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Liquid biopsy analyses are already incorporated in the routine clinical practice in many 
hospitals and oncology departments worldwide, improving the selection of treatments 
and monitoring of lung cancer patients. Although they have not yet reached its full 
potential, liquid biopsy-based tests will soon be as widespread as “standard” biopsies 
and imaging techniques, offering invaluable diagnostic, prognostic, and predictive infor-
mation. This review summarizes the techniques available for the isolation and analysis 
of circulating free DNA and RNA, exosomes, tumor-educated platelets, and circulating 
tumor cells from the blood of cancer patients, presents the methodological challenges 
associated with each of these materials, and discusses the clinical applications of liquid 
biopsy testing in lung cancer.
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inTRODUCTiOn

The so-called “liquid biopsy” is quickly moving from research into clinical practice in lung cancer, 
as well as in other human malignancies. Although its full potential has not yet been reached, the 
“liquid biopsy” is no longer a promise but a reality that is allowing a better treatment selection 
and monitoring of lung cancer patients in hospitals and oncology departments worldwide. We can 
already foresee a day when “liquid biopsy”-based tests will be as widespread and useful as “stand-
ard” biopsies and imaging techniques, offering invaluable diagnostic, prognostic, predictive, and 
monitoring information. In this mini review, we will summarize the state of the art in this exciting 
area, placing a particular emphasis on the clinical utility of the “liquid biopsy” and the variety of 
applications, methodologies, and results that can be derived from it.

“Liquid biopsies” are usually defined as tests done in blood samples or other body fluids. In the 
case of cancer patients, the objective of those tests is to detect materials originated in the tumor. 
Although the term “liquid biopsy” is universally used, many pathologists argue that it is incorrect. 
The so-called “liquid biopsies,” they claim, are not true biopsies. A “true” biopsy is usually performed 
by a surgeon or a pneumologist and involves the extraction of sample cells or tissues that are subse-
quently examined by a pathologist under a microscope, commonly after some kind of fixation and 
staining. Paraffin embedding is also widespread. In contrast, “liquid biopsies” are not obtained by 
surgeons; involve the extraction of blood or other fluids and not of solid tissues, pathologists only 
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TABLe 1 | Biological materials that can be isolated from liquid biopsies 
and their applications in lung cancer.

Material Applications

Circulating tumor DNA 
(ctDNA)

Somatic mutationsa

DNA methylation changes
Copy number alterations

ctRNA Gene fusion
Splicing variants

Tumor-educated platelets Gene fusions
Splicing variants
Cancer diagnosis
RNA profiling

Exosomes Gene fusions
Splicing variants
miRNA analyses
RNA and protein-based molecular profiling

Circulating-tumor cells 
(CTCs)

Monitoring (total CTC counts)b

Culture of CTCs
DNA, RNA, and protein-based molecular profiling
Somatic mutations
Gene fusions

Applications used in routine clinical practice in (a) NSCLC or (b) metastatic breast, 
prostate, and colon cancer patients. Unmarked, research use.
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occasionally intervene and fixation, embedding, or staining are 
equally infrequent. In addition to the “biopsy” half, the “liquid” 
half in the term “liquid biopsy” can also be misleading. The 
materials originated in the tumor that are to be detected in such 
“biopsies” are never liquid. Some of them are cells or fragments of 
cells, such as circulating tumor cells (CTCs), exosomes, or tumor-
educated platelets (TEPs); others are nucleic acids dissolved in 
the blood, such as circulating tumor DNA or RNA (ctDNA, 
ctRNA). Each of these materials offers unique opportunities to 
test different biomarkers and analyze particular characteristics of 
the tumors (Table 1).

The differences between a “real” and a “liquid” biopsy—or 
“liquid sample,” as the pathologists would probably prefer to call 
them—explain the advantages of the latter. “Liquid” biopsies will 
never replace real biopsies, which are irreplaceable sources of 
information that cannot be obtained by any other means, such as 
tumor type and histology. However, they offer all sorts of addi-
tional data that cannot be obtained in any other way. In patients 
who cannot be biopsied, or where biopsies do not have enough 
tissue, “liquid biopsy” is the only alternative to perform genetic 
testing for targeted therapy. Also, in patients with advanced dis-
ease, it is not feasible to obtain biopsies of every metastasic site. 
But blood reaches both the primary tumor and the metastases, 
and materials coming from all can be found in a “liquid biopsy.” 
Finally, unlike “real” biopsies, blood can be repeatedly obtained 
without the risk of comorbidities and used to monitor the course 
of the disease, including early detection of response and relapse 
or emergence of resistance to a particular therapy.

