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Abstract
Tumors are three-dimensional tissues where close contacts between cancer cells, intercellular interactions between cancer and

stromal cells, adhesion of cancer cells to the extracellular matrix, and signaling of soluble factors modulate functions of cancer

cells and their response to therapeutics. Three-dimensional cultures of cancer cells overcome limitations of traditionally used

monolayer cultures and recreate essential characteristics of tumors such as spatial gradients of oxygen, growth factors, and

metabolites and presence of necrotic, hypoxic, quiescent, and proliferative cells. As such, three-dimensional tumor models

provide a valuable tool for cancer research and oncology drug discovery. Here, we describe different tumor models and primarily

focus on a model known as tumor spheroid. We summarize different technologies of spheroid formation, and discuss the use of

spheroids to address the influence of stromal fibroblasts and immune cells on cancer cells in tumor microenvironment, study

cancer stem cells, and facilitate compound screening in the drug discovery process. We review major techniques for quantification

of cellular responses to drugs and discuss challenges ahead to enable broad utility of tumor spheroids in research laboratories,

integrate spheroid models into drug development and discovery pipeline, and use primary tumor cells for drug screening studies

to realize personalized cancer treatment.
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Introduction

Solid tumors develop and grow in three-dimensional (3D)
microenvironments comprising of cancer cells, stromal
cells, extracellular matrix proteins, and soluble factors
(Figure 1). In poorly vascularized and avascular tumors,
transport of oxygen, nutrients, metabolites, and growth fac-
tors to cancer cells and removal of waste materials is limited
to and determined by molecular diffusion. When tumors
exceed a few hundreds of micrometers in diameter, cancer
cells residing in peripheral layers of the tumor consume
most of available nutrients, resulting in preferential prolif-
eration of border cells. Insufficient oxygen and nutrients in
the tumor core render cancer cells hypoxic and non-
proliferating, and potentially necrotic. Additionally, cancer
cells in a tumor form homotypic contacts and heterotypic
adhesions with stromal cells such as fibroblasts.1 Close
intercellular contacts modulate a broad range of functions
of cancer cells including growth and proliferation,2 motil-
ity,3 and response to cytotoxic drugs.4 Antibody-mediated
disruption of cell–cell contacts sensitizes cells to chemother-
apeutics.5,6 Altogether, differential exposure of cells in a

solid tumor to soluble factors and intimate cell–cell contacts
have major regulatory roles on gene and protein expression
of cancer cells that cannot be captured with traditionally
used, simplistic monolayer cultures.7 In vitro sphere-like
cancer models more faithfully represent various aspects of
solid tumors.8–10 In addition to a compact morphology
resulting from close intercellular contacts, 3D cancer
models reproduce certain properties of tumors including
exposure of cells to gradients of soluble factors, preferential
growth of border cells, hypoxia and necrosis in the core,
deposition of matrix proteins, expression of pro-angiogenic
proteins, and upregulation of ABC transporter efflux
pumps implicated in multidrug resistance (MDR) of can-
cers.11–19 As such, they provide a unique tool to study biol-
ogy of cancers and develop novel anti-cancer therapeutics.

Tumor models

There are generally four different forms of 3D cancer
models:20 (a) Cancer cell spheroids, also known as tumor
spheroids or multicellular spheroids, are generated from
suspension of single cells of immortalized cell lines in the
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presence of serum.21 Spheroids with a multitude of cancer
cells including breast, skin, ovarian, prostate, brain, lung,
and liver have been successfully formed. Spheroids are the
primary topic of this review and will be discussed in detail
below. (b) Tumorspheres are produced from suspension of
single cells under serum-free conditions.22–24 A subset of
cancer cells capable of surviving a serum-free culture is
first sorted out from a population of cancer cells and sub-
sequently used for tumorsphere formation. These cells are
capable of proliferation and clonal expansion without
serum supplements and thus suggested to possess stem
cell-like properties. However, recent literature indicates
that tumorsphere culture-mediated enrichment in stem
cell markers is cell line dependent and resulting cells may
not possess stemness.25 Tumorspheres have been formed
with a variety of cancer cells including skin, colon, breast,
and prostate. (c) Tissue-derived tumorspheres are gener-
ated from tumor tissue by fine slicing of the tissue and par-
tially dissociating it to primarily contain tumor cells.26,27

Importantly, it has been shown that tissue-derived tumor-
spheres represent the parent tumor in terms of histological
features, gene expression profiles and mutations, and
tumorigenicity.26–29 Tissue-derived tumorspheres have
been successfully generated from colon, lung, bladder,
breast, prostate, and melanoma. (d) Organotypic spheroids
are obtained by cutting a tumor tissue fragment in sub-
millimeter pieces and maintaining them in a non-adherent
vessel in the presence of serum and other supplements.30,31

Incubation results in round cellular structures that can be
further cultured or frozen. The lack of dissociation contrasts
this approach with the tissue-derived tumorsphere culture
technique. Organotypic spheroids of different cancers such
as lung, head and neck, bladder, colorectal, and glioblast-
oma have been successfully generated.20

Major benefits of the former two approaches are the ease
of initiation and maintenance of cultures with various cell
lines from the same cancer, compatibility with high-
throughput drug screening against cancer cells, the ability
to study a number of processes such as growth, migration,

invasion, and drug resistance of cancer cells under defined
conditions, and the possibility of creating a more complex
solid tumor model by including other components of tumor
microenvironment such as cancer-associated fibroblasts
(CAFs), immune cells, and extracellular matrix proteins in
culture. These approaches facilitate various mechanistic
studies of cancers prior to validation with animal models.
The latter two approaches provide a better representation of
tumors in vivo; nevertheless, initiation and expansion of
tissue-derived tumorspheres and organotypic spheroids
are challenging, preventing their use in certain applications
such as compound screening for anti-cancer drug discov-
ery. Developing standard techniques and protocols to main-
tain and expand these cultures will enable the use of
patient-derived cells in cancer research and help develop
personalized cancer therapies.32 Conditionally repro-
grammed cells (CRCs) provide a potential solution.33

