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Marek Cúth and Michal Doucha

Abstract. We prove that the Lipschitz-free space over a separable ultra-
metric space has a monotone Schauder basis and is isomorphic to �1.
This extends results of A. Dalet using an alternative approach.
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1. Introduction

Let (M,d, 0) be a pointed metric space, that is, a metric space equipped with
a distinguished point denoted by 0. To such a space we can associate the
space Lip0(M) of all real-valued Lipschitz functions f on M which satisfy
f(0) = 0, endowed with the norm ‖ · ‖Lip defined by the Lipschitz constant,
i.e.,

‖f‖Lip := sup
{ |f(x) − f(y)|

d(x, y)
; x, y ∈ M, x �= y

}
.

It is readily checked to be a Banach space.
The Dirac map δM : M → Lip0(M)∗ defined by δM (x)(f) = f(x) for

x ∈ M and f ∈ Lip0(M) is an isometric embedding from M into Lip0(M)∗.
The Lipschitz-free space over M , denoted by F(M), is the closed linear hull
of δM (M) in Lip0(M)∗, i.e., F(M) := span{δM (x); x ∈ M}. It is known that
its dual space is isometrically isomorphic to Lip0(M). We refer to [8,18] for
an introduction to Lipschitz-free spaces and its basic properties.

The study of the linear structure of Lipschitz-free spaces over metric
spaces has become an active field of study, see e.g., [1,2,7–10,13]. In this note
we are interested in the structure of Lipschitz-free spaces over ultrametric
spaces. Let us recall that a metric space (M,d) is said to be ultrametric if
for every x, y, z ∈ M , we have d(x, z) ≤ max{d(x, y), d(y, z)}.

Dalet [2] proved, among other things, that the Lipschitz-free space over
a separable proper ultrametric space has the metric approximation property,
is isomorphic to �1 and is isometric to a dual space. We improve two of the
above-mentioned results and show the following.
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Theorem 1. The Lipschitz-free space over a separable ultrametric space has
a monotone Schauder basis.

Theorem 2. The Lipschitz-free space over a separable ultrametric space is
isomorphic to �1.

The improvement is that we do not assume the ultrametric space to be proper.
Moreover, in Theorem 1 we get a stronger conclusion. Our proofs do not follow
the lines of the proofs from [2] and so they can be viewed as an alternative
approach to the above-mentioned results of Dalet as well. In the final section,
we collect few corollaries of our results and suggest some open problems.

Before coming to the proofs, let us recall some basic results. One of
the main properties of the Lipschitz-free spaces is the following universality
property that provides a connection between the Lipschitz maps in metric
spaces and linear maps in Banach spaces; see [8, Lemma 2.5].

Lemma 3. Let M be a pointed metric space and X a Banach space and
suppose L : M → X is a Lipschitz map such that L(0M ) = 0. Then there
exists a unique linear map L̂ : F(M) → X extending L, i.e., the following
diagram commutes:

and ‖L̂‖ = ‖L‖Lip where ‖ · ‖Lip denotes the Lipschitz norm of L.

Note that Lemma 2.5 in [8] is formulated only for the case when M is a
Banach space; however, a similar proof works also in the more general setting
of Lemma 3. Moreover, it is possible to prove Lemma 3 directly in a similar
way as [8, Lemma 2.2]—it is enough to replace Lip0(Y ) by Y ∗ in its proof.

Note that it is straightforward to check that for Lipschitz maps L :
M → N ⊂ F(N) and S:N → P ⊂ F(P ) with L(0M ) = 0N and S(0N ) = 0P
we have ŜL = ŜL̂. Hence, as an immediate consequence of Lemma 3 we get
the following facts, which we will use later.

Fact 4. Let (M,d) be a metric space, K > 0 and A ⊂ M be a K-Lipschitz
retract of M . Then there exists a norm-K projection from F(K) onto F(A);
i.e., F(A) is a K-complemented subspace of F(M).

Fact 5. Let M,N be K-bi-Lipschitz equivalent metric spaces for some K > 0.
Then F(M) is K-isomorphic to F(N).

Let (M,d) be an ultrametric space. We will often use the following property of
ultrametric spaces which is easy to prove. For x, y, z ∈ M , if d(x, y) �= d(y, z)
then d(x, z) = max{d(x, y), d(y, z)}.
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2. Monotone Schauder Basis

The purpose of this section is to prove Theorem 1.

