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Abstract
Precision medicine and personalized medicine are based on the development of biomarkers, 
and liquid biopsy has been reported to be able to detect biomarkers that carry information on 
tumor development and progression. Compared with traditional ‘solid biopsy’, which cannot 
always be performed to determine tumor dynamics, liquid biopsy has notable advantages 
in that it is a noninvasive modality that can provide diagnostic and prognostic information 
prior to treatment, during treatment and during progression. In this review, we describe the 
source, characteristics, technology for detection and current situation of circulating tumor 
cells, circulating free DNA and exosomes used for diagnosis, recurrence monitoring, prognosis 
assessment and medication planning.

Introduction

Cancer is a leading cause of death globally, and precision medicine has been one 
of the most exciting areas for cancer therapy in recent years [1]. Traditional biomarkers and imaging techniques play important roles in tumor diagnosis; however, the specificity 
of traditional serum biomarkers is unsatisfactory for therapeutic guidance. Additionally, 
imaging techniques cannot be used for ‘real-time’ detection due to radiation exposure and 
economic concerns [2-5]. In contrast, liquid biopsy has increasingly been considered for 
early tumor diagnosis, therapeutic guidance and recurrence monitoring due to the abundant 
information that it can provide about tumors [6]. Additionally, liquid biopsy provides a 
noninvasive alternative to traditional ‘solid biopsy’, which cannot be consistently performed 
in certain situations or in ‘real time’. Despite these numerous advantages, several limitations remain, such as a lack of consensus on detection methods, difficulty in the analysis of 
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overwhelming sequencing information and insufficient proof grounded in evidence-based 
medicine.

In this review, we describe and compare the source, characteristics, technology of 
detection and current situation of circulating tumor cells (CTCs), cell-free DNA (cfDNA) and 
exosomes used for the diagnosis of and recurrence monitoring, prognosis assessment and 
medication planning for solid tumors. 

The source and characteristics of CTCs, cfDNA and exosomes

Thomas Ashworth discovered CTCs in the 1860s while using a microscope to examine 
peripheral blood; the theory that tumor cells could penetrate the vessel wall and enter 
the circulatory system was then proposed [7]. Several studies later found that solid tumor 
cells could break into the bloodstream via both passive and active approaches [8-11] (Fig. 
1). Notably, most CTCs were found to be ‘accidental CTCs’ that were passively pushed by 
external forces, such as tumor growth, mechanical forces during surgical operation or 
friction [12]. However, very few tumor cells undergo the epithelial-mesenchymal transition 
(EMT) process, allowing these cells to exhibit more plasticity and metastatic potential [13-
15]. Although thousands of tumor cells can leak into the vasculature through any of the above 
pathways, most CTCs are eliminated via the bloodstream. The natural obstacles to their survival include anoikis, shearing forces due to blood flow and immune cell attack [16-18]. 
In recent years, platelets have also been revealed to be the most important patron of CTCs: platelets specifically promote tumor cells’ EMT in the primary lesion and then aggregate 
above the tumor cells to form a shield in the bloodstream. Platelets are additionally used 
by CTCs to facilitate adhesion to distant organs and the occurrence of the EMT to allow 
formation of a metastatic lesion [19-21]. 

In addition to complete tumor cells, these cells’ genetic content is also found in the blood 
circulation (Fig. 1). Similar to CTCs, cfDNA has been hypothesized to be passively or actively 
released as well [22]. The passive mechanism suggests that dead tumor cells release DNA or 
RNA into the circulation, whereas certain in vitro and in vivo experiments found that tumor cell 
lines could spontaneously release DNA fragments into the circulation [23, 24]. Garcia-Olmo 
et al. found that colon cancer cell-derived cfDNA could induce oncogenic transformation of murine embryonic fibroblasts and distant metastasis [25], which demonstrated that cfDNA 
is more deeply involved in cancer progression than only serving as a biomarker. In healthy 
individuals, apoptotic cells and cfDNA are nearly completely cleared, and the level of cfDNA is very low, whereas in malignant tumors, chronic inflammation and excessive cell death lead to the accumulation of cell debris, which results in insufficient clearance [26, 27]. This 
mechanism provides a rational explanation for the positive relationship between the tumor 
burden and the cfDNA amount observed in cancer patients. CTCs can also release DNA into 
the vasculature [28]. However, previous reports found that few CTCs are in the circulation 
(less than 10 cells in 7.5 ml peripheral blood) [29]; therefore, CTCs do not represent the 
primary resource of cfDNA.

