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PREFACE

Liquid crystals are unusual materials. As their name suggt®y inhabit the grey area
between liquids and solids. They have long range oriemtatiorder, typically of the
unigue axes of their component rod-like or plate molecutgmtial variations of this
average direction of molecular orientation are resistedgdsgalled curvature (Frank)
elasticity. On the other hand liquid crystals can flow, allbsianisotropic liquids.

Polymers too are unusual materials. Above the glass transihe physics is mostly
dominated by the high entropy inherent in the disorder oif themponent long chain
molecules. Resistance to molecular shape change arisely finos the imperative to
maintain high entropy. Viscoelastic flow and rubber eldstere macroscopic manifest-
ations of this principle. Thus rubber, where the long molesare linked together, also
inhabits the grey region between liquids and solids. Thaowghinally a solid, rubber is
capable of very high deformations, greater than any othgr tf solid. Its internal mo-
lecular motion is rapid, as in a liquid, with the resulting@phous solid being highly
extensible rather than glassy. If it were not for the few slio&s holding the chains into
a percolating network, rubber would flow under stress, amarg polymers and other
liquids do. The bulk (compression) modulus of typical rubiseof the same order as
that of all liquids, and solids, but the shear modulus is 4t6u* — 10~° times smaller.
Thus rubber essentially deforms as a liquid, that is by shgat constant volume. It is
a weak solid and therein lies its enormous technologicabitamce.

This book is concerned about the phenomena arising whea tivesmarginal ma-
terials, liquid crystals and polymers, are combined inte emen more mysterious ma-
terial — polymer liquid crystals. For two compelling reasame shall concentrate on
such polymers crosslinked into networks, that is, on efasts and gels made from
polymer liquid crystals:

1. Liquid crystal elastomers exhibit many entirely new efifethat are not simply
enhancements of native liquid crystals or polymers. Wel st their thermal
phase transformations giving rise to spontaneous shapggebaf many hun-
dreds of per cents, transitions and instabilities inducgdyplied mechanical
stress or strain, and some unusual dynamical effects. gdsamf all, we shall
see elastomers under some conditions behaving entirdly,stdgforming as true
liquids do without the application of stress. All these nennis of elasticity have
their genesis in the ambiguities between liquid and solat t#re present in li-
quid crystals and polymers, but are only brought to light ar@sslinked rubbery
network.

2. A molecular picture of rubber elasticity is now well edisliied. Since the late
1930s its entropic basis has been understood and turns batds universal as,
say, the ideal gas laws. The rubber shear modylugs simplynksT whereng
counts the number of network strands per unit volume, angiéeaturel enters
for the same entropic reason it does in the gas laws. Them lisamtion of the
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chemistry of chains or other molecular details and the picts thus of great
generality. We call this the classical theory, to which @as complexities such
as crosslink fluctuations, entanglements and nematicactiens have later been
added.

By contrast to simple polymers, which change shape onlyspaese to external
forces, liquid crystal polymers do spontaneously when they orientationally or-
der their monomer segments. Can one nevertheless createeemf their rubber
elasticity of the same generality as that of classical rubliteturns out that one
can, with the sole extra ingredient of chain shape anisgtfapsingle number
directly measurable by experiment). We shall treat this@nopy phenomen-
ologically and find we can explore it at great length. One d@o into many
theoretical complexities, taking into account effects oité chain extensibility,
entanglements and fluctuations — however, in all cases ntierlying symmetry
of spontaneously anisotropic network strands enters tgse®aches in the same
way and the new physical phenomena are not thereby radinélgnced.
Alternatively, one could try to calculate the polymer chaimsotropy that ap-
pears in the molecular picture of rubber elasticity. Ther&owever, no universal
agreement about which way to do this. A further complicai®ithat polymer
liquid crystals can be either main chain or side chain vasiamhere the rod-like
elements are found respectively in, or pendant to, the pefyrackbone. Nematic
and smectic phases of considerable complexity and diffesymmetry arise ac-
cording to the molecular geometry. For instance side chaiddlcan exist in 3
possible uniaxial nematic phas@g, N, andNy,, with still further biaxial pos-
sibilities.

In this book, by concentrating driquid Crystal Elastomers, rather than polymer
liquid crystalsper se, we relegate these theoretical uncertainties in the under-
standing of polymer liquid crystals to a subsidiary roleyKhysical properties
of crosslinked elastomers and gels are established withmyudetailed knowledge
of how chains become spontaneously elongated or flattened. Whenmadecu-
lar knowledge is required, an adequate qualitative undedég of nematic and
smectic networks can be obtained by adopting the simplekaular models of
polymer liquid crystals. In contrast, a treatise on polytiguid crystals would
have to address these issues rather more directly.