Lemma 6. Let (M,d) be a separable pointed metric space. Let (sn)n∈N be a
one-to-one sequence of points from M with 0M = s1 and {sn; n ∈ N} = M .
Let there exist a system of retractions (rn)n∈N such that, for every n ∈ N, we
have

(i) rn is a 1-Lipschitz retraction with rn(M) = {sk; k ≤ n}, and
(ii) rn ◦ rn+1 = rn.

Then F(M) has a monotone Schauder basis.

Proof. Since rn(M) ⊂ rn+1(M) for every n ∈ N, we have rn+1 ◦ rn = rn.
By Lemma 3, there are projections Pn : F(M) → F(M) with ‖Pn‖ ≤ 1,
Pn(F(M)) = span{δM (sk); k ≤ n} and Pn ◦ Pm = Pmin{n,m} for every
n,m ∈ N. Obviously, dimPn(F(M)) = n−1. Since

⋃
n∈N

Pn(F(M)) is dense
in F(M), we have Pn(x) → x for every x ∈ F(M). Now, it is a well-known
fact [6, Lemma 4.7] that such a system of projections gives us a monotone
Schauder basis on F(M). �

Proof of Theorem 1. Let (M,d) be a separable ultrametric space and fix a
one-to-one sequence (sn)n∈N of points from M with 0M = s1 and {sn; n ∈ N}
= M . For every n ∈ N, put Sn := {sk; k ≤ n}. We will find a sequence of
retractions (rn)n∈N satisfying the assumptions of Lemma 6.

Fix n ∈ N. First, we put In(x) := {k ∈ N; k ≤ n and dist(x, Sn) =
d(x, sk)}. We denote by in(x) the minimal natural number from In(x).
Finally, we define rn : M → Sn by

rn(x) := sin(x), x ∈ M.

It is clear that rn is a retraction. Now, we will verify that the sequence
(rn)n∈N meets the requirements (i) and (ii) from Lemma 6. First, observe the
following.

Claim 1.
∀x, y ∈ M d(x, y) < dist(x, Sn) ⇒ in(x) = in(y). (1)

Proof. Fix x, y ∈ M with d(x, y) < dist(x, Sn). To see that (1) holds, we
show dist(y, Sn) = dist(x, Sn). Indeed,

dist(y, Sn)≤d(y, sin(x))≤max{d(y, x), d(x, sin(x))}=d(x, sin(x))=dist(x, Sn).

Thus, to get a contradiction let us assume dist(y, Sn) < dist(x, Sn).
Then

dist(y, Sn) < dist(x, Sn) ≤ d(x, sin(y)) ≤ max
{
d(x, y), d(y, sin(y))

}
= max {d(x, y),dist(y, Sn)} .

Now, if max{d(x, y),dist(y, Sn)} = dist(y, Sn), we get dist(y, Sn) <
dist(y, Sn), a contradiction. Otherwise, max{d(x, y),dist(y, Sn)} = d(x, y) <
dist(x, Sn) and we get dist(x, Sn) < dist(x, Sn), a contradiction. Thus, (1)
holds. �
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Fix x, y ∈ M . To see that rn is a 1-Lipschitz mapping, we need to verify

∀x, y ∈ M d(sin(x), sin(y)) ≤ d(x, y). (2)

If d(x, y) < max{dist(x, Sn),dist(y, Sn)} we get from (1) and the sym-
metry of the situation that in(x) = in(y) and (2) is obvious. On the other
hand, if d(x, y) ≥ max{dist(x, Sn),dist(y, Sn)} we get

d(sin(x), sin(y)) ≤ max
{
d(sin(x), x), d(x, y), d(y, sin(y))

}
= max {dist(x, Sn), d(x, y),dist(y, Sn)} ≤ d(x, y)

and (2) holds.
It remains to show that, for every n ∈ N, we have rn ◦ rn+1 = rn. Fix

n ∈ N and x ∈ M . Then it follows from the definitions above that either
in+1(x) = in(x) or in+1(x) = n + 1. In both cases we will get in(sin+1(x)) =
in(x). Indeed, this is trivial in the first case. Assume in+1(x) = n + 1. Then
d(x, sn+1) < dist(x, Sn) and it follows from Claim 1 that in(x) = in(sn+1).
Hence, in(sin+1(x)) = in(sn+1) = in(x). Therefore,

rn(rn+1(x)) = rn(sin+1(x)) = sin(sin+1(x)) = sin(x) = rn(x)

and we are done. �

3. Isomorphism with �1

The purpose of this section is to prove Theorem 2. First, let us recall the
notion of R-trees and its link with Lipschitz-free spaces and ultrametric
spaces.