Exosomes are small (30-140 nm) membrane-bound particles that originate from large 
multivesicular bodies (MVBs) and are released into the extracellular environment by fusion 
of MVBs with the plasma membrane, and they have been revealed as a promising biomarker 
in multiple diseases (Fig. 1). Exosomes can also be released in large quantities in various biological fluids, such as plasma, urine, saliva, ascites and bronchoalveolar lavage fluid. They were first considered to only be involved in the removal of unnecessary molecules, 
but numerous interesting studies have since illuminated exosomes’ complex function in 
tumor progression and metastasis. A number of cell types have been described as releasing exosomes, such as epithelial cells, hematopoietic cells, neuronal cells, fibroblasts, adipocytes and tumor cells [30]. Because of their cellular origin, exosomes present specific biomarkers, 
such as members of the tetraspanin family (CD63, CD9 and CD81), heat-shock proteins (such 
as HSP70) and the Rab protein family [31]. Although the size of exosomes is similar between 
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normal and malignant cells, the exosome protein concentration is higher in advanced-stage cancer, and the protein, mRNA and miRNA profiles of exosomes also differ from those of exosomes’ cells of origin [32, 33]. These specific exosomes can alter the microenvironment 
through their protein and RNA cargo. For example, melanoma-derived exosomes can induce 
vascular leakiness at pre-metastatic sites, and intra-exosome Met oncoprotein educates 
bone marrow progenitors toward a c-Kit+Tie2+Met+ pro-vasculogenic phenotype [32]. 
Additionally, bone marrow stroma-derived exosomes are transported to breast cancer cells 
and contribute to these cells’ quiescence via CXCL-12 targeting of miRNAs [34]. Moreover, CD81+ exosomes derived from cancer-associated fibroblasts activate Wnt-PCP signaling in 
breast cancer cells to promote invasiveness [35]. Thus, in light of their crucial role in cell-cell communication and tumor-specific content, exosomes represent a promising biomarker for 
early tumor detection and monitoring and medication planning.

Technology for detecting CTCs, cfDNA and exosomesThe key challenge in CTC detection is CTC rarity, which makes it difficult to estimate 
the number of single tumor cells among millions of surrounding normal peripheral blood 
cells (with even fewer tumor cells in early-stage cancer patients) [36, 37]. Hence, a number 
of technologies have been developed to achieve maximum CTC enrichment. Based on their detection principle, CTC enrichment and detection methods can be classified into cell 
surface marker-dependent and marker-independent approaches. Most cell surface marker-
dependent approaches involve positive selection, which relies on epithelial cell markers, 
usually EpCAM and cytokeratin [38]. The CELLSEARCH system is the only U.S. FDA-approved 
technique to detect CTCs, and abundant clinical trials have demonstrated the prognostic 
value of determining CTC numbers with this technology. Additionally, CTC-chips have 
been applied in various platforms to improve the capture ability of CTCs. The CTC-chip is composed of a microfluidic platform containing antibody (against EpCAM or MUC1)-coated 
microposts that interact with and capture CTCs, which increases the sensitivity and yield and simplifies the step of pre-labeling samples [39-41]. However, several types of tumor cells 
lack epithelial markers (such as triple-negative breast cancer and melanoma) that can be 
enriched using approaches that combine negative selection (CD45-) and size-based methods (density centrifugation or filtration), such as the ISET system or the ScreenCell approach 
[42-44]. In addition to the above-mentioned novel strategies, it is worth noting that CTC 
metastasis requires the EMT process ; hence, transformed tumor cells can lose epithelial 
markers, so epithelial-type tumor cells may not be the culprit. Yu et al. [45] reported that 
rare primary tumor cells simultaneously expressed mesenchymal and epithelial markers; 
however, mesenchymal cells were highly enriched in CTCs, and serial CTC monitoring in 11 
patients suggested an association between mesenchymal-type CTCs, but not epithelial-type 
CTCs, and disease progression. Hence, we propose that CTCs should be comprehensively 
detected and allocated into epithelial (epithelial+/mesenchymal), complete EMT (epithelial/
mesenchymal+), and intermediate EMT (epithelial+/mesenchymal+) phenotypes.

