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Colorectal cancer (CRC) is the second most frequently diagnosed type of cancer and a
major worldwide public health concern. Despite the global efforts in the development of
modern therapeutic strategies, CRC prognosis is strongly correlated with the stage of the
disease at diagnosis. Early detection of CRC has a huge impact in decreasing mortality
while pre-lesion detection significantly reduces the incidence of the pathology. Even
though the management of CRC patients is based on robust diagnostic methods such as
serum tumor markers analysis, colonoscopy, histopathological analysis of tumor tissue,
and imaging methods (computer tomography or magnetic resonance), these strategies
still have many limitations and do not fully satisfy clinical needs due to their lack of
sensitivity and/or specificity. Therefore, improvements of the current practice would
substantially impact the management of CRC patients. In this view, liquid biopsy is a
promising approach that could help clinicians screen for disease, stratify patients to the
best treatment, and monitor treatment response and resistance mechanisms in the tumor
in a regular and minimally invasive manner. Liquid biopsies allow the detection and
analysis of different tumor-derived circulating markers such as cell-free nucleic acids
(cfNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) in the bloodstream.
The major advantage of this approach is its ability to trace and monitor the molecular
profile of the patient’s tumor and to predict personalized treatment in real-time. On the
other hand, the prospective use of artificial intelligence (AI) in medicine holds great promise
in oncology, for the diagnosis, treatment, and prognosis prediction of disease. AI has two
main branches in the medical field: (i) a virtual branch that includes medical imaging,
clinical assisted diagnosis, and treatment, as well as drug research, and (ii) a physical
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branch that includes surgical robots. This review summarizes findings relevant to liquid
biopsy and AI in CRC for better management and stratification of CRC patients.
Keywords: liquid biopsy, colorectal cancer, patients stratification, artificial intelligence, robotic surgery
1 INTRODUCTION

Colorectal cancer (CRC) is the second most frequently diagnosed
type of cancer and a major worldwide public health concern (1,
2). Despite the efforts in the development of modern therapeutic
strategies, the prognosis of CRC mostly depends on the disease
stage, and specific biological features. Despite that the
management of CRC patients has been based for decades on
robus t d iagnos t i c me thods such as co lonoscopy ,
histopathological analysis of tumor tissue, molecular biology
assays for molecular profiling, imaging methods (computer
tomography or magnetic resonance), and serum tumor
markers analysis (Carcinoembryonic antigen (CEA),
Carbohydrate antigen 19-9 (CA 19-9), etc.), these strategies
still have many limitations and do not fully satisfy clinical
needs due to their lack of sensitivity and/or specificity to early
disease detection even before clinical onset. Clinical
investigations that leverage knowledge on tumor classifications
enabled the development of new treatments by providing output
data from effective screening and surveillance strategies.
Therefore, improvements of the current practice would
substantially impact the management of CRC patients and this
review provides an in-depth particular discussion on two major
approaches that hold great promise in this respect. On one hand,
liquid biopsy, as a minimally-invasive procedure that involves
the real-time analysis of tumor-derived material isolated from
different body fluids (3) is a promising tool that could improve
the current practice by helping clinicians screen for disease,
stratify patients to the best treatment and monitor treatment
response and resistance mechanisms. On the other hand, the
prospective use of artificial intelligence (AI) in medicine holds
great promise in oncology, not only for early and precise
diagnosis but also treatment, therapy, and prognosis prediction
of disease.
2 STANDARDIZATION IN COLORECTAL
CANCER MOLECULAR PROFILING

Significant advances have been made in the past 20 years with
respect to diagnostic by refining tumor classification, enabling
this way pathologists and molecular biologists to better define
both pathologic and molecular colorectal cancer features (4). In
the current clinical landscape, the most common tools used for
CRC classification are the histological subtype, tumor
localization, and the molecular pathway underlying
carcinogenesis (5). Regarding the histopathology of CRC,
adenocarcinoma is the most common type of CRC, accounting
for more than 90% of the CRC cases diagnosed worldwide,
including mucinous adenocarcinoma (10%) and signet ring cell
2

CRC (2%) (6, 7). Other rare types of CRC are medullary,
squamous cell, adenosquamous, micropapillary, serrated,
cribriform comedo−type, spindle cell, neuroendocrine, and
undifferentiated carcinomas (8–10), that are more aggressive
and present a significantly worse prognosis than classic
adenocarcinomas (11). More, due to the embryonic origin,
local vascular and nervous anatomy as well as the distribution
of the gut microbiota, the tumor localization along the colon can
be divided into: right sided tumors arising from cecum,
ascending colon, hepatic flexure and/or transverse colon up to
splenic flexure and left sided tumors arising from descending,
sigmoid and/or rectosigmoid parts of the colon, potentially
influences progression, prognosis and therapy. As a result of
the different physiological functions of the colon segments, the
patient’s clinical symptoms also significantly differ: right sided
colon cancer frequently determine occult blood loss and
consequently, iron deficiency anemia, while left sided colon
cancer indices changes in bowel habits (12, 13). Finally, a
complex picture of the CRC can be obtained by identification
of the molecular pathways underlying CRC carcinogenesis, at
least three major molecular pathways being related to CRC
development and progression: chromosomal instability
pathway (CIN), microsatellite instability (MSI), and the CpG
island methylation pathway (CIMP), pathways that are not
mutually exclusive (14–16). Most frequently identified (>85%
cases) is CIN, which presents as tumor genetic signature
aberrations in oncogenes and/or tumor suppressor genes
involved in key signaling pathways for cancer initiation and
progression such as APC, KRAS, NRAS, PIK3CA, BRAF, and
TP53 (17–20).

