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Simple Summary: Prostate cancer (PCa) is a widespread malignancy, representing the second leading
cause of cancer-related death in men. In the last years, liquid biopsy has emerged as an attractive and
promising strategy complementary to invasive tissue biopsy to guide PCa diagnosis, follow-up and
treatment response. Liquid biopsy is employed to assess several body fluids biomarkers, including
circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA) and
RNA (ctRNA). This review dissects recent advancements and future perspectives of liquid biopsy,
highlighting its strength and weaknesses in PCa management.

Abstract: Although appreciable attempts in screening and diagnostic approaches have been achieved,
prostate cancer (PCa) remains a widespread malignancy, representing the second leading cause
of cancer-related death in men. Drugs currently used in PCa therapy initially show a potent anti-
tumor effect, but frequently induce resistance and PCa progresses toward metastatic castration-
resistant forms (mCRPC), virtually incurable. Liquid biopsy has emerged as an attractive and
promising strategy complementary to invasive tissue biopsy to guide PCa diagnosis and treatment.
Liquid biopsy shows the ability to represent the tumor microenvironment, allow comprehensive
information and follow-up the progression of the tumor, enabling the development of different
treatment strategies as well as permitting the monitoring of therapy response. Liquid biopsy, indeed,
is endowed with a significant potential to modify PCa management. Several blood biomarkers could
be analyzed for diagnostic, prognostic and predictive purposes, including circulating tumor cells
(CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA) and RNA (ctRNA). In addition,
several other body fluids may be adopted (i.e., urine, sperm, etc.) beyond blood. This review dissects
recent advancements and future perspectives of liquid biopsies, highlighting their strength and
weaknesses in PCa management.

Keywords: liquid biopsy; prostate cancer; cancer biomarkers; circulating tumor cells; extracellular
vesicles; cell-free nucleic acids; circulating nucleic acids; cell-free DNA; cell-free RNA

1. Introduction

Prostate cancer (PCa) affects millions of men worldwide, representing the second most
common type of malignancy in men, with 1.4 million of newly diagnosed cancers per year,
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and one of the leading causes of cancer-related death in men, accounting for 350,000 deaths
per year globally [1,2].

In developed and industrialized countries, the incidence of PCa increases progressively
with the age of the worldwide population. It has been estimated, indeed, that all-age
incidence was 31 per 100,000 males, with a lifetime cumulative risk of 3.9% and more than 1
in 4 men over 75 years is affected by PCa [3,4]. PCa shows an extreme geographical variation
both in incidence and mortality rates, being widely spread in developed countries (such
as Europe, the United States of America, Canada, Australia and Middle-Southern Africa),
while it is less common in developing ones. These differences could be mostly related to
disparities in diagnostic tests frequency and potency among countries as well as lifestyle
factors, as evidenced by migration studies [5]. An emblematic study by Shimizu et al.
showed how an increased PCa incidence and mortality rate was observed among men
migrating from Asian countries with a low-risk of PCa onset to European and North
American countries with a high PCa risk, compared to men remaining in their native
countries [6,7].

Nevertheless, despite the widespread prevalence of this disease, about 80% of cancers
at diagnosis are limited to the anatomical bounds of the prostate gland with an estimated
life expectancy of localized PCa patients up to 99% over 10 years [4,8]. However, on the
other side, a minority of patients have local positive lymph nodes (about 15%) or distant
metastasis (5%) at the diagnosis, reducing the 5 years survival rate at 30–40% [9].

Although PCa etiology is still not yet fully understood, it is recognized that both
environmental (modifiable) and innate factors (unmodifiable) play a pivotal role in PCa
onset [10].

Among unmodifiable factors, age is strongly and linearly associated with the PCa
risk [11]. Similarly, Afro-Americans show an increased PCa risk, due to high levels of
serum testosterone and insulin-like growth factor-1 (IGF-1) [12].

Finally, about 9% of PCa are hereditary forms, i.e., the affected patients have at least
two relatives with a PCa diagnosis before the age of 55. Interestingly, genes involved in
DNA damage repair mechanisms, are involved in PCa, such as BRCA 1/2, HOXB13 and
RNaseL (1q24-25) [13–15].

Among modifiable factors, the dysregulation of hormonal pathways, due to several
environmental factors, such as metabolic syndrome, obesity, hypercholesterolemia and
processed foods intake, leads to increased serum insulin levels, inflammatory cytokines
and estradiol, which predisposes to an increased high-grade PCa risk [16–22].

The current clinical approaches in PCa diagnosis include digital rectal examination
(DRE), prostate-specific antigen (PSA) measurement, imaging (transrectal ultrasound and
multiparametric magnetic resonance imaging of the prostate) and prostate biopsies [23].

