
Lipschitz regularity of deep neural networks:

analysis and efficient estimation

Kevin Scaman
Huawei Noah’s Ark Lab

kevin.scaman@huawei.com

Aladin Virmaux
Huawei Noah’s Ark Lab

aladin.virmaux@huawei.com

Abstract

Deep neural networks are notorious for being sensitive to small well-chosen per-
turbations, and estimating the regularity of such architectures is of utmost impor-
tance for safe and robust practical applications. In this paper, we investigate one
of the key characteristics to assess the regularity of such methods: the Lipschitz
constant of deep learning architectures. First, we show that, even for two layer
neural networks, the exact computation of this quantity is NP-hard and state-of-
art methods may significantly overestimate it. Then, we both extend and improve
previous estimation methods by providing AutoLip, the first generic algorithm for
upper bounding the Lipschitz constant of any automatically differentiable func-
tion. We provide a power method algorithm working with automatic differen-
tiation, allowing efficient computations even on large convolutions. Second, for
sequential neural networks, we propose an improved algorithm named SeqLip that
takes advantage of the linear computation graph to split the computation per pair
of consecutive layers. Third we propose heuristics on SeqLip in order to tackle
very large networks. Our experiments show that SeqLip can significantly improve
on the existing upper bounds. Finally, we provide an implementation of AutoLip
in the PyTorch environment that may be used to better estimate the robustness of
a given neural network to small perturbations or regularize it using more precise
Lipschitz estimations.

1 Introduction

Deep neural networks made a striking entree in machine learning and quickly became state-of-the-
art algorithms in many tasks such as computer vision [1, 2, 3, 4], speech recognition and generation
[5, 6] or natural language processing [7, 8].

However, deep neural networks are known for being very sensitive to their input, and adversarial
examples provide a good illustration of their lack of robustness [9, 10]. Indeed, a well-chosen small
perturbation of the input image can mislead a neural network and significantly decrease its classi-
fication accuracy. One metric to assess the robustness of neural networks to small perturbations is
the Lipschitz constant (see Definition 1), which upper bounds the relationship between input per-
turbation and output variation for a given distance. For generative models, the recent Wasserstein
GAN [11] improved the training stability of GANs by reformulating the optimization problem as a
minimization of the Wasserstein distance between the real and generated distributions [12]. How-
ever, this method relies on an efficient way of constraining the Lipschitz constant of the critic, which
was only partially addressed in the original paper, and the object of several follow-up works [13, 14].

Recently, Lipschitz continuity was used in order to improve the state-of-the-art in several deep learn-
ing topics: (1) for robust learning, avoiding adversarial attacks was achieved in [15] by constraining
local Lipschitz constants in neural networks. (2) For generative models, using spectral normaliza-
tion on each layer allowed [13] to successfully train a GAN on ILRSVRC2012 dataset. (3) In deep

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

learning theory, novel generalization bounds critically rely on the Lipschitz constant of the neural
network [16, 17, 18].

To the best of our knowledge, the first upper-bound on the Lipschitz constant of a neural network was
described in [9, Section 4.3], as the product of the spectral norms of linear layers (a special case of
our generic algorithm, see Proposition 1). More recently, the Lipschitz constant of scatter networks
was analyzed in [19]. Unfortunately, this analysis does not extend to more general architectures.

Our aim in this paper is to provide a rigorous and practice-oriented study on how Lipschitz constants
of neural networks and automatically differentiable functions may be estimated. We first precisely
define the notion of Lipschitz constant of vector valued functions in Section 2, and then show in Sec-
tion 3 that its estimation is, even for 2-layer Multi-Layer-Perceptrons (MLP), NP-hard. In Section 4,
we both extend and improve previous estimation methods by providing AutoLip, the first generic
algorithm for upper bounding the Lipschitz constant of any automatically differentiable function.
Moreover, we show how the Lipschitz constant of most neural network layers may be computed effi-
ciently using automatic differentiation algorithms [20] and libraries such as PyTorch [21]. Notably,
we extend the power method to convolution layers using automatic differentiation to speed-up the
computations. In Section 6, we provide a theoretical analysis of AutoLip in the case of sequential
neural networks, and show that the upper bound may lose a multiplicative factor per activation layer,
which may significantly downgrade the estimation quality of AutoLip and lead to a very large and
unrealistic upper bound. In order to prevent this, we propose an improved algorithm called SeqLip
in the case of sequential neural networks, and show in Section 7 that SeqLip may significantly im-
prove on AutoLip. Finally we discuss the different algorithms on the AlexNet [1] neural network
for computer vision using the proposed algorithms. 1

