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Abstract. We prove the existence of a (random) Lipschitz func-
tion F : Z

d−1 → Z
+ such that, for every x ∈ Z

d−1, the site
(x, F (x)) is open in a site percolation process on Z

d. The Lips-
chitz constant may be taken to be 1 when the parameter p of the
percolation model is sufficiently close to 1.

1. Introduction

Let d ≥ 1 and p ∈ (0, 1). The site percolation model on the hyper-
cubic lattice Z

d is obtained by designating each site x ∈ Z
d open with

probability p, and otherwise closed, with different sites receiving inde-
pendent states. The corresponding probability measure on the sample
space Ω = {0, 1}Z

d

is denoted by Pp, and the expectation by Ep. We
write Z

+ = {1, 2, . . .}, and ‖ · ‖ for the 1-norm on Z
d.

Theorem 1. For any d ≥ 2, if p > 1 − (2d)−2 then there exists a.s. a
(random) function F : Z

d−1 → Z
+ with the following properties.

(i) For each x ∈ Z
d−1, the site (x, F (x)) ∈ Z

d is open.
(ii) For any x, y ∈ Z

d−1 with ‖x−y‖ = 1 we have |F (x)−F (y)| ≤ 1.
(iii) For any isometry θ of Z

d−1 the functions F and F ◦ θ have the
same laws, and the random field (F (x) : x ∈ Z

d−1) is ergodic
under each translation of Z

d−1.
(iv) There exists A = A(p, d) < ∞ such that

Pp(F (0) > k) ≤ Aνk, k ≥ 0.

where ν = 2d(1 − p) < 1.

We may think of ((x, F (x)) : x ∈ Z
d−1) as a random surface, or

a Lipschitz embedding of Z
d−1 in Z

d. When d = 2, the existence of
such an embedding for large p is a consequence of the fact that two-
dimensional directed percolation has a non-trivial critical point. The
result is less straightforward when d ≥ 3.
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The event that there exists an F satisfying (i) and (ii) is clearly
increasing, and invariant under translations of Z

d−1, therefore there
exists pL such that the event occurs with probability 1 if p > pL and 0
if p < pL. Theorem 1 implies that pL ≤ 1 − (2d)−2. This upper bound
may be improved to 1− (2d−1)−2 as indicated at the end of Section 4,
but we do not attempt to optimize it here. (A similar remark applies
to the forthcoming Theorem 2.) The inequality pL > 0 also holds,
because site percolation on Z

d with next-nearest neighbour edges has
a non-trivial critical point.

Some history of the current paper, and some implications of the
work, are summarized in Section 2. In Section 3 we present a variant
of Theorem 1 involving finite surfaces. The principal combinatorial
estimate appears in Section 4, and the proofs of the theorems may be
found in Section 5. Further properties of Lipschitz embeddings will be
presented in [8].

2. Background and applications

The percolation model is one of the most studied models for a dis-
ordered medium, and the reader is referred to [5] for a recent account
of the theory. The basic question is to determine for which values of
p there exists an infinite self-avoiding walk of open sites. There exists
a critical value pc, depending on the choice of underlying lattice, such
that such a walk exists a.s. when p > pc, and not when p < pc. It
is clear that pc(Z) = 1, and it is fundamental that pc(Z

d) < 1 when
d ≥ 2. Similarly, there exists a critical probability ~pc for the existence
of an infinite open self-avoiding walk that is non-decreasing in each
coordinate, and ~pc(Z

d) < 1 for d ≥ 2. The existence of certain types of
open surface has also been studied, see for example [1, 4, 7, 9].

The purpose of this note is to prove the existence of a non-trivial crit-
ical point for the existence of a type of open Lipschitz surface within
site percolation on Z

d with d ≥ 2. The existence of such surfaces is
interesting in its own right, and in addition there are several applica-
tions to be developed elsewhere. We make a remark about the history
of the current note. Theorem 1 was first proved by a subset of the
current authors, using an argument based on a subcritical branching
random walk, summarized in Section 6. The simpler proof presented
in Sections 4 and 5 was found subsequently by the remaining authors.

Several applications and extensions of Theorem 1 will appear in [2,
3, 8]. These include a study of the movement of an interface through
a field of obstacles, and the existence of embeddings in Z

d of infinite
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words indexed by Z
d−1 (a problem posed by Ron Peled and described

in [6]).