Although inexpensive, easy to perform and relatively noninvasive, the effectiveness of
DRE, with a predictive positive value between 5% and 30%, is contingent on the experience
and skill of the examiner [24]. Conversely, PCa diagnosis has been revolutionized by the
introduction of serum PSA testing, being an early, comfortably and relatively inexpensive
marker. However, PSA is an organbut not a cancer-specific marker, whose expression
level is influenced by age and increases also in non-malignant conditions (e.g., benign
prostatic hyperplasia, prostatitis, genito-urinary infections, DRE). Furthermore, the PSA
cut-off level is still not standardized, and despite its role as PCa independent predictor, its
use alone could be misleading [25–28]. PSA sensitivity ranges between 67.5% and 80%,
while specificity is up to 40%. Therefore, about 20–30% of PCa could not be diagnosed
if PSA is used as the only diagnostic test. To address this need, several new laboratory
tests have been developed, with a clear tendency to combine panels biomarkers. Among
these, the most promising laboratory tests are Phi (Beckman Coulter s.r.l., Milano, Italia)
4K score (BioReference Laboratories, Inc. Elmwood Park, NJ, USA) and Stockholm 3 (A3P
Biomedical AB, Stockholm, Sweden) as circulating biomarkers, Mi-prostate score (MLabs,
Ann Arbor, MI, USA), Exo DX Prostate (Exosome Diagnostics, Martinsried, Germany)
and Select MD-X MDxHealth, Irvine, CA, USA as urinary biomarkers and Confirm MDx
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(Veracyte Headquarters, South San Francisco, CA, USA) Oncotype Dx (Exact Sciences,
London, UK,), Prolaris (Myriad Genetics Corporate Headquarters, Salt Lake City, UT,
USA) and Decipher (GenomeDx Biosciences, San Diego, CA, USA) as tissue biomarkers.
These tests aimed to minimize overdiagnosis without missing the identification of clinically
significant PCa [29].

Regarding the imaging, the use of the standard transrectal ultrasound sonography
(TRUS) alone, albeit having improved the diagnostic capabilities in urological clinical
practice, prior to the introduction of multiparametric magnetic resonance imaging (mpMRI),
is still not reliable in detecting PCa, due to its limitations in recognizing only hypoechoic
lesions in the peripheral zone of the prostate [30].

The mpMRI scan represents the game-changer of PCa diagnosis, due to its high
sensitivity and specificity, reporting a negative predictive value between 92% and 100%
for clinically significant tumors. In addition, mpMRI provides detailed anatomical and
functional information on the prostate via the use of several standards weighed sequences,
such as T1 (T1w), T2 (T2w) and diffusion (DWI), permitting to evaluate also the potential
capsular and seminal vesicles infiltration of PCa. Nevertheless, the main limitations of the
mpMRI are the high cost of this equipment and the limited number of radiologists experts
in its interpretation [31,32].

Prostate biopsy represents the only procedure which allows a certain diagnosis and
it is currently performed, under ultrasound guidance, transperineally or transrectally. A
combined approach involving the use of coupled TRUS and mpMRI imaging (Fusion
biopsy), has permitted to increase the overall accuracy of PCa diagnosis, especially in
biopsy-naïve patients, reaching concordance rates with the definitive histologic report up
to 52.3% (for targeted biopsy) and 85.5% (for systematic biopsy) [33].

Nevertheless, this approach shows several risks, such as hematuria, hematochezia and
hematospermia up to a month after examination, increased body temperature, abscesses,
bacteriemia, sepsis or lesions of the prostatic urethra and urinary retention [34,35].

Consequently, less-invasive methods aimed to reduce biopsy complications without
lowering the detection rate of the procedure, are strongly needed.

In the past few years, liquid biopsy has emerged as a new diagnostic and prognostic
tool to trace cancer [36,37]. The term “liquid biopsy” refers, indeed, to a non-invasive
analysis of biomarkers in biological fluids (such as blood, plasma, urine, liquor and saliva)
to allow the detection, and the longitudinal follow-up, of cancers, avoiding the limitations
of invasive procedures and, contextually, obtaining enough molecular information than
those derived from tissue biopsies (Figure 1) [38].

The biomarkers commonly obtained from a liquid biopsy are circulating cell-free tumor
DNA (ctDNA), circulating cell-free tumor RNA (ctRNA), proteins, peptides, metabolites,
circulating tumor cells (CTCs) and extracellular vesicles (EVs), which incorporate genomic,
epigenomic, transcriptomic and proteomic information of tumors. Furthermore, a single
specimen could be used in multiple assays [39,40].

Another advantage of circulating biomarkers’ analysis is related to the reduction of
intra-tumor heterogeneity, permitting to overcome the variability of molecular information
obtained by tissue analysis which could be dependent on tumor localization and accessi-
bility. Moreover, liquid biopsy displays the tumor microenvironment behavior. Finally,
liquid biopsy provides a tool for monitoring tumor progression, predicting prognosis,
overall survival and treatment efficacy, dictating a tailored therapy [41]. Figure 2 shows the
advantages and limitations of tissue versus liquid biopsy (Figure 2).