Primary tumor epithelial cells maintained in the presence
of a Rho-associated kinase inhibitor and on irradiated
feeder fibroblast cells proliferate indefinitely in vitro, with-
out a need for transduction of exogenous viral or cellular
genes.34 This approach was successfully used to expand
tumor cells of a patient with recurrent respiratory papillo-
matosis and bilateral tumor invasion of the lung paren-
chyma, perform chemosensitivity tests, and identify a
therapeutic agent that stabilized the tumor.35

Liquid-based cancer cell spheroid models
of avascular tumors

Over the past few decades, several methods were devel-
oped to culture cancer cell spheroids. These approaches
can broadly be represented by liquid-based suspension cul-
tures and scaffold-based cultures. Liquid-based cultures
maintain cancer cells in suspension to facilitate self-
assembly of cells into a compact 3D aggregate commonly
known as a cancer cell spheroid, tumor spheroid, or multi-
cellular spheroid. There are currently several major liquid-
based spheroid culture methods: (a) Rotary vessel/spinner
flask devices continuously spin cells in a liquid-filled

Figure 1 Tumor is a complex heterocellular microenvironment where cancer cells are in constant communications with the stromal cells, the extracellular matrix, and

biochemical signaling molecules. Tumor stroma plays a major role in regulating functions of cancer cells and their responses to therapeutic compounds. (Adapted from

Joyce JA and Pollard JW, Nat Rev Cancer 2009). (A color version of this figure is available in the online journal.)
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chamber and rely on random collisions between cells to
assemble into a large number of varying size spheroids
(Figure 2a).36–38 (b) Hanging drop technique relies on grav-
ity-mediated aggregation of cells close to the apex region of
a pendant drop suspended from a flat surface, such as the
lid of a Petri dish, to form a spheroid.39 A recent extension
of this approach uses a special plate containing an array of
through-holes surrounded by micro-rings for high-
throughput spheroid generation (Figure 2b).40 Cell suspen-
sion is injected through the holes to form hanging drops
bounded and stabilized by the micro-ring structures. The
hanging drop method can additionally be used to culture
embryonic stem cells into embryoid bodies.41 (c) Liquid
overlay method involves maintaining suspension of
cancer cells on a non-adherent surface to allow aggregation
of cells into varying size spheroids. Adapting this method
to multi-well plates with a round or v-shaped bottom pro-
vides better control over the size of resulting spheroids.42

Ultra-low attachment plates with non-adherent surfaces
have been utilized to culture patient-derived ovarian
cancer cells as spheres.43 (d) Polymeric aqueous two-
phase system (ATPS) technology relies on confining
cancer cells in a sub-microliter aqueous drop immersed
within a second immersion aqueous phase (Figure 3c).44

The drop and immersion phases remain immiscible due
to the presence of small amounts of two biopolymers such
as polyethylene glycol and dextran.45–47 Cancer cells remain
partitioned within the drop phase and aggregate to form a
spheroid of well-defined size that is nourished through free
diffusion of nutrients from the immersion phase.48

This approach enables spheroid formation in standard

microwell plates with robotic tools and allows convenient
high-throughput drug testing.49 (e) Multilayer polymeric
microfluidic devices and microfabricated microwell arrays
primarily fabricated using soft lithography allow flowing a
suspension of cells through a channel or over a free surface
containing an array of chambers or wells.50–53 Under
sufficiently slow flow rates, cells follow laminar flow
streamlines, enter the chambers, and become trapped.
Subsequently, under static conditions and due to the non-
adherent surface of devices, cancer cells aggregate and form
a spheroid in each chamber. Microfabricated devices
also provide opportunities for tissue modeling as organs-
on-chips.54 Advantages and shortcomings of these major
techniques of spheroid culture are summarized in Table 1.
We note that several vascularized tumor models have been
developed, such as a prevascularized tumor (PVT) model
that promotes capillary formation by inserting spheroids of
endothelial and tumor cells into a fibrin matrix containing
fibroblasts.55 However, this review discusses models of
avascular tumors, which can develop and grow up to
�1 mm, and acquire necrotic and hypoxic zones, leading
to signaling events that initiates vascularization.56

Using the spheroid formation techniques described
above, it has been demonstrated that spheroids reproduce
key aspects of avascular tumors (Figure 3). For example,
cancer cell spheroids displayed tumor diffusion limita-
tions.16,57 Prostate tumor cell spheroids were found to
have more proliferative cells at the boundary of spheroids
when compared to the spheroids’ core, which also con-
tained necrotic cells.8 Spheroids formed with a hepatocel-
lular carcinoma cell line revealed hypoxia in their interior
and a gradient of oxygen concentration from the periphery
to the center.58,59 This additionally correlated with prolifera-
tive cells favorably located at the periphery of the spheroids
as well as limited diffusion of doxorubicin when compared
to monolayer cultures.58 Breast cancer cell spheroids
expressed low nutrition-responsive genes when compared
to monolayer cultures and contained dormant inner core
regions, causing cisplatin and paclitaxel resistance.60

The proliferation and oxygen gradients present in
tumors and core of spheroids promote an acidic environ-
ment which can alter cellular functions.61 Lower pH levels
in spheroids of cervical cancer cells were predicted to be
hypoxia-induced.61 The pH distribution found in cervical
cancer spheroids was similar to those found in mouse
tumors.61

The ability to model diffusion limitations of avascular
tumors using spheroids allows studies to improve delivery
of chemotherapeutics. For example, pulsed ultrasounds
increased the diffusion and concentration of nanoparticles
into breast cancer spheroids 6–20 folds compared to control
spheroids not exposed to ultrasound, providing a potential
method for resolving limited penetration of chemo-
therapies and drug-loaded nanoparticles into tumors.62

Additionally, spheroids enable investigating efficacy of
drugs that become active under hypoxic conditions. TH-
302, which is a hypoxia-selective drug, showed 650-fold
greater activity in hypoxic H460 lung cancer cell spheroids
than in monolayer cells with IC50 values of 0.1 and
65 mmol/L, respectively.63 Furthermore, hypoxic spheroids

Figure 2 Three major liquid-based methods of culture of cancer cell spheroids

are shown (a) Rotary wall vessel and spinner flask systems use rotary devices to

constantly keep cells in suspension to aggregate into spheroids of random size.