Definition 7. Let (T, d) be a metric space such that, for every x, y ∈ T ,
there exists a unique isometry φx,y : [0, d(x, y)] → T with φx,y(0) = x and
φx,y(d(x, y)) = y. Then we say that T is an R-tree and we define the segment
[x, y] by [x, y] := φx,y([0, d(x, y)]).

Moreover, we say that v ∈ T is a branching point of T if there are
three points x1, x2, x3 ∈ T \{v} such that [xi, v] ∩ [xj , v] = {v} whenever
i, j ∈ {1, 2, 3}, i �= j. We denote by Br(T ) the set of branching points of T .

The link with Lipschitz-free spaces is contained in the following result,
which has been proved by Godard [7, Corollary 3.4]. Note that the definition
of an R-tree and of a branching point above is not exactly as in [7], but it is
equivalent to it; see [5, Chapter 3].

Proposition 8. Let T be a separable R-tree, and A an infinite subset of T
such that Br(T ) ⊂ A. If A does not contain any segment [x, y] for x �= y,
then F(A) is isometric to �1.

It belongs to a folklore fact that every ultrametric space embeds into
an R-tree. The shortest way of proving this statement is probably to show
that an ultrametric space satisfies the “four-point condition” and then use
the well-known fact that every metric space which satisfies this condition
isometrically embeds into an R-tree, see e.g., [5, Theorem 3.38].
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In the following we will combine those two links and show that the
Lipschitz-free space over a separable ultrametric space is isomorphic to �1.
First, we observe that it is enough to consider only “2n-valued ultrametric
spaces”.

Definition 9. A metric is said to be 2n-valued if the only values assumed by
the metric are 2n, n ∈ Z.

Fact 10. Any ultrametric space is 2-bi-Lipschitz equivalent to a 2n-valued
ultrametric space.

Proof. Let (M,d) be an ultrametric space. We put ρ(x, y) := 2n whenever
d(x, y) ∈ [2n, 2n+1). Then it is easy to see that ρ : M × M → [0,∞) is an
ultrametric on M and ρ(x, y) ≤ d(x, y) < 2ρ(x, y). �

Next, we show that the embedding of an ultrametric space into R-tree
may be done in such a way that it satisfies certain additional conditions, see
Proposition 12. To find an R-tree into which our ultrametric spaces embed,
we will follow the ideas from [5, Theorem 3.38], where it is proved that any
metric space satisfying the “four-point condition” embeds isometrically into
an R-tree. However, our space is an ultrametric space, so the construction
will be done in an easier way. Once the construction is done, we will show
that the additional conditions mentioned above are satisfied.

We begin with the following Lemma, which is inspired by [5, Lemma 3.5].

Lemma 11. Let (M,d) be a metric space and let (φx,y)x,y∈M be a a family of
isometries such that φx,y : [0, d(x, y)] → M is an isometry with φx,y(0) = x
and φx,y(d(x, y)) = y. Put [x, y] := φx,y[0, d(x, y)] and suppose that, for every
x, y, z ∈ M , the following conditions are satisfied.

(i) [x, y] = [y, x].
(ii) [x, z] ∩ [z, y] = {z} =⇒ z ∈ [x, y].
(iii) For every i ∈ (0, d(x, y)), we have [x, φx,y(i)] ⊂ φx,y([0, i]) and [φx,y(i),

y] ⊂ φx,y([i, d(x, y)]).
Then (M,d) is R-tree.

Proof. Let τ : [0, d(x, y)] → M be an isometry with τ(0) = x and τ(d(x, y)) =
y. Fix i ∈ (0, d(x, y)). We will show that τ(i) = φx,y(i).

Put σ1 := [x, φx,y(i)], σ2 := [φx,y(i), y] and ρ := [φx,y(i), τ(i)]. Then
either σ1 ∩ ρ = {φx,y(i)} or σ2 ∩ ρ = {φx,y(i)}. Indeed, fix u ∈ σ1 ∩ ρ and v ∈
σ2∩ρ. By (iii), we have d(u, v) = d(u, φx,y(i))+d(φx,y(i), v). Moreover, either
d(φx,y(i), u) = d(φx,y(i), v) + d(v, u) or d(φx,y(i), v) = d(φx,y(i), u) + d(u, v),
depending on how u and v are arranged in ρ. It follows that either u = φx,y(i)
or v = φx,y(i).

Let us consider the case when σ2 ∩ ρ = {φx,y(i)}. Then, by (i) and (ii),
we have φx,y(i) ∈ [τ(i), y]; hence, d(τ(i), φx,y(i)) + d(φx,y(i), y) = d(τ(i), y).
Since d(φx,y(i), y) = d(x, y)− i = d(τ(i), y), we have τ(i) = φx,y(i). Similarly,
if σ1 ∩ ρ = {φx,y(i)} then τ(i) = φx,y(i).