CiRCULATinG TUMOR DnA

Circulating free DNA (cfDNA) can be found dissolved in plasma 
and serum, at variable amounts. In the case of cancer patients, a 

fraction of the cfDNA is tumor derived, and ctDNA represents 
from less than 0.1% to more than 10% of the total cfDNA. This 
percentage has been shown to depend on stage, tumor burden, 
vascularization of the tumor, biological features like apoptotic 
rate and metastatic potential of the cancer cells, and factors affect-
ing the blood volume of the patient (1, 2). In addition, variations 
on the relative abundance of ctDNA correlate with response to 
therapy (3–5). ctDNA is released by passive mechanisms, such 
as lysis of apoptotic and necrotic cells or digestion of tumor 
cells by macrophages, and also by active mechanisms. In this 
respect, cfDNA shows and enrichment in 150–180 bp fragments 
typical of the nucleosomal pattern of DNA fragmentation during 
apoptosis (6–9). The ctDNA carries the same somatic alterations 
as the tumor itself and can be used to detect clinically relevant 
mutations such as those in the epidermal growth factor (EGFR) 
or KRAS genes. This is particularly useful when no biopsy is 
available for genetic analyses and, in this setting, the European 
Medicine Agency recommends EGFR testing in liquid biopsies 
to select patients for tyrosine kinase inhibitor (TKI) therapy (10). 
However, many standard techniques for mutation detection are 
not useful for ctDNA analyses due to an insufficient sensitivity. 
Since ctDNA often represents a small percentage of the total 
cfDNA, somatic mutations coming from the tumor can be present 
at allele fractions as low as 0.01%. Highly sensitive methodologies, 
or variations of preexisting methodologies, have been developed 
in order to detect low abundance mutations in cfDNA (6, 11).

Modified real-time PCR techniques have been widely used 
to identify genetic alterations in the cfDNA of cancer patients. 
They include amplification-refractory mutation system [ARMS 
(12),], Scorpion-ARMS (13), and peptide nucleic acid (PNA) 
or locked nucleic acid (LNA) mutant-enriched PCR (14–17). 
The diagnostic sensitivity of these techniques, when compared 
to tumor tissue, ranges from 43 to more than 90%, while the 
specificity is usually close to 100%; and the two commercially 
available methods to determine EGFR mutations in the cfDNA 
of cancer patients (Therascreen Plasma from Qiagen and COBAS 
Blood from Roche Diagnostics) are based on them. In our group, 
we have developed a quantitative PCR technique in the presence 
of PNA to detect EGFR, KRAS, and BRAF mutations in the 
cfDNA of advanced lung, colon, and cancer patients that achieves 
75–80% sensitivity with 100% specificity (18, 19). Digital PCR, 
droplet digital PCR, and beads, emulsion, amplification, and 
magnetics (BEAMing) system constitute further refinements of 
the PCR-based techniques and have also been used to determine 
mutations in cfDNA (14, 20–26) (Table 2).

Most modified PCR techniques are easy, comparatively 
unexpensive, and have a quick turnaround time (19), but have 
the disadvantage that can only detect mutations in a limited 
number of loci, usually within a single gene. Next-generation 
sequencing methodologies can overcome these limitations but, 
while tissue-based NGS genotyping is already well established, 
the application of NGS technologies to liquid biopsies is chal-
lenging and an ultra-deep sequencing approach is commonly 
used in order to improve sensitivity. In this approach, the gene 
panels are limited so that each read is sequenced thousands of 
times (39, 50, 51). However, this requirement of a high sensitivity 
may easily lead to false-positive results and requires a careful 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


TABLe 2 | Summary of reports on detection of genetic alterations in liquid biopsy materials from advanced nSCLC patients.

