Am

), that Fp(M∗
(c1,c3]

) is K2-complemented if Fp(M∗
A0

), and that M∗
An+2

is complementably p-amenable in M∗
Bn

with constant K3.
For N countable and φ : N → N∗ unbounded, put

Xφ :=

(⊕
n∈N

Fp(M∗
Aφ(n)

)

)
p

.

Let N1 = {n ∈ Z : n ≥ −1} and φ1 : N1 → N∗ be defined φ1(n) = max{n, 0}.
Applying Theorem 3.5 with the family of intervals

{(−∞, c3]} ∪ {(logR(c1) + n, logR(c2) + n] : n ∈ N∗},
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we obtain Fp(M)�C1
Xφ1

for some constant C1 depending on p, λ, α, R and K2.
For s ∈ N large enough the intervals

(− logR(μ) + logR(c1) + sn, logR(μ) + logR(c2) + sn), n ∈ N∗

are mutually disjoint. Set N2 = {n ∈ Z : n ≥ n0} for a suitable n0 ∈ N and define
φ2 : N2 → N∗ by φ2(n) = sn. Applying Theorem 3.6 with the family of intervals

In = (logR(c1) + sn, logR(c2) + sn], n ∈ N, n ≥ n0,

we obtain Xφ2
�C2

Fp(M) for some constant C2 depending on p, μ R, K1 and K3.
An appeal to Lemma 3.7, Lemma 2.8 and [2, Theorem 3.2] completes the proof.

�

Remark 3.11. Analogous results to Theorems 3.8, 3.9, and 3.10 hold replacing
left-open and right-closed intervals with open, closed, or right-open and left-closed
intervals.

4. Applications

This section is devoted to applications of the techniques we developed in the
preceding section to advance the state of art of the general theory even in the case
p = 1.

4.1. Applications to metric spaces with few limit points. Here we gather
our first applications. Even though some of these applications were not explicitly
stated for p = 1, they follow from known results (see, e.g., Proposition 4.7).

Proposition 4.1. Suppose that M is a complete metric space with finitely many
accumulation points. Then there is a countable family (Mn)n∈N of closed bounded
subsets of M with no accumulation points such that

Fp(M)�
( ∞⊕

n=1

Fp(Mn)

)
p

,

for all 0 < p ≤ 1.

Proof. Let k be the number of accumulation points of M. We proceed by induction
on k. We prove the case k = 0 and the general case simultaneously. In the case
when k ≥ 1 we choose as base point of M an accumulation point of M. In the
case when k = 0 we choose as base point an arbitrary point of M. Let c > 0 and
R > 1 be such that all the accumulation points except 0 are in M(cR,cR2). Applying
Theorem 3.5 with In = [n+ logR c, n+ 2 + logR c] for n ∈ Z, yields

Fp(M)�
(⊕

n∈Z

Fp(Mn)

)
p

,

where Mn is bounded and closed for every n ∈ Z, Mn has no accumulation points
if n /∈ {0, 1}, and Mn has at most max{k− 1, 0} accumulation points if n ∈ {0, 1}.
The case k = 0 is finished. In the general case, we may now apply the induction
hypothesis for k − 1. �

Corollary 4.2. Let M be a uniformly separated metric space. Then for each
0 < p ≤ 1 there are p-Banach spaces (Xn)

∞
n=1 such that Fp(M)� (

⊕∞
n=1 Xn)p and

Xn � �p(I) for all n ∈ N, where I = |M|.
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Proof. By Proposition 4.1, Fp(M) �
(⊕

n∈Z
Fp(Mn)

)
p
, where each metric space

Mn is bounded and uniformly separated. Then, by [3, Theorem 4.14], Fp(Mn) �
�p(|Mn| − 1) (non necessarily uniformly). �

Corollary 4.3. Let M be a uniformly separated metric space. Then Fp(M) has
the AP for each 0 < p ≤ 1.

Proof. The statement follows from Corollary 4.2 taking into account that �p has
the AP, and that the AP is preserved by �p-sums and by complemented subspaces
(see Propositions 2.9 and 2.10). �

Proposition 4.4. Let M be a metric space. Suppose that there is a point x ∈ M
such that every annulus centered at x has only finitely many points. Then for each
0 < p ≤ 1 there is a countable family (Xn)n∈N of finite-dimensional p-Banach
spaces such that Fp(M)� (

⊕
n∈N Xn)p.

Proof. Just apply Theorem 3.5 with In = [n, n+ 2] for n ∈ Z. �

Since finite-dimensional spaces have the MAP, it follows from Proposition 4.4
that if M is a metric space with finite annuli, then Fp(M) has the BAP. We can
improve this result by squeezing a bit more our techniques.

Proposition 4.5. Suppose M is a metric space with a point x ∈ M such that every
annulus centered at x contains only finitely many points. Then for each 0 < p ≤ 1,
the space Fp(M) has the C-commuting BAP for every C > 41/p.

Proof. The proof relies on an enhancement of the proof of Theorem 3.5. Pick R > 1
and let (ψn)n∈Z be the family of 1/R-Lipschitz maps given by

ψn(x) = max

{
1− |x−Rn|

R
, 0

}
, x ∈ R.

For n ∈ Z consider the intervals In = [Rn−R,Rn+R] and Jn = (Rn−R,Rn+R).
Define T and S as in the proof of Theorem 3.5 and set

Pm :

(⊕
n∈Z

Fp(M∗
RIn )

)
p

→ Fp(M), (μn)n∈Z �→
m∑

n=−m

Ln(μn), m ∈ N.

The sequence of operators (Sm)∞m=1 defined by Sm = Pm ◦ S ◦ T satisfies

sup
m

‖Sm‖ ≤ ‖T‖.

Since
∑

n∈Z
ψn = 1, it follows that limm Sm = S in the strong topology of operators.

Each Sm has finite rank, and by construction,

Sm(δ(x)) =

m∑
n=−m

ψk(logR d(0, x))δ(x), x ∈ M.

We infer that Sm ◦ Sm′ = Sm′ ◦ Sm = Smin{m,m′} for all m, m′ ∈ N. Finally, note
that ‖T‖ ≤ C, where C is as in (3.3) with k = 2 and K1 = 1/R and K2 = 1. Letting
R tend to ∞ we obtain the desired estimate for the commuting BAP constant. �
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A basic sequence (xj)
∞
j=1 in a quasi-Banach space X is said to be subsymmetric

if it is unconditional and equivalent to all its subsequences. Every subsymmetric
basic sequence is semi-normalized, i.e.,

inf
j∈N

‖xj‖ > 0 and sup
j∈N

‖xj‖ < ∞.