Considering the heterogeneity of tumors sharing the same
histology, starting with 1963, the World Health Organization
(WHO) implemented a worldwide standardization by classifying
the tumor diagnosis and providing internationally acknowledged
standards. Currently, in its fifth edition (21), this classification is
organized considering the tumor site, category, family, and type
and, in addition to histopathology, it includes clinical
appearances, epidemiology, etiology and pathogenesis, imaging
studies, genetics, epigenetics, and other molecular investigations
knowledge, highlighting the expanding concern of the
multidisciplinary approach. The WHO new classification of
tumors includes for the first time a volume exclusively
dedicated to the Digestive System Tumors that now contains
separate chapters for soft tissue and hematolymphoid tumors,
inherited genetic tumor susceptibility syndromes and a broad
classification of neuroendocrine tumors and carcinomas,
malignancies that share common histology but occur in
different anatomic sites (22). This classification was possible
due to the accelerated growth in understanding cancer biology
that includes the unrevealing of the genomic makeup of all
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known cancer types. Currently, sequencing of tumor-derived
DNA is used as an investigational tool, aiming to match patients
with their most appropriate treatments based on their particular
target mutations. US Food and Drug Administration (FDA)
labeling, National Comprehensive Cancer Network (NCCN)
guidelines, conference proceedings, disease-focused expert
group recommendations, and the scientific literature are
relevant sources of information regarding the clinical
significance in a specific gene’s alteration. To ease the
interpretation of the genomic alterations detected in patient
tumors, several support tools such as My Cancer Genome (23),
CIViC (24, 25), the Precision Medicine Knowledge Base (26, 27),
The Jackson Laboratory Clinical Knowledgebase (28, 29), Cancer
Genome Interpreter (30), Cancer Driver Log (31, 32), Tumor
Portal (33, 34), Targeted Cancer Care (35), Personalized Cancer
Therapy (36, 37), and OncoKB (38) were developed. For
example, OncoKB is the first racking that assigned each
mutation to one of four levels defined based on the data
availability supporting the use of the mutation as a predictive
biomarker. Off-label use of cancer drugs in oncology has been
practiced for many years (39–41) especially in the case of rare
cancers where a randomized clinical trial may not be done.
Notably, there are particular situations where FDA-approved
drugs are not warranted as off-label use due to clear evidence of
low efficiency. Such an example is vemurafenib, a BRAF
inhibitor and a standard treatment option for patients with
BRAFV600E mutant melanoma or NSCLC, which is not efficient
at least as monotherapy in patients with BRAFV600E mutant CRC
(42). More, aiming to support oncologists to assign potential
targets when a broad gene sequencing panel is available, the
European Society for Medical Oncology (ESMO) proposed a six
levels of evidence framework classifying targets for precision
cancer medicine (43). In this sense, the ESMO Scale for Clinical
Actionability of Molecular Targets (ESCAT) has been developed
(44). It measures how targetable colorectal tumors’ gene
alterations are, based on data that support the effectiveness of
their corresponding drugs. By far, the most important in terms of
treatment decision are hot-spot RAS mutations (NRAS and
KRAS), which predict resistance to epidermal growth factor
receptor (EGFR) therapy. Decisions in metastatic colorectal
cancer in the first line are made depending on this and the
location of the tumor (right colon versus left colon) (45–47).
From a molecular point of view, right sided colon cancer and left
sided colon cancer are very different as the first one is frequently
associated with defective mismatch repair genes, KRAS and
BRAF mutations and miRNA-31, while the latter is commonly
associated with CIN, p53, NRAS, miRNA-146a, microRNA-
147b, and microRNA-1288 (48). As a consequence, this
different molecular makeover of the tumors impacts on the
therapeutically approach (49–51). The BRAFV600E mutation is
next as importance for treatment decision. The prevalence of
genetic alterations in CRC was reported in the literature as
follows: KRAS mutation 44%, NRAS mutation 4%, BRAF
mutation 8.5%, NTRK1 fusion 0.5%, ERBB2 amplification 2%,
PIK3CA hotspot mtation 17%, ATM mutation 5%, MET
amplification 1.7%, RET fusion 0.3%, ALK fusion 0.2% (44).
Frontiers in Oncology | www.frontiersin.org 3
The combination of encorafenib and cetuximab has been shown
to be effective in terms of overall survival in patients with this
mutation according to a phase III study (52). Another very useful
information in the therapeutic decision is about microsatellite
instability. Patients with altered mismatch repair proteins (MLH1,
MSH2, MSH6 and PMS2) had a very good oncological response to
pembrolizumab and nivolumab in phase 2 and 3 trials (53, 54).
Other gene alterations that may influence the therapeutic decision
are NTRK fusions (which may correspond to an NTRK inhibitor,
like entrectinib in the metastatic stage) or the amplification of
ERBB2 (which can be associated with dual anti-HER-2 blockade)
(36, 55, 56).
3 LIQUID BIOPSY IN
COLORECTAL MALIGNANCIES

For a long time, solid biopsy, a procedure based on analyzing
tissue samples harvested during endoscopic tests or surgical
specimens, was the only available option for diagnosis and
tumor profiling in CRC patients’ management and it still
represent the standard approach, widely available in clinical
practice (57, 58). Tissue biopsy represents a static snapshot of
the tumor that lacks to capture the CRC intratumor heterogeneity
and dynamic evolution of CRC disease, also determined by clonal
pressure induced by the administered treatment (59). More, it is
an invasive procedure, which cannot be commonly repeated on-
demand, making this approach unfeasible to be performed as a
routine procedure for CRC patients’ long-term monitoring and
treatment readjustment. As solid biopsy still represents a critical
tool for CRC diagnosis, staging, and tumor molecular
characterization at the sampling time, the disadvantages
associated with this classical approach opened the opportunity
for exploring novel analysis methods to improve the current
clinical practice in CRC. In this context, the appearance of
liquid biopsy represented a game-changer for the current
clinical landscape and holds great promise for improving the
ongoing CRC patients’ approach in terms of diagnosis, prognosis,
and treatment personalization. Liquid biopsy is considered a
surrogate of the traditional biopsy, being a minimally-invasive
procedure that involves the real-time analysis of tumor-derived
material isolated from different body fluids, such as peripheral
blood, urine, pleural liquid, saliva, or ascites (3). Based on the
anatomical localization of the CRC primary tumors and
metastases, peripheral blood remains the main sample employed
for liquid biopsy analysis, although urine can be also a viable
alternative (60, 61). Unlike traditional biopsy, this modern
approach is not limited spatially and temporally and provides
clinical decision-worthy information associated with both primary
and metastatic cancerous lesions. Among tumor-derived
components, circulating tumor cells (CTCs), cell-free circulating
nucleic acids (cfNAs), and extracellular vesicles (cEVs) are the
most extensively studied and well-characterized markers in
connection with CRC and are used for different purposes such
as early cancer detection, staging, prognosis, or drug resistance
and minimal residual disease (MRD) monitoring (Figure 1).
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3.1 Circulating Tumor Cells (CTCs)
The first biomarkers associated with the liquid biopsy concept
were the CTCs, but their discovery is not state of the art. Since
1869, when Thomas Ashworth first reported the presence of a
subpopulation of cells in the bloodstream of metastatic cancer
patients, cells that shared similar features to the primary tumor
where they detached from (62), numerous successive studies
reported the existence of CTCs and their role in the metastatic
cascade (63–65). However, since the number of CTCs is
extremely low, the promotion of these circulating biomarkers
as promising tools in oncological clinical practice was dependent
on the development of novel analysis methods with superior
sensitivity that emerged from the recent progress made in the
biomedical field (66). The frequency of CTCs found in
circulation is directly related to the tumor burden, but even in
metastatic CRC (mCRC) patients, only 1-10 CTCs/mL of blood
can be detected in peripheral blood samples (67). Considered
initiators of the metastatic cascade, CTCs are cells of epithelial
origin that shed into the blood and lymphatic systems, exit routes
that allow them to colonize distant tissues and generate
secondary cancer lesions. These cells depart from solid tumors
as single intact cells or cell clusters, a feature that impacts their
metastatic potential and half-life in circulation (68). CTCs can
agglomerate and form homotypic cell clusters or can interact
with macrophages, platelets, and/or stromal cells to form
heterotypic clusters (68). Of note, in mCRC, CTCs originate
both from primary and metastatic lesions, showing the
effectiveness of these biomarkers to capture the global
landscape of CRC tumor heterogeneity (69, 70). However,
independent of the departure point, the capacity of CTCs to
cause metastatic lesions is dependent on their stability in
circulation, as most of CTCs die as a result of their inability to
Frontiers in Oncology | www.frontiersin.org 4
surpass physical and oxidative stress, anoikis, and absence of the
tumor-specific microenvironment (71–73). Based on studies
performed on preclinical models, it is estimated that of all
detached CTCs, 0.1% remain viable in circulation, from which
only 0.01 – 0.2% ultimately will grow into a metastatic
lesion (74).

CTCs are characterized by the expression of the epithelial cell
adhesion molecule (EpCAM) (75) and the cytokeratins (panCK)
(76). However, there are serious concerns on using EpCAM only
to capture and define CTCs as these cells undergo epithelial to
mesenchymal transition (EMT) and down-regulate the
expression of this marker (77, 78). Additional markers MUC-1
(79, 80) could be also relevant for targeting CRC cells. More,
circulating cells of tumor origin undergo epithelial to
mesenchymal transition (EMT) a process that was first
identified in embryogenesis and that refers to epithelial cells
reprogramming by acquiring a mesenchymal phenotype. EMT is
involved in crucial physiological processes such as development
and wound healing, but it is also involved in malignant
progression. Upon activation of this reprogramming process,
CTCs undergo a series of physical changes that enable their long-
distance dissemination, invasion, and survival in the
bloodstream (81).

Due to the rarity of CTCs in circulation, the identification,
capture, and analysis of these cells are challenging issues. In this
view, to improve the success of CTCs detection, the process is
preceded by an enrichment technique to unmask these low-
frequency cells from the myriad of blood cells: white blood cells
(5-10 × 106/mL), red blood cells (5-9 × 109/mL), and platelets (2.5-
4 × 108/mL) (67). The enrichment strategies for CTCs detection
take advantage of their specific physical and biological
characteristics in terms of size, density, deformability, or specific
cell surface markers (82). Among all the enrichment strategies
explored, the most popular choice remains immunocapturing
which can be performed either for CTCs collection (positive
enrichment) or removal of blood cell subpopulations
(negative enrichment).