Obtaining and analyzing cfDNA is substantially more challenging than doing so for CTCs 
due to the small fraction of cfDNA within the high amount of DNA originating from normal 
tissue. Usually, whole blood is collected in EDTA-coated tubes, followed by centrifugation to remove cells, and cfDNA is then extracted using commercial kits. With the exception of the sample preparation, the most challenging step is determining cancer-specific aberrations 
in the cfDNA [46]. At present, advanced techniques have been developed to detect DNA 
aberrations primarily based on digital PCR and next-generation sequencing (NGS). Digital 
PCR technology has commonly been applied to detect targeted DNA aberrations, and approaches involving digital PCR primarily include microfluidic platforms [47, 48]; the use of beads, emulsions, amplification and magnetics (BEAMing) [49]; and droplet-based systems 
[50]. Although PCR-based technology has very high sensitivity, which can be used to monitor 
tumor-associated genetic aberrations at frequencies as low as 0.01% [51], this technology can 
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only detect limited numbers of foci. Considering the spatial and longitudinal heterogeneity 
of tumor cells, DNA mutations may vary under the pressure of treatment or among different 
tumor subclones; therefore, digital PCR technology may miss substantial information 
during the monitoring process. To overcome this issue, NGS technologies are now applied 
to obtain a more comprehensive view of entire genomic regions. Approaches involving deep sequencing include Safe-Seq [52], TAm-Seq [48], CAPP-Seq [53] and AmpliSeq [54]. With 
these technologies, NGS provides opportunities to characterize personalized cancer gene maps and develop personalized medicine. Rothe et al. first conducted deep-coverage NGS 
in patients with advanced breast cancer to detect mutations in the hotspot regions of 50 
genes and found discordant mutations between the DNA originating from the primary tumor 
and the plasma in 24% of the patients [54]. However, the high cost (2500 dollars in China) 
and especially the complications in data management impede this technology’s clinical 
application. Additionally, deep sequencing yields an incredible amount of information, making it difficult to distinguish between tumor-specific aberrations and background noise, 
which can be due to sequencing errors or library preparation. Nevertheless, continued 
improvements in the sensitivity of genomic technology and bioinformatics will allow NGS 
techniques to play a central role in cfDNA analysis. The isolation of exosomes ideally not only yields large quantities of purified exosomes 
but also facilitates analysis, such as analysis of the proteins, DNA and miRNA in exosomes. 
Conventional methods of exosome isolation are based on a series of centrifugation steps 
to exclude cells and cell debris and require more than 10 hours of ultracentrifugation; 
however, these remain the most economical protocols, especially when large numbers of 
exosomes are required [55, 56]. Several commercial kits and patented approaches have 
been developed to improve and simplify the exosome isolation process; Urbanelli et al. [57] 
comprehensively reviewed exosome isolation methods to date. In brief, exosomes can be isolated via ultrafiltration plus size exclusion chromatography, precipitation with polymers and immunoaffinity purification using magnetic beads. Each method has advantages and drawbacks. For example, UC-SEC uses a solid matrix to isolate highly purified exosomes; however, it is difficult to remove contaminating proteins [58]. Polymeric precipitation was 
invented by System Biosciences (SBI) in 2009, with the trade name ExoQuick. This technology 
functions by capturing exosomes of a certain size (60-150 nm) in 30 min and yields more 
exosomes than ultracentrifugation; however, it cannot avoid mixing of non-exosomal 
contents with a similar size, such as apoptotic debris or other types of microvesicles [59]. Additionally, exosomes can be isolated using an immunoaffinity method to selectively isolate 
classic CD9+, CD63+ or CD81+ exosomes, with the captured exosomes retaining bioactivity for downstream analysis. The immunoaffinity method can only be applied to a small-volume sample and only isolates exosomes with specific markers, which may limit the experimental findings. Exosomes are rich in RNA transcripts; thus, following isolation and validation via 
electron microscopy, the RNA contents of exosomes can be analyzed using qPCR and NGS. 