This current review aims to summarize the potential implications of circulating serum
and urine biomarkers analysis in PCa management, delineating current challenges and
perspectives of the employment of liquid biopsy in clinical practice.
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2. Blood and Serum Biomarkers in the Detection of PCa

The limitation met in the recovery of tissue biopsy highlighted the necessity to im-
plement alternative biological sources [42,43]. The introduction in routine diagnostic
practice of highly sensitive techniques encouraged the comprehension of tumor landscape,
analyzing circulating tumor nucleic acids (ctNA), circulating tumor cells (CTCs) and tumor-
derived extracellular vesicles (EVs) released by cancer cells by using blood samples [43–46].
A comprehensive table summarizes the blood, serum and urinary biomarkers reported in
this review (Table 1).
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Table 1. Summary of blood, serum and urine biomarkers.

Variables Test Name Manufacturer Assay Type Molecular
Targets References

Blood
Biomarkers

ctDNA

Qubit 3.0
Fluorometer and

dsDNA HS
AssayKit

Life Technologies,
Carlsbad, CA,

USA

dsDNA
Quantitation dsDNA

[47]

ctDNA

2100 Bioanalyzer
with High

Sensitivity DNA
Chips

Agilent
Technologies,

Santa Clara, CA,
USA

dsDNA
Quantitation
purity and

fragment size

dsDNA

ctDNA
Fluorometer and
Qubit™ dsDNA

HS Assay Kit

Thermo Fisher
Scientific,

Waltham, MA,
USA

dsDNA
Quantitation dsDNA

[48]

ctDNA

Agilent High
Sensitivity D5000

ScreenTape System
on Agilent-4200

TapeStation

Agilent
Technologies;

Santa Clara, CA,
USA

dsDNA
Qualitative

analysis
dsDNA

ctDNA ABI 7900HT system

Applied
Biosystems,

Foster City, CA,
USA

qPCR analysis of
repeated genomic
ALU sequences to

detect and
quantify cfDNA

dsDNA

[49]
ctDNA

Microfluidic
electrophoresis

using the Agilent
2100 Bioanalyzer

and High
Sensitivity DNA

Chips

Agilent
technologies Inc.,

Palo Alto, CA,
USA

DNA fragment
length analysis dsDNA

Gene
promoters’

methylation
ND ND Sodium

bisulfite-PCR GSTP1, RARB2

ctDNA iCycler iQ
Real-Time PCR

Biorad, Hercules,
CA, USA

qPCR analysis of
long interspersed
nuclear elements

(LINE1) for
ctDNA

quantification

dsDNA [50]

ctDNA

Quant-IT Picogreen
HS DNA kit and

BioTek microplate
spectrophotometer

at 480ex/520em

Thermo Fisher,
Waltham, MA,

USA

dsDNA
Quantification dsDNA [51]

ctDNA

Illumina MiSeq (V3
600 cycle kit) or
HiSeq 2500 (V4

250 cycle kit)

Illumina Inc.,
Towne Centre

Drive, San Diego,
CA, USA

ctDNA
sequencing

AR, SPOP, TP53,
PTEN, RB1,

APC, CDKN1B,
BRCA2, and

PIK3R1

[52]
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Table 1. Cont.

Variables Test Name Manufacturer Assay Type Molecular
Targets References

ctRNA

ExiLENT SYBR®

Greenassay
(Exiqon, Denmark)

qPCR was
performed on
QuantStudio 6
Real-Time PCR

System

Applied
Biosystems,

Foster City, CA,
USA

qRT-PCR analysis

miR-141, 375,
21, 30c, 145, 26b,

223,
24, and let-7a

[53]

ctRNA

TaqMan MicroRNA
Assay, TaqMan
PCR master mix

and TaqMan
probes.

ABI Prism Model
7900 HT

instrument was
used to perform the

qRT-PCR.

Applied
Biosystems,

Foster City, CA,
USA

qRT-PCR analysis

miR-200c,
miR-605,

miR-135a,
miR-433, and

miR-106a

[54]

ctRNA

Sso Advanced
Universal SYBR
Green Supermix
(Bio-Rad, USA).

The reaction was
performed on the

7900HT Fast
Real-Time PCR

System
Thermocycler

Applied
Biosystems,

Foster City, CA,
USA

qRT-PCR analysis OR51E2, SIM2 [55]

CTC

ISET®-CTC Test
and Immuno-Cyto-

Chemistry
(ICC)

Rarecells
Diagnostics,
Paris, France

immuno-cyto-
chemistry PSA [56]

CTC CELLSEARCH
assay

Menarini, Silicon
Biosystems Inc.,
Bologna, Italy

immuno-cyto-
chemistry

epithelial cell
adhesion
molecule
(EpCAM),

cytokeratins,
CD45

[57]

EV
CD63 Exo ELISA

Kit
(EXOEL-CD63A-1)

System
Biosciences,

Mountain View,
CA, USA

ELISA CD63 [58]

EV

CD63 Exo ELISA
KitEXOEL-

CD63A-1); human
glutamate

carboxypeptidase 2
(FOLH1) ELISA kit

(MBS901525)

System
Biosciences,

Mountain View,
CA, USA;MY

BioSource, Inc.,
San Diego, CA,

USA

ELISA

prostate-
specific

membrane
antigen (PSMA)

[58]

EV Mx-3000 or Mx
3005 instrument

Stratagene,
Amsterdam,

The Netherlands

qRT-PCR analysis
for EV

quantification
[59]
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Table 1. Cont.