The CellSearch® platform is so far the only system that has
been approved by the Food and Drug Administration (FDA) for
CTCs identification, isolation, and enumeration in whole-blood
samples collected from metastatic colorectal (83), breast (84, 85),
and prostate cancer (86) patients. The technology uses a positive
enrichment strategy based on selection and immunomagnetic
capture of Epithelial Cell Adhesion molecule (EpCam) positive
cells (87) through ferrofluidic nanoparticles functionalized with
the EpCam antigen that select and capture a subpopulation of
cells which are subsequently discriminated from residual
hematopoietic cells by CD45 negative expression after an
immunofluorescence assay. Using the CellSearch® system,
EpCam positive cells that are cytokeratin+/DAPI+/CD45- are
selected as CTCs and counted for cancer prognosis (88, 89). The
platform was successfully employed in various studies that aimed
to quantify CTCs in CRC patients and revealed the importance
of these as independent prognostic markers (66, 90, 91).
However, despite being the only system FDA approved, this
platform presents several disadvantages such as low sensitivity
FIGURE 1 | Schematic depiction of the liquid biopsy approach including:
(i) CTCs and ctNAs enrichment, isolation, and characterization by specific
techniques, (ii) output data analysis, and (iii) potential benefits for CRC
patients.
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and specificity and most important, the failure of detecting CTCs
that lose their epithelial features as a result of EMT (92, 93). As a
result of undergoing EMT, CTCs acquire a mesenchymal
phenotype and thus lack specific epithelial markers such as
EpCam and cytokeratins (94), pillar molecules for numerous
CTCs enrichment and detection strategies, including the FDA-
approved CellSearch® System. From this point of view, Flow
Cytometry which is extensively used in hematology could be
successfully employed in CTCs detection and count as a versatile
approach considering that the instruments work with full
customizable protocols. Fluorescence-activated Cell Sorting
(FACS) which is also a flow cytometry assay allows also the
isolation of the CTCs sorted based on their specific markers
expression. Other methods for CTCs isolation, divided by the
enrichment strategy, are presented in Table 1.

The low frequency of CTCs in blood severely impacts the
clinical utility of these biomarkers for CRC screening and early
detection as CTCs detection is almost impossible in early-stage
cases (118). In this case, their detection has been a challenging
issue that is reflected by the reduced number of studies available
regarding the use of CTCs as CRC screening and early diagnosis
tools. However, promising results for employing CTCs in
screening protocols were shown by Yang et al. (119) that used
a negative enrichment strategy for CTCs detection by
fluorescence in situ hybridization in blood samples of patients
with colorectal polyps and non-metastatic CRC. This study
revealed the presence of CTCs in both benign and malign
disease, with a significant increase of CTCs in the metastatic
Frontiers in Oncology | www.frontiersin.org 5
setup, where the CTCs count was modulated by the tumor
anatomical location and degree of tissue differentiation. More,
Tsai et al. employed the CellMax biomimetic platform to detect
and enumerate CTCs in subjects with adenoma, polyps, or stage
I-IV CRC and revealed an 88% accuracy of this approach for
detection of CTCs in all tumor stages, including precancerous
lesions (120). The CellMax platform’s unique design enables a
superior detection method of CTCs in terms of sensitivity and
purity and leads to recovery of viable CTCs that can be employed
in downstream applications, making this approach appealing not
only for early detection of CRC (121). Another approach to
overcome the low frequency of CTCs for early CRC cancer could
be repositioning diagnosis leukapheresis (DLA) as a CTCs
enrichment tool based on the similar density these cells have
with the mononuclear cells from peripheral blood (116, 122,
123), a method that has been successfully employed by Soya and
colleagues for CRC patients (124).

Nevertheless, the most common clinical utility of CTCs
remains cancer prognosis, a high count of CTCs being
associated with a worse prognosis. A prospective study on
preoperative patients with stage I-IV CRC showed that CTCs
frequency, quantified using the CellSearch® system, was
increased in mCRC patients as compared with non-mCRC
patients. For non-mCRC, CTCs detection represented a strong
and independent prognostic marker and was associated with
worse overall survival (OS) and progression-free survival (PFS)
compared to CTCs negative patients (90). Using CTC for mCRC
patients exclusively revealed that the quantification of CTCs
TABLE 1 | Methods for CTCs isolation divided by the enrichement strategy.

Enrichment Strategy Technology Selection Criteria Ref.

Immunomagnetic enrichment
Immunomagnetic positive enrichment CellSearch® EpCam (66)

MagSweeper EpCam (95)
Magnetic Activated Cell Sorter (MACS) EpCam (96)
Strep-Tag EpCam, EGFR, HER2 (97)
Immuno-magnetosomes (IMS) EpCam (98)
AdnaTest EpCam (99)

Immunomagnetic negative enrichment EasySep CD45 (100)
RosetteSep CD45 (101)

Microfluidic positive capture CTC-Chip EpCam (102)
Isoflux EpCam (103)
Nanovelcro EpCam (104)
High-throughput Microsampling Unit (HTMSU) EpCam (105)
Verifast EpCam (106)

Size-based enrichment
Microfluidics Parasortix Gap sizes from 10 mm down to 4.5 mm (107)

Microcavity Array (MCA) 8-mm circular cavities (108)
Density-based OncoQuick Density (109)

AccuCyte Density (110)
Membrane filtration Isolation by Size of Tumor cells (ISET) 8 mm pores (111)

Flexible micro spring array (FMSA) 8 mm pores (112)
ScreenCell 6.5 µm pores (113)
Fluid Assisted System Technology (FAST) 8 mm pores (114)

Dielectrophoresis
Dielectric properties ApoStream Polarizability (115)
In vivo
Therapeutic apheresis Diagnostic leukapheresis EpCam (116)

GILUPI CellCollector EpCam (117)
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represents an independent predictor of PFS and OS as both
indicators were shorter for patients with ≥3 CTCs/7.5mL as
compared with those of patients with <3 CTCs (83).

Regarding the clinical implications of CTCs analysis with
impact on the post-operative therapy regimen setting in early
and mCRC, Guadagni et al. (125) showed that CTCs from 79% of
patient exhibited moderate to high sensitivity to mitomycin as
compared to only 7% for irinotecan, 30% for oxaliplatin, 2.3% for
5-fuorouracil, 14% for raltitrexed, 4.6% for alkeran, and 4.6% for
carboplatin. More, the same group used CTCs to select drug
regimens and subsequent target therapy that was subsequent
successfully administered by hepatic artery infusion to patients
with colorectal cancer liver metastasis (126).

3.2 Circulating Tumor Nucleic
Acids (ctNAs)
The limited clinical applicability of CTCs for CRC diagnosis and
treatment personalization has led to a shift of liquid biopsy
studies in recent years to employ preferentially cell-free
circulating nucleic acids (cfNAs) in CRC patient management,
cfNAs including cell-free circulating DNA (cfDNA) and cell-free
circulating RNA (cfRNA). Indeed, analyzing cfNAs by molecular
technologies can lead to real-time genomic profiling of the
tumor, an extremely useful approach for the modern trends in
CRC management that are directed towards precision medicine
and patient-oriented treatment. As the tumor molecular profile
dynamically changes in response to the immune system and
administered drugs, it is mandatory to implement a novel
analysis tool that can be used on demand for ensuring the
appropriate treatment regimens for CRC patients (127).

cfDNA is comprised of multiple degraded fragments of DNA
that are released in circulation by cell apoptosis, necrosis, or
active release mechanisms (128, 129). Apoptosis generates short
fragments of cfDNA (< 1000 bp) while following necrosis longer
fragments are released (130). The presence of cfDNA in
circulation is not exclusively associated with cancer, and this
observation was made since its discovery in the blood plasma
harvested from healthy subjects (131). However, in cancer
patients, the levels of cfDNA are increased due to the
supplementary cfDNA released by tumor cells. This small
fraction (<1%) of cfDNA, known as cell-free circulating tumor
DNA (ctDNA), originates from primary tumors, metastases, or
CTCs and harbors specific tumor-related alterations that mirror
the genomic status of CRC tumors and epigenetic alterations,
thus unraveling the tumor molecular make-up (130, 132). More,
cfDNA levels are directly dependent on the cancer stage, mCRC
patients showing significantly increased levels of cfDNA in
comparison with non-mCRC patients, highlighting the
prospective use of cfDNA analysis for early detection of CRC
(132–134). More, the ctDNA concentrations are correlated not
only with CRC stage, but also with tumor size (135), and could be
also employed as a prognostic tool since high levels of cfDNA
reveal a shorter OS (136).