Technique n Type of sample Alteration detected Sensitivity (%) Reference

ARMS 86 Circulating free DNA (cfDNA) 
(plasma)

Epidermal growth factor  
(EGFR)-sensitizing mutations

68 (27)

SARMS 42 cfDNA (serum) EGFR-sensitizing mutations 75 (13)

SARMS 11 cfDNA (serum) EGFR-sensitizing mutations 50 (13)

SARMS 21 cfDNA (plasma) EGFR-sensitizing mutations 39 (28)

SARMS-based DxS EGFR mutation test kit 86 cfDNA (serum) EGFR-sensitizing mutations 43 (15)

SARMS-based EGFR mutation detection kit 652 cfDNA (plasma) EGFR-sensitizing mutations 66 (12)

Mass spectrometry-based genotyping 31 cfDNA (plasma) EGFR-sensitizing mutations 39 (29)

Mutant-enriched PCR EGFR-sensitizing mutations 33

Mutant-enriched PCR 18 cfDNA (plasma) EGFR-sensitizing mutations 100 (30)

Mutant-enriched PCR 111 cfDNA (plasma) EGFR-sensitizing mutations 56 (31)

EGFR array, PNA-PCR 37 cfDNA (plasma) EGFR-sensitizing mutations 100 (32)

Digital PCR 35 cfDNA (plasma) EGFR-sensitizing mutations 92 (22)

Droplet digital PCR 46 cfDNA (plasma) EGFR-sensitizing mutations 67 (33)

Droplet digital PCR 50 cfDNA (plasma) EGFR mutations 76 (34)

Droplet digital PCR 25 cfDNA (plasma) EGFR mutations 81 (35)

Cobas® EGFR blood test 199 cfDNA (plasma) EGFR-sensitizing mutations 61 (20)

Cobas® EGFR blood test 38 cfDNA (plasma) p.T790M (EGFR) 73 (36)

Cobas® EGFR blood test 238 cfDNA (plasma) EGFR mutations 76 (14)

DHPLC 230 cfDNA (plasma) EGFR-sensitizing mutations 82 (37)

DHPLC 822 cfDNA (plasma) EGFR-sensitizing mutations 77 (36)

BEAMing 44 cfDNA (plasma) EGFR-sensitizing mutations 73 (24)

BEAMingb 915 cfDNA (plasma) EGFR, KRAS, BRAF, PIK3CA mutations 83–99c (23)

BEAMing 153 cfDNA (plasma) EGFR-sensitizing mutations 82 (26)
p.T790M 73

Cobas® EGFR blood test EGFR-sensitizing mutations 73
p.T790M 64

PNA-Q-PCR 97 cfDNA (serum/plasma) EGFR sensitizing mutations 78 (18)

PNA/LNA-Q-PCR 35 cfDNA (serum) EGFR, KRAS mutations 73 (17)

NGS (CAPP-Seq) 142 cfDNA (plasma) EGFR mutations 81 (38)

NGS (Ion Torrent)a 107 cfDNA (plasma) EGFR, HER2, KRAS, BRAF, PIK3CA 
mutations

58 (39)

NGS (deep sequencing) 288 cfDNA (plasma) EGFR mutations 73 (40)

Melting curve PCR 8 Circulating tumor cells (CTCs) EGFR mutations 100 (41)

NGS 37 CTCs EGFR mutations 84 (42)

Mutant-enriched PCR 21 CTCs p.T790M (EGFR) 57c (43)

25 cfDNA (plasma) 60c

ISET + fluorescence in situ hybridization 
(FISH)

5 CTCs ALK fusions 100 (44)

ISET + filter-adapted FISH 32 CTCs ALK fusions 100 (45)

ISET + filter-adapted FISH 4 CTCs ROS1 fusions 100 (46)

Antibody-independent CTC isolation + FISH 31 CTCs ALK fusions ≥90c (47)

NanoVelcro System + FISH 41 CTCs ALK fusions 100 (48)

Retrotranscription PCR 77 cfRNA (plasma) ALK fusions 22 (49)

Platelets ALK fusions 65

aSamples in the study include stages I–IIIA.
bSamples in the study include tumors other than NSCLC.
cConcordance value.
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validation of the whole testing process. Examples of NGS proto-
cols specifically developed for ctDNA analysis include TAm-Seq 
(tagged-amplicon deep sequencing), which combines site-specific 
primers with universal tails (52, 53); Safe-SeqS (Safe-Sequencing 
System) (54), and CAPP-seq (capture based sequencing), which 
relies on hybridization-based capture of target regions followed 
by amplification (38, 55) (Table 2).