Variables Test Name Manufacturer Assay Type Molecular
Targets References

CTC CellSearch
Instrument

Janssen
Diagnostics Inc.

Huntington
Valley, PA, USA

CTC
Enumeration

EpCAM+CK+CD45- [60]

Urine
Biomarkers ctDNA

Qiamp DNA
minikit;
IQ SYBR

green;Rotor Gene
6000 detection

system

Qiagen, Milan,
Italy;

Biorad, Milan,
Italy;

Corbett Research,
St. Neots, UK

qPCR analysis for
ctDNA

fragmentation
index evaluation

c-Myc, BCAS1,
HER2, STOX1 [61]

ctDNA

Qiamp DNA
minikit;
IQ SYBR

green;Rotor Gene
6000 detection

system

Qiagen, Milan,
Italy;

Biorad, Milan,
Italy;

Corbett Research,
St. Neots, UK

qPCR analysis for
ctDNA

fragmentation
index evaluation

c-Myc, AR,
HER2, STOX1 [62]

ucfRNA

RNeasy Micro kit;
Omni-Plex Whole

Transcriptome
Amplification

(WTA) kit

Qiagen, Inc.,
Valencia, CA,
USA; Rubicon

Genomics, Ann
Arbor, MI, USA

qRT-PCR TMPRSS2:ERG
gene fusion [63]

EV

ExoDx Prostate
IntelliScore urine
exosome assay;

QIAGEN
Rotor-Gene Q MDx

System

Exosome
Diagnostics,

Waltham, MA,
USA;

Qiagen, Venlo,
The Netherlands

qRT-PCR ERG, PCA3,
SPDEF [64]

CTC
MIL-38 immunoflu-

orescence assay
(IFA)

Minomic
International Ltd.,
Sydney, Australia

immunofluorescence
glycoprotein

glypican 1
(GPC-1)

[65]

2.1. ctDNA

Circulating cell-free DNA (cfDNA) analysis has gained relevance also in the setting of
PCa. cfDNA represents DNA fragments released in blood by normal and tumor cells [66].
Remarkably, DNA released by tumor cells represents a small fraction of cfDNA, called
ctDNA, which shows a smaller size than cfDNA released by normal cells [67,68]. From a
prognostic point of view, ctDNA concentration in blood could potentially be complementary
to PSA tests or replace it. High ctDNA concentration, indeed, correlates with poor PCa
outcome [69]. Corbetta et al. reported a transient ctDNA concentration and fragment
lengths increase after prostate biopsy at different time points [48]. Recently, Chen et al.
have demonstrated that advanced stage PCa patients have a higher ctDNA concentration
compared to those with localized disease or healthy controls. In this study, ctDNA was
quantified with a Qubit 3.0 fluorometer and a DNA dsDNA HS Assay Kit (Life Technologies,
Carlsbad, CA, USA), and the 2100 Bioanalyzer with High Sensitivity DNA Chips (Agilent
Technologies, Santa Clara, CA, USA) was applied to assess purity, concentration and
fragment size of sample analyzed [47]. In addition, the authors highlighted that ctDNA
amount was remarkably increased (from 3.9- to 164-fold) after the surgical approach.
Moreover, it was also estimated that cfDNA was characterized by a larger fraction of di-,
tri- and multi-nucleosome associated DNA fragments [47]. Similarly, Kwee et al. observed,
by RT-PCR analysis of the methylated promoter of the PCa-related genes GSTP1 and
RARB2, a significant ctDNA concentration increase after chemotherapy [49]. In fact, it has
been demonstrated that specific hypermethylation of RARB2 and GSTP1 CpG sites may
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be adopted for PCa diagnosis [70]. According to cfDNA level modification as a clinical
biomarker in PCa patients, in another experience, Patsch et al. evaluated a rapid decline
of ctDNA amount quantified for long interspersed nuclear elements (LINE1) with qPCR
approach after chemotherapy [50]. The phase III FIRSTANA and PROSELICA clinical
trials revealed that ctDNA concentration may be considered an independent prognostic
biomarker in advanced stage PCa. A higher ctDNA baseline concentration has been,
indeed, associated with shorter progression-free survival (PFS) and overall survival (OS)
after chemotherapy. Conversely, a total ctDNA concentration reduction during the first
9 weeks of treatment correlated with drug response therapy [51]. ctDNA analysis could
represent a valid cost-effective alternative to tissue biomarkers analysis in advanced stage
PCa. Interestingly, this approach could be useful to identify predictive biomarkers that can
be further assessed in future clinical trials [67]. As an example, Wyatt et al., by comparing
PCa ctDNA alterations with matched tissue, detected several genetic alterations, including
Androgen Receptor (AR) amplifications, SPOP mutations and TP53, PTEN, RB1, APC,
CDKN1B, BRCA2 and PIK3R1 genes inactivation, which may be further studied in these
patients from a predictive point of view. In this setting, the remarkable concordance of
ctDNA and metastatic tissue biopsies in advanced stage PCa patients suggests that ctDNA
assays could be used for molecular stratification of patients for prognostic and predictive
purposes [52,71].

