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Abstract. STEIN and TAIFJLESON gave a characterization for f E Lp(IRn) to be in the spaces 
L i p ( a ,  Lp) and Zyg(a, L p )  in terms of their Poisson integrals. In this paper we extend their results 
to Lipschitz-Orlicz spaces Lip (cp, L M )  and Zygmund-Orlicz spaces Zyg (cp, L M )  and to the general 
function cp E P instead of the power function cp(t) = t a .  Such results describe the behavior of the 
Laplace equation in terms of the smoothness property of differences of f in Orlicz spaces L M ( I R ~ ) .  
More general spaces hk(cp, X, q )  are also considered. 

1. Introduction 

The Poisson integral can be used to express the solution of the Dirichlet problem 
for the half-space lR,:+' = {(z, y) : z E IR", y > 0}: Let f E LP(Rn) .  Find a function 
u(x, y) on IR:+l which is the solution of the Laplace equation 

a2U " a2u A U  = - + C - = O (xEIR.~, y > 0), 
i=l i3X; 

whose boundary values on IRn are f(z). More precisely, if f E L,(R"), then the 
Poisson integral of f(z) is defined in IR:+' by 
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The Poisson integral of f(.) is the convolution of f(x) with the Poisson kernel P ( z ,  y), 
which is defined by 

where cn = 7r(nt1)/2/r((n + 1)/2) is chosen so that JR,, P(z ,  y) dx = 1 for each y > 0. 
STEIN [19] and TAIBLESON [20] gave a characterization for f to be in the spaces 
Lip(a, L,) and Zyg(o, L p )  in terms of their Poissin integrals. Such results correlate 
the smoothness properties of functions from L, with the behavior of the solution 
of the Laplace equation. In their discussion they follow the earlier work of HARDY 
and LITTLEWOOD on the periodic spaces Lip(a ,  L F ) ,  and of ZYGMUND [24] on 27r- 
periodic smooth functions Z y g ( a ,  L F )  (c.f. BUTZER-BERENS [3]). It should also be 
mentioned that TAIBLESON'S paper (201 includes a discussion of the Laplace equation 
as well as the heat equation to be in Lp(IRn)-spaces. There are many papers which 
investigate Lip(a, L,) in other directions, like Lorentz spaces L,,, instead of L,-spaces 
or Lip(a,L,) for negative a or A(o,p,q)-spaces or Ak(cp, X,q)-spaces (see FLETT 
[5], HERZ [6], JANSON [7], JONES [8], PEETRE [16], STEIN [19], TAIBLESON [20] and 
TRIEBEL [21], [22]). These papers contain the problems of the duality, the equivalent 
norms and the interpolation spaces by the real and complex methods. 

The purpose of this paper is to obtain the STEIN-TAIBLESON results for the Lipschitz- 
Orlicz spaces Lip(cp, L M )  and the Zygmund-Orlicz spaces Zyg(cp, L M ) ,  with a general 
functions cp instead of the power function cp(t) = t". A very rough description of the 
result would be that the derivative or the second derivative of a solution of the Laplace 
equation has a particular property if and only if f has a very precise smoothness 
property describable in terms of differences of f in the Orlicz spaces L M ( R ~ ) .  

The Orlicz space 

LM = L M ( R ~ )  = {f E Lo(IRn) such that 

1 ~ ( X f )  := SIR,, M(X if(z)l)dx < 00 for some X > 0} 
is a Banach space with the Luxemburg-Nakano norm 

IlfllM = inf { A  > 0 : IM(f/A) 5 I}, 
where Lo(Rn) denotes the space of all (equivalence classes of ) Lebesgue measurable 
real functions on En and M : [0,00) -+ [0,00) is a Young function, i.e., a convex 
nondecreasing function vanishing at zero (not identically 0 or 00 on ( 0 , ~ ) )  (see [9], 