In early CRC, ctDNA can be used for investigating DNA
methylation, a feature that is closely related to initiating and
sustaining the transition of colon polyps to CRC (137). This
Frontiers in Oncology | www.frontiersin.org 6
alteration can be monitored through the FDA-approved Epi
proColon® assay, designed for identifying septin-9 (SEPT9)
methylation in CRC patients. SEPT9 gene is a tumor
suppressor gene that loses i ts role as a result of
hypermethylation of the CpG island in the promoter region, a
molecular aberration that promotes the development of CRC
(138). The Epi proColon® test aids the early detection of CRC
and showed good sensitivity and specificity when compared with
the other available non-invasive tests: stool-based guaiac fecal
occult blood tests (FOBT) and fecal immunochemical tests (FIT)
and blood-based CEA test (139, 140). A study conducted by Tóth
and colleagues (141) that included both left- and right-sided
CRC cases revealed that this assay is a reliable screening method
in both cases, showing superior sensitivity and specificity than
FOBT and CEA. Superior performance was observed also
comparing SEPT9 assay with FIT in terms of sensitivity (73.3%
vs. 68%), while the specificity was significantly better for FIT
(97.4% vs. 81.5%). However, the combinatorically approach of
using both tests improved these numbers to 88.7% sensitivity and
78.8% specificity (142).

At the moment, for ctDNA analysis, PCR-based and next-
generation sequencing (NGS)-based approaches are explored.
While PCR remains the backbone for ctDNA analysis, this
approach is limited to CRC-specific driver mutations or
requires prior knowledge of genetic alterations associated with
the investigated CRC tumor. However, PCR-derived techniques
are cost-affordable compared with NGS and allow the
identification of therapeutically actionable targets or acquired
mutations responsible for resistance to therapy. By qPCR-
derived techniques, therapeutic vulnerabilities of CRC patients
can be easily identified, allowing to discriminate between patients
that are suitable for a particular treatment regimen or to readjust
treatment according to acquired mutations. Currently, for
mCRC patients, fluoropyrimidines remain the backbone of
more intensive treatment strategies, including doublet
(FOLFOX or FOLFIRI) or triplet combinations (FOLFOXIRI)
with leucovorin, oxaliplatin (OXP), irinotecan (IRI), and
capecitabine (CAPE) (143–145), added to target agents such as
bevacizumab and/or anti-EGFR (146). With this respect, pivotal
phase 3 randomized studyAVF2107g proves that the addition of
bevacizumab to FOLFIRI significantly improved the overall
survival. More, based on promising results obtained in phase 2
studies on the combination of bevacizumab with a FOLFOXIRI,
a phase 3 randomized study (TRIBE) showed that this approach
displays improved progression-free survival among patients with
mCRC as compared with FOLFIRI and bevacizumab (hazard
ratio for progression, 0.75; 95% CI, 0.62 to 0.90; P = 0.003) and
and reached a median OS of 37.1 months in the RAS wild-type
(147). More, the addition of cetuximab (CET) and panitumumab
(PAN), which are anti-EGFR drugs, to FOLFOX or FOLFIRI
chemotherapy in mCRC patients with KRAS exon 2 wild type
and overexpression of EGFR led to improved results with respect
to objective response rate, progression-free survival and OS
(148). The main concern in the association of anti-EGFR drugs
with triplet therapy regimens is the significant toxicity rate in
therms of diarrhea, asthenia, mucositis and neutropenia.
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However, previous analysis of some pharmacogenomics markers
such as 5-FUDR for 5-FU degradation rate or and single
nucleotide polymorphisms (SNPs) in ABCB1, CYP3A4, DYPD,
UGT1A1 which encode for enzymes responsible for 5-FU
metabolism, are usefull to predict chemotherapy induced
gastrointestinal toxicity (148). Consequently, a shift towards
the administration of biological therapies is observed based on
the success of these to improve the OS of mCRC patients, among
which the best outcomes were observed following treatment with
human vascular endothelial growth factor (VEGF) monoclonal
antibody bevacizumab and the EGFR monoclonal antibodies
cetuximab and panitumumab (149, 150). Independent of the
therapeutic choice, the success of the therapy is based on the
correct identification of the existing patients` genetic
abnormalities. In contrast to tissue biopsy, identifying genetic
alteration by ctDNAs analysis can be employed on-demand
establishing, therefore, a patient`s real-time treatment
sensitivity pattern that helps avoid the administration of drugs
that lack their antitumor effects and exert unnecessary toxicity.
More, in absence of tumor tissue for CRC patient molecular
characterization, blood can be used for ctDNA mutation
screening, therefore providing a correct and efficient targeted
therapy scheme (151).

Several genes alterations are screened for aiding CRC
treatment, most usual for identifying anti-EGFR-resistant-CRC
(152). EGFR is a transmembrane receptor tyrosine kinase with a
crucial role in CRC development and progression, being,
therefore, an important target for therapy by administration of
EGFR monoclonal antibodies or tyrosine kinase inhibitors (153).
Following administration of EGFR monoclonal antibodies, these
bind to the extracellular domain of EGFR and prevent the
activation of the receptor tyrosine kinase and multiple
downstream signaling pathways related to cell survival,
proliferation, and migration, such as RAS-RAF-MAPK, PI3K-
PTEN-AKT, and JAK/STAT pathways (154). Half of the CRC
patients harbor RAS mutation, a particularity that renders the
anti-EGFR drugs ineffective (155). While KRAS-mutated
patients are not exclusively associated with EGFR resistance,
mutations in KRAS codons 12 and 13 at exon 2 are clear
indicators of EGFR therapy resistance (156, 157), together with
mutations in exons 3 and 4 that can indicate a poor response to
anti-EGFR (149, 158–160). Another mutation that can overdrive
the MAPK pathway, thus promoting cell survival and
proliferation, is BRAF identified in 5% - 10% of CRC cases, the
commonest being the BRAFV600E mutation (>95%) (161). The
presence of BRAF mutation is an indicator of poor prognosis in
patients with mCRC and a marker of resistance to anti-EGFR
therapy, and it was considered to be a signature of patients not
harboring RAS mutations (154, 162, 163). However, recent
studies showed the presence of concomitant KRAS and BRAF
mutations (164–167). Other EGFR-resistant related mutations
are identified with significantly low frequency than KRAS and
BRAF mutation, making it difficult to unravel their role in anti-
EGFR therapy resistance. The phosphatidylinositol-4,5-
bisphosphate 3-kinase (PI3K)-Phosphatase and Tensin
Homolog (PTEN) pathway is an oncogenic signaling network
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that is deregulated in CRC by aberrant activation of the
prooncogenic gene PI3K or through loss of function of the
tumor suppressor PTEN (43). PI3K mutations are identified in
10-20% mCRC in exon 9 or exon 20 and lead to constitutive
activation of the p110a protein kinase and its downstream
pathway, which promotes tumor cell proliferation and survival
(168, 169). Both PI3K mutations and loss of PTEN function have
been associated with EGFR blockade resistance (170, 171). More,
although HER2 amplification was considered relevant for breast
and gastric cancer, it appears that it represents also a negative
predictor for anti-EGFR therapy (172). With a lower rate of
incidence (2% - 4%), MET amplification can determine
resistance to anti-EGFR drugs (173).