2.2. ctRNA

Similarly to DNA fragments, tumor cells shade RNA-derived fragments in blood,
known as circulating tumor RNA (ctRNA), ctRNA- messenger RNA (mRNA), microRNA
(miRNA) and long non-coding RNA, may similarly represent a fascinating biosource for
molecular analysis. In particular, the miRNAs expression profiling analysis is increasing to
perform diagnosis, staging, progression, prognosis and treatment response [72,73]. miRNA
can be extracted from ribonucleoprotein complexes or EVs [72,74]. Mitchell et al. firstly
demonstrated the presence of miRNA in the plasma of PCa patients [75]. Since then, a
large number of miRNAs were shown to be deregulated in PCa patients; in particular,
miR-21, miR-30c, miR-125b, miR-141, miR-143, miR-148a, miR-205, miR-221 and miR-
375 [76]. Liu et al., in 2018, performed a RT-PCR analysis of plasma samples collected from
a cohort of n = 229 PCa patients on active surveillance, identifying three miRNA (miR-24,
miR-223, and miR-375) that were significantly expressed in tumor patients. The authors
elaborated two multi-variable logistic regression models, integrating the 3-miR score, PSA,
the percentage of tumor cells in diagnostic samples and clinical variables. They showed
that the 3-miR score ability to predict reclassification was not related to clinical variables
and increased in comparison with clinical outcomes.

The authors concluded that the 3-miR score combined with PSA may represent a
non-invasive high negative predictive value tool to identify patients on active surveillance
who have indolent PCa [53]. Alhasan et al. identified in circulating miRNAs (miR-200c,
miR-605, miR-135a, miR-433, and miR-106a) a molecular signature to detect high-risk
PCa [54]. In 2017, Ferreira de Souza et al. analyzing plasma mRNA and miRNA of
102 untreated patients with PCa and 50 healthy subjects, identified differentially expressed
OR51E2 (olfactory receptor, family 51, subfamily E, member 2) and SIM2 (single-minded 2)
mRNAa, miR-200b and miR-200c. In addition, they showed that the OR51E2 and SIM2
genes association with miR-200b and miR-200c could be a diagnostic marker able to
discriminate PCa samples from healthy controls with a sensitivity of 67% and specificity of
75% [55].

2.3. CTC

Circulating tumor cells (CTCs) originating from primary tumor are detectable in blood
or lymphatic fluid [77]. Nevertheless, the use of CTCs for diagnosis is limited by the rarity
of this cell population in blood [78]. In 2020, Ried et al. tested 20 CTCs samples from
PCa patients, obtained with ISET®-CTC methodology, using the Immuno-Cyto-Chemistry
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staining (ICC) with PSA and protein antibodies, showing a positive result in almost all of the
patients (18/20). In addition, in 27 early-stage patients, CTCs were found in 25 cases and
20 out of them had ICC-PSA-positive markers. Thus, a 99% positive predictive value and a
97% negative predictive value have been highlighted for the ISET-CTC-ICC approach [56].
Over the years, the importance of CTCs detection has also acquired clinical relevance as
a prognostic and predictive biomarker [79]. Prospective trials showed that patients with
an increase in CTCs amount within four weeks after chemotherapy could not benefit from
treatment [57]. In 2021, Scher et al. displayed that the identification of CTCs, through the
Epic Sciences platform, represents a prognostic biomarker for the progression of metastatic
castration-resistant PCa (mCRPC) starting a second-generation androgen receptor signaling
inhibitor (ARSI) [80].

2.4. EVs

In cancer development, EVs play a pivotal role in the signaling pathway network
between tumor cells and the microenvironment [81,82]. In metastatic PCa patients, EVs
promote metastasis by establishing the pre-metastatic niche (PMN). In fact, exosomes
containing miRNAs (miR-21 and miR-139) promote PMS modifications [83]. For these
reasons, EVs can have diagnostic and prognostic value in PCa patients. Several studies
demonstrated that exosomes are more numerous in PCa patients than in healthy individu-
als [58–60,84]. However, according to Gao et al., nowadays, there are no standard methods
to collect and analyze samples, rendering clinical and preclinical data inconsistent [81].