For some more details concerning subsymmetric bases we refer the reader to [36,
Chapter II, §21] and [7]. We would like to point out that, although the paper [7] is
written within the framework of Banach spaces, it can be re-written verbatim for
p-Banach spaces without altering the validity of the results.

Lemma 4.6. Let (Xn)
∞
n=1 be a sequence of finite-dimensional q-Banach spaces,

0 < q ≤ 1. Every subsymmetric basic sequence X = (xj)
∞
j=1 of X = (

⊕∞
n=1 Xn)p,

0 ≤ p < ∞, is equivalent to the unit vector system of �p (with the convention that
�0 means c0).

Proof. For x ∈ X, write x = (x(n))∞n=1 and define

supp(x) = {n ∈ N : x(n) �= 0}.

We also define, for N ∈ N, SN (x) ∈ X by SN (x)(n) = x(n) for n ≤ N and
SN (x)(n) = 0 for n > N . Note that limN SN (x) = x. Since X is semi-normalized,
supj ‖xj(n)‖ < ∞ for all n ∈ N. Since BXn

is compact, a diagonal argument yields
φ : N → N increasing such that (xφ(j)(n))

∞
j=1 converges for every n ∈ N. Then, if

yj = xφ(2j−1) − xφ(2j),

limj yj(n) = 0 for all n ∈ N. By subsymmetry, Y = (yj)
∞
j=1 is equivalent to X and

so it is subsymmetric. In particular, Y is semi-normalized.
By the gliding-hump technique and the principle of small perturbations (see,

e.g., the proof of [5, Theorem 1.3.10]), there is ψ : N → N such that (yψ(j))
∞
j=1

is equivalent to a sequence Z = (zj)
∞
j=1 with (supp(zj))

∞
j=1 pairwise disjoint. As

before, we infer that Z is semi-normalized. Now, it is easy to see that Z is equivalent
to the unit vector system of �p. By subsymmetry so is X . �

The following proposition applies in particular to the spaces Fp(N
d) and Fp(Z

d).

Proposition 4.7. Let M be a metric space. Suppose that there is a point x ∈ M
such that every annulus centered at x contains only finitely many points. Then
every subsymmetric basic sequence in Fp(M), 0 < p ≤ 1, is equivalent to the unit
vector system of �p. Consequently, Fp(M) admits a subsymmetric basis if and only
if Fp(M) � �p.

Proof. Just combine Proposition 4.4 with Lemma 4.6. �

4.2. Applications to Banach spaces. Recall that a metric space (M, d) is self-
similar with constant R > 1 if there is a bijection f : M → M with

(4.1) d(f(x), f(y)) = Rd(x, y), x, y ∈ M.

By Banach’s contraction principle, if M is complete there is always a fixed point
of f , and such a fixed point is unique. So, when dealing with self-similar pointed
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metric spaces we will always assume that the base point 0 satisfies f(0) = 0 for the
bijection f fulfilling (4.1).

Obvious examples of self-similar spaces are, of course, quasi-Banach spaces and
their closed subsets under multiplication by R and 1/R for some R ∈ R \ {0,±1}.
Other examples are Carnot groups (see e.g. [31]).

Given a pointed metric space (M, d, 0) and c > 0, BM(c) will denote the ball
centered at the base point 0 of radius c, i.e.,

BM(c) = {x ∈ M : d(0, x) ≤ c}.
The unit ball BM(1) will be denoted by BM.

Theorem 4.8. Let (M, d, 0) be a pointed self-similar metric space with constant
R > 1. Let 0 < c1 < c2 < ∞ with c2/c1 > R. Suppose that there is μ > 1 such that
M(c1,c2] is complementably p-amenable in M(μ−1c1,μc2] for some 0 < p ≤ 1. Then

Fp(M) � �p
(
Fp(M(c1,c2])

)
.

Moreover, if there is c1 < c3 < c2 such that Fp(M(c1,c3]) (respectively Fp(M(c3,c2])
is complemented in Fp(M(c1,c2]), then

Fp(M) � Fp(M\BM(c1)) (resp.Fp(M) � Fp(BM(c2)).

Proof. Since M is self-similar with constant R, we easily obtain that M(Rn,tRn] is
1-Lipschitz isomorphic to M(1,t] for every t > 0 and every n ∈ Z. Thus, all the
spaces Fp(M(c1Rn,c2Rn]) are isometric to Fp(M(c1,c2]) for n ∈ Z.

We also infer from self-similarity and our assumption that there is a constant K
such that M(c1Rn,c2Rn] is complementably p-amenable in M(μ−1c1Rn,μc2Rn) with
constant K for all n ∈ Z. Hence, applying Theorems 3.8, 3.9 and 3.10 gives the
desired results. �

Remark 4.9. Analogous results to Theorem 4.8 hold replacing closed intervals with
open, or closed, or left-open and right-closed intervals. We leave the details to the
reader.

Given a metric space (M, d) and α ∈ (0, 1], its snow-flaking (M, dα) is also
a metric space. Obviously a function f : M → N is C-Lipschitz when regarded
from the metric space (M, dM) into the metric space (N , dN ) if and only if it is
Cα-Lipschitz when regarded from (M, dαM) into (N , dαN ).

Given a Banach space (X, ‖ · ‖), the assumptions of Theorem 4.8 are satisfied for
the metric space (X, ‖ · ‖α), where (X, ‖ · ‖α) is the snow-flaking of (X, ‖ · ‖). This
will be generalized in the following two slightly more general results, Lemmas 4.11
and 4.12. Those will be applied below only to Banach spaces and their subsets,
in which case the mapping σ from the assumptions is given by σ(x, t) := tx. We
refer to Remark 4.13 where possible applications to more general structures are
mentioned.

Definition 4.10. Let (M, d, 0) be a pointed metric space and set A = [0, 1] (re-
spectively A = {0} ∪ [1,∞)). A map

σ : M×A → M
is said to be a self-similar contraction (resp. dilation) if it satisfies the following
conditions:

(G.1) ∀x ∈ M : σx(0) = 0 and σx(1) = x,

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



7298 F. ALBIAC ET AL.

(G.2) ∀x ∈ M ∀t, s ∈ A : d(σx(t), σx(s)) ≤ |s− t|d(x, 0),
(G.3) ∀x, y ∈ M ∀t ∈ A : d(σx(t), σy(t)) ≤ td(x, y),

where for every x ∈ M we denote by σx the mapping t �→ σ(x, t).

Recall that a metric space (M, d, 0) is said to be geodesic if for all x, y ∈ M there
is σ : [0, 1] → M such that σ(0) = x, σ(1) = y and d(σ(t), σ(s)) = d(x, y)|t− s| for
all s, t ∈ [0, 1].