The detection of mutations in cfDNA by modified PCR or 
NGS techniques is not only useful in lung cancer patients at 

presentation. It has also been successfully employed for patient 
monitoring, including early evaluation of response and relapse, 
which are associated with changes in the EGFR or KRAS muta-
tional burden in cfDNA; and for early detection of acquired 
resistance to EGFR TKIs, associated in many patients with the 
emergence of the p.T790M mutation in blood (26, 56). In this 
respect, p.T790M testing in cfDNA has been recently recom-
mended in patients eligible for osimertinib treatment, in order to 
avoid unnecessary rebiopsies (33, 36, 56).
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CiRCULATinG TUMOR RnA

Similar to ctDNA, RNA derived from tumor cells (ctRNA) is 
present in the plasma of cancer patients and can be used for 
detection of the clinically relevant ALK, ROS1, and RET fusion 
genes and METΔ14 splicing variant. However, genetic analyses 
in cfRNA present specific challenges and have not been widely 
used. Unlike cfDNA, cfRNA degrades very quickly and needs 
to be purified rapidly after blood extraction. The alternative is 
adding a preservative such as Trizol and freezing the sample at 
−80°C, but this procedure is not easily accessible to many clinical 
sites. Despite these limitations, our group has a 5-year experience 
in detection of EML4-ALK fusion transcripts in plasma cfRNA 
by retrotranscription PCR (RT-PCR) (49) and, using improved 
processing and purification methods, we have demonstrated that 
the sensitivity of the technique can be significantly improved.

TUMOR-eDUCATeD PLATeLeTS

Platelets have been recently demonstrated to sequester tumor 
RNA by a microvesicle dependent mechanism, and the so-
called TEPs (57, 58) can be used as a source of tumor RNA for 
genetic analysis. Platelets can be isolated from blood by simple 
centrifugation steps, and its RNA content easily purified and used 
for the detection of gene fusions and splicing variants. Using a 
RT-PCR approach, our group has detected EML4-ALK fusion 
transcripts in TEP RNA from advanced lung cancer patients 
with 65% sensitivity and 100% specificity (49). In addition, we 
have demonstrated that the disappearance of fusion transcripts 
in platelets correlates with response to crizotinib treatment. 
Regarding splicing variants, the clinical relevance of METΔ14 in 
lung cancer was only described in 2015 (59–61), and there are no 
reports in the literature about detection of METΔ14 transcripts in 
liquid biopsy. However, we have recently detected the alteration 
in the TEP RNA of a NSCLC patient positive in tumor tissue, 
who attained a partial response to crizotinib (unpublished data).

Platelet RNA can also be analyzed by multiplexing techniques, 
and a recent report has demonstrated the diagnostic potential 
of this approach. Using mRNA sequencing and surrogate TEP 
RNA profiles of 283 samples, 228 cancer patients of six different 
origins were discriminated from 55 healthy individuals with 96% 
accuracy. Tumors with specific genetic alterations, such as KRAS 
or EGFR mutations, were also distinguished and the location of 
the primary tumor identified with 71% accuracy (58).

eXOSOMeS

Exosomes are small vesicles present in blood and other body flu-
ids (62–64). With a 30–100 nm diameter, they are constitutively 
released through exocytosis by many cells, including tumor cells, 
in physiological and pathological conditions. Exosomes contain 
lipids, proteins, mRNA, several types of non-coding RNAs, and 
double-stranded DNA; and their composition partly reflects 
that of the parental cells (65). In addition, being generated by 
the cell secretion pathway, all exosomes carry some common 
proteins independent of their origin, such as ALIX, CD63, or 

TSG-101 (66). Exosomes are generally isolated by sucrose gradi-
ent ultracentrifugation or immune-bead isolation techniques 
(such as magnetic activated cell sorting), and there are commer-
cial kits available. Once isolated, exosomes are characterized by 
transmission electron microscopy, Western blot, FACS, or other 
methodologies (67).