(b) Hanging drop array method uses gravitational-mediated aggregation of cells

at the apex region of drops hanging from a plate containing through-holes and

micro-rings to result in one spheroid per drop. (c) Aqueous two-phase system

(ATPS) method uses two immiscible polymeric aqueous phases, where cancer

cells are confined in the drop phase surrounded by the immiscible immersion

phase. Cells spontaneously aggregate to form a compact spheroid of

well-defined size. Panel a is reproduced from Molecular & Cancer Therapeutics

2007;6:2505–14. (A color version of this figure is available in the online journal.)
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Figure 3 (a) Concentration gradients of oxygen, nutrients, and metabolites generate distinct concentric zones in spheroids: An outer zone containing proliferative

cells, a middle zone with quiescent cells, and an inner zone containing necrotic cells. Abundance of oxygen and glucose at the outer zone and efficient removal of waste

products facilitate cell proliferation, whereas low oxygen levels and a buildup of toxic metabolites such as carbon dioxide and lactate generate a necrotic core.

(b,c) Development of hypoxia and anoxia is shown in spheroids. Sections taken from spheroids grown for (b) four days and (c) six days stained for the proliferation

marker Ki-67 (green) and hypoxia (purple). On day 4 of growth, central hypoxia is observed and on day 6 of culture, an anoxic core develops. Panels b and c are

reproduced from Journal of The Royal Society Interface, 20146;11: 20131124. (A color version of this figure is available in the online journal.)

Table 1 Major liquid-based spheroid culture approaches

Spheroid forming technique Advantages Disadvantages

Rotary vessel/spinner flask - Large number of spheroids

- Convenient culture and harvesting

- Non-uniformly sized spheroids

- Incompatible with high-throughput screening

- Incompatible with defined heterotypic culture conditions

Hanging drop array - Uniformly sized spheroids

- One spheroid per drop

- High throughput

- Compatible with robotics

- Compatible with heterotypic cultures

- Difficult to handle cultures

- Need for custom plates

- Incompatible with plate readers

- Lack of temporal control

Liquid overlay microplate

Aqueous two-phase

system (ATPS)

Microfabricated

microwell array

- Convenient culture and harvesting

- High throughput

- Compatible with robotics

- Compatible with plate readers

- Uniformly sized spheroids

- One spheroid per well

- High throughput

- Compatible with robotics

- Compatible with heterotypic cultures

- Compatible with plate readers

- Temporal control

- Uniformly sized spheroids

- One spheroid per well

- High throughput

- Variations in size of spheroids

- May give more than one spheroid per well

- Need to optimize consistency of liquid

handling dispensing of sub-microliter volumes

- Need for microfabrication

- Incompatible with robotics

- Incompatible with plate readers

- Exposes all spheroids to a single treatment condition

- Lack of temporal control
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can be utilized to investigate hypoxia regulation of cancer
stem cells (CSCs), which are suggested as key drivers of
tumor metastasis.64,65 A recent study using cancer cell
spheroids showed that CSCs prefer a hypoxic environment
and that the hypoxic environment correlates with tumor
metastasis.66

Spheroids mimicking the complexity of
tumor microenvironment

Cancer is traditionally considered a disease of a group of
cells that turn malignant due to accumulated mutations. It is
now recognized that this definition is too simplistic. In
essence, a tumor is an organ, composed of multiple cell
types, soluble factors, and a structural framework that are
interdependent and intimately connected (Figure 1).67–69

Physical and biochemical interactions between cancer cells
and stromal components including fibroblast cells, immune
cells, vascular cells, and extracellular matrix proteins regulate
phenotypes of cancer cells such as growth, proliferation,
migration, and drug response.70–73 CAFs and immune cells
constitute two major components of tumor stroma supporting
tumor progression.74 Existing studies primarily use co-culture
models of cancer with fibroblast and/or immune cells in the
presence of defined chemical factors. Following is a brief sum-
mary of some of these models.

Regulation of cancer cells by
stromal components

CAFs are the most prominent cell type in most cancers;75,76

they originate primarily from resident normal fibroblasts
through signaling of cancer cell-derived factors such as
transforming growth factor-b (TGF-b) as well as from
bone-marrow-derived progenitor cells and transdifferen-
tiated epithelial cells.75–81 CAFs support diverse functions
of cancer cells.82 Paracrine signaling of CAFs-derived fac-
tors including hepatocyte growth factor (HGF), fibroblast
growth factor (FGF), epidermal growth factor (EGF), and
cytokines stromal-derived factor-1a (SDF-1a) and interleu-
kin-6 (IL-6) promotes tumor initiation and prolifer-
ation,83–85 induces epithelial-mesenchymal transition
(EMT),86,87 and fosters the ability of transformed epithelial
cells to invade into the ECM,88 inhibits chemotherapy-
induced apoptosis of cancer cells,89–95 and causes poor
prognosis.96–98 It is also postulated that CAFs cohort
exerts mechanical pressure on tumor cells and promotes
cancer cell invasiveness.99 Genetic alterations, i.e. activation
of oncogenes or inactivation of tumor-suppressor genes, in
cancer cells drive activities of transcription factors (mainly
NF-kB, STAT3, and HIF-1a) that result in production of
inflammatory mediators (e.g. chemokines, cytokines, and
prostaglandins) and subsequently, recruitment of inflam-
matory cells to tumor microenvironment. Presence of
inflammatory cells in tumor tissue correlates with carcino-
genesis, tumor invasion and metastasis, and poor patient
prognosis.100–104 Considering the dramatic role of stroma in
cancer, it is critical to understand how stromal components,
individually and collectively, modulate functions of cancer
cells, and develop novel therapeutics for targeting tumor

stroma. Spheroid culture technologies provide a unique
tool to recreate various aspects of tumor microenvironment.
A major advantage of spheroid technology over animal
models is the flexibility of modulating cellular constituents
and complexity of the model, and dissecting the influence
of specific stromal components on cancer cells.