As i ∈ (0, d(x, y)) was arbitrary, we have that τ = φx,y. Hence, isome-
tries φx,y are unique. Then (M,d) is an R-tree. �
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Proposition 12. Let (M,d) be a 2n-valued ultrametric space. Then there exists
an R-tree (T, ρ) such that:

(i) M isometrically embeds into T .
(ii) Br(T ) ∪ M does not contain any segment [x, y] for x �= y.
(iii) M is a 4-Lipschitz retract of Br(T ) ∪ M .

Moreover, if M is separable, then T is separable as well.

Proof. First, we construct an R-tree T such that M isometrically embeds
into T . Then we will verify that (ii) and (iii) holds.

Put Y := {(m, i); m ∈ M, i ∈ [0,∞)}. Define the following equivalence
relation ∼ on Y :

(m, i) ∼ (n, j) ⇐⇒ i = j ≥ d(m,n)/2.

Note that ∼ is an equivalence relation because d is an ultrametric. Let
〈m, i〉 denote the equivalence class of (m, i) and put T := Y/∼. We define the
mapping ρ : T × T → [0,∞) by

ρ(〈m, i〉, 〈n, j〉) := 2max{i, j, d(m,n)/2} − (i + j).

Observe that, if d(m,n)/2 > i and d(m,n)/2 > j, we have ρ(〈m, i〉, 〈n,
j〉) = (d(m,n)/2 − i) + (d(m,n)/2 − j). Otherwise, ρ(〈m, i〉, 〈n, j〉) = |i − j|.
It is straightforward to check that ρ is a well-defined metric on T . Obviously,
M � m �→ 〈m, 0〉 is an isometric embedding of M into T and T is separable
whenever M is. To see that (T, ρ) is R-tree we will find, for every x, y ∈ T ,
isometry φx,y : [0, ρ(x, y)] → T in such a way that the family (φx,y)x,y∈T

satisfies the assumptions of Lemma 11.
Fix x, y ∈ T . There are m,n ∈ M and i, j ∈ [0,∞) with x = 〈m, i〉 and

y = 〈n, j〉. We distinguish the following cases:

• If j ≤ i and i ≥ d(m,n)/2, we put

φx,y(t) := 〈n, ρ(x, y) + j − t〉, t ∈ [0, ρ(x, y)].

• If j ≤ i and i < d(m,n)/2, we put

φx,y(t) :=

{
〈m, i + t〉 for t ∈ [0, d(m,n)/2 − i]
〈n, d(m,n) − i − t〉 for t ∈ [d(m,n)/2 − i, ρ(x, y)].

• If j > i, we put

φx,y(t) := φy,x(ρ(x, y) − t), t ∈ [0, ρ(x, y)].
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We will check that the family (φx,y)x,y∈T satisfies the assumptions of
Lemma 11. Fix x, y ∈ T . It is clear that φx,y : [0, d(x, y)] → M is an isometry
with φx,y(0) = x and φx,y(d(x, y)) = y. Moreover, we can easily see that
[x, y] = [y, x]. Now, it is easy to observe that the condition (iii) from Lemma
11 is satisfied. We need to check the remaining condition (ii). The verification
is tedious, however, rather uneventful. It helps to draw a picture.

Claim 2. For every x, y, z ∈ T with [x, z] ∩ [z, y] = {z} we have z ∈ [x, y].

Proof. Fix x, y, z ∈ T satisfying the assumptions. If x = y, we have z = x ∈
[x, y]; hence, we may assume that x �= y. There are m,n, o ∈ M and i, j, k ≥ 0
with x = 〈m, i〉, y = 〈n, j〉 and z = 〈o, k〉. Since [x, y] = [y, x], the roles of
x and y are symmetric and we may assume that j ≤ i. Now, we have to
consider all the possible cases. First, let us assume that k ≤ j and consider
the following cases.

• i ≥ d(m,n)/2, j ≥ d(o, n)/2: In this case we have y ∈ [x, z] ∩ [z, y];
hence, z = y ∈ [x, y].

• i ≥ d(m,n)/2, j < d(o, n)/2: This case leads to a contradiction. Indeed,
either we have i ≥ d(o, n)/2 and we get z �= 〈n, d(o, n)/2〉 ∈ [x, z]∩ [z, y]
or we have i < d(o, n)/2 and we get z �= x ∈ [x, z] ∩ [z, y].