2 Background and notations

In the following, we denote as ⟨x, y⟩ and ∥x∥2 the scalar product and L2-norm of the Hilbert space
R

n, x · y the coordinate-wise product of x and y, and f ◦ g the composition between the functions
f : Rk → R

m and g : Rn → R
k. For any differentiable function f : Rn → R

m and any point
x ∈ R

n, we will denote as Dx f ∈ R
m×n the differential operator of f at x, also called the Jacobian

matrix. Note that, in the case of real valued functions (i.e. m = 1), the gradient of f is the transpose
of the differential operator: ∇f(x) = (Dx f)

⊤. Finally, diagn,m(x) ∈ R
n×m is the rectangular

matrix with x ∈ R
min{n,m} along the diagonal and 0 outside of it. When unambiguous, we will use

the notation diag(x) instead of diagn,m(x). All proofs are available as supplemental material.

Definition 1. A function f : Rn → R
m is called Lipschitz continuous if there exists a constant L

such that

∀x, y ∈ R
n, ∥f(x)− f(y)∥2 ≤ L ∥x− y∥2.

The smallest L for which the previous inequality is true is called the Lipschitz constant of f and will
be denoted L(f).

For locally Lipschitz functions (i.e. functions whose restriction to some neighborhood around any
point is Lipschitz), the Lipschitz constant may be computed using its differential operator.

Theorem 1 (Rademacher [22, Theorem 3.1.6]). If f : Rn → R
m is a locally Lipschitz continuous

function, then f is differentiable almost everywhere. Moreover, if f is Lipschitz continuous, then

L(f) = sup
x∈Rn

∥Dx f∥2 (1)

where ∥M∥2 = sup{x : ∥x∥=1} ∥Mx∥2 is the operator norm of the matrix M ∈ R
m×n.

In particular, if f is real valued (i.e. m = 1), its Lipschitz constant is the maximum norm of its
gradient L(f) = supx ∥∇f(x)∥2 on its domain set. Note that the supremum in Theorem 1 is a
slight abuse of notations, since the differential Dx f is defined almost everywhere in R

n, except for
a set of Lebesgue measure zero.

1The code used in this paper is available at https://github.com/avirmaux/lipEstimation.

2

https://github.com/avirmaux/lipEstimation

3 Exact Lipschitz computation is NP-hard

In this section, we show that the exact computation of the Lipschitz constant of neural networks
is NP-hard, hence motivating the need for good approximation algorithms. More precisely, upper
bounds are in this case more valuable as they ensure that the variation of the function, when subject
to an input perturbation, remains small. A neural network is, in essence, a succession of linear
operators and non-linear activation functions. The most simplistic model of neural network is the
Multi-Layer-Perceptron (MLP) as defined below.

Definition 2 (MLP). A K-layer Multi-Layer-Perceptron fMLP : Rn → R
m is the function

fMLP (x) = TK ◦ ρK−1 ◦ · · · ◦ ρ1 ◦ T1(x),

where Tk : x 7→ Mkx + bk is an affine function and ρk : x 7→ (gk(xi))i∈J1,nkK is a non-linear
activation function.

Many standard deep network architectures (e.g. CNNs) follow –to some extent– the MLP structure.
It turns out that even for 2-layer MLPs, the computation of the Lipschitz constant is NP-hard.

Problem 1 (LIP-CST). LIP-CST is the decision problem associated to the exact computation
of the Lipschitz constant of a 2-layer MLP with ReLU activation layers.

Input: Two matrices M1 ∈ R
l×n and M2 ∈ R

m×l, and a constant ℓ ≥ 0.

Question: Let f = M2 ◦ρ◦M1 where ρ(x) = max{0, x} is the ReLU activation function.
Is the Lipschitz constant L(f) ≤ ℓ ?

Theorem 2 shows that, even for extremely simple neural networks, exact Lipschitz computation is
not achievable in polynomial time (assuming that P ̸= NP). The proof of Theorem 2 is available
in the supplemental material.