KIT proto-oncogene receptor tyrosine kinase and platelet-
derived growth factor receptor (PDGFR) mutations play a key
role in the prognosis of gastrointestinal stromal tumors (4), while
ALK receptor tyrosine kinase fusion genes (174) and beta-
catenin 1 (CTNNB1) mutations (175, 176) are crucial in
inflammatory myofibroblast ic tumors and desmoid
fibromatosis, respectively. More, the key feature of the CRC
occurring neuroendocrine neoplasms (NENs) classification is the
discrimination between well-differentiated neuroendocrine
tumors (NETs), the carcinoid tumors, and the poorly
differentiated neuroendocrine carcinomas (NECs). Despite that
NETs and NECs share the expression of neuroendocrine
markers, they display significant genetic differences, and
therefore, they are not considered to be akin neoplasms (177–
180). The main genetic differences between them rely on the
Retinoblastoma (RB) and Tumor Protein p53 (TP53) mutations
that are commonly displayed by NECs. High-grade colorectal
NECs are one of the most lethal types of neuroendocrine
neoplasm (181). This poor prognosis pushes the exploration of
more effective treatments. Late studies aimed to unreveal
colorectal NECs genomic fingerprint. Considering the low
incidence of colorectal NECs, only a few studies included
highly significant amounts of patients. However, some
noteworthy findings show that BRAF gene is frequently altered
(182–186). Chen et al. (187) explored the genomic
characteristics, and potentially targetable gene alterations in
colorectal NEC and compared these characteristics with those
of colorectal adenocarcinomas and gastrointestinal NETs using
the American Association of Cancer Research (AACR) Project
Genomics, Evidence, Neoplasia, Information, Exchange
(GENIE) public NGS database (188). They discovered that the
genetic characteristics of colorectal NEC are more similar to
colorectal adenocarcinomas than gastrointestinal NETs and that
the Wnt, MAPK, and PI3K signaling pathways as well as the cell
cycle regulation are frequently aberrant in colorectal NECs.
More, they confirmed that a significant group of colorectal
NEC patients was bearing potentially targetable alterations
such as BRAFV600E (187).

There is no doubt that the identification of actionable
mutations in mCRC has significantly contributed to the
expansion of the therapeutic options available for these patients,
but unfortunately very few of the drugs used are at the moment
FDA-approved. However, besides the use of monoclonal
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antibodies to target EGFR, anti-angiogenic and anti-kinase drugs
are also used for mCRC management, and studies have shown
that these can significantly increase OS and PFS of mCRC
patients. Generally, anti-angiogenic and anti-kinase agents are
combinatorically administrated with fluoropyrimidine-based
chemotherapy plus OXP and/or IRI (189, 190). Among these,
the following are clinically approved and used in mCRC treatment
regimens: bevacizumab (VEGF inhibitor), aflibercept (blocks
activation of VEGF-A, VEGF-B, and PIGF), ramucirumab (anti-
VEGFR-2 monoclonal antibody), and regorafenib (191) with
approval and reimburse differently applied in the countries. This
last one is a multikinase inhibitor that not only acts on angiogenic
protein kinases (VEGFR-1, VEGFR-2, VEGFR-3, TIE-2), but as
well on proteins involved in oncogenesis (KIT, RET, RAF-1,
BRAF, BRAFV600), metastasis (PDGFR, FGFR), and tumor
immunity (CSF1R) (192, 193). Therefore, as in CRC cases
mutations in genes encoding protein kinases are frequently
identified, these drugs can be used to target and block the
activity of these overexpressed proteins, improving, therefore,
the OS and PFS of mCRC patients (194).

Based on the low content of ctDNA, its small fragment size,
and limited high-life, qPCR-based methods were insufficient to
detect mutations in ctDNA due to their limited sensitivity.
Therefore, new techniques such as droplet digital PCR
(ddPCR) or its high-throughput version BEAMing (beads,
emulsion, amplification, and magnetics) showed superior
efficiency in ctDNA analysis. The main advantage of ddPCR is
the use of nanoliter-sized water-in-oil emulsion droplet
technology to partition the cfDNA sample into numerous
independent PCR sub-reaction (195), the target sequence being
therefore concentrated between the aqueous droplets. In this
way, after detection by fluorescence of the amplified targeted
sequences and comparison of the signals obtained, rare
mutations are discriminated from the wild-type sequences.
ddPCR principle by which multiple PCR individual
microreactors are generated, favors the quantification of low-
abundance point mutations in cfDNA from a background of
wild-type sequences, with high sensitivity ranging from 0.001%
to 0.1% (173, 196).

In contrast, the modern NGS platform opens new
opportunities for CRC patients by employing massively parallel
sequencing techniques for genome-wide assessment and screen
for multiple mutations with greater sensitivity without prior
knowledge of the patient`s existing genetic abnormalities and
can lead to the discovery of novel therapeutic targets (197).
Undoubtedly, the main advantage of NGS analysis compared
with the targeted approaches is the possibility of investigating a
large range of markers reaching up to several hundred genes in a
single panel. Also, a single test provides valuable information on
single nucleotide polymorphisms, short indels, copy number
variations, gene fusions, TMB (tumor mutational burden), or
MSI (198). New NGS panels have been developed to detect the
pathological variants associated with cancer at both cfDNA and
cfRNA levels (e.g., Oncomine Pan-Cancer Cell-Free Assay -
Thermo Fisher, Waltham, MA, USA). NGS approaches are
based in fact on massively parallel sequencing technologies that
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offer high throughput, reproducibility, and speed. High-
throughput sequencing, which includes Next-Generation “short-
read” and “long-read” Sequencing methods allows scientists to
perform a wide variety of applications in terms of genomics such
as genome and exome de novo sequencing and resequencing,
study of DNA-protein interactions, and epigenome
characterization. Nowadays, there are at least 9 different NGS
platforms using different template preparation and sequencing
chemistry. However, all NGS platforms perform sequencing of
millions of small fragments of DNA in parallel producing
thousands or millions of sequences concurrently. Bioinformatics
analyses are used to piece together these fragments by mapping
the individual reads to a reference. NGS platforms allow deeply
sequence target regions, analyze epigenetic factors such as
genome-wide DNA methylation and DNA-protein interactions,
and also sequencing cancer samples to study rare somatic variants
or tumor subclones. Many methods are applying NGS to target
panels for specific and highly sensitive detection of targeted
ctDNA mutations (Tagged-Amplicon deep sequencing - TAm-
seq; Safe-Sequencing System - Safe-SeqS or CAncer Personalized
Profiling by deep sequencing - CAPP-Seq) (199). However, the
use of NGS for detecting rare mutations provides a lower technical
sensitivity than ddPCR (200), highlighting that PCR-based
methods and NGS could be employed as complementary
techniques for clinical applications.

Various commercial platforms are available for identifying
actionable mutations in CRC such as Idylla or OncoBEAM,
Idylla platform being used also for MSI detection (201–203).
Vidal and colleagues (204) revealed a 93% overall agreement
between the mutational status of RAS when comparing tissue
and plasma samples. From 55 patients presenting RAS mutations
in investigated tumor tissue, 53 had RAS mutational status
confirmed by ctDNA analysis using OncoBEAM. Poor results
were obtained by Garcıá-Foncillas et al. that showed just 89%
agreement between results obtained by analyzing the mutational
status of KRAS from tissue vs. plasma (201). For detecting MRD,
Tie et al. (205) successfully used massively parallel sequencing-
based assays to predict recurrence in patients with resected stage
II CRC by analyzing ctDNA from postoperatively blood samples
and can measure in real-time the effectiveness of treatment for
patients receiving adjuvant chemotherapy.