Lemma 4.11. Let (M, d, 0) be a geodesic pointed metric space with a self-similar
contraction σ. Let S > 0 and N ⊂ M be such that for every x ∈ N \ BM(S) we
have σx(

S
d(x,0) ) ∈ N . Then N[0,S] is a 2-Lipschitz retract of N . More precisely, the

2-Lipschitz retraction r : N → N[0,S] is given by r(0) = 0 and

(4.2) r(x) := σx

(
min

{
1, S

d(x,0)

})
, x ∈ N \ {0}.

Proof. It suffices to show that the mapping r given by (4.2) is 2-Lipschitz. Pick
x, y ∈ N and assume without loss of generality that d(x, 0) ≤ d(y, 0). If d(y, 0) ≤ S
then obviously d(r(x), r(y)) = d(x, y). If d(x, 0) ≥ S then we have

d(r(x), r(y)) ≤ d
(
σx

(
S

d(x,0)

)
, σy

(
S

d(x,0)

))
+ d

(
σy

(
S

d(x,0)

)
, σy

(
S

d(y,0)

))
≤ S

d(x, 0)

(
d(x, y) + |d(y, 0)− d(x, 0)|

)
≤ 2d(x, y),

where in the second inequality we used the conditions (G.1), (G.2) and (G.3) from
Definition 4.10. Finally, if d(x, 0) < S < d(y, 0), since M is geodesic we find z ∈ M
such that d(z, 0) = S and d(x, y) = d(x, z) + d(z, y), which implies that

d(r(x), r(y)) ≤ d(r(x), r(z)) + d(r(z), r(y))

≤ 2(d(x, z) + d(z, y))

= 2d(x, y). �

Lemma 4.12. Let (M, d, 0) be a geodesic pointed metric space with a self-similar
dilation σ. Let S > 0 and N ⊂ M be such that 0 /∈ N and for every x ∈ N∩BM(S)
we have σx(

S
d(x,0) ) ∈ N . Then, for every α ∈ (0, 1] and each 0 < p ≤ 1, (N[S,∞), d

α)

is complementably p-amenable in (N , dα) with constant 31/p.

Proof. Consider the mapping r : (N , dα) → Fp(N[S,∞), d
α) defined by

r(x) :=

{
δ(x) d(x, 0) ≥ S
dα(x,0)

Sα δ
(
σx

(
S

d(x,0)

))
d(x, 0) ≤ S.

It suffices to show that r is 31/p-Lipschitz. Pick x, y ∈ N and assume without loss
of generality that d(x, 0) ≤ d(y, 0). If d(x, 0) ≥ S then obviously ‖r(x) − r(y)‖ =
dα(x, y).

If d(y, 0) ≤ S we have

‖r(x)− r(y)‖p ≤ A1 +A2 +A3,
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where

A1 =
dαp(x, 0)

Sαp

∥∥∥δ (σx

(
S

d(x,0)

))
− δ

(
σy

(
S

d(x,0)

))∥∥∥p ,
A2 =

dαp(x, 0)

Sαp

∥∥∥δ (σy

(
S

d(x,0)

))
− δ

(
σy

(
S

d(y,0)

))∥∥∥p , and

A3 =

∥∥∥∥
(
dα(x, 0)

Sα
− dα(y, 0)

Sα

)
δ
(
σy

(
S

d(y,0)

))∥∥∥∥
p

.

If d(x, 0) < S < d(y, 0) we have

‖r(x)− r(y)‖p ≤ A1 +A4 +A5,

where

A4 =
dαp(x, 0)

Sαp

∥∥∥δ (σy

(
S

d(x,0)

))
− δ(y)

∥∥∥p and

A5 =

∥∥∥∥
(
dα(x, 0)

Sα
− 1

)
δ(y)

∥∥∥∥
p

.

Applying (G.1), (G.2), (G.3) in Definition 4.10 yields

A1 ≤ dαp(x, y),

max{A1/p
2 , A

1/p
3 } ≤ dα(y, 0)− dα(x, 0), and

max{A1/p
4 , A

1/p
5 } ≤ B :=

Sα − dα(x, 0)

Sα
dα(y, 0).

Moreover, if S < d(y, 0),

B = dα(y, 0)− dα(x, 0)dα(y, 0)

Sα
≤ dα(y, 0)− dα(x, 0).

Summing up, whenever d(x, 0) < S we have

‖r(x)− r(y)‖p ≤ dαp(x, y) + 2 (dα(y, 0)− dα(x, 0))
p ≤ 3dαp(x, y). �

Remark 4.13. Even though we will apply Lemmas 4.11 and 4.12 only to Banach
spaces and their subsets, it is worth mentioning that there are more general situa-
tions to which they might be applied. The assumptions of Lemma 4.11 are satisfied
for metric spaces with conical geodesic bicombing (such as convex sets in Banach
spaces, CAT (0) spaces, or Busemann spaces), see [17].

Moreover, there is also a class of self-similar spaces satisfying both Lemma 4.11
and Lemma 4.12 which extend their applicability beyond the class of Banach spaces.
Those are first layers V1(G) of metric scalable groups G (in particular, first layers of
Carnot groups); see [32] for the corresponding definitions. The fact that any V1(G)
as above satisfies Lemma 4.11 and Lemma 4.12 easily follows from [32, Lemma 3.1].
Thus, Lipschitz-free p-spaces over V1(G) are isomorphic to their �p-sum for every
p ∈ (0, 1].

Lemma 4.11, Lemma 4.12 and Lemma 2.8 easily yield the following.

Corollary 4.14. Let X be a Banach space and let α, p ∈ (0, 1].

(i) If M ⊂ X has non-empty interior, then

Fp(BX , ‖ · ‖α)�2α Fp(M, ‖ · ‖α).
(ii) If M ⊂ X is a bounded set, then

Fp(X \BX , ‖ · ‖α)�31/p Fp(X \M, ‖ · ‖α).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



7300 F. ALBIAC ET AL.

(iii) For every 0 < s < S < ∞, X[s,S] is complementably p-amenable in X \ {0}
with constant 2 · 31/p.

(iv) Moreover, there is a constant C = C(p, α) > 0 (depending on p, α but not on
X) such that if 0 < s < S < ∞ and M ⊂ X is closed under multiplication
by S

d(x,0) for every x ∈ M \ B(0, S), closed under multiplication by s
d(x,0) for

every x ∈ M ∩ B(0, s), and we consider M endowed with the snowflaking
‖ · ‖α, then for every 0 < s < S < ∞, M[s,S] is complementably p-amenable
in M with constant C.

Our following theorem improves two results of P. Kaufmann from [29], namely
[29, Theorem 3.1 and Corollary 3.3].