Although being more difficult to purify than other materials, 
the lipid bilayer of exosomes makes their cargo particularly stable, 
theoretically allowing the identification of the tumor of origin, 
genetic alterations or resistances to treatments. In this respect, 
EML4-ALK fusion transcripts have been recently identified in the 
exosomal RNA of NSCLC patients (68). In addition, some studies 
indicate that micro RNA (miRNA) analysis of exosomes might 
be useful for the diagnosis of lung adenocarcinoma (69–71) and 
that particular miRNAs can offer prognostic information in 
advanced NSCLC. For example, downregulation of miRNA-373 
and miRNA-512 has been associated with a poor prognosis (72), 
miR-208a and miR-1246 with resistance to radiotherapy (73, 74), 
and miR-221-3p and 222-3p with good response to osimertinib 
in EGFR mutated patients (75).

CiRCULATinG TUMOR CeLLS

Together with ctDNA, CTCs are the most widely investigated 
material in liquid biopsies of cancer patients. First observed in 
1869 (76), they are cancer cells detached from the solid tumor 
mass that circulate in the blood and lymphatic system (77) 
as single cells or as aggregates, the so-called circulating tumor 
microemboli (78–80). In advanced NSCLC patients, CTCs are 
relatively rare, 1–10  per mL against a background of 106–107 
peripheral blood mononuclear cells. This low abundance poses 
formidable challenges for the development of robust and sensitive 
enrichment protocols (81).

Some CTC capture methods are label dependent, based on 
specific epithelial cell surface markers, such as epithelial cell adhe-
sion molecule (EpCAM) for positive selection or CD45 for nega-
tive depletion. One of such techniques, the CellSearch® system 
(Veridex), has been approved by the FDA for monitoring some 
type of tumors (82–84), but not lung cancer. In advanced NSCLC, 
CellSearch® has shown a limited detection efficiency, with CTCs 
detectable in only 20–40% of patients (85–87). Label-dependent 
methods do not select CTCs that have undergone epithelial to 
mesenchymal transition (88) or those with stem cell characteristics 
that have not started epithelial differentiation. Label-independent 
techniques, which are based on physical characteristics such as 
size, can overcome this limitation. Isolation by Size of Epithelial 
Tumor cells (ISET®, Rarecells), based on filtration and cytological 
characterization, has shown an increased sensitivity in NSCLC 
(89–92) with an 80% detection rate of CTCs in blood from 40 
stage IIIA–IV patients compared with 23% using CellSearch® 
(85). Another technology based on size, ScreenCell®, allows not 
only the detection but also the isolation of CTCs, which can be 
subjected to further morphological studies and used for genetic 
testing. Isolated CTCs can be cultured or injected into mice to 
generate xenografts (93–96) and CTC-derived tumor cells can 
thus be obtained in enough numbers for molecular and pharma-
cological profiling.
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CTC counts have been extensively researched as a prognostic 
factor in NSCLC (97). In early-stage patients, the decrease or dis-
appearance of CTCs after surgery has been reported to correlate 
with better clinical outcomes (98, 99), while its persistence was 
associated with shorter progression-free survival (PFS) (100). 
Regarding advanced NSCLC, some studies have reported that a 
higher CTC count at presentation correlates with advanced stage 
and shorter PFS and overall survival (85, 101). Also, the decrease 
or disappearance of CTCs after chemotherapy or targeted 
therapy has been consistently associated with better outcomes 
(102–104).

Finally, CTCs have also been investigated as a tool to identify 
clinically relevant genetic alterations in NSCLC (Table 2). Using 
NGS and modified PCR techniques, EGFR-sensitizing muta-
tions and the p.T790M resistance mutation have been detected 

in the CTCs of EGFR-positive patients at presentation and after 
progression to TKI treatments, respectively (28, 41, 42, 105). The 
sensitivities reported range from 47 to 100%. However, unlike 
cfDNA, CTCs are not used for EGFR testing in the routine clinical 
practice. EML4-ALK fusions have been identified by fluorescence 
in  situ hybridization (FISH) and immunochemistry in CTCs 
isolated using ISET (44) or other enrichment methodologies (47, 
48). In some cases, filter-adapted FISH was employed, a meth-
odology that has also been demonstrated to successfully identify 
ROS1 rearrangements in CTCs isolated by ISET (46).
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