Co-culture spheroid models of fibroblasts and
cancer cells

In a co-culture spheroid model, breast cancer cells induced
myofibroblast differentiation of tumor-derived fibroblasts,
but not normal fibroblasts, resembling advanced desmo-
plastic carcinomas.105 Compared to spheroids of breast
cancer cells, the growth of co-culture spheroids significantly
slowed down during long-term culture, suggesting a nega-
tive correlation between myofibroblast differentiation and
growth of cancer cells. This observation could not be cap-
tured using a two-chamber co-culture system, indicating a
role for direct intercellular contacts. Epithelial cancer cells
can also recruit fibroblasts to serve their growth, survival,
and malignancy. Using a co-culture spheroid model of PC-3
prostate cancer cells and normal fibroblasts,36 it was shown
that PC-3 cells induced expression of tenascin in fibroblasts
to stimulate growth of cancer cells and serve as an immuno-
suppressive molecule.106,107 In a co-culture system of
human mammary tumor epithelial cells and fibroblasts,
outgrowth and increased matrix invasion of cancer cells
was attributed to the lack of expression of a Rac exchange
factor, Tiam1, in tumor fibroblasts,108 suggesting a major
role for stromal factors in modulating activities of cancer
cells. Similarly, NIH/3T3 fibroblasts enhanced proliferation
and matrix invasiveness of 4T1 triple negative breast cancer
cells.109 However, including macrophages in this model
system disrupted these phenotypes.

Fibroblasts have also been implicated in neoplastic
development of ovarian epithelial cells. Senescent fibro-
blasts, resembling old ovarian stroma, in co-culture spher-
oids increased ovarian epithelial cell proliferation 5-folds
and induced nuclear atypia.110 These observations could
not be made with presenescent fibroblasts. Considering
that ovarian cancers are often diagnosed postmenopausally,
this finding suggests that age-related changes in ovarian
stroma may be responsible for development of epithelial
ovarian cancers possibly due to loss of a carcinogenesis
inhibitory factor in old fibroblasts.110 Analysis of human
ovarian tumors showed a large number of senescent fibro-
blasts within the stroma, supporting this finding. A co-cul-
ture spheroid model of pancreatic cancer and fibroblast
cells resulted in a significant increase in cancer cell survival
than monolayer cultures in seven out of nine cell lines
tested.111 It was also shown that co-culture spheroids of
pancreatic cancer and fibroblast cells display greater
resistance to an EGFR inhibitor (Erbitux) compared to
mono-culture cancer cell spheroids.111 Similarly, co-culture
spheroids of lung cancer cells and fibroblasts showed resist-
ance to Erbitux treatment by upregulating fibroblast-
derived HGFR expression and activation compared to
cancer cell spheroids.111 These data agree with clinical treat-
ment of lung cancer patients that only show a positive
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response when treated with both HGF and EGFR inhibitors.
When non-small cell lung carcinoma cells were co-cultured
with fibroblasts in spheroids, fibroblasts promoted spher-
oids growth and prevented cell death from paclitaxel treat-
ment through paracrine signaling.112 In a spheroid model of
urothelial cancer cells and fibroblasts, cancer cells preferen-
tially oriented around the fibroblast cells when forming
spheroids, resembling the morphology of urothelial
tumors.113

Co-culture spheroid models of immune and
cancer cells

Presence of macrophage cells in tumors is often an indicator
of poorer patient prognosis.104 Macrophages increased
spheroid formation capability of breast cancer cells and
resulted in a significant increase in the number of spheroids
compared to mono-culture breast cancer spheroids.109 It
was shown with co-culture spheroids that macrophages
may suppress tumor proliferation for certain cancers such
as colorectal, stomach, and skin cancers.104 For example,
co-culture spheroids of human colorectal cancer and
macrophages resulted in reduced expression of prolifera-
tion-related genes and elevated expression of apoptosis-
associated genes, indicating that inflammatory pathway
activation results in anti-tumor immune responses.104

Cancer cell spheroids and suspension of immune cells
were utilized to study immune cell migration into spher-
oids and their activation.114 Heterotypic spheroids of cancer
and immune cells provide a unique platform to replicate the
immunomodulatory effects of potential therapeutic com-
pounds that activate and strengthen immune cell responses.
When colon carcinoma cell spheroids were co-cultured
with macrophages, treatment with a heteroglycan led to
macrophage-mediated toxicity and lysis of proliferative
cancer cells residing in the peripheral zone of spheroids.115

Spheroids of head and neck squamous carcinoma cells in
the presence of peripheral blood mononuclear cells
(PBMCs) in suspension were treated with a tri-functional
antibody, Catumaxomab.116 This resulted in a significant
decrease in spheroid volume, followed by disintegration
of spheroids to single cells, PBMCs-mediated lysis, and
antibody-induced toxicity of cancer cells.

Tri-culture spheroid models containing cancer cells,
macrophages, and fibroblasts can replicate the tumor
microenvironment more closely. The co-existence of the
three cell types augmented the frequency of breast cancer
spheroid formation, indicating the influence of the intercel-
lular interactions on stroma formation and maintenance.109

A tri-culture of HT-29 colon carcinoma with monocytes and
fibroblasts in a spheroid model resulted in higher expres-
sion of a proteolytic enzyme (cathepsin B) and subsequently
5-fold increase in invasiveness of the cancer cells compared
to mono-culture HT-29 spheroids.72 These findings exem-
plify that spheroids recreate the physiological complexity of
tumors and enable better understanding of tumor biology.
Existing evidence based on heterotypic spheroid models
strongly indicates a major role for fibroblasts and immune
cells in modulating broad functions of cancer cells in the
primary tumor including proliferation, survival and drug

response, and matrix invasion and demonstrates the useful-
ness of these systems to investigate co-evolution of tumors
and their microenvironment due to bidirectional communi-
cations between tumor cells and tumor-associated
stroma.117–120