Theorem 2. Problem 1 is NP-hard.

Theorem 2 relies on a reduction to the NP-hard problem of quadratic concave minimization on a
hypercube by considering well-chosen matrices M1 and M2.

4 AutoLip: a Lipschitz upper bound through automatic differentiation

Efficient implementations of backpropagation in modern deep learning libraries such as Py-
Torch [21] or TensorFlow [23] rely on on the concept of automatic differentiation [24, 20]. Simply
put, automatic differentiation is a principled approach to the computation of gradients and differen-
tial operators of functions resulting from K successive operations.

Definition 3. A function f : Rn → R
m is computable in K operations if it is the result of K simple

functions in the following way: ∃(θ1, ..., θK) functions of the input x and (g1, . . . , gK) where gl is
a function of (θi)i≤l−1 such that:

θ0(x) = x, θK(x) = f(x), ∀k ∈ J1,KK, θk(x) = gk(x, θ1(x), . . . , θk−1(x)) . (2)

θ0 = x

θ1 = θ0/2

θ2 = ω

θ3 = sin(θ0)

θ4 = θ1 − θ2θ3

θ5 = ln(1 + eθ1)

θ6 = |θ4| θ7 = θ5 + θ6

g1

g3

g5

g4
g6 g7

Figure 1: Example of a computation graph for fω(x) = ln(1 + ex/2) + |x/2− ω sin(x)|.

3

Algorithm 1 AutoLip

Input: function f : Rn → R
m and its computation graph (g1, ..., gK)

Output: upper bound on the Lipschitz constant: L̂AL ≥ L(f)
1: Z = {(z0, ..., zK) : ∀k ∈ J0,KK, θk is constant⇒ zk = θk(0)}
2: L0 ← 1
3: for k = 1 to K do

4: Lk ←
k−1∑
i=1

max
z∈Z
∥∂igk(z)∥2Li

5: end for
6: return L̂AL = Lk

We assume that these operations are all locally Lipschitz-continuous, and that their partial deriva-
tives ∂igk(x) can be computed and efficiently maximized. This assumption is discussed in Section 5
for the main operations used in neural networks. When the function is real valued (i.e. m = 1),
the backpropagation algorithm allows to compute its gradient efficiently in time proportional to the
number of operations K [25]. For the computation of the Lipschitz constant L(f), a forward prop-
agation through the computation graph is sufficient. More specifically, the chain rule immediately
implies

Dx θk =

k−1∑

i=1

∂igk(θ0(x), . . . , θk−1(x))Dx θi , (3)

and taking the norm then maximizing over all possible values of θi(x) leads to the AutoLip algorithm
described in Alg. (1). This algorithm is an extension of the well known product of operator norms
for MLPs (see e.g. [13]) to any function computable in K operations.

Proposition 1. For any MLP (see Definition 2) with 1-Lipschitz activation functions (e.g. ReLU,
Leaky ReLU, SoftPlus, Tanh, Sigmoid, ArcTan or Softsign), the AutoLip upper bound becomes

L̂AL =
K∏

k=1

∥Mk∥2.

Note that, when the intermediate function θk does not depend on x, it is not necessary to take a
maximum over all possible values of θk(x). To this end we define the set of feasible intermediate
values as

Z = {(z0, ..., zK) : ∀k ∈ J0,KK, θk is constant⇒ zk = θk(0)}, (4)

and only maximize partial derivatives over this set. In practice, this is equivalent to removing
branches of the computation graph that are not reachable from node 0 and replacing them by con-
stant values. To illustrate this definition, consider a simple matrix product operation f(x) = Wx.
One possible computation graph for f is θ0 = x, θ1 = W and θ2 = g2(θ0, θ1) = θ1θ0.
While the quadratic function g2 is not Lipschitz-continuous, its derivative w.r.t. θ0 is bounded by
∂0g2(θ0, θ1) = θ1 = W . Since θ1 is constant relatively to x, we have Z = {(x, 0)} and the

algorithm returns the exact Lipschitz constant L̂AL = L(f) = ∥W∥2.

Example. We consider the graph explicited on Figure 1. Since θ2 is a constant w.r.t. x, we can
replace it by its value ω in all other nodes. Then, the AutoLip algorithm runs as follows:

L̂AL = L7 = L6 + L5 = L1 + L4 = 2L1 + wL3 = 1 + ω. (5)

Note that, in this example, the Lipschitz upper bound L̂AL matches the exact Lipschitz constant
L(fω) = 1 + ω.