Other valuable biomarkers in the liquid biopsy are ctRNAs
such as micro-RNA (miRNA), messenger RNA (mRNA), and
noncoding RNA (ncRNA) that are usually released in circulation
within extracellular vesicles or associated with RNA-binding
proteins (206). ncRNAs for example, are involved in all CRC
stages of tumorigenesis and progression influencing key
signaling pathways such as: WNT/-catenin, phosphoinositide-
3-kinase (PI3K)/protein kinase B (Akt), epidermal growth factor
receptor (EGFR), NOTCH1, mechanistic target of rapamycin
(mTOR) and TP53 (207). Although an incomplete domain, in
the last years many gene fusions have been identified in
colorectal cancer only due to the possibility of high throughput
NGS. The most frequent gene rearrangements detected in CRC
with prognostic value and treatment perspectives are: NTRK
fusions, ALK and ROS1 rearrangements, RET fusions and BRAF
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translocations. NTRK fusions were detected especially in women,
elder people with RAS and BRAF wild-type genes and were
presumably associated with primary resistance to EGFR-targeted
treatment. Conventionally gene fusions are investigated by FISH,
IHC or RT-PCR. Unfortunately, these methods can test for only
one fusion gene at a time, being low-throughput and sometimes
costly. The great advantage NGS brings in clinics is the large
amount of information obtained. In just one test hundreds of
gene rearrangements, known and unknown, frequent or rare can
be detected. It can also investigate very small rearrangements
that would be impossible to be evaluated using classical
methods (208).
4 BIOMEDICAL APPLICATIONS OF
ARTIFICIAL INTELLIGENCE IN
COLORECTAL CANCER MANAGEMENT

4.1 General Background
Nowadays we are all surrounded and widely interacting in our
daily lives with AI in the form of consumer technology, whether
we think about smartphones, wearable devices, search engines,
social media channels, personalized advertising, facial
recognition, autonomous vehicles, energy-efficient buildings,
smart toys and many more. The concept of AI is not new
(209), but only in the past few years, it has raised interest due
to its potential as a virtual assistant able to serve various domains
of human activity, especially the biomedical field. These AI
experiences aim to improve human lives by increasing
efficiency and by tailoring solutions for each individual. From
this point of view, AI may be defined as a combination of
theories, algorithms, and computing frameworks enabling a
machine to independently reproduce intellectual processes
associated with human cognition to decide on an action in
response to its perceived environment to achieve a
predetermined goal. Consequently, AI empowers humans to
become faster in analyzing big amounts of data and smarter in
decision-making by augmenting, however without replacement,
human intelligence, and intuition (210). At its core, AI is a
branch of computer science that has gradually changed not only
our daily lives but also the landscape of healthcare and
biomedical research for medical image analysis, intraoperative
imaging, and genomics.

Starting with the ‘50 when the concept was first defined, there
have been developed rule-based clinical decision support systems
(211) that helped physicians to diagnose disease (212, 213) or
decide the best treatment (214). Despite all these advantages and
clear progress in the current practice, the rule-based systems
displayed a series of inconveniences such as high building cost
and system limitation by the difficult encoding of complex
interactions and requirement of solid medical knowledge (215).
Therefore, this first generation of AI systems has been improved
by the integration of machine learning (ML) methods, which
apply complex interactions to identify data patterns. ML is a
subfield of AI that uses both mathematical and statistical
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approaches to improve the performance of computers. More
specifically, ML resides in the development and implementation
of dynamic algorithms that are able to take particular actions in
response to particular inputs (environment), analyze the data to
determine the actions (216, 217). These algorithms are able to
self-improve (learn) as more data is available and the
optimization process is called “training”. Depending on the
tasks to be solved, basic ML algorithms can be divided into
supervised, unsupervised (218), and reinforcement learning.

Supervised learning (SL) algorithms such as Naive Bayes
classification (217), linear and logistic regression (219), support
vector machines (SVMs) (216), or random forests (RF) (220)
analyses the training data (input-output pairs) and map an input
to output (221). A good example, in this case, is the
histopathology grading of digitalized tissue biopsy slides. First,
a set of images are labeled by the pathologists as positive or
negative for a specific type of cancer and then SVMs for example
learn to classify new, unlabeled images and tag them on a
“probability map”. Zhi et al. (222) used five data sets
containing metastatic and non-metastatic CRC samples to
identify potential biomarkers for CRC metastasis. For this, the
authors used a meta-analysis method to identify the metastatic
and non-metastatic CRC differentially expressed genes and then,
used the SVM classifier to select the top candidates having as
reference a CRC dataset from The Cancer Genome Atlas
database. The authors report a 100% precision of the SVM-
classified 40 gene signatures and highlight the CREB1, CUL7,
and SSR3 genes as biomarkers for the prognosis of
metastatic CRC.

Unsupervised learning (UL) algorithms such as k-means
clustering (217), principal component analysis (223), and
autoencoders (224) identify patterns from untagged data by
separating the items into different classes based on the training
data features to find sub-clusters and outliers in the data. Bae
et al. (225) proposed a feature selection method able to
distinguish CRC patients from normal individuals using K-
means clustering and the modified harmony search algorithm.
To classify CRC using gene information the authors analyzed
6500 genes in 40 CRC tissue biopsies and 22 normal colonic
tissue samples by a 4 step hybrid method consisting of: (i) Z-
normalization of gene information values, (ii) Fisher score based
reduction of redundant genes, (iii) K-means clustering of
representative genes and (iv) Harmony Search (HS) algorithm
based selection.

Reinforcement learning (RL), consists of a set of algorithms
(agents) that operate sequentially by predicting the features of
each step based on the past and present features while assigning a
reward or a penalty on the prediction basis. The purpose of RL is
for the agent to learn an optimal or nearly-optimal policy that
maximizes the “reward function” (226).

Deep learning (DL) is a subfield of ML which involves
training an artificial neural network (ANN) with many layers.
DL recapitulates the biological neural network of the human
brain and uses a layered structure of algorithms to analyze data,
identify patterns, draw conclusions, and make decisions. The
basic architecture of deep neural networks (DNNs) consists of an
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input and an output layer together with a variable number of
hidden layers in between. In such a network, the input is
provided to the input layer, which transfers its computed value
towards the hidden layers that are finally linked to an output
layer. DL can be further classified into the deep neural network
(DNN), recurrent neural network (RNN), and convolutional
neural network (CNN). CNNs are particularly important to
identify patterns from unprocessed images (227). CNNs apply
nonlinear transformations to structured data, for example the
raw pixels within an image, to automatically learn relevant
features. In this approach, it is mandatory to process accurately
the images before analysis in order to reduce the risk of the
model to learn from artifacts. CNNs basically uses two main
models: the first one uses images from a large collection such as
ImageNet to train the initial layers, and the second one is based
on an auto encoder where the model learns background features
from a subset of representative images (228). DL has been widely
applied to empower medical procedures mainly involving
analysis of images resulting from a wide range of procedures
(229–232) and genomics (233).

In brief, biomedical applications of AI can be divided into two
main branches: virtual and physical. The virtual component
consists of ML algorithms: supervised learning, unsupervised
learning, and reinforcement learning, and DL as an ML subset
(Figure 2). CNN is the most prominent DL construction,
representing a particular type of multilayer artificial neural
network that is highly efficient for image classification (227).
While the virtual branch of AI-powered biomedical applications
refers to image analysis and genomic (big data) analysis, the
physical component includes medical devices, surgery robots,
and devices for automated therapy formulation and nanorobots
for targeted drug delivery (234).

Virtual reality (VR) is a simulated experience that generates
an immersive, artificial image and/or environment with real-time
interaction. Applications of VR include entertainment (video
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games), education (virtual training in a wide range of fields
including medicine), and even business (virtual meetings). In
medicine, one of the earliest VR platforms developed was
Minimally Invasive Surgical Trainer-Virtual Reality (MIST-
VR) (Mentice Medical Simulation, Gothenburg, Sweden) for
endoscopic training (235). VR 3D technology is being used for
simulation-based training due to its major advantage of creating
near true experiences overcoming the disadvantages of the
current distance learning and 2D videos (236). Currently,
using VR (237), previously segmented organs and structures
can be highlighted by streaming a digital full image, often
visualized as a 3D render in a virtual environment.