Theorem 4.15. Let X be a Banach space, 0 < p ≤ 1 and 0 < α ≤ 1. Then for any
R > 1 and any subset M of X closed under multiplication by nonnegative numbers
(that is,

⋃
λ≥0 λM ⊂ M), if we consider M endowed with the snowflaking ‖ · ‖α,

we have
Fp(M) � Fp(BM) � Fp(M\BM) � �p

(
Fp

(
M(1,R]

) )
.

Proof. Let 0 < c1 < c2 < ∞ and μ > 1. By Corollary 4.14, M[c1,c2] is comple-
mentably p-amenable in M(μ−1c1,μc2]. Since M(c1,c2] is dense in M[c1,c2], M(c1,c2]

is also complementably p-amenable in M(μ−1c1,μc2]. Then, the result follows from
Theorem 4.8. �
Remark 4.16. Note that since limt→1 tx = x for every x ∈ X, the type of intervals
we deal with in Theorem 4.15 is irrelevant.

Corollary 4.17. Let X be a Banach space, 0 < α ≤ 1 and 0 < p ≤ 1. Then

Fp(X, ‖ · ‖α) � �p(Fp(SX ⊕ [0, 1], ‖ · ‖α)).
Proof. By Theorem 4.15 we have Fp(X, ‖ · ‖α) � �p(Fp(X[1,2], ‖ · ‖α)). Moreover,
it is easy to see that the “polar” map

x �→
(

x

‖x‖ , ‖x‖
)

defines a Lipschitz isomorphism from X[1,2] onto SX ⊕ [1, 2]. Since the intervals
[1, 2] and [0, 1] are isometric we are done. �
Corollary 4.18. Let X be a Banach space. Suppose M is a subset of X with
nonempty interior. Then for 0 < α ≤ 1 and 0 < p ≤ 1 we have Fp(X, ‖ · ‖α) �
Fp(M, ‖ · ‖α).
Proof. Just combine Corollary 4.14 with Theorem 4.15. �
Corollary 4.19. Let d ∈ N and 0 < p ≤ 1. Then Fp(R

d) � Fp(R
d
+).

Proof. The result follows from Theorem 4.15 in combination with the fact that
[−1, 1]d and [0, 1]d are Lipschitz isomorphic. �

The following result will be further improved in Corollary 5.7.

Corollary 4.20. Let X be a finite-dimensional Banach space. Then for 0 < α < 1,
F(X, ‖ · ‖α) � �1.

Proof. It follows from Theorem 4.15 and the fact that F(K, ‖ · ‖α) � �1 whenever
K ⊂ X is an infinite compact set (see [38, Theorems 4.38 and 8.49]). �
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Given d ∈ N, Sd−1 and Bd denote, respectively, the Euclidean sphere and the
Euclidean ball of Rd.

Theorem 4.21. For d ∈ N, 0 < p ≤ 1 and 0 < α ≤ 1, we have

Fp(S
d, | · |α) � Fp(R

d, | · |α).

Proof. Consider Sd equipped with the Euclidean distance and choose the “north”
ν = (0, . . . , 0, 1) as base point of Sd. If we denote

Sd[s, t] = {x = (xi)
d+1
i=1 ∈ Sd : s ≤ xd+1 ≤ t}, −1 ≤ s < t ≤ 1,

and define

η(s) = max

{
1− s2

2
,−1

}
, 0 < s ≤ ∞,

we have (Sd)[s,t] = Sd[η(t), η(s)] for all 0 < s < t < ∞. Hence, applying Theo-
rem 3.5 and Lemma 2.8 with

(In)n∈N = {(−∞, 1/2), (0,∞)}
and R = 2α yields

Fp(S
d, | · |α)� Fp(S

d[0, 1], | · |α)⊕ R⊕Fp(S
d[−1, 1/2], | · |α).

The stereographic projection Mν from the north point, given by

(xi)
d+1
i=1 �→

(
xi

1− xd+1

)d

i=1

,

is a diffeomorphism from Sd \ {ν} onto R
d. Moreover, for every −1 ≤ h < 1,

Mν({x ∈ Sd : xn+1 = h}) =
{
y ∈ R

d : ‖y‖ = ξ(h)
}
,

where ξ(h) =
√
(1 + h)/(1− h). Consequently, Mν is a Lipschitz isomorphism from

Sd[−1, 1/2] onto
√
3Bd which maps Sd[−1, 0] onto Bd. We infer that Sd[−1, 1/2]

and Sd[−1, 0] are Lipschitz isomorphic toBd and that Sd[−1, 0] is a Lipschitz retract
of Sd[−1, 1/2]. Therefore Sd[−1, 0] is complementably p-amenable in Sd[−1, 1/2].
Applying Theorem 3.6 with the singleton (In)n∈N = {(1/2,∞)} and R = 2α, and
taking into account Lemma 2.8 we obtain

Fp(S
d[−1, 0], | · |α)� Fp(S

d, | · |α).
Since Sd[−1, 0] and Sd[0, 1] are isometric,

Fp(S
d[−1, 0], | · |α) � Fp(S

d[0, 1], | · |α).
Combining and applying Theorem 4.15 together with Pe�lczyński’s decomposition
method yields Fp(S

d, | · |α) � Fp(B
d, | · |α). Invoking Theorem 4.15 completes the

proof. �

5. Applications to doubling metric spaces

In this section we first provide a proof of the fact that for p ∈ (0, 1], every dou-
bling metric space N is complementably p-amenable in any metric space containing
it, which answers in the positive Question 6.7 from [2]. This is known for p = 1, but
our proof seems to be interesting even for this case because usually the authors refer
to several deep results from [33], while here we give a brief self-contained argument.
Further, we collect applications of this fact together with methods developed in
preceding sections.
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5.1. Doubling metric spaces are complementably p-amenable. Let us recall
that a metric space M is doubling if there exists a constant D(M) ∈ N, called the
doubling constant of M, such that every ball of radius r > 0 in M can be covered
by at most D(M)-many balls of radius r/2. It is not very difficult to see that every
subset of a doubling metric space M is again doubling with doubling constant
bounded by D(M)2. Euclidean spaces are typical examples of doubling spaces.
Doubling metric spaces are precisely the metric spaces of finite Assouad dimension.
The purpose of this subsection is to prove the following result.

Theorem 5.1. Let (M, d) be a metric space and N be a closed subset of M with
finite doubling constant D ≥ 2. For each 0 < p ≤ 1, N is complementably p-
amenable in M with constant at most C(p)D4/p. To be precise, C(p) = 112 ·151/p.