5 Lipschitz constants of typical neural network layers

Linear and convolution layers. The Lipschitz constant of an affine function f : x 7→ Mx + b
where M ∈ R

m×n and b ∈ R
m is the largest singular value of its associated matrix M , which

may be computed efficiently, up to a given precision, using the power method [26]. In the case of

4

convolutions, the associated matrix may be difficult to access and high dimensional, hence making
the direct use of the power method impractical. To circumvent this difficulty, we extend the power
method to any affine function on whose automatic differentiation can be used (e.g. linear or convo-
lution layers of neural networks) by noting that the only matrix multiplication of the power method
M⊤Mx can be computed by differentiating a well-chosen function.

Lemma 1. Let M ∈ R
m×n, b ∈ R

m and f : x 7→ Mx + b be an affine function. Then, for all
x ∈ R

n, we have

M⊤Mx = ∇g(x) ,

where g(x) = 1
2∥f(x)− f(0)∥22.

Proof. By definition, g(x) = 1
2∥Mx∥22, and differentiating this equation leads to the desired result.

Algorithm 2 AutoGrad compliant power method

Input: affine function f : Rn → R
m, number of iteration N

Output: approximation of the Lipschitz constant L(f)
1: for k = 1 to N do
2: v ← ∇g(v) where g(x) = 1

2∥f(x)− f(0)∥22
3: λ← ∥v∥2
4: v ← v/λ
5: end for
6: return L(f) = ∥f(v)− f(0)∥2

The full algorithm is described in Alg. (2). Note that this algorithm is fully compliant with any
dynamic graph deep learning libraries such as PyTorch. The gradient of the square norm may be
computed through autograd, and the gradient of L(f) may be computed the same way without any
more programming effort. Note that the gradients w.r.t. M may also be computed with the closed
form formula ∇Mσ = u1v

⊤
1 where u1 and v1 are respectively the left and right singular vector of

M associated to the singular value σ [27]. The same algorithm may be straightforwardly iterated to
compute the k-largest singular values.

Other layers. Most activation functions such as ReLU, Leaky ReLU, SoftPlus, Tanh, Sigmoid,
ArcTan or Softsign, as well as max-pooling, have a Lipschitz constant equal to 1. Other common
neural network layers such as dropout, batch normalization and other pooling methods all have
simple and explicit Lipschitz constants. We refer the reader to e.g. [28] for more information on this
subject.

6 Sequential neural networks

Despite its generality, AutoLip may be subject to large errors due to the multiplication of smaller
errors at each iteration of the algorithm. In this section, we improve on the AutoLip upper bound by
a more refined analysis of deep learning architectures in the case of MLPs. More specifically, the
Lipschitz constant of MLPs have an explicit formula using Theorem 1 and the chain rule:

L(fMLP) = sup
x∈Rn

∥MK diag(g′K−1(θK−1))Mk−1...M2 diag(g
′
1(θ1))M1∥2, (6)

where θk = Tk ◦ ρk−1 ◦ · · · ◦ ρ1 ◦ T1(x) is the intermediate output after k linear layers.

Considering Proposition 1 and Eq. (6), the equality L̂AL = L(fMLP) only takes place if all acti-
vation layers diag(g′k(θk)) map the first singular vector of Mk to the first singular vector of Mk+1

by Cauchy-Schwarz inequality. However, differential operators of activation layers, being diagonal
matrices, can only have a limited effect on input vectors, and in practice, first singular vectors will
tend to misalign, leading to a drop in the Lipschitz constant of the MLP. This is the intuition behind
SeqLip, an improved algorithm for Lipschitz constant estimation for MLPs.