Augmented reality (AR) is an interactive experience
consisting of the addition of artificial information to the
objects in the real world through computer-generated
perceptual information that enables the user to perform tasks
easily. This can be achieved across multiple sensory modalities
like overlapping images and generating video or computer
models. The first headset equipped with an overlapping display
was introduced by Ivan Sutherland in 1965 and served for
military purposes (238). Some examples with applications in
the biomedical field are AccuVein (AccuVein Inc., NY, USA), a
projector-like device that displays a map of the vasculature on
the skin surface (239), or Google Glass which is a head-mounted
display with generated objects superimposed onto real-time
images. Unlike the virtual environment provided with VR, AR
has been used in real surgery for many years (240) as it can
overlay “invisible” information such as pre-or intraoperatively
obtained imaging findings in the real environment.

4.2 AI in CRC Screening and Diagnostic
CRC is a highly preventable disease with very good survival rates
when diagnosed in the early stages. This is why routine screening
is a crucial step in lowering the incidence rates of this pathology
(241) while offering patients the hope for disease-free. The
FIGURE 2 | Schematic representation of the computer-assisted technologies applications in the biomedical field, particularly, in patients with colorectal cancer.
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premalignant alterations from normal to malignant lesions take
almost over 15 years. Efficient screening methods are
permanently developed to accurately diagnose abnormal
modifications with potential pathologic signification (242, 243).
Available CRC screening procedures include colonoscopy,
capsule endoscopy, imaging examinations, and/or blood and
stool tests (244, 245). ML algorithms may be used as non-
invasive and cost-effective methods to screen the CRC risk in
large populations using personal health data (246).

4.2.1 AI in CRC Imagistic Screening Procedures
4.2.1.1 Colonoscopy and Virtual Colonoscopy
Colonoscopy is currently the gold-standard method for CRC
screening displaying several advantages such as high sensitivity,
specificity, and ability to directly visualize the tissue and act on
cancerous and precancerous lesions by polyp resection and/or
tissue biopsy harvest. Multiple works have shown that
colonoscopy significantly reduces CRC incidence and mortality
(247–250). However, due to the significant risk of the human eye
to missing spotting small or flat polyps, computer-aided
detection (CADe) and diagnosis (CADx) systems were
developed to assist colonoscopy in real-time automated polyp
detection (251). DL techniques such as CNNs algorithms were
used to improve colorectal adenoma detection rates and proved
to accurately spot the presence of premalignant lesions (252).
With this respect, the DL-based CADe model effect on polyp and
adenoma detection rates was investigated by Wang et al. (253) in
a randomized controlled trial, while the CADx potential
assistance in discrimination between neoplastic and non-
neoplastic polyps during a colonoscopy was investigated by
Mori et al. (254). To improve even more the CRC polyp
detection and classification, AI-based tools were employed
furthermore in colonoscopy. This approach led to the
development of the virtual colonoscopy or computed
tomographic colonoscopy described for the first time by Lefere
in 2006 (255) and originating from the computed tomographic
colonography described in 1994 (256, 257). This AI-powered
tool may also contribute to the automatic detection of flat
neoplastic lesions, which may represent an aggressive
tumorigenesis and a determining factor in increased adenoma
miss rate (258). Numerous strategies for small and/or flat polyps
detection and their discrimination between neoplastic and non-
neoplastic were developed and already reviewed in recent
literature (259).

4.2.1.2 Capsule Endoscopy (CE)
Capsule endoscopy (CE) is a minimally invasive diagnostic
technique, well tolerated by patients, and a powerful alternative
approach in incomplete colonoscopy cases. Traditionally colon
CE is a time-consuming procedure requiring human
interpretation and analysis of the captured images for the
detection of potential CRC lesions. In this view, AI-powered
technologies have the potential to increase the detection rates of
adenomas by automating the analysis of the results (260, 261)
reported two algorithms, one able to match CE with polyps
identified by colonoscopy and another one based on deep CNNs
for automatic colorectal polyp detection and localization.
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4.2.2 AI in CRC Molecular Imaging
Molecular imaging is a modern approach of medical imaging
that consists of the in vivo visualization of anatomical structures
based on the presence of a radioactive, fluorescent, or magnetic
label. This approach can be used for early diagnostics, therapy
planning, and resection. Nuclear medicine remains the gold
standard for non-invasive molecular imaging, using PET
imaging, combined with CT or MRI anatomical imaging (262).
Alternatively, an optical or electrical expression of the target
molecule in a non-contrasted fashion (263, 264) is applied. More,
the concept of interventional molecular imaging refers to the use
of tracers and other surgical molecular imaging approaches, to
target and help surgeons precisely resect tissues based on
molecular features (265) during radio-guided surgery (266,
267) or fluorescence-guided surgery (268).

4.2.2.1 AI in CRC Molecular Imaging for Diagnostic
Molecular imaging powered by AI strategies holds great potential
to improve the CRC diagnosis as AI algorithms allow the
comparison of the information available for a current patient
with huge databases of previously treated patients potentially
empowering the selection of the most optimal treatment strategy
and the prediction of the treatment outcome (269).

Magnifying chromoendoscopy is an optical diagnosis
procedure, that proved to spot colorectal lesions with over 90%
of sensitivity, specificity, and accuracy (270). This technique
consists in the analysis of the polyp surface with a high-
resolution magnifying colonoscope after indigo carmine or
crystal violet dye spray. With this respect, Häfner et al. (271)
developed a texture feature extraction algorithm, while
Takemura et al. (272) used the quantitative analysis of pit
patterns to propose a software model for the differential
diagnosis of colorectal lesions.

Endocytoscopy refers to an endoscopic imaging procedure,
which is an in vivo imaging microscopy technique that allows a
real-time diagnosis based on the analysis of the cells patterns
observed at high magnification (273). Endocytoscopy relies on
the contact light microscopy principle and requires colonic
mucosa prestaining with absorptive contrast agents, such as
toluidine blue (273, 274). Computer-assisted algorithms were
developed for in vivo discrimination of colonic lesions using
endocytoscopy and even further improved by the use of SVM as
classifiers for benign, adenomatous lesions or invasive
carcinoma (275).

Confocal laser endomicroscopy is a microscopic imaging
technique powering the in vivo inspection of cellular and
subcellular structures (276). K-nearest neighbor classification
was used by Andre et al. (277) to build an automated polyp
characterization system that proved to distinguish between
malignant and benign lesions with an accuracy rate of
almost 90%.

Laser-induced fluorescence spectroscopy (LIFS) and
autofluorescence imaging (AFI) endoscopy are used for in vivo
detection of targeted tissue fluorescence emission. The
autofluorescence could emerge from endogenous molecules
such as collagen or flavins after excitation with an appropriate
light source. Based on color differences these procedures can
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predict in real-time the lesion pathology and accurately
characterize the colorectal polyps. Using computer-aided
software for color analysis models these techniques may
significantly contribute to the differentiation of non-neoplastic
from neoplastic lesions during colonoscopy (278–281).