Fig. 1. Schematic of the origin of cfDNA, CTCs 

and exosomes in the blood. cfDNA can be re-leased from healthy, inflamed or tumor tissue 
undergoing apoptosis or necrosis. Tumor cells 

can also actively intrude the circulatory system 

or can be pushed into the bloodstream by ex-

ternal forces, such as tumor growth or mecha-

nical forces during surgical operation. These 

tumor cells can be shielded by platelets. Moreo-

ver, circulating exosomes can be generated by 

many cell types, including tumor cells, normal 

cells, and blood cells (even platelets). Abbrevi-

ations: cfDNA, cell-free DNA; CTCs, circulating 

tumor cells. 
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In addition to RNA, several types of protein have been reported to play important roles in 
cell-cell communication. Using proteomic techniques, such as mass spectrometry, Melo et al. [60] identified that a cell surface proteoglycan, glypican-1 (GPC1), could be applied as an 
exosome marker in breast cancer and pancreatic cancer patients. Furthermore, the CD24+ 
exosome has been reported to be a potential marker for diagnosing ovarian cancer [61]. In 
conclusion, integrated systems for exosome isolation and detection have been established to 
facilitate exosome research.

Diagnosis and prognosis assessment 

Liquid biopsy was reported to possess higher sensitivity and to be more convenient for 
cancer diagnosis compared with traditional imaging and biopsy strategies. CTC detection 
in particular has been applied in monitoring epithelium-originating tumors in clinical 
trials [62, 63]. However, debate continues regarding cfDNA and CTCs in cancer diagnosis 
and monitoring. Several studies found that cfDNA appears earlier than CTCs in the serum 
of cancer patients [64, 65]; however, interestingly, other studies reported that cfDNA was 
inferior to CTCs as a marker in lung cancer, and especially non-small-cell lung cancer [29, 41, 66]. Notably, because exosomes can be detected in multiple body fluids, such as serum, 
plasma, urine, ascites and saliva, they have also been revealed to be a very promising biomarker for cancer diagnosis and progression monitoring. We will now discuss the above 
in further detail.

Diagnosis
Many cancer treatment breakthroughs have been achieved in recent decades; however, early diagnosis remains one of the most difficult aspects. The early diagnosis of cancer 

currently relies on image examination, such as via ultrasound, CT or MRI, or on serum 
biomarkers. Although imaging has been and remains the gold standard in solid tumor 
screening and monitoring, emerging approaches have been reported to possess higher 
sensitivity. Murray et al. [67] performed a prospective study to test the diagnostic value of 
CTCs in patients with mammography results indicating a BI-RADS category of 3 or more; CTCs were defined as negative for CD45 and positive for mammaglobin. CTCs were found 
in 87% of invasive cancers but in only 50% of in situ cancers and in no intraductal cancers. 
Among women misdiagnosed with benign disease, the mean time to the development of 
imaging-detected invasive carcinoma was 9 years [68]; therefore, the authors proposed that 
a combination of CTC detection with imaging could be a better choice. The early diagnostic 
value of CTCs in lung cancer has also been validated. Ilie et al. [69] conducted a prospective 
study to examine the presence of CTCs in chronic obstructive pulmonary disease patients without detectable lung cancer. CTCs were detected using an ISET filtration-enrichment 
technique. Five patients (5/168) with CTC positivity were determined to have lung nodules 
via CT scan 1-4 years after CTC detection; subsequent surgical resection and pathological 
examination diagnosed early-stage lung cancer. The controls, without CTCs, were not found 
to have lung cancer in the same period. This study revealed a substantially higher sensitivity 
for CTCs in early cancer diagnosis. Furthermore, the early diagnosis of cancer via CTC 
detection challenges the notion of ‘early-stage cancer’ or ‘carcinoma in situ’, which has been 
considered to be a local disease. In an animal model, CTCs were found very early, in the 
‘carcinoma in situ’ stage [70], and tumor cells were found to spread for many years prior to 
diagnosis (with a high probability) [71, 72]. The above evidence indicates that CTCs may be 
a useful tool for early cancer diagnosis.