3. Local covers

We next state a variant of Theorem 1 that is in a sense stronger.
Let d ≥ 2 and consider site percolation with parameter p on Z

d. Write
Z

+
0 = {0, 1, . . .}. Let x ∈ Z

d−1. A local cover of x is a function
L : Z

d−1 → Z
+
0 such that:

(i) for all y ∈ Z
d−1, if L(y) > 0 then (y, L(y)) is open;

(ii) for any y, z ∈ Z
d−1 with ‖y− z‖ = 1 we have |L(y)−L(z)| ≤ 1;

(iii) L(x) > 0.

If x has a local cover, then the minimum of all local covers of x is
itself a local cover of x; we call this the minimal local cover of x and
denote it Lx. Define its radius

ρx := sup
{

∥

∥(x, 0) − (y, Lx(y))
∥

∥ : y ∈ Z
d−1 such that Lx(y) > 0

}

,

and take ρx = ∞ if x has no local cover.

Theorem 2. For any d ≥ 2 and p ∈ (0, 1) such that q := 1 − p <
(2d)−2, there exists A = A(p, d) < ∞ such that

Pp(ρ0 ≥ n) ≤ A[(2d)2q]n, n ≥ 0.

4. Principal estimate

The key step is to identify an appropriate set of dual paths that are
blocked by a Lipschitz surface of the type sought in Theorem 1. Such
paths will be allowed to move downwards (that is, in the direction of
decreasing d-coordinate), with or without a simultaneous horizontal
move, but whenever they move upwards, they must do so to a closed
site.

Let e1, . . . , ed ∈ Z
d be the standard basis vectors of Z

d. We define
a Λ-path from u to v to be any finite sequence of distinct sites u =
x0, x1, . . . , xk = v of Z

d such that for each i = 1, 2, . . . , k:

(1) xi − xi−1 ∈ {±ed} ∪ {−ed ± ej : j = 1, . . . , d − 1}.

A Λ-path is called admissible if in addition for each i = 1, 2, . . . , k:

if xi − xi−1 = ed then xi is closed.

Denote by u � v the event that there exists an admissible Λ-path
from u to v, and write

τp(u) = Pp(0 � u).
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The next lemma is the basic estimate used in the proofs. For u =
(u1, u2, . . . , ud) ∈ Z

d, we write h(u) = ud for its height, and

r(u) = ‖(u1, u2, . . . , ud−1)‖ =

d−1
∑

i=1

|ui|.

For x ∈ R, x+ = max{0, x} (respectively, x− = −min{0, x}) denotes
the positive (respectively, negative) part of x.

Lemma 3. Let d ≥ 2 and a = 2d, and take p ∈ (0, 1) such that
q := 1 − p ∈ (0, a−2). For h ∈ Z and r ∈ Z

+
0 satisfying r ≥ h−,

∑

u∈Z
d:

h(u)≥h, r(u)≥r

τp(u) ≤
1

(1 − aq)(1 − a2q)
(aq)h(a2q)r.

Proof. Fix r ≥ 0, and let h ∈ Z satisfy r ≥ h−. Let

T = Tr,h = {u ∈ Z
d : h(u) ≥ h, r(u) ≥ r}.

Let N(u) be the number of admissible Λ-paths (of all finite lengths)
from 0 to u, and note that

∑

u∈T

τp(u) =
∑

u∈T

Pp(N(u) > 0) ≤
∑

u∈T

EpN(u).

Let π be a Λ-path beginning at 0. Let U and D be the respective
numbers of steps in π that lie in each of the sets

{ed}; {−ed} ∪ {−ed ± ej : j = 1, . . . , d − 1}.

(The letters U , D stand for ‘upwards’ and ‘downwards’.) Thus, the
length of π is U + D, final endpoint u of π satisfies h(u) = U − D and
r(u) ≤ D, and π is admissible with probability qU , where q := 1 − p.
Also, the number of Λ-paths π beginning at 0 with given values of U
and D is at most aU+D, where a := 2d.

Therefore,
∑

u∈T

EpN(u) ≤
∑

U,D≥0:
U−D≥h, D≥r

aU+DqU .

Assume that a2q < 1 (i.e., p > 1 − (2d)−2). Summing over U , the last
expression equals

1

1 − aq

∑

D≥r

aD(aq)(h+D)+.