Spheroid cultures to study CSCs

CSCs are a subset of tumor cells that exhibit stem cell-like
properties. There are two main theories about origin of
CSCs. Adult stem cells serve as target for carcinogenesis
and suffer oncogenic mutations to generate CSCs . The
mutations accumulate and amplify over generations of dif-
ferentiated progenies to yield tumor cells.121 Alternatively,
CSCs originate from differentiated somatic cells or the
mortal progenies that undergo de-differentiation and
acquire stemness as well as malignancy over generations
through genetic and epigenetic mutations.122 Similar to
normal stem cells, CSCs are defined by specific functional
traits: (1) CSCs can undergo infinite number of symmetric
divisions, i.e. they can self-renew indefinitely to produce
more daughter cells.123 (2) CSCs can undergo asymmetric
divisions to produce non-CSCs or heterogeneous progenies
that comprise the mass of tumors.123 (3) CSCs can switch
between quiescent and active states. Since conventional
chemotherapeutics mainly target proliferative cells, dor-
mant CSCs may escape therapy and become activated
post-therapy to proliferate and differentiate, causing
cancer relapse.124–126

Genomic and proteomic analysis of primary patient-
derived tumor tissues shows the presence of cells that dis-
play stem cell markers such as ALDH1 activity, CD44,
CD133, CD166, and that expression of these markers correl-
ates with tumorigenicity and inversely correlates with
patient survival.22,127–129 Serial transplantation of CSC-
positive acute myeloid leukemia (AML) patient-derived
xenograft cells into immunodeficient mice developed
tumors resembling primary patient tumors.130,131 PDX
models transduced with a reporter gene to track cells
showed that CD44þ breast CSCs metastasize to lungs and
lymph nodes, suggesting a metastatic role for CSCs apart
from primary tumor growth.132 A clonal analysis of squa-
mous skin tumors using genetic lineage tracing
showed presence of a small fraction of cells that persists
long term and gives rise to a terminally differentiated
progenies that occupy the tumor mass.133 Therefore, avail-
able evidence strongly suggests a major role for CSCs in
driving tumor initiation, progression, and recurrence
(Figure 4).

3D cancer cell cultures have been employed to study
CSCs. Patient-derived colon cancer cells expressing an
embryonic protein Cripto-1 (CR-1) exhibited increased clo-
nogenic capacity and expression of stem cell-related mar-
kers CD133 and cytokeratin-20.134 While CD-133 was
constantly expressed over time in spheroids, CR-1 expres-
sion showed fluctuations with the peak corresponding to an
increased clonogenic capacity of the whole spheroid popu-
lation and generation of large colonies. CR-1 positive cells
showed increased levels of Nanog expression and nuclear
b-catenin, suggesting CSCs enrichment. CR-1 silencing
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inhibited spheroid proliferation and growth of tumor xeno-
grafts, and decreased CSCs growth in primary and meta-
static tumors. Tissue analysis of 28 breast cancer patients
showed presence of poorly differentiated cells with �3-fold
higher sphere forming efficiency and formation of spheroids
almost twice as large compared to well-differentiated cancer
cells, in agreement with 3- to 4-fold increase in CSCs mar-
kers from IHC analysis of tumor tissues.135 Primary ovarian
cancer cells maintained as spheroids generated tumors in
immunodeficient mice that fully recapitulated the original
tumor.136 Compared to parent cells, spheroid cells were
enriched for CSC markers, were more aggressive in
growth, migration, invasion, and clonogenic survival, and
displayed resistance to cisplatin. Pancreatic CSCs often
show aberrant activity of PI3K/mTOR and Sonic
Hedgehog (Shh) pathways. It was shown that a combin-
ation therapy of pancreatic spheroids using molecular
inhibitors of these pathways suppressed the expression of
pluripotency markers Nanog, Oct-4, Sox-2, and c-Myc and
transcription factors mediating EMT, elevated the expres-
sion of apoptotic genes, and dose-dependently reduced
colony forming capacity of cells.137 Spheroids generated
from brain tumors showed tumor-initiating populations
positive for CSCs markers and displayed cell growth pat-
terns similar to xenograft studies.138 An invasion study
using spheroids of a primary glioma tumor and a glioblast-
oma cell line showed that primary tumor spheroids were
more invasive and contained cells expressing CSCs markers
such as CD133 and Sox2, whereas cell line spheroids were
more proliferative.139,140

This brief summary highlights that spheroid cultures of
cancer cells enrich CSCs and reproduce important pheno-
types of tumors in vivo. Therefore, spheroids provide a
unique tool to understand the biology of CSCs and identify
chemical compounds to effectively eliminate them. For
example, a study reported screening �16,000 compounds
including several diverse commercial libraries and collec-
tions of natural extracts against E-cadherin knockdown
human breast cancer cells that displayed various CSCs
activities such as high capacity for spheroid formation
and seeding tumors in mice.141 This screening led to a
single drug, Salinomycin, that effectively abolished CSCs

phenotypes and showed selective toxicity against CSCs.
Salinomycin treatment induced a 10-fold decrease in the
number of tumorspheres relative to controls, decreased
the proportion of CD44high/ CD24low cells by 4-fold com-
pared to vehicle-treated controls, and downregulated or
blocked the expression of CSCs-marker genes. In contrast,
paclitaxel did not change sphere formation capacity of cells,
increased CD44high/ CD24low cells by 4-fold, and did not
cause major changes in CSCs-marker genes. This suggested
that while Salinomycin inhibits CSCs, paclitaxel treatment
enriches the sphere-forming population. Importantly,
Salinomycin did not affect cell proliferation in monolayer,
indicating its selectivity to CSCs in 3D culture.