In addition to CTC detection, detecting circulating free DNA is a promising strategy 
in early cancer diagnosis. Abundant studies have shown a positive relationship between 
the cfDNA level and the tumor stage. Bettegowda et al. [73] evaluated cfDNA in localized 
malignant disease and found that 72, 57, 48, and 50% of patients with colorectal cancer, 
gastroesophageal cancer, pancreatic cancer, and breast cancer, respectively, could be 
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identified via cfDNA analysis. Additionally, 47% of patients with stage I cancers of any type 
had detectable cfDNA, whereas the fractions of patients with detectable cfDNA were 55, 
69, and 82% for patients with stage II, III, and IV cancers, respectively. However, another 
large prospective nested case-control study failed to draw this conclusion based on an 
analysis of 334 subjects with solid tumors and 166 subjects with leukemia. The geometric 
mean of the cfDNA concentrations was 28 ng/mL in the controls and varied between 29 and 36 ng/mL in the various cancer groups, but this difference was not significant [74]. 
Due to this controversy, several studies have attempted to predict early cancer with known 
DNA mutations using digital PCR. Colorectal cancer is a malignant disease with several 
well-known mutated genes, such as KRAS, APC and TP53. To test the predictive value of the quantification and KRAS status of cfDNA in plasma from high-risk subjects (age > 50 
years and positive fecal blood test), a study was performed in 170 patients with colorectal 
lesions (12 with adenocarcinoma, 22 with high-grade intraepithelial neoplasia (HGIN), and 
73 with premalignant lesions (adenomas and hyperplasia)) and 63 healthy controls. The 
results revealed predictive value for the cfDNA level in adenocarcinoma (AUC 0.709; 95% CI, 
0.508-0.909); however, the KRAS mutation rate in the plasma was drastically lower than that in adjacent adenocarcinoma or HGIN tissue (3% vs 45%) [75]. This finding contrasted with a finding of more KRAS mutations in the serum than in the primary tumor [76]. In conclusion, the use of cfDNA quantification to predict malignancies is promising but requires further 
investigation.

Alterations in circulating miRNAs have also been revealed to be informative in each stage 
of various malignant diseases, such as lung cancer, colorectal cancer and pancreatic cancer 
[77-79]. As miRNAs would be degraded in the circulation, circulating miRNAs are packed 
into various membrane-bound vesicles, such as exosomes, microvesicles, and apoptotic 
bodies, or exist in a vesicle-free form associated with lipoprotein complexes. Among these 
options, exosomes are believed to be an important source. In diethylnitrosamine-induced 
hepatocellular carcinoma (HCC), Liu et al. [80] found that the levels of miRNA-10b, miRNA-21, 
miRNA-122 and miRNA-200a in exosomes were changed in cirrhosis (this is in contrast with 
alpha-fetoprotein, whose levels rise until early-stage HCC). Additionally, these four miRNAs 
were more remarkably changed during the HCC stage. Another four selected miRNAs (miR-1246, miR-4644, miR-3976 and miR-4306) were found to be significantly upregulated in 
the serum exosomes of pancreatic cancer patients but rarely in control groups, and the 
concomitant evaluation of pancreatic cancer-initiating cells and miRNA serum exosome marker panels even reached a diagnostic specificity of 0.93 (95% CI, 0.81-0.98) [81]. The 
above studies offer considerable evidence that exosome miRNAs can be applied as a valuable 
tool in cancer diagnosis; however, the heterogeneous results (even among similar cancer 
types) hamper the interpretation and reliability of miRNAs as cancer biomarkers in clinical 
diagnosis [82, 83]. Furthermore, several biomarkers in serum exosomes have been suggested 
to be good candidate diagnostic and theranostic markers in patients with colorectal cancer, 
pancreatic cancer and breast cancer, such as HSP60 and GPC1, which are expected to be 
validated in more studies with larger samples.