Let P be the class of functions cp : [O,m) --t [ O , o o )  which are continuous nondecreas- 
1131, ~ 7 1 ) .  

ing and zero only at  0. For cp E P ,  let us consider the Lipschitz-Orlicz space: 

L i p ( c p , L ~ )  = {f E L M ( R ~ )  such that 

Ilfb + h)  - f(xlIlA4 5 Ccp(lhl) for all Ihl > 0) , 
and the Zygrnund-Orlicz space 

Zyg(cp,LM) = {f E LM(R")  such that 

[ I f ( .  + h) + f(. - h)  - 2f(.)llw 5 Dcp(lh1) for all Ihl > 0 ) .  
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Both spaces Lip(cp, L M )  and Zyg(cp, LM) are Banach spaces with the norrhs 

and 

respectively. Clearly Lip(cp, LM) c Zyg(cp, LM). 

can define the so called indices of cp (cf. [lo], [12], [13]): 
We will need to put restrictions on the growth of the function cp E P. For cp E P we 

where 

Obviously 0 5 a,+, 5 &, for cp E P. For the power function cp(t) = ta we have 
a9 = &, = a. 

This paper is organized as follows. In Section 2 we characterize the functions from 
the Lipschitz class L i p ( c p , L ~ )  in terms of the derivatives of their Poisson integrals. 
In Section 3 a similar characterization is given for the Zygmund class Zyg(cp, LM).  In 
Section 4 we consider the more general spaces Ak((cp,X,q),  k = 1, 2, and prove some 
results about them. For example, for 0 < av 5 p, < I c ,  ( I c  = 1, 2), f E Ak(cp, X, q)  if 
and only if the solution u of the Laplace equation satisfies 

This section also contain some additional remarks. 

2. The Lipschitz Condition 

In the proof of the main theorem of this section we will need the following equivalence 
property between indices and integrals of cp E P (the proof of these equivalences can 
be found in [lo], [12] or in [13], Th. 11.8): 

Let cp E P, s9 ( t )  < 00 for every t > 0, and T > 0. Then 

(2.1) a9 > 0 if and only if f ds 5 Acp(t) for all t > 0 ,  
0 

and 

(2.2) p, < T if and only if i w $ d s  5 B- ~ ( ~ 1  for all t > 0 .  
t' 
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it follows that 

and 

Then, since the integral defining the convolution converges absolutely, we can write 

and by the generalized Minkowski inequality (cf. [lo], pp. 45 - 46) 
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the inequality above becomes (because dz = d( rn-l dr)  

The assumption that f E Lip(cp, L M )  gives 

and by the assumption @,+, < 1, in the equivalent form (2.2), we obtain 

P r o o f .  (ii) =$ (iii). For a.e. x E R", it yields that 

ds . 

By the generalized Minkowski inequality and the assumption a,+, > 0, in the equivalent 
form (2.1), we obtain 

P r o o f  . (iii) (ii). First, note that 

Thus, using the fact that the convolution operator is bounded from LM(IR") x L1 (JR") 
into LM(JR") with norm less or equal than 1 (cf. Lemma 4.1), the above property of 
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the Poisson kernel and the assumption & < 1, in the equivalent form (2.2),  we obtain 

k=l 
m 

k=l  
m 

n D  ( ~ ( 2 " ' y ) / ( 2 ~ - ' y )  5 2 n D  2 [" p(s) s - ~  ds 
Y 2 k - 1  k=l  k=l 

2 n D  Lrn cp(s) s - ~  ds  5 Z n D B p ( y ) / y  . 

P r o o f  . (ii) -----*. (i). First, we prove the following lemma. 

Lemma 2.2. Let f f L ~ ( n t ~ )  and u ( z , y )  = jR,, f (z - z )  P(z ,y)  dz be i ts  Poisson 
integral. If 0 < a'p 5 &, < 1 ,  then for  all y > 0 

if and only i f  for  a l l y  > 0 and for  each i = 1,  2 ,  ... , n 

The smallest C an (2.3) is comparable to  the smallest C' in (2.4). 