• i < d(m,n)/2, j < d(o, n)/2: This case leads to a contradiction. Indeed,
either we have d(o, n)/2 ≤ d(m,n)/2 and we get z �= 〈n, d(o, n)/2〉 ∈
[x, z]∩[z, y] or we have d(o, n)/2 > d(m,n)/2 and we get z �= 〈n, d(m,n)
/2〉 ∈ [x, z] ∩ [z, y].

• i < d(m,n)/2, j ≥ d(o, n)/2: In this case we have y ∈ [x, z] ∩ [z, y];
hence, z = y ∈ [x, y].

Hence, if k ≤ j we have z ∈ [x, y]. Thus, for the rest of the proof
we assume that k > j. Let us assume that k ≥ d(n, o)/2 and consider the
following cases.

• i ≥ d(m,n)/2, i ≤ k: In this case we have x ∈ [x, z] ∩ [z, y]; hence,
z = x ∈ [x, y].

• i ≥ d(m,n)/2, i > k: In this case we have z ∈ {〈n, t〉; t ∈ [j, i]} = [x, y].
• i < d(m,n)/2 < k: This case leads to a contradiction because then we

have z �= 〈n, d(m,n)/2〉 ∈ [x, z] ∩ [z, y].
• i < d(m,n)/2, k ≤ d(m,n)/2: In this case we have z ∈ {〈n, t〉; t ∈

[j, d(m,n)/2]} ⊂ [x, y].

Hence, if k ≥ d(n, o)/2 we have z ∈ [x, y]. Thus, for the rest of the
proof we assume that k < d(n, o)/2. Notice that then we have {〈o, t〉; t ∈
[k, d(n, o)/2]} ∪ {〈n, t〉; t ∈ [j, d(n, o)/2]} = [z, y]. Let us assume that i ≥
d(m,n)/2 and consider the following cases.

• i ≤ d(n, o)/2: In this case we have x ∈ {〈n, t〉; t ∈ [j, d(n, o)/2]} ⊂ [z, y];
hence, x ∈ [x, z] ∩ [y, z] and we have z = x ∈ [x, y].

• i > d(n, o)/2 > k: This case leads to a contradiction because then we
have z �= 〈n, d(n, o)/2〉 ∈ [x, z] ∩ [z, y].

Hence, if i ≥ d(m,n)/2 we have z ∈ [x, y]. Thus, for the rest of the proof
we assume that i < d(m,n)/2. Note that now we have [x, y] = {〈m, t〉; t ∈
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[i, d(m,n)/2]} ∪ {〈n, t〉; t ∈ [j, d(m,n)/2]}. Finally, consider the following
cases.

• k < d(m, o)/2: This case leads to a contradiction. Indeed, we have
{〈o, t〉; t ∈ [k, d(m, o)/2]} ⊂ [x, z]; hence taking t ∈ (k,min{d(m, o)/2,
d(n, o)/2}) we get z �= 〈o, t〉 ∈ [x, z] ∩ [z, y], a contradiction.

• i = k ≥ d(m, o)/2: In this case we have z = x ∈ [x, y].
• i > k ≥ d(m, o)/2: This case leads to a contradiction. Indeed, we have

{〈o, t〉; t ∈ [k, i]} = [x, z]; hence taking t ∈ (k,min{i, d(n, o)/2}) we get
z �= 〈o, t〉 ∈ [x, z] ∩ [z, y], a contradiction.

• i < k ≥ d(m, o)/2, d(m,n)/2 < k: This case leads to a contradic-
tion. Indeed, we have {〈m, t〉; t ∈ [i, k]} = [x, z] and d(m,n)/2 < k <
d(n, o)/2; hence z �= 〈m, d(m,n)/2〉 ∈ [x, z] ∩ [z, y].

• i < k ≥ d(m, o)/2, d(m,n)/2 ≥ k: In this last case we have z = 〈o, k〉 =
〈m, k〉 and k ∈ (i, d(m,n)/2]; hence, z ∈ [x, y].

�

We have verified that the family (φx,y)x,y∈T satisfies the assumptions
of Lemma 11; hence, (T, d) is R-tree and φx,y are the unique isometries from
the definition of an R-tree.