3. Urine Biomarkers in the Detection of PCa

Urine may be considered a suitable integrating source of clinical biomarkers that could
play a pivotal role in the diagnosis, prognosis and PCa patients management [85]. From
urine samples, various analytes may be isolated and detected. Among them, ucfDNA/RNA,
miRNA, circulating tumor cells (CTCs) and extracellular vesicles (EVs) play a promising
role in the clinical management of urogenital malignancy patients [86]. Urine cell-free DNA
(ucfDNA) has recently been investigated in order to identify a novel potential biological
source of nucleic acids able to integrate circulating nucleic acids from plasma samples in
urogenital malignancy patients [87].

Remarkably, molecular analysis of urine analytes is characterized by several advan-
tages: non-invasive sampling, with high volume of reproducible samples available in all
time points with respect to low compliant sampling preparation [88]. Urinary biomarkers
useful to predict biopsy outcome are often unimodal; a single urine fraction (i.e., cell-
free fractions or cell-pellet) or biological cancer characteristic are considered to evaluate
PCa status. Although a single test shows the accuracy and promising clinical relevance,
the integration of multiple types of information could display a higher predictive value.
ExoGrail is a multivariable risk model that integrate information from different clinical
parameters. ExoGrail combines the expression level evaluation of Engrailed-2 (EN2), a
protein contained in vesicles actively secreted by PCa cells and detected in urine samples
with data from urinary cell-free RNA measurement. ExoGrail could be useful to assess PCa
risk-assessment prior to an invasive tissue biopsy [89].

3.1. ctDNA

Based on recent literature data on the ctDNA fragmentation index in solid tumor
patients, Casadio et al. carried out a pilot study on a retrospective series of bladder and
prostate tumor patients aimed to technically validate the implementation of ucfDNA frag-
mentation index as a screening tool in PCa cohort [90]. Overall, it has been shown that urine
DNA integrity is capable of distinguishing between PCa patients and healthy individuals
with an accuracy of about 80% [61]. Moreover, Salvi et al. compared ucfDNA fragmentation
index between n = 67 prostate malignant lesions and n = 64 benign prostate lesions grading
in illness severity. Molecular data were obtained from a qPCR analysis of three oncogenic
sequences longer than 250 bp (c-MYC, HER2 and AR). Results showed a lower clinical
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predictive value than PSA in terms of sensitivity (0.58 vs. 0.95) and specificity (0.44 vs. 0.69),
respectively [62]. In this context, PCA3 represents the first urine long noncoding RNA
biomarker identified and approved by Food and Drug Administration (FDA) that could
improve the detection rate of PCa [91]. Despite an increasing specificity, the quite low sensi-
tive rate highlighted the necessity to discover other targets [92]. The expression of aberrant
RNA transcript (TMPRSS2: ERG) represents a pathogenic mechanism in the development
and progression of PCa [93]. Several studies have elucidated the prognostic role of residual
or persistent TMPRSS2-ERG gene fusion expression in patients with castration resistant
PCa [93,94]. A qRT-PCR analysis performed to detect TMPRSS2: ERG gene rearrangement
in a retrospective series of n = 19 PCa patients (n = 11 prebiopsy and n = 8 pre-radical
prostatectomy samples, respectively) revealed that 8 out of 19 (42.0%) PCa patients showed
a detectable TMPRSS2: ERG aberrant gene fusion expression. In addition, it has been
calculated the qRT-PCR sensitivity for urine TMPRSS2: ERG rearrangement detection by
performing a Fluorescent in situ Hybridization (FISH) assay on corresponding PCa speci-
mens. In this setting, FISH detected TMPRSS2: ERG in three patients with high frequency
detected mutation from urine samples, while also highlighting a positive result in two
patients negative for TMPRSS2: ERG gene fusion detection in ucfRNA specimens [63].
Accordingly, the implementation of the urine-based biomarkers in clinical practice was
optimized with the diffusion of commercially available tests (IntelliScore -Exosome Di-
agnostics, Waltham, MA, USA and SelectMDx- MDxHealth, Irvine, CA, USA) aimed to
determinate PCa patients selected for required tissue biopsy. In the era of “multi-omics”
analysis, the development and diffusion of ultra-deep highly sensitive platforms, allowing
to measure low target concentration in scant starting samples, have revolutionized the test-
ing strategies in the clinical practice of tumor patients [95–97]. In an ongoing clinical trial
promoted by the American Society of Clinical Oncology Genitourinary (ASCO-GU) an NGS
assay, able to cover hot spot mutations in n = 152 cancer-related genes (PredicineCARE™,
Predicine, Hayward, CA, USA), was used on blood and urine-derived circulating nucleic
acids from n = 59 treatment-naïve PCa patients. Molecular profiling was then compared
with corresponding data obtained from gold standard tissue specimens. Preliminary data
elucidated a similar mutation profile between urine and corresponding tissue specimens
with a sensitivity of 86.7% [98].