The proof for p = 1 was given in [30], where the authors observed that it follows
from deep results of Lee and Naor [33]. Recently, an easier proof of the essential
ingredient by Lee and Naor was given in [10] and this approach actually admits
generalization to the case p < 1, which is what we indicate in this subsection.
Moreover, we present a self-contained and easier argument even for the case p = 1
at the cost of getting a worse estimate (D4 instead of logD which is the estimate
for p = 1 from [30]). Let us give some more details.

First we need the following preliminary result which is more or less the content
of [10, Lemma 2.4]. For the convenience of the reader we include the proof here.

Proposition 5.2. Let (M, d) be a metric space and N ⊂ M be a closed subset with
finite doubling constant D ≥ 2. Then there exists a countable family (Vi, φi, xi)i∈I

such that:

(H.1) xi ∈ N and d(xi, x) ≤ 7d(x,N ) for all i ∈ I and all x ∈ Vi;
(H.2) (Vi)i∈I is a 3D4-overlapping open cover of M\N ;
(H.3) for each i ∈ I the mapping φi : M \ N → [0,∞) is 1-Lipschitz with {x ∈

M \N : φi(x) > 0} ⊂ Vi; and
(H.4) for every x ∈ M \N there exists i ∈ I with φi(x) > d(x,N )/4.

Proof. For n ∈ Z, let Nn be a maximal 2n-separated subset of N , i.e., d(y, z) ≥ 2n

for all y, z ∈ Nn with y �= z and d(x,Nn) < 2n for all x ∈ N . Since Nn intersects
finitely many elements of any ball of M, infy∈Nn

d(x, y) is attained for all x ∈ M,
so that the annulus

Wn = {x ∈ M \N : 2n ≤ d(x,N ) < 2n+1}

is covered by the family

W(y,n) = {x ∈ Wn : d(x, y) ≤ d(x, z) for all z ∈ Nn}, y ∈ Nn.

In turn, (Wn)n∈Z is a partition of M \ N . Therefore, if we put I = {(y, n) : n ∈
Z, y ∈ Nn}, (Wi)i∈I is a cover of M\N . For each (y, n) ∈ I, put x(y,n) = y and

V(y,n) = {x ∈ M \N : d(x,W(y,n)) < 2n−1}.

Since Wi ⊆ Vi for all i ∈ I, (Vi)i∈I is an open cover of M\N . Define

φi(x) := d(x,M\ Vi), x ∈ M \N , i ∈ I,
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so that (H.3) trivially holds. We claim that (Vi, φi, xi)i∈I is the desired family. We
start by proving that if (y, n) ∈ I and x ∈ V(y,n) then

2n−1 ≤ d(x,N ) < 5 · 2n−1, and(5.1)

d(y, x) ≤ 7 · 2n−1,(5.2)

which easily yields (H.1). Indeed, there is x′ ∈ W(y,n) with d(x, x′) < 2n−1. Since

x′ ∈ Wn there is z ∈ N with d(x′, z) < 2n+1. The properties of Nn yield y′ ∈ Nn

with d(z, y′) < 2n. Since d(x′, y) ≤ d(x′, y′),

d(x,N ) ≤ d(x′,N ) + d(x, x′) < 2n+1 + 2n−1 = 5 · 2n−1,

d(x,N ) ≥ d(x′,N )− d(x, x′) ≥ 2n − 2n−1 = 2n−1, and

d(x, y) ≤ d(x, x′) + d(x′, y) ≤ d(x, x′) + d(x′, y′)

≤ d(x, x′) + d(x′, z) + d(z, y′)

≤ 2n−1 + 2n+1 + 2n = 7 · 2n−1.

(H.2) Given x ∈ M\N , put Kn = {y ∈ Nn : x ∈ V(y,n)} for each n ∈ Z. Suppose
that Kn �= ∅ and pick y ∈ Kn. If z ∈ Kn inequality (5.2) yields

d(y, z) ≤ d(y, x) + d(x, z) ≤ 14 · 2n−1 = 7 · 2n.

Therefore Kn is contained in the ball B(y, 7 ·2n). In turn, by the doubling property,
B(y, 7·2n) is covered by D4 balls of radius 7·2n−4. If one of these balls contains two
different points, say z1, z2 ∈ Kn we reach the absurdity d(z1, z2) ≤ 14 · 2n−4 < 2n,
so |Kn| ≤ D4. Moreover, if j ∈ Z is such that d(x,N ) ∈ [2j , 2j+1), inequality (5.1)
yields n ∈ {j − 1, j, j + 1}. We infer that |{i ∈ I : x ∈ Vi}| ≤ 3D4.

(H.4) Let x ∈ M \ N and pick i = (y, n) ∈ I with x ∈ Wi. If z ∈ M \ Vi by
definition we have d(z, x) ≥ d(z,Wi) ≥ 2n−1, so φi(x) ≥ 2n−1. Since, by definition,
d(x,N ) < 4 · 2n−1, we are done. �

Proof of Theorem 5.1. Let V = (Vi, φi, xi)i∈I be as in Proposition 5.2, and set
K = 3D4, so that (Vi)i∈I is K-overlapping. Hence, by property (H.2), of V , we can
define Φ: M\N → [0,∞) by Φ =

∑
i∈I φi. Moreover, since for each x, y ∈ M\N

the cardinality of the set

Ix,y = {i ∈ I : φi(x) �= 0 or φi(y) �= 0}

is at most 2K, Φ is (2K)-Lipschitz. Besides, by property (H.4) of V , Φ(x) ≥
d(x,N )/4 for all x ∈ M\N . Hence, for each i ∈ I we can define ψi : M\N → [0, 1]
by ψi = φi/Φ. Of course,

∑
i∈I ψi = 1. Consider f : M → Fp(N ) given by

f(x) :=

{
δ(x) x ∈ N ,∑

i∈I ψi(x)δ(xi) x ∈ M \N .

By Lemma 2.7, it suffices to show that f is C-Lipschitz for C = 112(5K)1/p. First,
we prove that for all x, y ∈ M \N

(5.3) S :=
∑
i∈I

|ψi(x)− ψi(y)|p ≤ T :=
2 · 8p ·K
Ap

x,y
dp(x, y),
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where Ax,y = max{d(y,N ), d(x,N )}. We may assume without loss of generality
that d(x,N ) ≤ d(y,N ). Using that the functions φi are 1-Lipschitz we obtain

|ψi(x)− ψi(y)| =
|φi(x)(Φ(y)− Φ(x)) + Φ(x)(φi(x)− φi(y))|

Φ(x)Φ(y)

≤ φi(x)|Φ(y)− Φ(x)|+Φ(x)|φi(x)− φi(y)|
Φ(x)Φ(y)

≤ 2Kφi(x)d(x, y) + Φ(x)d(x, y)

Φ(x)Φ(y)
.