Claim 3. Br(T ) = {〈m, d(m,n)/2〉; m,n ∈ M,m �= n}
Proof. “⊃” If v = 〈m, d(m,n)/2〉 for some m,n ∈ M , then we put x1 :=
〈m, 0〉, x2 := 〈n, 0〉, x3 := 〈m, d(m,n)〉 and we check that the points x1, x2, x3

are the points witnessing the fact that v ∈ Br(T ).
“⊂” Fix v ∈ Br(t) and let xk = 〈mk, ik〉 ∈ T \ {v}, k ∈ {1, 2, 3} be the

points witnessing the fact that v ∈ Br(T ). There cannot be a point x ∈ M
such that for every k ∈ {1, 2, 3} we would have xk = 〈x, ik〉, as otherwise, we
would have that all the points lie on a common line segment. We distinguish
two cases:

• Two points, let us say x1, x2, lie on a common branch, i.e., there exists
x ∈ M such that xk = 〈x, ik〉 for k ∈ {1, 2}. We will show that in this
case v = 〈x, d(x,m3)/2〉. We may without loss of generality assume that
i1 < i2. Notice that i1 ≤ d(x,m3)/2 ≤ i2. Indeed, if d(x,m3)/2 < i1
then we have [x3, x1] ∩ [x1, x2] = {x1}, a contradiction with x1 �= v ∈
[x3, x1]∩ [x1, x2]. The case when i2 < d(x,m3)/2 is analogous. It follows
that 〈x, d(x,m3)/2〉 is a branching point witnessed by x1, x2, x3 and
since a triple of points can clearly witness at most one branching point
it follows that v = 〈x, d(x,m3)/2〉.

• No two points lie on a common branch. By the ultrametric triangle
inequality, we may without loss of generality assume that d(m1,m2) ≤
d(m1,m3) = d(m3,m2). We claim that v = 〈m1, d(m1,m2)/2〉. Indeed,
it suffices to check that [x3, 〈m1, d(m1,m2)/2〉] ∩ [x1, x2] = {〈m1, d(m1,
m2)/2〉} which follows from the fact that [x3, 〈m1, d(m1,m2)/2〉] =
[x3, 〈m3, d(m3,m1)/2] ∪ [〈m1, d(m3,m1)/2〉, 〈m1, d(m1,m2)/2〉].

�
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Note that so far we have not used the fact that (M,d) is 2n-valued.
Thus, the embedding as described above works for an arbitrary ultrametric
space. To prove (ii) and (iii) we will use the assumption that (M,d) is 2n-
valued. From now on we will not distinguish between m ∈ M and 〈m, 0〉, its
isometric copy in T .

Claim 4. Br(T ) ∪ M = Br(T ) ∪ M .

Proof. Fix x = 〈m, i〉 ∈ T \(Br(T )∪M). We need to find ε > 0 with B(x, ε)∩
(Br(T ) ∪ M) = ∅. Find n0 such that i > d(m,n0)/2 = sup{d(m,n)/2; n ∈
M, i > d(m,n)/2} ≥ d(m,m)/2 = 0; note that such an n0 exists, because
the set {2n; n ∈ Z} does not have any positive cluster point. If, for every n ∈
M \{m}, i > d(m,n)/2, we put ε := min{i−d(m,n0)/2, i/2}. Otherwise, we
find n1 with i < d(m,n1)/2 = inf{d(m,n)/2; n ∈ M, i < d(m,n)/2} and we
put ε := min{i−d(m,n0)/2, d(m,n1)/2− i, i/2}. In any case straightforward
computations show that B(x, ε) = {〈m, j〉; |j−i| < ε} and B(x, ε)∩(Br(T )∪
M) = ∅. �

As the distances between points in Br(T ) ∪ M cannot be irrational
numbers, it follows that Br(T ) ∪ M = Br(T ) ∪ M does not contain any seg-
ment [x, y] for x �= y. Hence, it remains to prove (iii). For every v ∈ Br(T )
find some mv, nv ∈ M with v = 〈mv, d(mv, nv)/2〉. We define the retraction
r : Br(T ) ∪ M → M as follows:

r(a) :=

{
a, if a ∈ M

〈ma, 0〉, if a ∈ Br(T ).

Obviously, r◦r = r. It remains to show that r is 4-Lipschitz. If a, b ∈ M
then obviously ρ(r(a), r(b)) = ρ(a, b). Fix a ∈ M and b ∈ Br(T ). Then
ρ(r(a), r(b)) = d(a,mb). Hence, the estimation of the Lipschitz constant fol-
lows from the following Claim.

Claim 5. Let a ∈ M and b ∈ Br(T ). Then d(a,mb) ≤ 2ρ(〈a, 0〉, b).
Proof. First, let us prove that

d(a,mb) ≤ 2max{d(mb, nb), d(mb, a)} − d(mb, nb). (3)

Indeed, if d(mb, nb) ≥ d(mb, a) we have

2max{d(mb, nb), d(mb, a)} − d(mb, nb) = d(mb, nb) ≥ d(mb, a).