P r o o f  of Lemma 2.2. First we prove that if y1, y2 > 0,  then 

(2.5) +,Yl + Y2) = 42, Y 2 )  * P(., Y 1 )  

and 
a 2 U  a U  aP 

-(z,y1 + Y 2 )  = -(z,yz) * -(2,y1) a X i  (24  ayazi aY  , 2 = 1, 2 ,  ... , 71,. 
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for all y2 > 0 ,  it follows that the Poisson kernel P(z ,  y1 + y ~ )  has the Poisson integral 
in IR" x (y1,oo) 

P(., Y1 + Y2) = P(s,  Yl)P(S - GY2) ds = w., Y1) * P(., Y2). Lrh 
Then 

~ ( 2 ,  y1 + y2) = f(z) * P ( ~ , y l  + y2) = f(.) P(s  - Z, y1 + ~ 2 )  dz Ln 
P ( s ,  y1) P ( x  - z - 8 ,  y2) ds dz 

that is, u(z,  y1 + y2) = u(x, y2) * P(z ,  yl), and the equality (2.5) is proved. 
For fixed y1 > 0 ,  we have, according to the equality (2.5), 

+ ,Y1 + Y) = 4 G Y )  * p(z ,Yl )  * 

Differentiating we obtain 

which can be expressed as 

a au a - 4 . 7  Y1 + Yz> = -(., Y1) * P(., Y2) = -U(Z,  31) P(. - 2, yz) dz . aY aY LVl dY 

Therefore 
a2u 

-(.,Y1 + Y2) = ayaxi 

and also the equality (2.6) is proved. 
obtain _n  

au ap 
aY -(GY2) * &x4, 
Taking y1 = y2 = y/2 in the equality (2.6), we 

and so (cf. Lemma 4.1) 
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Now, if (2.3) holds, then 

For the Poisson kernel we have 

and so 

which means that 

Substituting these estimates into (2.5) we obtain 

On the other hand, using the fact that the convolution operator is bounded from 
L M ( I R , ~ )  x L1(lRn) into L M ( ~ R ~ )  with the norm less or equal to 1 (cf. Lemma 4.1) 
and the above property of the Poisson kernel, we obtain 

a 
8x2 which implies that --u(x, y) -+ 0 as y -+ 00. Therefore 

and, by (2.8), (2.2), 

5 2C(n + 1) lm s - ~ ~ ( s )  ds 

I 2 W n  + 1) d Y ) / Y .  

Conversely, if (2.5) holds, then in the same way its before we obtain 
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Since u is harmonic, that is, 

and a similar integration argument then shows that 

P r o o f  . (5) (i). Assume that f E LM and that the condition (2.3) holds. For 
h E IR" and 0 < y < lhl we have 

and so 

Using the assumption (2.3), Lemma 2.2 and property (2.1), the last expression becomes 
less or equal to 

which is less or equal to 
CS(P(lh1) * 

Now, since u (z ,y )  + f(z) for almost all 2 E IR" when y + O + ,  we obtain (by the 
Fatou Lemma) that f E L i p ( c p , L ~ ) .  This completes the proof of the theorem. 0 
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Corollary 2.3. If 0 < a@ I p, 5 1, then L i p ( c p , L ~ )  = Zyg(cp,LM). 
P r o o f  It is enough to prove the imbedding Zyg(cp,LM) c Lip(cp,L~).  Let 

f E Zyg(cp, LM). Then for a(., y) = f(o) * P ( s ,  y) we have 

and, by the generalized Minkowiski inequality (cf. [lo] ), 

and by using the estimates from the proof of Theorem 2.1, we obtain 

which, according to Theorem 2.1, gives f E Lip(cp, L M ) .  