Since D ≥ r ≥ h−, we have (h+D)+ = h+D, and the last sum equals

∑

D≥r

(aq)h(a2q)D =
(aq)h(a2q)r

1 − a2q
. �
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Remark. The number of Λ-paths of k steps is no greater than (2d)k.
Only minor changes are required to the proofs if one restricts the class
of Λ-paths to those satisfying (1) for which xi − xi−1 6= −ed for all i.
The number of such paths is no greater than (2d − 1)k, and this leads
to improved versions of Theorems 1 and 2 with 2d replaced by 2d− 1.
The details are omitted.

5. Proofs of Theorems 1 and 2

We give two proofs of Theorem 1: one directly from Lemma 3, and
the other via Theorem 2. The second proof gives a worse exponent in
the inequality of Theorem 1(iv). We sketch a third approach in the
next section.

1st proof of Theorem 1. Take p and a = 2d as in Lemma 3. Let T− :=
Z

d−1 × {. . . ,−1, 0} and define the random set of sites

G := {v ∈ Z
d : u � v for some u ∈ T−}.

Since an admissible path may always be extended by a downwards
step (provided the new site is not already in the path), if v ∈ G then
v− ed ∈ G. Using Lemma 3 with r = 0, we have for h > 0 and suitable
A < ∞,

(2) Pp(hed ∈ G) ≤
∑

u∈T
−

Pp(u � hed) =
∑

u∈T0,h

τp(u) ≤ A(aq)h.

Hence, by the Borel–Cantelli lemma, a.s. for every x ∈ Z
d−1, only

finitely many of the sites (x, h) = x + hed for h > 0 lie in G.
For x ∈ Z

d−1, let

F (x) := min{t > 0 : (x, t) /∈ G}.

The required properties (i) and (iii) of the theorem follow by fact that
Pp is a product measure, and (iv) is an immediate consequence of (2).
To check (ii), consider any x, y ∈ Z

d−1 with ‖x − y‖ = 1. Since
(x, F (x) − 1) ∈ G, and an admissible path may be extended in the
diagonal direction (y − x) − ed, we have (y, F (x) − 2) ∈ G, whence
F (y) > F (x) − 2. �

Proof of Theorem 2. We begin with an explicit construction of the min-
imal local cover Lx of x ∈ Z

d−1, whenever x possesses a local cover.
Let Hx be the set of endpoints of admissible paths from (x, 0) that use
no site of Z

d−1 × {−1,−2, . . . }. By the definition of admissibility, Hx

does not depend on the states of sites with height less than or equal to
0.
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Let a2q < 1. By Lemma 3, rad(H0) = sup{‖u‖ : u ∈ H0} satisfies

Pp(rad(H0) ≥ k) ≤
∑

u∈Z
d:

h(u)≥0, r(u)≥k

τp(u)

≤ A(a2q)k, k ≥ 0,

for some A = A(p, d) < ∞.
On the event that |H0| < ∞, the minimal local cover of 0 is given by

Lx(y) = min{h ∈ Z
+ : (y, h) /∈ H0};

(that is, the corresponding surface consists of the sites immediately
above H0). The claim follows. �

2nd proof of Theorem 1 with different exponent in part (iv). Let p > 1−
(2d)−2, as in Theorem 2, and let Hx be as in the proof. Let

F (x) := 1 + sup{h : (x, h) ∈ Hy for some y ∈ Z
d−1}.

Given the general observations above, it suffices to prove that F satisfies
part (iv) of Theorem 1. Now, for k ≥ 1,

Pp(F (0) > k) = Pp((0, k) ∈ Hy for some y)

≤ Pp(ρy ≥ k + ‖y‖ for some y)

≤
∑

y∈Zd−1

Pp(ρ0 ≥ k + ‖y‖),

and this decays to 0 exponentially in k, by Theorem 2. �

6. Sketch proof using branching random walk

This section contains a summary of an alternative approach to the
problem, using a branching random walk to bound the size of a minimal
local cover. Write ∆ = Z

d−1 × Z
+, and recall the height h(x) of site

x. The minimal cover L at the origin 0 is in one–one correspondence
with the set S := {(x, L(x)) : L(x) > 0} of open sites. The set S may
be constructed iteratively as follows. Let C be the height of the lowest
open site above 0, that is, C := inf{n ≥ 1 : ned is open}. Clearly, S
contains no site of the form (0, k), 1 ≤ k < C, and in addition no site
in the pyramid

P := {x ∈ Z
d : ‖x‖ < C}.