5

6.1 SeqLip, an improved algorithm for MLPs

In Eq. (6), the diagonal matrices diag(g′K−1(θK−1)) are difficult to evaluate, as they may depend
on the input value x and previous layers. Fortunately, as stated in Section 5, most major activation
functions are 1-Lipschitz. More specifically, these activation functions have a derivative g′k(x) ∈
[0, 1]. Hence, we may replace the supremum on the input vector x by a supremum over all possible
values:

L(fMLP) ≤ max
∀i, σi∈[0,1]ni

∥MK diag(σK−1) · · · diag(σ1)M1∥2 , (7)

where σi corresponds to all possible derivatives of the activation gate. Solving the right hand side

of Eq. (7) is still a hard problem, and the high dimensionality of the search space σ ∈ [0, 1]
∑

K

i=1
ni

makes purely combinatorial approaches prohibitive even for small neural networks. In order to
decrease the complexity of the problem, we split the operator norm in K − 1 parts using the SVD
decomposition of each matrix Mi = UiΣiV

⊤
i and the submultiplicativity of the operator norm:

L(fMLP) ≤ max
∀i, σi∈[0,1]ni

∥ΣKV ⊤
K diag(σK)UK−1ΣK−1V

⊤
K−1 diag(σK−1) . . . diag(σ1)U1Σ1∥2 ,

≤

K−1∏

i=1

max
σi∈[0,1]ni

∥∥∥Σ̃i+1V
⊤
i+1 diag(σi+1)UiΣ̃i

∥∥∥
2
,

where Σ̃i = Σi if i ∈ {1,K} and Σ̃i = Σ
1/2
i otherwise. Each activation layer can now be solved

independently, leading to the SeqLip upper bound:

L̂SL =

K−1∏

i=1

max
σi∈[0,1]ni

∥∥∥Σ̃i+1V
⊤
i+1 diag(σi+1)UiΣ̃i

∥∥∥
2
. (8)

When the activation layers are ReLU and the inner layers are small (ni ≤ 20), the gradients are g′k ∈
{0, 1} and we may explore the entire search space σi ∈ {0, 1}

ni using a brute force combinatorial
approach. Otherwise, a gradient ascent may be used by computing gradients via the power method
described in Alg. 2. In our experiments, we call this heuristic Greedy SeqLip, and verified that
the incurred error is at most 1% whenever the exact optimum is computable. Finally, when the
dimension of the layer is too large to compute a whole SVD, we perform a low rank-approximation
of the matrix Mi by retaining the first E eigenvectors (E = 200 in our experiments).

6.2 Theoretical analysis of SeqLip

In order to better understand how SeqLip may improve on AutoLip, we now consider a simple setting
in which all linear layers have a large difference between their first and second singular values. For
simplicity, we also assume that activation functions have a derivative g′k(x) ∈ [0, 1], although the
following results easily generalize as long as the derivative remains bounded. Then, the following
theorem holds.

Theorem 3. Let Mk be the matrix associated to the k-th linear layer, uk (resp. vk) its first left (resp.
right) singular vector, and rk = sk,2/sk,1 the ratio between its second and first singular values.
Then, we have

L̂SL ≤ L̂AL

K−1∏

k=1

√
(1− rk − rk+1) max

σ∈[0,1]nk

⟨σ · vk+1, uk⟩2 + rk + rk+1 + rkrk+1 .

Note that maxσ∈[0,1]nk ⟨σ · vk+1, uk⟩
2 ≤ 1 and, when the ratios rk are negligible, then

L̂SL ≤ L̂AL

K−1∏

k=1

max
σ∈[0,1]nk

|⟨σ · vk+1, uk⟩| . (9)

Intuitively, each activation layer may align uk to vk+1 only to a certain extent. Moreover, when the
two singular vectors uk and vk+1 are not too similar, this quantity can be substantially smaller than
1. To illustrate this idea, we now show that maxσ∈[0,1]nk |⟨σ · vk+1, uk⟩| is of the order of 1/π if the
two vectors are randomly chosen on the unit sphere.

6

Lemma 2. Let x ≥ 0 and u, v ∈ R
n be two independent random vectors taken uniformly on the

unit sphere S
n−1 = {x ∈ R

n : ∥x∥2 = 1}. Then we have

max
σ∈[0,1]n

|⟨σ · u, v⟩|
1

π
almost surely.

n→+∞

Intuitively, when the ratios between the second and first singular values are sufficiently small, each
activation layer decreases the Lipschitz constant by a factor 1/π and

L̂SL ≈
L̂AL

πK−1
. (10)

For example, for K = 5 linear layers, we have πK−1 ≈ 100 and a large improvement may be
expected for SeqLip compared to AutoLip. Of course, in a more realistic setting, the eigenvectors
of different layers are not independent and, more importantly, the ratio between second and first
eigenvalues may not be sufficiently small. However, this simple setting provides us with the best
improvement one can hope for, and our experiments in Section 7 shows that at least part of the
suboptimality of AutoLip is due to the misalignment of eigenvectors.