Remark 2.4. Theorem 2.1 in the case of L,(lRn)-space (1 5 p 5 m) and with 
q(t) = t",  where 0 < a < 1, was proved by STEIN ([19], Prop. 7, 7') and by TAIBLESON 
([20], Th. 4). 

Remark 2.5. Using the fact that 
1 

C n  
IP(.,Y)l I - { min {Y-? Y I.I-"-'}}, 

we can prove for f E Lip(cp, L M ) ,  in a similar way as in the proof of Theorem 2.1, that 

3. The Zygmund Condition 

The next result is the case of Zygmund condition in Orlicz spaces which gives the 
Zygmund- Orlicz spaces Zyg(cp, LM). ZYGMUND [23] introduced spaces of smooth 
functions Zyg(1, Lp) .  
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Theorem 3.1. Let f E L M ( I R ~ )  und u(2, y) = sR,, f (x  - z )  P ( z ,  y) dz be its Pois- 
son integral. If 0 < a,+, 5 &, < 2, then f E Zyg(cp,LM) if and only if 

P r o o f  (Necessity). Assume that f E Zyg(cp,LM). Since 

a 2 p ( ~ , y )  = n+l . y(ny2 - 3 1 4 ~ )  
aY2 c, (1.12 + y2)(,+5)/2 

it follows that 

and 

Then we can write 

{ min { ~z l -~ - ’y ,  y-”-’}>), (n + l ) (n  + 2) 
C n  

(n + l)(n + 2) Y 
I C n  (1.12 + y2)(*+3)/2 

- < (n + l ) (n  + 2) y-2 P(x,  y) . 

Using the generalized Minkovski inequality we obtain 
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and 
n ( T )  = 1 U M ( T 5 )  dn(5) sn- 1 

the inequality above becomes (because dz  = d( rn-l dr)  

+ y l m  n ( ~ )  T - ~  dr . I 
The assumption f E Zyg(cp,L~) gives 

Q(r )  _< D(P(r)Cr(Sn-l) = 2cn-1Dcp(r) 

and, by the assumption ,f3,+, < 2, in the equivalent form (2.2), we obtain 

5 csY-2(P(Y). 

P r o o f (Suficiency). First we prove the following lemma. 

Lemma 3.2. Let f E L M ( I R ~ )  und u(z,y) = s‘,, f (x  - .z)P(z,y) da be its Poisson 
integral. If 0 < a,+, 5 ,f3, < 2, then the following conditions are equivalent: 

M 

8% I-(%, y)/ l  5 D Y - ~  p(y) for all y > 0 and each i = 1, 2,  ... , n, 
ayaxi M 

l-(x,y)ll d 2 U  5 Ey-2p(y)  for ally > 0 and each i, j = 1, 2, ... , n 
axiaxj M 

P r o o f  . (a) +- (b). Differentiating equality (2.5) we obtain 

d3u d2U aP 
(X ,Y + Y1) = --(X,Y) * azi(”’Y1). 

ay2axi aY2 
Then, by arguing in a similar way as in the proof of Lemma 2.2, we find that 

a3u 

M 

1 
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On the other hand, 

and the equality 

gives 

and so 

which, in its turn, implies that 

Therefore 

which, by the assumption and equivalence (2.2), gives 

for all y > 0 and i = 1, 2, ... , n. 

(b) =+ ( c ) .  The proof is similar to the proof of (a) + (b) but here the equality 

is essential. 

(c) + (a). The proof is the same as that of Lemma 2.2. 



94 Math. Nachr. 178 (1996) 

P r o o f  of Theorem 3.1 (Sufficiency). Assume that f E LM and the condition (3.1) 
holds. Let h E R" and 0 < y < Ihl. Integrating by parts we find that 

and so, 

Thus, by the generalized Minkowski inequality and the assumption aV > 0 in the 
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equivalent form (2.1), 

Ihl 
5 4 C l  s-'cp(s)ds 

I 4CAdlhl ) .  
Similarly, as in the sufficiency part of the proof of Theorem 1.1 (by using the gener- 
alized Minkowski inequality, Lemma 3.2 and the assumption av > 0 in the equivalent 
form (2.1)), we find that 

For the estimate of I1 we first prove that for any real function u on R" of class C2 
and any h E IRn we have 

u(x + h) + u(x - h)  - 24.) 