Prognosis and treatment indications
In a pooled analysis, we recently found that the presence of more CTCs in metastatic breast cancer (MBC) was significantly associated with a poorer outcome and that HER2 

positivity, but not hormonal receptor expression, in primary tumors and triple-negative breast cancer was associated with more CTCs. Furthermore, a CTC count ≥ 5 indicated a 
worse treatment response in MBC patients [84]. The prognostic value of CTC enumeration 
has been demonstrated in abundant types of tumors, such as those in prostate cancer, lung 
cancer, pancreatic cancer and colorectal cancer, via large clinical trials and pooled analyses 
[85-89]. In early breast cancer (stage I-II), we found that CTCs were rarely detectable in 
7.5 ml of blood using CELLSEARCH or CanPatrol technology (data not shown). Several 
other researchers reported that CTC detection predicted relapse in high-risk operable 
breast cancer [90-92]. However, the negative result of a prospective study performed by the 
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Southwest Oncology Group (S0500) postponed the utilization of CTC detection for treatment decision-making [93]. The S0500 trial specifically assessed the benefit of an early change in the chemotherapy regimen of patients with persistent increases in CTCs and failed to find 
that it improved overall survival (OS). Additionally, more and more evidence has shown 
that certain subtypes of CTCs, such as HER2+ or mesenchymal-type CTCs, and circulating 
tumor mammospheres are responsible for tumor metastasis, but this is not the case for the 
majority of CTCs, so it is still too early to conclude whether CTCs can provide information for 
treatment guidance.

In contrast with CTCs, the prognostic information offered by cfDNA is based on measuring single tumor-specific aberrations. KRAS mutations have been found to be related to poor 
prognosis in several types of malignant disease. In a multivariate analysis, a KRAS mutation 
in the plasma of patients with non-small-cell lung cancer, pancreatic cancer or colorectal 
cancer was shown to predict poor OS and a high risk of recurrence [94-96]. APC and TP53 aberrations were found to have high sensitivity and specificity in predicting disease relapse in 
colorectal cancer, breast cancer, lung cancer and oral squamous-cell carcinoma [97-99]. The amplification of MYCN (a MYC-related oncogene) in neuroblastoma has been identified as a 
strong risk factor for a poor outcome, whereas immunotherapy has been found to effectively 
increase disease-free and overall survival in MYCN-amplified neuroblastoma [100, 101]. 
Positive results of the phase III BELLE-2 trial were presented at the 2015 San Antonio Breast 
Cancer Symposium [102]. In this study, 1,147 patients with advanced hormonal receptor-
positive breast cancer that had become resistant to aromatase inhibitor therapy received 
the estrogen-receptor antagonist fulvestrant alone or in combination with the PI3K inhibitor 
buparlisib. The PIK3CA mutation status was evaluated in 387 tissue specimens and 587 blood 
samples. Among patients who had PIK3CA mutations detected in their cfDNA, progression-free survival was significantly longer (7.0 months) if they received the combination therapy 
compared with fulvestrant alone (3.2 months), whereas negative results were found in 
patients with PIK3CA mutations detected in the tissue. Although sequencing for several 
known targeted genes (such as TP53, PIK3CA and KRAS) may provide useful information, 
whole-genome sequencing can identify more somatic mutations and thus may be more 
valuable in prognosis prediction. Dawson et al. [47] carried out a prospective single-center 
study to compare the sensitivity of measuring circulating free DNA, CA 15-3, and CTCs to 
monitor the tumor burden in patients with MBC. Their results revealed that cfDNA is the 
most sensitive approach for predicting treatment response and outcome. Additionally, whole-genome sequencing identified more than 50% of patients with structural variants, in 
whom no mutations in PIK3CA or TP53 were found, and in contrast with CA 15-3 and CTCs, 
quantifying tumor-associated genetic mutations was the most sensitive approach to patient stratification according to their survival probability. Although the above evidence indicated 
that cfDNA is a promising prognostic marker that may also be used for treatment guidance, this finding remains to be validated in larger clinical trials. 