7 Experimentations

As stated in Theorem 2, computing the Lipschitz constant is an NP-hard problem. However, in
low dimension (e.g. d ≤ 5), optimizing the problem in Eq. (1) can be performed efficiently using
a simple grid search. This will provide a baseline to compare the different estimation algorithms.
In high dimension, grid search is intractable and we consider several other estimation methods: (1)
grid search for Eq. (1), (2) simulated annealing for Eq. (1), (3) product of Frobenius norms of linear
layers [13], (4) product of spectral norms [13] (equivalent to AutoLip in the case of MLPs). Note
that, for MLPs with ReLU activations, first order optimization methods such as SGD are not usable
because the function to optimize in Eq. (1) is piecewise constant. Methods (1) and (2) return lower
bounds while (3) and (4) return upper bounds on the Lipschitz constant.

Ideal scenario. We first show the improvement of SeqLip over AutoLip in an ideal setting where
inner layers have a low eigenvalue ratio rk and uncorrelated leading eigenvectors. To do so, we
construct an MLP with weight matrices Mi = Ui diag(λ)V

⊤
i such that Ui, Vi are random orthogonal

matrices and λ1 = 1, λi>1 = r where r ∈ [0, 1] is the ratio between first and second eigenvalue.
Figure 2 shows the decrease of SeqLip as the number of layers of the MLP increases (each layer has
100 neurons). The theoretical limit is tight for small eigenvalue ratio. Note that the AutoLip upper
bound is always 1 as, by construction of the network, all layers have a spectral radius equal to one.

MLP. We construct a 2-dimensional dataset from a Gaussian Process with RBF Kernel with mean
0 and variance 1. We use 15000 generated points as a synthetic dataset. An example of such a
dataset may be seen in Figure 3. We train MLPs of several depths with 20 neurons at each layer, on
the synthetic dataset with MSE loss and ReLU activations. Note that in all simulations, the greedy
SeqLip algorithm is within a 0.01% error compared to SeqLip, which justify its usage in higher
dimension.

Upper bounds Lower bounds
layers Frobenius AutoLip SeqLip Greedy SeqLip Dataset Annealing Grid Search

4 648.2 33.04 21.47 21.47 4.36 4.55 6.56
5 4283.1 134.4 72.87 72.87 6.77 5.8 7.1
7 22341 294.6 130.2 130.2 5.4 5.27 6.51
10 7343800 19248.2 2463.44 2463.36 10.04 5.77 17.1

Figure 4: AutoLip and SeqLip for MLPs of various size.

First, since the dimension is low (d = 2), grid search returns a very good approximation of the
Lipschitz constant, while simulated annealing is suboptimal, probably due to the presence of local

7

1 2 3 4 5 6 7 8 9 10
Number of layers

10−4

10−3

10−2

10−1

100

Se
qL

ip
 u

pp
er

 b
ou

nd

AutoLip
theoretical limit
eigenvalue ratio: 0.5
eigenvalue ratio: 0.1
eigenvalue ratio: 0.01

Figure 2: SeqLip in the ideal scenario. Figure 3: Synthetic function used to train MLPs.

maxima. For upper bounds, SeqLip outperforms its competitors reducing the gap between upper
bounds and, in this case, the true Lipschitz constant computed using grid search.

CNN. We construct simple CNNs with increasing number of layers that we train independently
on the MNIST dataset [29].The details of the structure of the CNNs are given in the supplementary
material. SeqLip improves by a factor of 5 the upper bound given by AutoLip for the CNN with 10
layers. Note that the lower bounds obtained with simulated annealing is probably too low, as shown
in the previous experiments.

Upper bounds Lower bounds
layers AutoLip Greedy SeqLip Ratio Dataset Annealing

4 174 86 2 12.64 25.5
5 790.1 335 2.4 16.79 22.2
7 12141 3629 3.3 31.22 43.6
10 4.5 · 106 8.2 · 105 5.4 38.26 107.8

Figure 5: AutoLip and SeqLip for MNIST-CNNs of various size.