Thus, summing over Ix,y, we get

∑
i∈Ix,y

|ψi(x)− ψi(y)| ≤
4K

Φ(y)
d(x, y) ≤ 16K

d(y,N )
d(x, y) =

16K

Ax,y
d(x, y).

Applying Hölder’s inequality yields (5.3). Indeed,

S =
∑

i∈Ix,y

|ψi(x)− ψi(y)|p ≤ |Ix,y|1−p

(∑
i∈I

|ψi(x)− ψi(y)|
)p

≤ (2K)1−p(16K)p A−p
x,y d

p(x, y) = T.

A similar argument that also uses Hölder’s inequality gives

(5.4)
∑
i∈I

|ψi(x)|p ≤ K1−p, x ∈ M \N .

Let x, y ∈ M. If {x, y} ⊂ N then of course we have ‖f(x) − f(y)‖ = d(x, y).
Suppose that x ∈ N and y ∈ M\N . By properties (H.1) and (H.3) of V , d(xi, y) ≤
7d(x, y) whenever ψi(y) �= 0. Hence, taking also into account (5.4),

‖f(y)− f(x)‖p =

∥∥∥∥∥
∑
i∈I

ψi(y)(δ(xi)− δ(y) + δ(y)− δ(x))

∥∥∥∥∥
p

≤
∑
i∈I

ψp
i (y) (d

p(xi, y) + dp(y, x))

≤ (7p + 1)dp(x, y)
∑
i∈I

ψp
i (y)

≤ K1−p(7p + 1)dp(x, y).

It remains to deal with the case {x, y} ⊆ M\N . Suppose that there exists j ∈ I
with {x, y} ⊂ Vj . If x ∈ Vi we have

d(xi, xj) ≤ d(xi, x) + d(x, xj) ≤ 2 · 7d(x,N ).
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Since the same holds if y ∈ Vi, we have d(xi, xj) ≤ 14Ax,y for all i ∈ Ix,y. Combining
this piece of information with inequality (5.3) we obtain

‖f(x)− f(y)‖p =

∥∥∥∥∥
∑
i∈I

(ψi(x)− ψi(y))(δ(xi)− δ(xj))

∥∥∥∥∥
p

≤
∑

i∈Ix,y

|ψi(x)− ψi(y)|pdp(xi, xj)

≤ 14pAp
x,y

∑
i∈I

|ψi(x)− ψi(y)|p

≤ 2 · 112pKdp(x, y).

Finally, assume that {i ∈ I : x ∈ Vi} ∩ {i ∈ I : y ∈ Vi} = ∅. Taking into account
(5.4) we have

‖f(x)− δ(y)‖p ≤
∥∥∥∥∥
∑
i∈I

ψi(x)(δ(xi)− δ(y))

∥∥∥∥∥
p

≤
∑
i∈I

ψp
i (x)d

p(xi, y)

≤
∑
i∈I

ψp
i (x)(d

p(xi, x) + dp(x, y))

≤ (7pdp(x,N ) + dp(x, y))
∑
i∈I

ψp
i (x)

≤ K1−pdp(x, y) + 7pAp
x,y

∑
i∈I

ψp
i (x).

Considering also the inequality that we obtain from switching the roles of x and y,
and using again (5.3) yields

‖f(x)− f(y)‖p ≤ ‖f(x)− δ(y)‖p + ‖δ(y)− δ(x)‖p + ‖δ(x)− f(y)‖p

≤ (2K1−p + 1)dp(x, y) + 7Ap
x,y

(∑
i∈I

ψp
i (x) + ψp

i (y)

)

= (2K1−p + 1)dp(x, y) + 7pAp
x,y

∑
i∈I

|ψi(x)− ψi(y)|p

≤ (2K1−p + 1 + 2 · 56p ·K)dp(x, y).

Combining the inequalities and comparing the constants in the estimates yields
‖f(x)− f(y)‖ ≤ Cd(x, y). �

5.2. Applications. The following result answers in the positive [2, Question 6.7].

Corollary 5.3. Let M be a doubling metric space and N ⊂ M. Then for p ∈ (0, 1],
N is complementably p-amenable in M with constant depending only on p and M.
In particular, Fp(M) has the π-property.

Proof. We can assume without loss of generality that N is closed. Since N is
a doubling metric space with doubling constant depending only on the doubling
constant of M, the first part of the corollary holds. To prove that Fp(M) has the
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π-property, we order the set

I = {N ⊂ M : |N | < ∞}

by inclusion, and for each N ∈ I we choose TN = Lj ◦ PN , where PN : Fp(M) →
Fp(N ) is the map provided by the complementable p-amenability of N and Lj is
the canonical map from Fp(N ) into Fp(M). �

Corollary 5.4. Let M be a complete countable doubling metric space. Then F(M)
has the FDD property.

Proof. By Corollary 5.3, F(M) has the π-property and since any complete dou-
bling metric space is proper, by [15] F(M) has MAP. Since any separable Banach
space with π-property and MAP has the FDD property (see [13, Theorem 4.6 and
Theorem 6.3]), we are done. �

We also immediately obtain the following interesting result which applies, e.g.,
to Carnot groups.

Corollary 5.5. Let p ∈ (0, 1] and (M, d) be a self-similar doubling metric space.
Then there exists R > 1 such that

Fp(M) � Fp(BM) � Fp(M\BM) � �p
(
Fp(M(1,R]))

)
.

Proof. Just apply Theorem 4.8 and Theorem 5.1. �

The following corollary is a generalization of [29, Corollary 3.5]. Recall that a
metric space M is Lipschitz homogeneous if for all x, y ∈ M there is a Lipschitz
isomorphism f : M → M with f(x) = y.

Corollary 5.6. Let (M, d) be a pointed self-similar doubling Lipschitz homogeneous
metric space. Then given N ⊂ M with nonempty interior we have Fp(M) � Fp(N )
for all p ∈ (0, 1].

Proof. Since M is Lipschitz homogeneous, all the balls are Lipschitz equivalent.
Thus, if B ⊂ N is a ball, using Theorem 5.1 and Corollary 5.5 we obtain

Fp(N )� Fp(M) � Fp(BM) � Fp(B)� Fp(N ).

By Corollary 5.5 we have Fp(M) � �p(Fp(M)) and so an application of Pe�lczyński’s
decomposition method finishes the proof. �

We next see a generalization of the essentially known result that F(K, dα) � �1
whenever (K, d) is an infinite compact set in a doubling metric space (see [38,
Theorems 4.38 and 8.49]). We do not aim here to prove its analogue for p < 1.