4.2.2.2 CRC Surgery Procedures Powered by Molecular
Imaging and AI
Classically, preoperative imaging techniques are routinely used
to create detailed roadmaps that help surgeons to plan the
surgery and execute the desired resection. However, the up
growing interest in the development of minimally invasive
surgical strategies, such as robotic surgery has empowered
molecular imaging as a valuable tool for precision surgery.
Intuitive AR visualizations and AI integration for an optimized
perception into the video console used by surgeons in robotic
surgery brought the classical practice to the next level. For
example, the TilePro extension of the da Vinci surgical console
shows preoperative images as windows in the surgeon’s display
(282, 283). Beyond planning and guidance through the
preoperative scans, intraoperative molecular imaging
approaches (radioactive, fluorescent, magnetic, multispectral
optoacoustic tomography (284), fiber-based microscopy (285),
Raman spectrometry (286), etc.) play an important role in
intraoperative lesion localization, decision making, and
subsequent confirmation.
4.2.3 AI in CRC Imagistic Pathology Diagnostic
Despite that other tools have been proposed with great promise
for the future, tissue biopsy remains the gold standard for colon
cancer diagnosis and staging. Therefore, much effort has been
invested to improve this approach. With this respect, some
groups have developed support-vector machines (SVMs) to
enable the automatic classification and diagnose CRC based on
biopsy samples, significantly improving the accuracy of diagnosis
while reducing time and costs (287–289). Convolutional neural
networks (CNNs) are the most commonly used AI technology in
pathology image analysis (290). For example, CNNs were used to
detect and classify nuclei in colon cancer biopsies (291).
Histopathology images of cancerous tissues stained with
standard hematoxylin and eosin (HE) stains were used to
develop technologies with significantly enhanced reading
accuracy (291). More, the TuPaQ algorithm using
immunohistochemistry (IHC) staining was developed to
segment CRC tumor epitheliums, providing a basis for
automated biomarker quantification (292). Recently, Yu et al.
(293) developed a recognition system for CRC which achieved
one of the highest diagnosis accuracies in cancer diagnosis with
AI using SL. More, AI has made a huge step in the field of
intraoperative pathology, providing preliminary evaluations or
highlighting suspicious areas (294). For example, one-step
nucleic acid amplification (OSNA), a non-imaging approach of
the intraoperative biochemical analyses of lymph nodes has been
successfully implemented into the clinical routine in several
countries showing excellent diagnostic accuracy in CRC (295).
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4.2.4 AI in CRC Genomic Data Analysis
AI algorithms have shown several promising results with genetic
testing for CRC. For example, Hu et al. (296) classified CRC
patients with the Union for International Cancer Control
(UICC) II into two groups based on their relapse status and
compared the classification accuracy using the following neural
networks: S-Kohonen (91%), Back-propagation (BP, 66%), and
SVM (70%). Xu et al. (297) used SVM to identify differentially
expressed genes and identified a 15-genes with relevance in
distinguishing patients with a high CRC recurrence risk. Zhang
et al. (298) developed a counter propagation artificial neural
network (CP-ANN) able to detect BRAF mutation. AI
algorithms such as but not limited to BP were used by Wang
et al. (299) to combine gene expression profiling data from The
Cancer Genome Atlas (TCGA) database for CRC diagnosis
improvement. In the context of the up growing interest of the
liquid biopsy approach development, Wan et al. (300) proposed
a ML method using tumor-derived cfDNA. Chang et al. (301)
compared the expression profiles of 380 miRNAs in stage II CRC
versus normal tissue and identified a 3-miRNA signature
potentially predicting the tumor status in stage II CRC.
However, during this time, many AI-based technologies were
developed targeting the using miRNAs (302–305). Ge et al. (306)
used CIBERSORT, a deconvolution algorithm, to study the role
of 22 immune cells types and 404 immune-related gene
expression in the CRC surrounding microenvironment.

Liquid biopsies output data are large and complex and
therefore, traditional methods fail their efficient process. In this
view, ML represents a promising tool for automated analyses of
these data and future prediction (307). Different ML algorithms,
such as SVM, random forest (RF) and ANNs, have been widely
used in the field of medicine (308–310). SML is usually
implemented for liquid biopsy data analysis and involves
model evaluation and selection methods. Data preprocessing
consists of missing-value solution, normalization, dimension
reduction, and feature reconstruction. Regarding the CTCs in
particular, the CellMax (CMx®) platform was developed based
on AI achieved clinical sensitivity and specificity of 80% (121). In
addition, ML algorithms could assist in analyzing data on specific
serum protein biomarkers such as LRG1, EGFR, ITIH4, HPX
and SOD3 in order to identify CRC with 70% sensitivity at over
89% specificity (311).

4.3 AI in CRC Surgery
Along with chemotherapy administration, surgery remains the
main curative procedure for CRC management. With the
development of robotic surgery as a minimally invasive
procedure, CRC management enters a new era. To date, the da
Vinci System developed based on the physical branch of AI
technologies, is the most used surgical robot worldwide. The
major advantages of its use reside both on the surgeon’s and
patient’s sites. Robot-assisted surgery needs smaller incisions that
will conduct minimal scarring and a significant decrease in the risk
of surgical site infections, faster recovery and decrease of
hospitalization period. Postoperative pain and bleeding are
significantly lower as compared to traditional open surgery (312,
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313). On the other side, using computer-controlled devices
surgeons benefit from enhanced visual field, more flexibility,
increased precision, and minimal fatigue. Besides the above-
mentioned advantages, the da Vinci dual-console also allows
integrated teaching and supervising. Several retrospective studies
on robotic-assisted CRC resections showed that the procedure
significantly reduced the complications rate and resulted in less
evident inflammatory response as compared with the open surgery
(314, 315). Other robots for surgery such as The Senhance System
(TransEnterix Surgical Inc., Morrisville, NC, USA) which is a
laparoscopy-based system are developed. Overall, robot-assisted
colorectal surgery has better performance in terms of both short-
and long-term outcomes (316).

4.4 AI in CRC Therapy
Concerning the actual preparation of the administered therapy
for patients, manual handling of cytotoxic drugs is a high-risk
activity due to the prolonged exposure to carcinogens (317) and
also a major error generating point in the patient’s management
(318). Therefore, the introduction of robots such as the
APOTECAchemo automated system (319) improved the safety
of cytotoxic drug preparation, almost excluding the errors
associated with human handling (320). Regarding CRC therapy
research, Martel et al. (321) developed the NamiRobot System
that can deliver drugs to cancer cells and hypoxic regions based
on the reduced oxygen levels caused by the proliferation of
cancer cells. More, AI technology can also promote research
on new drugs. For example, Cruz et al. (322) used machine
learning to detect with a prediction accuracy of over 63% the
half-maximal inhibitory concentration (IC50) of a new drug on
the HCT116 colon cancer cell line.
5 CONCLUSIONS AND PERSPECTIVES

The emerging field of research in CRC pathology empowered the
development of new approaches and technologies for better
management of this malignancy in terms of: diagnostic,
treatment, and prognostic. Specifically, on one hand, liquid biopsy
is a promising tool revealing the residual cancer cells, and patient’s
disease progression in real-time. This valuable outcome is enabled
by the access to worthy decision-making information like genomic
profiling for eligibility to targeted therapy, identification of
chemotherapy-induced genomic alterations as compared to the
initial tissue biopsy, detection of disease relapse, and/or MDR.
Moreover, this innovative approach could be applied in clinical
practice to enhance the knowledge of the specific biological feature
of CRC disease including temporal and spatial heterogeneity. For
example, the analysis of NGS data might reveal RAS mutations,
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which predict resistance to epidermal growth factor receptor
(EGFR) therapy and/or BRAF mutations which indicate that
encorafenib and cetuximab therapy might be effective. Moreover,
liquid biopsy is a powerful tool also for driving anti-EGFR
rechallenge therapy in mCRC as shown within CHRONOS, a
phase 2 trial aiming to rechallenge anti-EGFR therapy by
monitoring of the mutational status of RAS, BRAF and EGFR in
circulating tumor DNA (ctDNA) (323). Lastly, but not least, the
same analysis might spot NTRK fusions or the amplification of
ERBB2 which can be associated with dual anti-HER-2 blockade. On
the other hand, the development of AI-based technologies for
biomedical applications opened a new era in the field of
automated detection of colorectal polyps during screening
procedures such as but not limited to colonoscopy and automated
detection of malignant tissues in pathology analysis. More, AI meets
AR and VR in robotics, with specific applications in CRC surgery
(example: the highly versatile da Vinci robotic surgery system) and
also in traceable and personalized proper preparation of anti-blastic
drugs in hospitals (example: APOTECAchemo automated system).
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