AlexNet. AlexNet [1] is one of the first successes of deep learning in computer vision. The Au-
toLip algorithm finds that the Lipschitz constant is upper bounded by 3.62 × 107 which remains
extremely large and probably well above the true Lipschitz constant. As for the experiment on a
CNN, we use the 200 highest singular values of each linear layer for Greedy SeqLip. We obtain
5.45 × 106 as an upper bound approximation, which remains large despite its 6 fold improvement
over AutoLip. Note that we do not get the same results as [9, Section 4.3] as we did not use the same
weights.

8 Conclusion

In this paper, we studied the Lispchitz regularity of neural networks. We first showed that exact com-
putation of the Lipschitz constant is an NP-hard problem. We then provided a generic upper bound
called AutoLip for the Lipschitz constant of any automatically differentiable function. In doing so,
we introduced an algorithm to compute singular values of affine operators such as convolution in
a very efficient way using autograd mechanism. We finally proposed a refinement of the previous
method for MLPs called SeqLip and showed how this algorithm can improve on AutoLip theoreti-
cally and in applications, sometimes improving up to a factor of 8 the AutoLip upper bound. While
the AutoLip and SeqLip upper bounds remain extremely large for neural networks of the computer
vision literature (e.g. AlexNet, see Section 7), it is yet an open question to know if these values are
close to the true Lipschitz constant or substantially overestimating it.

8

Acknowledgements

The authors thank the whole team at Huawei Paris and in particular Igor Colin, Moez Draief, Sylvain
Robbiano and Albert Thomas for useful discussions and feedback.

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[2] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 770–778, 2016.

[4] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2261–2269, 2017.

[5] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent neural
networks. In International Conference on Machine Learning, pages 1764–1772, 2014.

[6] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. Wavenet: A genera-
tive model for raw audio. In SSW, page 125. ISCA, 2016.

[7] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages 746–
751, 2013.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
łukasz Kaiser, and Illia Polosukhin. Attention is All You Need. In Advances in Neural Infor-
mation Processing Systems, pages 6000–6010, 2017.

[9] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In Proceedings of the Inter-
national Conference on Learning Representations (ICLR), 2014.

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. In Proceedings of the International Conference on Learning Representations
(ICLR), 2015.

[11] Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial net-
works. In Proceedings of the 34th International Conference on Machine Learning, ICML,
pages 214–223, 2017.

[12] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business
Media, 2008.

[13] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normaliza-
tion for generative adversarial networks. In Proceedings of the International Conference on
Learning Representations (ICLR), 2018.

[14] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of Wasserstein GANs. In Advances in Neural Information Processing Sys-
tems, pages 5769–5779, 2017.

9

[15] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh,
and Luca Daniel. Evaluating the Robustness of Neural Networks: An Extreme Value The-
ory Approach. In Proceedings of the International Conference on Learning Representations
(ICLR), 2018.

[16] Ulrike von Luxburg and Olivier Bousquet. Distance–based classification with lipschitz func-
tions. J. Mach. Learn. Res., 5:669–695, December 2004.

[17] Peter L. Bartlett, Dylan J. Foster, and Matus J. Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, pages 6241–6250, 2017.

[18] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring gen-
eralization in deep learning. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 5949–5958, 2017.

[19] R. Balan, M. K. Singh, and D. Zou. Lipschitz properties for deep convolutional networks. to
appear in Contemporary Mathematics, 2018.

[20] Louis B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture
Notes in Computer Science. Springer, Berlin, 1981.

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. 2017.

[22] Herbert Federer. Geometric measure theory. Classics in Mathematics. Springer-Verlag Berlin
Heidelberg, 1969.

[23] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Ku-
nal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems, 2015. Software available from
tensorflow.org.

[24] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of
algorithmic differentiation, volume 105. Siam, 2008.

[25] Seppo Linnainmaa. The representation of the cumulative rounding error of an algorithm as
a Taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ. Helsinki,
pages 6–7, 1970.

[26] RV Mises and Hilda Pollaczek-Geiringer. Praktische verfahren der gleichungsauflösung.
ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathe-
matik und Mechanik, 9(1):58–77, 1929.

[27] Jan R. Magnus. On Differentiating Eigenvalues and Eigenvectors. Econometric Theory,
1(2):pp. 179–191, 1985.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[29] Yann LeCun. The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/.

10