3.2. ctRNA

Recently, novel small non-coding RNAs have been investigated as promising diag-
nostic biomarkers for PCa patients [99,100]. Small RNA harbored by extracellular vesicles
(EVs) could be considered a valuable marker for PCa diagnosis. Mckiernan et al. collected
urine specimens from n = 1563 subjects. After a validation study aimed to evaluate gene
expression signature in three genes (PCA3, ERG and SPDEF) involved in PCa progression,
they focused on n = 255 not biopsied PCa patients with PSA level >2. The exosomes-derived
gene expression profile showed a higher predictive value than PSA (AUC 0.73; 95% CI,
0.68–0.77 vs. AUC 0.63; 95% CI, 0.58–0.68) in the identification of high-grade PCa patients
with respect to intermediate positive and negative biopsy from PCa patients. In addition,
gene expression signature from urine exosomes also demonstrated a reliable clinically
relevant predictive role (NPV 91.0%) in the decision making of patients with negative
histological results [64]. Interestingly, the EPI urine biomarker was significantly associated
with low-risk disease, making it a good test to select patients for AS [101].

3.3. CTC

Another approach to improve the diagnostic stage in PCa patients is based on the
evaluation of circulating tumor cells (CTCs). The unique technical strategy approved by
FDA for the detection of CTCs in peripheral blood of advanced solid tumor patients is the
CellSearch test, able to detect (≥2 CTCs in 57% of metastatic PCa patients). In addition,
CTC isolation from biological fluids have been recently improved with the implementation
of microfluidic technology [102,103]. This technology provides a high-throughput and
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low-cost analysis and allows accurate CTC separation by cell size in an inert matrix [65,104].
CTCs isolation, confirmed by fluorescent staining (GPC-1+), was observed in 12 out of
14 patients (86.0%) while CTCs detection was negative in 11 out of 14 control group patients
(79.0%). In the remaining cases, a weak GPC-1+ positive signal showed <8 CTC correctly
detected. In addition, a positive correlation between GPC-1+ positive CTCs and PSA level
was observed (r = 0.27) [105].

4. The Role of Liquid Biopsy in Follow-Up

PCa is commonly considered a “hormones-dependent disease”, since androgen con-
trols PCa initiation and progression. Androgen deprivation therapy (ADT) represents
the first-line therapeutic choice. Although ADT is effective to block tumor growth, this
strategy often fails. Monitoring treatment efficacy represents a relevant aspect; currently,
serum PSA and imaging are applied to follow treatment efficacy in PCa. However, the
evaluation of early bone metastasis using imaging methods remains challenging, and PSA
levels may be affected by AR signaling inhibitors. PCa often gains androgen independence,
known as castration-resistant PCa (CRPC), characterized by metastatic spreading, signifi-
cant mutational burden and copy number alteration, poor prognosis and a low survival
rate [106]. CRPC often spreads in multiple sites per patient. Nowadays, despite several
treatment options being available with varied mechanisms of action suitable for CRPC,
long-term complete regression of CRPC is a rare phenomenon [107]. CRPC could depend
to the transcriptional activity reactivation of androgen receptor (AR), because of AR gene
mutations or amplification, leading to antiandrogens or other steroids promiscuous bind-
ing, or AR splice variants constitutively activated [108,109]. Since some tumors exhibit
acquired resistance to specific chemotherapy agents could be possible to maximize the
therapeutic efficacy by characterizing the tumor signature throughout the treatment. In
this scenario, liquid biopsy has an advantage over tumor biopsy to capture genomic events
from distant clones that are driving tumor progression [110]. Liquid biopsy may be used
to early detect and manage a chemoresistance before the treatment pressure selects the
most aggressive subclone of the tumor making it prevalent in tumor tissue. It has been
demonstrated that the exosome-RNA and CTC isolated by plasma samples could be used
to detect the androgen receptor splicing variant 7 (AR-V7), a predictive variant of resistance
to AR signaling inhibitors. Furthermore, Tagawa and coworkers showed that the absence of
the same variants in mCRPC CTC patients may be associated with better taxane treatment
outcomes [111–113]. In addition, liquid biopsy could be also used to predict resistance to
PARP inhibitors (PARPi), which are approved for treatment or maintenance therapy for sev-
eral malignancies, including PCa. Tumors with somatic or germline BRCA mutations may
be responsive to PARPi and platinum chemotherapy; liquid biopsy in this case can detect
an acquired BRCA reversion associated with a poor response to PARPi [114]. In conclusion,
given the high mutational burden characterizing CRPC, liquid biopsy may be a useful tool
for early detection of tumor driving mutation, which eventually leads to chemoresistance
and tumor progression. In this scenario, the follow-up using longitudinal analysis with
liquid biopsy approach allows both the quantitative tracking of tumor burden to monitor
treatment response and the assessment of clonal evolution by comparing genomic profiles
over time.