In contrast with the use of CTCs and cfDNA, the use of the tumor exosome as a 
prognostic biomarker and for treatment guidance primarily depends on its protein and miRNA expression profiles. It is reported β-Elemene could reverse the chemoresistance by 
downregulate multidrug resistance microRNA in exosomes derived from chemoresistant 
breast cancer cell lines [103]. Low expression of miR-718 in exosomes in HCC has been 
reported as a risk factor for tumor recurrence after liver transplantation [104]. Moreover, 
the downregulation of exosomal miR-92a in HCC is associated with cancer progression and 
a high risk of recurrence [105], and the overexpression of exosomal miR-21-3p indicates 
cisplatin resistance in ovarian cancer [106]. Additionally, higher expression of migration 
inhibitory factor (MIF) in exosomes in pancreatic ductal adenocarcinoma (PDAC) primes 
the liver for metastasis and may represent a prognostic marker for the development of 
PDAC liver metastasis [107]. Rab27a regulates the generation and release of exosomes 
into the extracellular space; however, the targeted inhibition of Rab27a was found to lead 
to a dramatic disappearance of endosome-associated exosomes, whereas CD9- and Mfge8-
positive vesicles were unaffected [108], which indicates that further evaluation is needed to 
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characterize and differentiate the different subpopulations of exosomes and to determine 
their biological function in tumor progression. Additionally, although many exosomal 
proteins and miRNAs have been proposed as prognostic markers and therapeutic targets, 
most have only been investigated in small cohorts or cell lines. Thus, more studies are needed 
to further characterize exosomal proteins and miRNAs and to assess their value in analyzing 
cancer progression and determining the treatment direction. 

ConclusionLiquid biopsy plays an important role in the precision medicine field in that it represents 
a noninvasive cancer therapy strategy that can be molded to an individual’s characteristics 
and biological features. In contrast with conventional imaging examination and tumor 
markers, liquid biopsy is more sensitive and accurate and provides substantially more 
information regarding prognosis and treatment direction. 

However, many hurdles need to be overcome before proceeding with use in the clinical 
setting. The advantage and limitation of three liquid biopsy methods are summarized in 
this review (Table 1). The primary problem is a lack of standard and convenient techniques. 
CELLSEARCH is the only technique approved by the FDA to detect CTCs; however, dozens 
of techniques have shown advantages regarding CTC capture capacity and subgrouping of 
CTCs based on various markers. Regarding cfDNA detection, it lacks standardized steps for extracting DNA to be used for the quantification of tumor-associated genetic mutations (via 
digital PCR, NGS or BEAMing). There is a similar problem for exosomes, with a lack of a 
rapid and high-yield approach for extracting exosomes for downstream analysis. Another 
important issue is how to select tumor markers. For instance, it remains impossible to 
distinguish between CTCs with high and low metastatic capacity as well as between exosomes 
derived from tumor and normal tissues. Additionally, how to analyze cfDNA and whether 
commercial multiple-mutation panels (such as those for NGS) should be used to screen large 
panels of genes for individuals remain substantial challenges. Finally, although many studies 
have been performed to prove the clinical utility of liquid biopsy, most were retrospective, 
so more rigorous studies are required to validate the substantial potential of liquid biopsy. 

Table 1. Comparison of three liquid biopsy methods (CTCs, cfDNA and exosomes). Abbreviations: CTCs, circulating tumor cells; cfDNA, circulating free DNA; BEAMing, beads, emulsion, amplification, magnetics; 
NGS, next generation sequencing
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