Spheroid cultures for compound screening
and drug discovery

Drug discovery and development is a costly and complex
process (Figure 5). Developing a new drug approved by the
US Food and Drug Administration (FDA) often takes about
10–15 years and costs about $2b over the development
period.142–144 At the preclinical stage, a collection of thou-
sands of compounds in the drug research phase undergoes
target identification and lead optimization. This yields a
library of several hundred compounds for subsequent
tests including biodistribution, pharmacokinetics, and tox-
icity using laboratory assays and animal models. Based on
the results of these tests, a few compounds are selected for
clinical trials to conduct tests for safety, efficacy, human
pharmacokinetics, availability, and dose adjustments.
About one compound usually receives regulatory approval
by the FDA at the end of the process.145 Unfortunately, this
tremendously inefficient process makes oncology drug dis-
covery very costly. For example, during 1997–2011, 12 major
pharmaceutical companies spent a combined $802,468 mil-
lion on drug research and development. Pfizer, Inc. led the
pack spending a total of $108,178 million over this period.
While there were almost 900 anti-cancer drugs in clinical
trials or under FDA review in 2011, only 12 were actually
approved that year. A recent report shows that global oncol-
ogy market hit $100b in 2015.146 Despite considerably
increased investments, the rate of introduction of novel
drugs has remained relatively constant over the past

Figure 4 (a) Tumors contain a subpopulation of cells, cancer stem cells (CSCs), with the ability to initiate and regenerate tumors. Conventional chemotherapy targets

rapidly dividing cells and considerably diminishes the tumor. However, unaffected CSCs repopulate the tumor growth and result in recurrence of cancer, which is often

resistant to therapies. Novel therapies that target CSCs are critical to eliminate tumorigenic cells and potentially eradicate the cancer. (b,c) Expression of CSCs markers

CD44 and ALDH1 in HT29 colorectal tumor spheroids detected using immunostaining of sections of spheroids. Panels b and c are reproduced with permission from

BMC Cancer, 2010;10:106. (A color version of this figure is available in the online journal.)
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40 years and only two to three agents in new drug classes
per year eventually make it to the market.145,147

Cell cultures introduced as a tool for compound screen-
ing in the 1950s have remained an integral part of drug
discovery process in the pre-clinical stage.148 Traditionally,
cancer cells are grown as a monolayer (2D) in standard
microwell plates and treated with hundreds of candidate
drugs for initial characterization of efficacy and toxicity of
compounds. This high-throughput screening leads to com-
pounds for subsequent tests with animal models and use in
clinical trials. Ease of maintenance of 2D cultures in micro-
well plates, and the compatibility of these culture platforms
with robotic liquid handlers for automated addition of drug
compounds and biochemical analysis reagents have made
2D cell cultures indispensable to oncology drug discovery.
However, the use of 2D cancer cell cultures is believed to be
a major contributor to this inefficiency. Despite their simpli-
city and compatibility with high-throughput screening
instruments, 2D cell assays often fail to predict the efficacy
of compounds in vivo. Disparity between 2D cultures and
the complex 3D environment of cancer cells in tumors is the
major shortcoming of monolayer culture systems.149–152

Spheroid cancer cell cultures have gained increasing
attention in cancer research and drug discovery in order
to bridge the existing gap between simplistic monolayer
cultures and complex, expensive animal models. Cells cul-
tured in 3D closely reproduce morphology, gradients of
oxygen and nutrients, cell proliferation patterns, and gene
expression profiles of tumors.14,153–157 Comprehensive gene
expression analyses of various cancer cell lines show sig-
nificant differences in expression profiles of hundreds of
genes in the same cells under 2D and 3D cultures, including

regulators of proliferation, invasiveness, apoptosis, hyp-
oxia, and markers of CSCs.153–155,158–160 Compared to
monolayer cultures, cancer cells in 3D spheroid cultures
generally show greater resistance to cytotoxic drugs
such as taxol, cisplatin, 5-fluorouracil, and doxorubicin
(Figure 6(a)). 44,161–163 Interestingly, it was recently shown
that spheroids of MDA-MB-157 triple negative breast
cancer cells display complete resistance to paclitaxel but
produce a dose-dependent response with an LD50 of
�8.0 nM in 2D culture (Figure 6(b)).164 Major factors that
contribute to drug resistance in 3D are insufficient drug
penetration and distribution within the tumor cell
mass,165,166 slowly cycling cells in the border zone and
non-proliferative cells in the central zone,60 close cell–cell
contacts,5 and production of extracellular matrix proteins
and expression of drug transporter proteins.15,19,167,168

While it is often observed that a 3D environment causes
resistance to most drugs, cells in spheroid cultures show
greater toxicity towards certain compounds such as the
hypoxia-activated drug TH-30263, tirapazamine169, and a
HER-2 targeting agent trastuzumab152 compared to mono-
layer cultures. Available molecular and phenotypic studies
of cancer cell lines and primary tumor cells strongly sup-
port the use of 3D cultures in drug screening applications to
enhance the process of anti-cancer drug discovery and
development by reducing attrition rates and costs.170

Considering the important role of stroma on drug
response of cancer cells, more complex spheroid models
can be developed by incorporating stromal cells such as
fibroblasts and macrophages to facilitate intercellular com-
munications present in tumor tissues. This will enable both
delineating the influence of stromal cells on functions of

Figure 6 High throughput dose-dependent testing of paclitaxel against monolayer and spheroids of (a) A431.H9 skin cancer cells and (b) MDA-MB-157 triple

negative breast cancer cells generated using the aqueous two-phase technology. (a) 2D cultures of A431.H9 cells (triangles) show a sigmoidal response with an LD50

value of 22.1 nM, whereas cells in spheroid culture (circles) show greater resistance and result in an LD50 value of 178.5 nM. (b) Monolayer of MDA-MB-157 cells

(triangles) also shows a sigmoidal response with an LD50 value of 8.0 nM. In contrast, these cells in spheroid culture (circles) show complete resistance to paclitaxel.

Error bars indicate standard error of the mean. Dashed lines represent sigmoidal fit generated using GraphPad Prism

Drug Discovery
Target iden�fica�on and valida�on
Lead iden�fica�on and op�miza�on

Preclinical Tests 
Cell Based assays
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Clinical Trials
Phase 1-3

FDA        
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Figure 5 Workflow of anti-cancer drug discovery. (A color version of this figure is available in the online journal.)
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cancer cells and allow identifying drug compounds that
target stromal cells to abrogate intratumoral intercellular
interactions. Heterotypic spheroids provide a useful tool
for such applications. A co-culture spheroid model of
liver cancer and fibroblast cells showed greater drug resist-
ance than mono-culture spheroids of cancer cells.171 A tri-
culture of tumorigenic and normal breast epithelial cells
with normal human endothelial cells was utilized to iden-
tify drug compounds that selectively eliminate cancer cells.
Among a panel of drugs with different mechanisms, micro-
tubule-targeting agents and EGFR inhibitors showed select-
ive toxicity against cancer cells only.172 Such studies
identifying differential drug responses of cancer and
normal cells will help reduce deleterious side effects fre-
quently observed with cytotoxic agents. The amount of
stroma in colorectal cancer173,174 and the tumor-stroma
ratio in breast cancers175 are considered a prognostic
factor. Cancers with higher stromal content correlate with
poor prognosis and increased risk of relapse. The ability to
recapitulate such events using spheroid cultures may lead
to drugs that reduce or abolish stromal effects on drug
response of cancer cells.