Corollary 5.7. Let (M, d) be a doubling metric space and 0 < α < 1. Then
F(M, dα) � �1.

Proof. Pick 0 < α < β < 1. By Assouad’s theorem (see [8]), (M, dα/β) admits
a bi-Lipschitz embedding into some Euclidean space. Thus, we assume without
loss of generality that (M, dα) is a subset of (X, dβ) for some finite-dimensional
Banach space X. Since (X, dβ) is a doubling metric space, from Theorem 5.1 we
obtain F(M, dα)�F(X, dβ). By Corollary 4.20, F(X, dβ) � �1. Since �1 is a prime
Banach space (see [35]) the proof is over. �
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Let us consider the case when the doubling metric space in question is not self-
similar (a typical example is Zd).

Given R ∈ (0, 1) ∪ (1,∞), we shall say that a pointed metric space (M, d, 0) is
R-closed if there exists a map f : M → M fulfilling (4.1) with f(0) = 0. Note
that, in the case when R < 1 and M is complete, there is always a fixed point of
a mapping f satisfying (4.1), so the condition f(0) = 0 is redundant. Both metric
spaces Nd and Z

d are 2-closed and doubling.

Theorem 5.8. Let (M, d, 0) be a pointed doubling metric space which is R-closed
for some R ∈ (0, 1) ∪ (1,∞). Let N be a countable set and φ : N → N∗ unbounded.
Then:

(i) If R > 1, for every c > R we have

�p(Fp(M\BM)) � Fp(M\BM) �
(⊕

n∈N

Fp(M(Rφ(n),cRφ(n)])

)
p

.

(ii) If R < 1, for every 0 < c < R we have

�p(Fp(BM)) � Fp(BM) �
(⊕

n∈N

Fp(M(cRφ(n),Rφ(n)])

)
p

.

In particular, if M is uniformly separated and R > 1, or M is bounded and R < 1,
we have Fp(M) � �p(Fp(M)).

Proof. Let us prove (i). Pick an arbitrary μ > 0. For n ∈ Z, set Mn := M(Rn,cRn]

and Nn := M(μ−1Rn,μcRn]. Let f : M → M be a map such that d(f(x), f(y)) =

Rd(x, y) for all x, y ∈ M with f(0) = 0. Note that fk is a 1-Lipschitz isomorphism
onto its image for all k ∈ N. Moreover, fk(Mn) ⊆ Mn+k. By Theorem 5.1, there
is a constant K1 such that Fp(Mn) is K1-complemented in Fp(Mm) for every
n ≤ m. Theorem 5.1 also yields a constant K2 such that Mn is complementably
p-amenable in Nn with constant K2 for every n ∈ Z. Hence, the result follows from
Theorem 3.8.

The proof of (ii) is analogous and so we omit it. If M is uniformly separated
(resp. bounded) we have M = M\BM (resp. M = BM) under a suitable rescaling
of the metric. Since the rescaling of a metric space gives isometric Lipschitz free
spaces, we are done. �

Remark 5.9. A theorem analogous to Theorem 5.8 holds for open, closed, left-
closed, and right-open intervals.

Recall that a net in a metric space M is an a-separated and b-dense subset in
M for some positive numbers a, b. A typical example of a net in R

d is the set Zd.
The following corollary extends and improves the result [24, Theorem 7] of P. Hájek
and M. Novotný on �1-sums of Lipschitz free spaces over nets.

Corollary 5.10. Let M be a pointed doubling self-similar metric space and let
N ⊂ M be a net in M. Then, for every p ∈ (0, 1], we have

Fp(N ) � �p(Fp(N )).

Proof. It is not difficult to construct a net N0 ⊂ M in M which is R-closed for
some R > 1 (see the proof of [12, Corollary 1.18]). Thus, by Theorem 5.8, Fp(N0) �
�p(Fp(N0)). If N ⊂ M is an arbitrary net in M, using that M is unbounded and
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separable, hence all the nets are infinite and countable, by [2, Theorem 3.5] we get
that Fp(N ) � Fp(N0), and we are done. �

The following is an improvement of [12, Corollary 1.18].

Corollary 5.11. Let (M, d, 0) be a pointed doubling self-similar metric space and
let N ⊂ M be a net in M. Then Lip0(N ) � Lip0(M).

Proof. Just combine [12, Proposition 1.9] with Corollaries 5.5 and 5.10. �

Corollary 5.10 gives, in particular, Fp(Z
d) � �p(Fp(Z

d)) for every d ∈ N. We
plan on studying in depth the structure of the Lipschitz free p-spaces Fp(Z

d) in a
further publication. For the time being we can state the following.

Theorem 5.12. For every p ∈ (0, 1] and d ∈ N we have Fp(N
d) � Fp(Z

d).

Proof. By Theorem 5.1, Fp(N
d)� Fp(Z

d), and by Theorem 5.8,

Fp(Z
d) �

(⊕
n∈N

Fp(Mn)

)
p

,

where Mn = {x ∈ Z
d : 2n ≤ |x|∞ ≤ 2n+2}. Moreover, for every n ∈ N the set Mn

is isometric to a subset of Nd (use the map x �→ {2n+2}d − x), so by Theorem 5.1
the spaces Fp(Mn) are uniformly complemented in Fp(N

d). Using Corollary 5.10
we obtain

Fp(Z
d)� �p(Fp(N

d)) � Fp(N
d).

An application of Pe�lczyński’s decomposition method completes the proof. �

To close this section let us relate the finite-dimensional structure of the Lipschitz-
free space over a self-similar doubling metric space with the Lipschitz-free spaces
over its nets. The following two results apply for instance to M = R

d and N = Z
d.

Proposition 5.13. Let M be a doubling self-similar metric space and let N ⊂ M
be a net in M. For every 0 < p ≤ 1 there is a constant C > 0 and an increasing
sequence (Xn)n∈N of subspaces of Fp(M) such that

⋃
n∈N

Xn = Fp(M) and for all
n ∈ N, Xn is C-complemented in Fp(M) and C-isomorphic to Fp(N ).