In fact, by the chain rule &(x + th) = C:=, &(x + th)hi, we can integrate both 
sides from 0 to 1, and then integrate by parts to obtain 

u(x + h) - U ( X )  

= 2 1' $(x + th)  hi d t  
i=l 

Similarly, 

u(a: - h) - u(x) 
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If we add the above identities we obtain (3.2). 
Now using the identity (3.2) we have for our expression ( 1 1 )  

I1 = u(5 + h, lhl) + u(5 - h, Ihl) - 2 4 5 ,  lhl) 

Putting the above estimates togheter we obtain 

IIu(2 + h, Y )  + u(X - h, Y)  - 2u(z, Y)IIM I C13dIhI) 
for any 0 < y < Ihl. Now, since u(z ,y)  --t f(.) for almost all 5 E IR" when y + O+, 
we obtain (by Fatou Lemma) that f E Zygfcp, L M ) .  This completes the proof. 0 

Remark 3.3. Theorem 3.1 in the case of Lp(Rn)-space (1 5 p 5 m) and with 
p ( t )  = ta,  where 0 < a < 2, was proved by STEIN ([19], Prop. 8, 8') and TAIBLESON 
([20], Th. 4).  

Remark 3.4. For cp E P we have always the imbedding 

Lip(cp, LM) c zYg(cp, L M )  

but Corollary 2.3 states that if 0 < av 5 &, < 1, then Lip(cp ,L~)  = Zyg(cp,LM). 
Already ZYGMUND [23] (cf. [19], p. 148-149) observed that the space Lip(l,L,) is 
strictly smaller than the space Zyg(l,L,). More examples of functions giving the 
strict inclusions 

L N ,  Lp) c ZYdL Lp) and Zyg(2, Lp) c ZYg(1,Lp) 

can be found in [19], p. 161 and [20], pp. 470-474. 

Remark 3.5. In the definition of the space Lip(cp, L M )  we have the inequality 

Ilfb + h)  - f ( 4 l l M  5 Wlhl )  for all Ihl > 0. 
It is enough to have such an inequality only for small lhl, i.e., 

L i p ( c p , L ~ )  = {f E L M ( R ~ )  such that 

Ilf(. + h) - f ( 4 l l M  = O(cp(lhl)) as lhl + 0) ' 
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Similarly 

Zyg(cp, L M )  = {f E LM(IR") such that 

Ilf(. + h) + f(. - h) - 2 f ( 4 l l M  = O(cp(lhl)) as lhl + 0) * 

This observation suggests the possibility of considering the closed subspaces (analogues 
to the spaces tZp(1, L p )  and zyg(1, Lp)  considered by ZYGMUND [24]): 

lip(cp, L M )  = {f E LM(IR") such that 

Ilfb + h) - m11ll.I = o(cp(lhl)) as Ihl + 0) * 

and 

zyg(cp,LM) = {f E LM(IR") such that 

Ilf(. + h)  + f(. - h) - 2f(.)llM = o(cp(lhl)) as Ihl + 01 . 