Quantification of drug responses of spheroids

A critical step in high-throughput compound screening is
quantification of cellular responses to chemical compounds.
The most commonly used techniques to determine toxicity
of compounds are optical-based and include colorimetric,
luminescence, and fluorescence assays.176

Colorimetric assays

Colorimetric assays rely on the metabolic activity of cells to
biochemically convert a dye reagent to a specific color that
can be measured at a defined wavelength. The level of
signal correlates with the number of live cells. Several
assays such as MTT, MTS, and XTT use tetrazolium salts
to produce a colored insoluble formazan dye that can be
detected with a spectrophotometer or a plate reader.177

These assays are routinely used in research laboratories;
however, they involve multiple steps of reagent addition
and wash, are labor-intensive and time consuming, and
thus are incompatible with high-throughput screening
applications to evaluate toxicity of libraries of compounds.
Alternative colorimetric assays are AlamarBlue and
PrestoBlue. The former contains an active reagent, resa-
zurin, which is reduced by live cells to resorufin detectable
at fluorescence and absorbance modes and representative
of the number of live cells. Obtaining sufficient sensitivity
with monolayer cultures requires several hours of incuba-
tion. The PrestoBlue assay uses a similar principle but can
resolve viability of 2D cell cultures in about 10 min. Both
these assays involve only a single addition step and are
compatible with high-throughput applications. The colori-
metric assays have been developed, optimized, and tested
for monolayer cell cultures. Adapting them to 3D cultures
requires assay optimization. In a recent study, the possibil-
ity of using PrestoBlue with 3D cultures was studied by
incubating spheroids of MDA-MB-157 breast cancer cells

and A431.H9 skin cancer cells, made with different densi-
ties of 1�103 – 100� 103 cells, with the assay reagent.
Statistical analysis of the fluorescent signal measured over
time showed that 3–4 h incubation is necessary to confi-
dently measure differences in the signal intensity between
spheroids of different cell densities as well as between dif-
ferent time points for spheroids of the same cell dens-
ity.44,164 The substantially longer incubation time of
spheroids with the PrestoBlue reagent compared to mono-
layer cultures is likely due to reduced diffusion of the assay
dye into spheroids.178

Luminescence assays

The principle behind luminescence assays is production
and emission of light by live cells due to a chemical reaction
that converts chemical energy to light.179 Oxidation of luci-
ferin catalyzed by the enzyme luciferase and mediated by
cellular ATP produces light that can be detected by instru-
ments such as a luminometer. The luminescence signal level
correlates with the number of live cells. CellTiter-Glo is a
luminescent cell viability assay that requires a one-step
reagent addition to cells and mixing to result in cell lysis
and generation of luminescent signal. The utility of the
assay for the detection of cell viability following drug treat-
ment of spheroids of glioblastoma, breast cancer, and oral
squamous carcinoma was demonstrated.42 After drug treat-
ment of spheroids, the assay reagent was added for 10 min,
contents of wells were mixed and then transferred into
opaque, flat-bottom plates for luminescent measurements.
This assay was also used to determine the viability and
drug resistance of spheroids of ovarian cancer cells treated
with cisplatin136 and to study drugs with cytotoxic and
cytostatic effects on various colon cancer cell spheroids.178

Although the short incubation with the assay reagent is an
advantage, the need for transfer of contents of wells from
the original plate to an opaque plate makes this approach
less attractive for high-throughput applications.

Fluorescence assays

Fluorescence assays offer an alternative approach to deter-
mine drug response of cancer cells in 3D cultures. The most
common type is based on the use of fluorescent dyes spe-
cific to live and dead cells. For example, Calcein AM and
Ethidium homodimer-1 (EthD-1) are two fluorescent probes
that stain cells with intracellular esterase activity (live) and
compromised plasma membrane (dead). Other fluorescent
dyes include DiOC18, SYBR 14, and SYTOX Green for live
cells and propidium iodide and C12-resazurin for dead
cells. These assays only require a one-step addition of the
dyes and typically no wash. Stained cells can be imaged
with a fluorescent microscope, counted with a flow cyt-
ometer, or detected using a microplate reader. Fluorescent
probes have been used in various studies to quantify effects
of drugs on spheroids. 60,169,171,180–185 The major challenge
associated with using fluorescent probes is slow penetra-
tion of dyes into spheroids, especially when spheroids are
compact, requiring longer incubation than 2D cultures
(4 h vs. 20 min).186 And despite a long incubation of
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spheroids with dyes, cells in the core of compact spheroids
are usually not stained well.164 In addition, quantification of
cell viability of spheroids using these assays requires a sen-
sitive instrument to collect the fluorescent signal from a
3D mass of cells. A useful approach to circumvent such
problems is using cells with endogenous expression of a
reporter fluorescent protein such as gfp or dsRed. Prior to
spheroid assay, cells are transduced to constitutively
express a fluorescent protein. Live cells can then be quanti-
fied by measuring the fluorescent signal intensity of
spheroids.42,187

Cellular responses in heterocellular
spheroid models

Using heterocellular spheroid models, e.g. co-culture of
cancer cells and fibroblasts, poses a major challenge when
the response of defined cell types to therapeutics must be
determined. Detection methods such as colorimetric assays
or fluorescent probes result in a global measure of cell via-
bility in a spheroid and cannot resolve the viability of each
cell type. Using specific reporter proteins in each cell type
provides a viable solution to this problem. Alternatively,
individual cell types can be induced to express a different
luciferase such as firefly luciferase, green click beetle luci-
ferase, or red click beetle luciferase.188,189 These luciferases
are ATP-dependent enzymes that sensitively quantify rela-
tive numbers of viable cells using bioluminescence ima-
ging. This approach was recently used in a co-culture
spheroid of breast cancer cells and bone marrow stromal
cells to model metastatic bone marrow where quiescent
disseminated tumor cells persist for many years before pro-
liferating as recurrent metastases.190 Using dual-color bio-
luminescence imaging to quantify viability of cancer cells
and stromal cells in the same spheroid, single and combin-
ation treatments that preferentially eliminated quiescent
breast cancer cells but not stromal cells were identified.
A treatment combination of doxorubicin and trametinib
effective against malignant breast cells in spheroids also
eliminated breast cancer cells from bone marrow in a
mouse xenograft model, indicating the reliability of cellular
response to therapy in the spheroid model. In contrast to
colorimetric and luminescence assays, this approach
allowed live, non-invasive monitoring of cells.