5. Perspectives, Limitations and Future Perspectives

Biomarkers development for precision, tailored medicine in PCa management could
be accelerated by liquid biopsy. Moreover, liquid biopsy could implement genomic testing
into routine clinical practice, providing signatures of metastatic sites. The CTC counts, cir-
culating nucleic acids amount and fragmentation, the ctDNA methylation status, represent
prognostic and response biomarkers that could potentially guide therapeutic decisions in
clinical practice. However, it should be noticed that liquid biopsy assays require analytical
validation and should be clinically qualified for endorsement in routine clinical use. In this
context, further evaluation in clinical trials and wide prospective studies are required. In
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addition, high cost, technology access and wide heterogeneity in definitions and isolation
platforms impact the introduction of these biomarkers in routine clinical testing. The EVs
use in a clinical setting is promising, but the standardization of isolation and application
methods is challenging. Although liquid biopsy shows the significant potential to track the
PCa clonal evolution that could be helpful to design an adapt, tailored therapeutic strategy
to overcome cancer recurrence and increase the patient lifespan, developing liquid biopsy
biomarkers still faces considerable challenges that hinder their clinical application. Firstly,
despite the accessibility of powerful and high throughput tests, there is not enough evi-
dence to support the routine use of liquid biopsy for early-stage cancer, making treatment
decisions, monitoring, predicting response or for cancer screening. Secondly, the wide
use of liquid biopsy in the clinical practice is still hampered by the costs and the limited
knowledge of this technology in secondary centers. Indeed, liquid biopsy is too expensive
for small centers to be used as a routine laboratory technique, with costs associated with
equipment, reagents and properly trained personnel. Furthermore, in order to obtain
the best results from liquid biopsy, a synergic work between urologists, oncologists and
biochemist/bioinformatics is required during all the processes of this technology. Lastly,
the post-processing laboratory work and statistical analysis needed are much more complex
and time-consuming than the conventional pathology. As a result, also in this case, all
the processes related to the comparison, interpretation and delivery of results have higher
associated costs and resources consumption [115,116]. Despite the promising future of
ctDNA as a driver of cancer treatment, several challenges need to be faced. There is a strong
need to decrease costs and analysis time and to ameliorate the diagnostic performance for
early cancer and minimal residual disease (MRD) detection. The technical challenges of
turnaround time and costs will probably be addressed soon. The main barrier remains the
clinical validation of ctDNA for the use as MRD and cancer screening biomarker. Currently,
the liquid biopsy role in PCa management does not exceed the simple prognostic assess-
ment. Thus far, the main issue to incorporate this approach in clinical decision-making
is the lack of interventional studies demonstrating a clear advantage for the metastatic
PCa patients. Further larger and long-term studies are required to assess whether ctDNA
evaluation can be used for treatment-decision making. The identification of targetable
alterations and emerging resistance biomarkers represents an attractive feature of liquid
biopsy, particularly in CRPC, and could implement the precision medicine therapeutics in
PCa. In the next years, the improvements of our knowledge in liquid biopsy application in
decision-making strategy for mCRPC patients promise to revolutionize the mCRPC and
dramatically improve the survival rate and quality of life of these patients.

6. Conclusions

PCa represent a major public health burden, whose incidence progressively grows.
Although several progresses have been placed into investigating novel diagnostic and
prognostic biomarkers for PCa, considering the inability of current biomarkers to predict
disease aggressiveness, new efforts are needed to paint the intriguing PCa picture. There-
fore, the discovery of novel and effective tools for early diagnosis, follow-up and prognosis
in PCa patients is claimed. In this scenario, the liquid biopsy field in PCa has advanced
exponentially, developing prognostic and predictive biomarkers and holding promise for a
minimally invasive approach of monitoring tumor evolution. In this review, we described
urinary and circulating biomarkers based on CTC, RNA and DNA as novel tools to improve
the characterization and the treatment of PCa patients. These liquid biopsy biomarkers
show the potential to gain comprehensive information on PCa genetic landscape, and give
information about the metastatic sites. Liquid biopsy could guide therapeutic decisions
and accelerate the development of precision medicine in PCa. The recent advancement of
molecular biology techniques available will bring to the development of new standardized
liquid biopsy tests with high sensitivity and specificity, and lower cost that could promote
the diffusion of liquid biopsy in routine clinical practice. Designing a dynamic therapeutic
strategy based on tumor features detected in real-time through the liquid biopsy could
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significantly improve the survival rate and the quality of life of PCa patients. Remarkably,
nucleic acids extracted from biological fluids play a crucial role in the clinical management
of PCa patients. Among conventional body fluids, peripheral blood still remains the most
suitable source of nucleic acids, because a wide series of literature data critically evaluate
the preclinical and analytical issues for blood-derived nucleic acids. Conversely, little was
known about the use of nucleic acids purified from urine samples. However, due to their
close connection with prostatic glands, further studies should be performed to evaluate the
clinical meaning of biomarkers from urine samples.
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