Proof. Let f : M → M be the bijection from the definition of a self-similar space
and let 0 ∈ M be such that f(0) = 0. It is not difficult to construct a 1-separated
and 1-dense set N0 ⊂ M for which f(N0) ⊂ N0 (see, e.g., the proof of [12, Corollary
1.18]). For n ∈ N put Xn = [δM(f−n(x)) : x ∈ N0]. Theorem 5.1 gives that Xn

is uniformly complemented in Fp(M) and uniformly isomorphic to Fp(f
−n(N0)),

which in turn is isometric to Fp(N0). Thus, it remains to prove that
⋃

n∈N
Xn

is dense in Fp(M). For that, it is sufficient to observe that since N0 is 1-dense,
{f−n(x) : n ∈ N, x ∈ N0} is dense in M. Finally, if N ⊂ M is an arbitrary net, by
[2, Proposition 5] we get that Fp(N ) � Fp(N0). �

Corollary 5.14. Let M be a doubling self-similar metric space and let N ⊂ M
be a net in M. For every p ∈ (0, 1], Fp(M) is crudely finitely representable
in Fp(N ) and Fp(N ) is crudely finitely representable in Fp(M). Moreover, the
finite-dimensional complemented subspace structures of Fp(N ) and Fp(M) coin-
cide; that is, there is a constant C > 1 such that if X is a finite-dimensional and
K-complemented subspace in Fp(M) then there is a (CK)-complemented subspace
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Y in Fp(N ) whose Banach-Mazur distance to X is at most C, and the other way
around.

Proof. By Theorem 5.1, we have Fp(N )� Fp(M). The rest follows from Proposi-
tion 5.13. �

6. Open problems

If M is a compact metric space with only one accumulation point, Fp(M) has

the commuting C-BAP for every C > 41/p (see Proposition 4.5). However, by [15]
and [14, Theorem 2.4], more can be said and F1(K) has even the commuting MAP
for every countable metric compact space K (in fact, it is enough to suppose that
K is a countable proper metric space, see [16]). We do not know whether a similar
statement holds for p < 1. Note that the proof for p = 1 from [15] is based on
duality techniques and so the proof for p < 1 would be most probably interesting
even for the classical case of p = 1 as it would have to rely on different arguments.

Question 6.1. Let K be a countable proper metric space and p ∈ (0, 1). Does
Fp(K) have the metric approximation property?

There are known examples of metric spaces M such that F(M) does not have
AP. However, all the examples we know use integration techniques to some extent.
For instance, integration is crucially used in the proof by Godefroy and Kalton (see
[20, Theorem 3.1]) of the fact that X � F(X) for every separable Banach space,
also in the proof by Godefroy and Ozawa (see [22, Corollary 5]) that there exists a
compact metric space K such that F(K) fails AP, or in the construction by Hájek
et al. (see [23, Corollary 2.2]) of a compact metric space homeomorphic to the
Cantor space whose Lipschitz-free space fails AP. It would be interesting to find
examples based on certain combinatorial features of the underlying metric space
M. Since integration is not available in p-Banach spaces with p < 1 (see [1]), a
natural question in this direction is the following.

Question 6.2. Let p ∈ (0, 1). Does there exist a metric space M such that Fp(M)
does not have AP?

Since for uniformly discrete metric spaces M we know that Fp(M) has AP (see
Corollary 4.3), the following seems to be an interesting problem. Note that if the an-
swer is positive for bounded discrete metric spaces then it is positive for unbounded
metric spaces with finitely many accumulation points as well (see Proposition 4.1).

Question 6.3. Let M be a discrete metric space. Does F(M) have AP? Or, more
generally, does Fp(M) have AP for every p ∈ (0, 1]?

By Theorem 4.15, for every Banach space X and every p ∈ (0, 1] we have
Fp(X) � �p(Fp(X)). Our techniques work only for metric spaces, so the following
might be an interesting problem.

Question 6.4. Let X be a p-Banach space. Is Fp(X) � �p(Fp(X)) for p ∈ (0, 1]?

Pick a separable Banach space X and NX a net in X. By [2, Theorem 3.5] and
Corollary 5.10, if X is finite-dimensional we have Fp(NX) � �p(Fp(NX)) for every
p ∈ (0, 1]. The same holds for some infinite-dimensional Banach spaces X and p = 1
(see [24, Theorem 8]). These results motivate us to raise the next question. Note
that a similar problem has been proposed for p = 1 in [12, Question 4] and that a
positive answer for some p < 1 would imply a positive answer for each q ∈ (p, 1].
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Question 6.5. Let X be a Banach space and NX be a net in X. Is Fp(NX) �
�p(Fp(NX)) for some (any) p ∈ (0, 1]?

By [20, p. 139], we have F(U) � U for Pe�lczyński’s universal basis space U . We
wonder if there are more examples that show that the Lipschitz-free Banach space
over a Banach space X is isomorphic to the space X. Recently, there has been
constructed an analogue of this space U for p-Banach spaces, see [11]. However,
the proof that F(U) � U seems to very much depend on techniques available for
Banach spaces only. Therefore, we propose an interesting question which would
hopefully also shed the light onto the case p = 1.

Question 6.6. Does there exist for each p ∈ (0, 1] a p-Banach space X with
Fp(X) � X?

The following question is motivated by Corollary 5.4, [29, Corollary 3.5], and
[25, Theorem 3.1] from where it follows that whenever K ⊂ R

d is a compact set
which is either countable or has a nonempty interior, then F(K) has FDD. A related
question is [25, Problem 4.1], where the authors ask whether F(M) has a Schauder
basis whenever M is a subset of an Euclidean space.

Question 6.7. Let d ∈ N. If K ⊂ R
d is an uncountable compact set with empty

interior, does F(K) have the commuting BAP?

Note that a positive answer to Question 6.7 would imply that for every compact
set K in an Euclidean space, the Banach space F(K) has the FDD (see the proof
of Corollary 5.4).

In relation to Corollary 5.7, we wonder if it can be extended to p < 1. To
be precise, let 0 < p, α ≤ 1, d ∈ N, and let M be an infinite subset of R

d.
By [2, Theorem 3.1] we know that �p is complemented in Fp(M, | · |α). We also
know that Fp(M, | · |α) is complemented in Fp(R

d, | · |α) by Theorem 5.1, and that
Fp(R

d, | · |α) � Fp([0, 1]
d, | · |α) by Theorem 4.15. Thus, to shed light onto this

question it is crucial to understand the geometry of Fp([0, 1]
d, | · |α). We would like

to point out that the techniques used by Weaver to prove [38, Theorem 8.43] give

Fp([0, 1], | · |α) � �p, 0 < p ≤ 1, 0 < α < 1.

However, unfortunately the argument breaks down for higher dimensions if p < 1.

Question 6.8. Let p, α ∈ (0, 1) and d ∈ N with d ≥ 2. Is Fp([0, 1]
d, |·|α) isomorphic

to �p?

As the proof of Corollary 5.7 is not constructive, the following problem arises.

Question 6.9. Let (M, d) be a doubling metric space and α ∈ (0, 1). Find (μn)
∞
n=1

in span{δ(x) : x ∈ M} ⊂ F(M, dα) which is equivalent to the unit vector basis of
�1. Can we construct (μn)

∞
n=1 so that it is also a Schauder basis for F(M, d)?
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