Challenges and outlook

The need for physiologic cell-based models has led to the
development of various 3D cell culture systems to help
understand tumor biology and develop more effective
anti-cancer drugs by predicting drug efficacy prior to
expensive animal tests and clinical trials. This review high-
lighted available platforms of liquid-based culture of spher-
oids and their applications in research and drug discovery.
It is now well documented that spheroids provide a reliable
model that recapitulates key properties of solid tumors at
molecular and cellular levels, not reproducible with trad-
itionally used monolayer cultures. Nevertheless, there are
still major challenges to be addressed for spheroid cultures

to be widely adapted and used both in research laboratories
and pharmaceutical industries.

1. A critically important application of 3D culture
models is for oncology drug development and discov-
ery. Despite the use of spheroid cultures in research
laboratories for more than four decades and their
inherent power to predict drug efficacy, their routine
use in the mainstream drug development process is
hindered by complex and expensive methodological
requirements for the formation, maintenance, and
drug treatment of spheroids. Recognizing this
problem has prompted design of new platforms
that simplify culture and maintenance of spheroids.
Commercially available standard round- and
V-bottom microwell plates, a new design of hanging
drop array plate in the format of microwell plates, and
the ATPS-mediated approach in standard microwell
plates are compatible with robotic liquid handling
operations and automated imaging and detection sys-
tems such as plate readers and can potentially stream-
line drug screening against spheroids. The ATPS
technology eliminates shortcomings of the other tech-
niques such as possibility of formation of more than
one spheroid in round- and V-bottom plates, and drug
treatment, media exchange, and need for transfer of
spheroids from the custom hanging drop array plate
to a standard plate for downstream analysis of drug
response of cells using standard plate readers.

2. Analysis of drug-treated spheroids primarily relies on
colorimetric, luminescence, and fluorescence assays
that have been originally developed for monolayer
cell cultures. As such, adapting them to spheroid cul-
tures requires assay optimization such as those dis-
cussed above for PrestoBlue and CellTiter Glo. It is
crucial to ensure that spheroids are incubated with
analysis reagents sufficiently long to allow adequate
reagent diffusion to cells residing in the core region of
spheroids. Additionally, simplifying these assays to a
single step of addition of analysis reagents and detec-
tion of cellular responses using standard instruments
will streamline their use in high-throughput screening
applications, minimize labor, and reduce inconsisten-
cies associated with multiple addition and wash steps
involved in certain biochemical assays. Standard
microplate-based detection methods are preferable
over fluorescence-based imaging for spheroid viabil-
ity quantification. Limited diffusion of some cell
staining molecules into spheroids, difficulty with
quantitative determination of cellular viability from
imaging of a fluorescently labeled, compact, multi-
layer mass of cells, and time consuming nature of
imaging make this approach not desirable for high-
throughput screening applications.

3. Cancer cell spheroids provide a major advantage over
monolayer cultures to mimic morphology of solid
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tumors, gradients of oxygen and soluble factors, and
non-uniform proliferation of cells from core to border;
however, they do not fully represent the tumor in its
native microenvironment due to the lack of stroma.
Considering dramatic effects of stroma on cancer cells
and that high stromal content in tumors is a poor
prognostic factor and correlates with relapse, it is crit-
ical to incorporate stromal components in spheroid
cultures and delineate how they regulate functions
of cancer cells. Major components that co-exist with
cancer cells are fibroblasts, immune cells, endothelial
cells, and extracellular matrix proteins. One strategy
would be to separately include each component
to elucidate its modulation of cancer cells and subse-
quently increase the complexity by adding other
factors. Addition of stromal cells can be achieved by
co-culturing cancer cells and tissue-specific stromal
cells using the ATPS spheroid approach or the hang-
ing drop method. The proportion of cancer and stro-
mal cells can be varied to generate tumor models at
different stages of the disease. Embedding of spher-
oids in an extracellular matrix is more challenging.
This is an inherent limitation of the hanging drop
method but conveniently achievable with the ATPS
approach, which is modular in the sense that it
allows both simultaneous and sequential addition
of stromal components. Complex spheroid models
better represent a tumor in its entirety but also intro-
duce new challenges. For example, analyzing specific
phenotypes, such as proliferation and drug response
of cancer cells in spheroids containing stromal cells is
not feasible with colorimetric assays as they provide a
measure of activity of all cells. The use of fluorescent
or luminescent reporter proteins can circumvent this
problem and allow distinguishing cancer cells from
stromal cells in real-time. This strategy can also help
with sorting of cancer cells dissociated from complex
spheroids for subsequent molecular analyses such as
gene and protein expression.

4. Majority of studies in cancer research and drug dis-
covery use lines of cancer cells due to the ease of
maintaining and expanding them as a 2D culture
with minimal costs. However, cell lines may not
accurately reflect the initial disease. Availability of
patient-derived cells from tumor tissue biopsies will
increase the relevance of data; however, the use of
patient-derived cells in spheroid cultures, especially
for drug screening applications, requires maintaining
and expanding them to generate sufficient number of
cancer cells. This has proved difficult and currently,
primary cancer cells are expanded in xenograft
models. Strategies to enable cultures of primary
cells, such as the approach of conditionally repro-
gramming cells (CRC), will be extremely useful and
help realize personalized cancer therapy.
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