Otherwise,

2max{d(mb, nb), d(mb, a)} − d(mb, nb) = 2d(mb, a) − d(mb, nb) > d(mb, a).

Now, the following computation proves the Claim:

d(a,mb)
(3)

≤ 2max{d(mb, nb), d(mb, a)} − d(mb, nb)

= 2
(
2max

{
d(mb,nb)

2 , d(mb,a)
2

}
− d(mb,nb)

2

)
= 2ρ(〈a, 0〉, b).

�
Fix a, b ∈ Br(T ), a �= b. Then ρ(r(a), r(b)) = d(ma,mb). Hence, the

estimation of the Lipschitz constant follows from the following Claim.
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Claim 6. Let a, b ∈ Br(T ), a �= b. Then d(ma,mb) ≤ 4ρ(a, b).

Proof. As M is 2n-valued, there are m,n, k ∈ Z with d(ma,mb) = 2m,
d(ma, na) = 2n and d(mb, nb) = 2k. Interchanging the roles of a, b we may
without loss of generality assume that n ≥ k. Now, observe that m ≤ n = k
leads to a contradiction because then we would have d(ma,mb) ≤ d(mb, nb) =
d(ma, na), so (mb, d(mb, nb)) ∈ 〈ma, d(ma, na)〉 and b = a. Hence, we have
either m > n or m ≤ n > k. It is clear that in both cases we get

2m ≤ 4
(
2max{m,n} − 2n−1 − 2k−1

)
. (4)

Now, the following computation proves the Claim:

d(ma,mb) = 2m
(4)

≤ 4
(
2max{m,n} − 2n−1 − 2k−1

)

= 4
(
max

{
2m, 2n, 2k

} − 2n−1 − 2k−1
)

= 4
(
2max

{
d(ma,mb)

2 , d(ma,na)
2 , d(mb,nb)

2

}
−

(
d(ma,na)

2 + d(mb,nb)
2

))
= 4ρ(a, b).

�

We have verified that r : Br(T ) ∪ M → M is a 4-Lipschitz retraction,
which proves (iii). This completes the proof of the Proposition. �

Now, it is straightforward to use the above and prove Theorem 2.

Proof of Theorem 2. Let M be a separable ultrametric space. By Fact 10 and
Fact 5, there is a 2n-valued separable ultrametric space N such that F(M) is
isomorphic to F(N). By Proposition 12 and Fact 4, there is a separable R-tree
T such that F(N) is isometric to a complemented subspace of F(Br(T )∪N)
and Br(T ) ∪ N does not contain any segment. By Proposition 8, F(Br(T )∪N)
is isometric to �1. Thus, F(M) is isomorphic to a complemented subspace of
�1. It is a well-known result of Pe�lczyński, see e.g., [6, Corollary 4.48], that
this is possible only if F(M) is isomorphic to �1. �

Remark 13. Note that in the proof of Theorem 2 we could also use the result
of Matoušek [15] to see that F(N) is isometric to a complemented subspace
of F(Br(T ) ∪ N) (because, by [15], there is a linear extension operator from
Lip0(N) to Lip0(T ) ⊃ Lip0(Br(T ) ∪ N)). However, we decided to prove the
existence of a retraction instead as it gives us deeper insight into the situation.
In this case, the linear extension operator is just Lip0(N) � f �→ f ◦ r, where
r : Br(T ) ∪ N → N is the retraction from (iii) in Proposition 12.

4. Final Remarks and Open Problems

Remark 14. Note that the use of constant 2 was important in the proof of
Proposition 12; more precisely, in the proofs of Claims 5 and 6. To obtain
the isomorphism with �1, we used the result of Pe�lczyński based on the
Pe�lczyński’s decomposition method. Therefore, careful examination gives us
a rough estimate on the Banach–Mazur distance from F(M) to �1. However,
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we do not know what is the infimum of all C > 1 such that every separable
ultrametric space is C-isomorphic to �1. We know that F(M) is not isometric
to �1; see the following remark.

Remark 15. It has been proved independently by the authors and by Dalet
et al. [3] that the Lipschitz-free space over a separable ultrametric space with
at least three points is never isometric to �1. The proof given by the authors
involves some knowledge of properties of �1 and certain tedious computations.
The proof from [3] does not need so many computations and is more related
to the properties of �∞. Moreover, it works also in the non-separable case.
Therefore, it is in our opinion worth reading and we refer the reader there.
Let us sketch our proof here.