Let x ∈ ∆ be such that ‖x‖ = C. If all such x are open, then S =
{x ∈ ∆ : ‖x‖ = C)}. Any such x that is closed is regarded as a
child of the origin. Each such child x is labelled with the height of the
lowest open site above it, that is, with the label h(x) + inf{n ≥ 1 :
x+ned is open}. The process is iterated for each such child, and so on
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to later generations. If the ensuing procedure terminates after a finite
number of steps, then we have constructed the set S corresponding to
the minimal local cover of 0.

A full analysis of the above procedure would require specifying the
order in which children are considered, as well as understanding the
interactions between different pyramids. Rather than do this, we will
treat the families of different children as independent, thereby over-
counting the total size and extent of the process. That is, we construct
a dominating branching random walk, as follows.

Let ξ = (ξ(z) : z ∈ Z) be a random measure on Z with ξ(z) ∈
{0, 1, 2, . . .} a.s. The corresponding branching random walk begins
with a single particle located at 0, that is, ξ0 := δ0, the point mass.
This particle produces offspring ξ1 := ξ. For n ≥ 2, ξn is obtained
from ξn−1 as follows: each particle of ξn−1 has (independent) offspring
with the same law as ξ, shifted according to the position of the parent.
Assume there exists µ > 0 such that

(3) α := E

(

∑

z∈Z

eµzξ(z)

)

< 1,

and define

Sn :=
∑

z∈Z

eµzξn(z).

It is standard that Sn/αn is a (non-negative) martingale. In particular,
Sn/αn converges a.s., whence Sn → 0 a.s. as n → ∞.

We next describe the law of ξ arising in the current setting. Let Q
be the set of all closed x ∈ Z

d satisfying x 6= 0 and

d−1
∑

i=1

|xi| = −xd,

and think of Q as the set of children of the initial particle at 0. Each
child is allocated a location in Z equal to the height of the lowest open
site above it. More precisely, the location of the child corresponding
to x ∈ Q is defined as h(x) + inf{n ≥ 1 : x + ned is open}, and ξn(z)
is simply the number of children with location z. The corresponding
BRW is written BRW(ξ).

The number of children with height −n is binomially distributed
with parameters (τn, 1 − p), where τn ≤ 2(2n + 1)d−1, and the height
of each tower has a geometric distribution. Following an elementary
calculation, there exist µ > 0 and p1 = p1(d) ∈ (0, 1) such that: for
p ∈ (p1, 1), we have α < 1 in (3).
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We now compare BRW(ξ) and the local cover of 0. With C as
above, consider BRW(ξ) with all locations shifted by height C, written
C + BRW(ξ). Each child of the origin in the percolation model is a
child in C + BRW(ξ), and its label in the former equals its location
in the latter. The first generation of C + BRW(ξ) may also contain
children with negative heights. In subsequent generations, the models
are different, but it may be seen that C + BRW(ξ) dominates the
percolation model in the sense that the set of locations in C +BRW(ξ)
with positive heights dominates (stochastically) the set of labels in the
percolation model.

With ξ′n the nth generation in C + BRW(ξ), let

N := sup{n : ξ′n(z) > 0 for some z > 0}.

By the above domination, if P(N < ∞) = 1, then the local cover of 0
is (a.s.) finite. By Markov’s inequality,

P(ξ′n(z) > 0 for some z > 0) = P(ξn(z) > 0 for some z > −C)

≤ E(Sn)E(eµC)

= αn
E(eµC).

By the Borel–Cantelli lemma, P(N < ∞) = 1, and the finiteness of the
local cover at 0 follows.

Substantially more may be obtained by a more careful analysis of
the maximum displacement of particles in the kth generation of C +
BRW(ξ). In particular, for p > p1, one may deduce that Pp(ρ0 ≥ n)
decays to 0 faster than a quantity that is exponential in some power of
n, and this implies the existence of the Lipschitz function of Theorem
1, as in the second proof of Section 5. The details of these arguments
are omitted.
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