4. Some generalizations and additional remarks 

In the proof of Lemma 2.2 we used the following result, in the case when X is the 
Orlicz space LM(IR"): 

Lemma 4.1. Let X = X(IRn)  be a Banach function space with the Fatou property. 
Then the convolution operator (f * g) = sR,, f ( z  - z ) g ( z ) d z  is a bounded operator 
from X(IRn) x L1(lRn) into X = X(IRn) and 

Ilf * S I X  I llfllx 11g111 . 
P r o o f .  For any h E X' with Ilhllx, 5 1 we have, by the Fubini and Holder 

inequalities, that 

I(f * g)(z) Nz)l dz I s,,, [s,,' I f @  - z )  d z )  h(z)l dz]dz 

= L,' [s,.. If(. - z)h(z)ldz] 19(z>1 dz  

I k,, llfllx Ilhllx, lg(z>l d z  

I llfllx 11g111 7 

and, by the Fatou property of the norm, 
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Note that O’NEIL [15] proved the lemma above for the Orlicz spaces L M ( I R ~ )  instead 
of X(IRn)  but with the constant 2 in the estimate of the norms. 

Remark 4.2. Using Lemma 4.1 we can prove Theorems 2.1 and 3.1 not only for the 
Orlicz spaces L M  = L M ( R ~ )  but even for general Banach function spaces X = X ( R n )  
with the Fatou property. 

We consider now more general spaces Ak(cp, X ,  q )  which contain the Lip(cp, X)- 
spaces, Zyg(p, X)-spaces, the Stein-Taibleson A ( a , p ,  q)-spaces and the Herz A ( a ,  X ,  4)- 
spaces. 

Let p E P ,  1 5 q 5 00 and let X = X(IR”) be a Banach function space with the 
Fatou property. The spaces Ak((cp,X,q),  k = 1, 2, are the spaces of all f E X(IRn)  for 
which 

with Al,f(x) = f(x + h) - f(z), Aif(x) = f(x + h) + f(x - h) - 2f(s), and with the 
norm 

Note that A’(p, L M ,  00) = Lip(p,  LM) and A2(cp, LM, 00) = Zyg(cp, LM). 

P r o o f  (a) If (fn) is a Cauchy sequence in A k ( q , X , q ) ,  then (fn) is obviously a 
Cauchy sequence in X ,  and therefore it converges in X to a function f. Hence 

as n --f 00, and therefore , by Fatou’s Lemma, 

so that f E A k  . Further, for m = 1, 2, ... , 
9. x .  9 

as TI -+ 00, whence, again by Fatou’s Lemma, 
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Since the expression on the right-hand side is arbitrarily small for all sufficiently large 
rn, it follows that fm + f in Ak(p, X ,  q ) ,  so Ak((cp, X, q )  is complete. 

(b) The proof is the same as the proof of CoroIlary 2.3. We can also prove the 
statement by using the following equality 

(c) Similarly, as in the proof of Th. 2.1 and Th. 3.2, for f E hk((cp, X ,  q)  and for 
k = 1, 2, we have that 

where 

By the Hardy inequalities proved in Ill] it yields that 

and, by the Holder inquality, 

so that we obtain 

In the same way as in Theorems 2.1 and 3.1, we can prove the reverse inequalities 
by first proving the results similar to Lemmas 2.2 and 3.2. 

Remark 4.4. In STEIN [19] there are misprints in Proposition 7' and Lemma 4': 
conditions (61) and (62) should have yl-'a instead of y a - l .  
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Remark 4.5. Considering the modulus of continuity w l ( t ,  f ) ~  and the modulus of 
smoothness wz(t, f )x  of the function f E X( lRn) ,  that is, 

we can easily prove (cf. TAIBLESON [20]) that 

These are the generalized Besov-Nikolskii spaces (cf. [14]). The more general spaces 
Ak(B,  X )  were investigated by CALDERON [4] and BRUDNYI-SHALASHOV [2]. 

We conclude this paper remarking that results about the convolution operator and 
the pointwise multiplication for Lipschitz-Orlicz R(cp, M ,  q)- spaces (which will contain 
the theorems proved in [6] and [20]) is possilble to prove by using our Theorem 4.3 
(c) and the appropriate results proved by O’NEIL [15] (see also [13] and [17]) for the 
convolution operator and the pointwise multiplication in Orlicz spaces. 
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