Let N be finite subset of a separable ultrametric space M . By the inspec-
tion of the proof of Theorem 1 we can see that F(N) is 1-complemented in
F(M) (the reason is that in the proof of Theorem 1 we choose an arbitrary
countable dense subset of M ; hence, we may choose it in such a way that
it contains the points from N). Now, we recall that every 1-complemented
subspace of �1 is isometric to �1; see e.g., [14, page 55-56] (here the proof is
given only for �p spaces with p ∈ (1,∞) and it is claimed that in the case
of p = 1 it is simpler—the only difference in the case of p = 1 is the proof
of [14, Lemma 2.a.5], which is provided, e.g., in [12, Lemma 6.7]). Hence, it
suffices to prove that the Lipschitz-free space over a three-point ultrametric
space is never isometric to �21.

Let M = {x, y, 0} be an ultrametric space with metric d. Because, for
every r > 0, F(M,d) is isometric to F(M, rd) and because Lipschitz-free
spaces are isometric if we take another point to be 0, it suffices to consider
the case when 0 < s := d(x, y) ≤ d(x, 0) = d(y, 0) = 1. Now, we easily
observe that

‖δx‖ = ‖δy‖ = 1,

‖δx − δy‖ = s,

‖δx + δy‖ = 2,

∀β > 0 : max {s, sβ, s/2(β + 1)} ≤ ‖δx − βδy‖.

Now, let T : F(M) → (R2, ‖ · ‖1) be an isometry with (ax, bx) := T (δx)
and (ay, by) := T (δy). Using the above, the numbers ax, bx, ay, by should
satisfy the following:

|ax| + |bx| = 1,

|ay| + |by| = 1,

|ax − ay| + |bx − by| = s,

|ax + ay| + |bx + by| = 2,

∀β > 0 : max{s, sβ, s/2(β + 1)} ≤ |ax − βay| + |bx − βby|,
∀β > 0 : max{s, sβ, s/2(β + 1)} ≤ |ay − βax| + |by − βbx|.

However, it is possible to find out that such a system of equations does
not have a solution. Even though the computations leading to this conclu-
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sion are very tedious, they are absolutely elementary and so we omit them.
Moreover, using an alternative approach from [3], it is possible to avoid them.

It is proved in [4, Proposition 15.7] that every “uniformly disconnected”
metric space is Lipschitz equivalent to an ultrametric space. We also refer to
[4, Definition 15.1] for a precise definition of uniform disconnectedness and for
examples. Hence, the following corollary follows from Theorem 2 and Fact 5.

Corollary 16. Let M be a separable uniformly disconnected metric space.
Then F(M) is isomorphic to �1.

Every uniformly disconnected is totally disconnected; however, there
exists a countable totally disconnected compact space K which is not uni-
formly disconnected—consider, for example, K = {1/n; n ∈ N} ∪ {0}. How-
ever, Dalet proved in [1] that F(K) is a dual space and has MAP whenever K
is countable compact. This suggests the following question which has already
been asked by G. Godefroy.

Question 1. Does the Lipschitz-free space over a totally disconnected compact
metric space have the BAP? Is it a dual space?

Our last observation concerns linearly rigidity. Holmes [11] proved that
the Urysohn universal metric space admits (up to isometry) a unique linearly
dense isometric embedding into a Banach space. In other words, any isometric
embedding of the Urysohn space with a distinguished point into a Banach
space X that maps the distinguished point on 0X extends to a linear isometric
embedding of the free space over the Urysohn space F(U) into X. Melleray
et al. [16] investigated this property of the Urysohn space further and found
other metric spaces with this property. They call them linearly rigid metric
spaces. This is another corollary of Theorem 2.

Corollary 17. No separable ultrametric space is linearly rigid.

Proof. By [17, Theorem 1], any separable ultrametric space isometrically
embeds into c0. If it were linearly rigid the embedding would extend to an
embedding of the free space of this ultrametric space. However, by Theorem
2 this free space is isomorphic to �1, while it is well known that c0 does not
contain a copy of �1, a contradiction. �
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[6] Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach space
theory. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC.
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[15] Matoušek, J.: Extension of Lipschitz mappings on metric trees. Comment.
Math. Univ. Carolin. 31, 99–104 (1990)

[16] Melleray, J., Petrov, F.V., Vershik, A.M.: Linearly rigid metric spaces and the
embedding problem. Fund. Math. 199, 177–194 (2008)

[17] Vestfrid, I.A.: On a universal ultrametric space. Ukräın. Mat. Zh. 46, 1700–
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