These two reasons, the existence of novel physical phersmamhtheir relative inde-

pendence from the details of molecular interactions andrand, explain the sequence
of arguments followed by this book. We introduce liquid ¢a&ys, polymers and rubber
elasticity at the rather basic level required for the uréaédescription of the main topic
— Liquid Crystal Elastomers. Then we look at the new phenantisplayed by these

materials and, finally, concentrate on the analysis of kefufes of nematic, cholesteric
and then smectic rubbery networks.

Rubber is capable of very large extensions. Many importamt phenomena of

nematic origin only occur at extensions of many tens of pgecand are themselves
highly non-linear. Linear continuum theory is utterly ipedole of describing such a
regime and this inadequacy is a motivation for our molecpieture of nematic rubber
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elasticity. However, it is clear that in liquid crystal dlasiers we have not only the Lamé
elasticity of ordinary solids and the Frank curvature étégtof liquid crystals, but also
novel contributions arising from the coupling of the two.€Ttichness and complexity
of this new elasticity are such that it is worthwhile alsolgsiag it using the powerful
and general methods of continuum theory. There is a secotidation for studying
continuum theory — for smectic elastomers there is not ygtusnrderlying molecular
theory and phenomenological theory is the best we can dauecof their important
technological applications, for instance in piezo- anddelectricity, an understanding
of smectic elastomers is a vital priority. The latter chaptf our book are devoted to
this, addressing the linear continuum approaches to etestowith more complicated
structure than simple uniaxial nematics. We also build dd®ibetween the elasticity
methods of rubber and the application of continuum theaty the non-linear regime.
At this point we revisit the symmetry arguments which explahy ‘soft elasticity’ is
possible and why it cannot be found in classical elasticesyst

We were tempted to take ‘Solid Liquid Crystals’ as our tifldis would have been
apt but obscure. We hope that this book will illuminate theysiar materials that merit
this description.

Mark Warner and Eugene Terentjev
26 February 2003
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1

A BIRD’S EYE VIEW OF LIQUID CRYSTAL ELASTOMERS

Liquid crystal elastomers bring together, as nowhere #isee importantideasrient-
ational order in amorphous soft materialsgsponsive molecular shape and quenched
topological constraints. Acting together, they create many new physical phenomena
that are the subject of this book. This bird’s eye view skeschow these themes come
together and thereby explains the approach of our book.

In the early chapters we introduce the reader to liquid etgstnd to polymers since
they are our building blocks. One could regard the first potun book as a primer for
an undergraduate or graduate student embarking on a stydywher or liquid crystal
physics, or on complex fluids and solids. Then elastomersiaoeissed both from the
molecular point of view, and within continuum elasticityeWeed to understand how
materials respond at very large deformations for which @niyolecular approach is
suitable. Also one needs to understand the resolution aihstinto their component
pure shears and rotations, the latter also being imponatitése unusual solids. We
also provide a primer for the basics of these two areas teattherwise only found in
difficult and advanced texts.

Classical liquid crystals are typically fluids of relatiyedtiff rod molecules with
long range orientational order. The simplest case is nematihere the average order-
ing direction of the rods, the directaris uniform. Long polymer chains, with incorpor-
ated rigid anisotropic units can also order nematically g form liquid crystalline
polymers. By contrast with rigid rods, these flexible chatmngate when their com-
ponent rods align. This results in a change of average mialesbape, from spherical
to spheroidal as the isotropic polymers become nematitidptolate anisotropy case,
the long axis of the spheroid points along the nematic diragtFig. 1.1.

Fic. 1.1. Polymers are on average spherical in the isotropstdte and elongate when
they are cooled to the nematic (N) state. The direntpoints along the principal
axis of the shape spheroid. (The mesogenic rods incormbirgtethe polymer chain
are not shown in this sketch, only the backbone is traced.)
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So far we have no more than a sophisticated liquid crystan@hs in average mo-
lecular shape induced by changes in orientational ordetttiotb modify the properties
of this new liquid crystal. Linking the polymer chains tolget into a gel network fixes
their topology, and the melt becomes an elastic solid — agulitadically new proper-
ties can now arise from this ability to change molecular shahile in the solid state.
To understand this we have to consider rubber elasticity.

In rubber, monomers remain highly mobile and thus liquie-liThermal fluctu-
ations move the chains as rapidly as in the melt, but only asdeheir topological
crosslinking constraints allow. These loose constrairgkarhe polymeric liquid into a
weak, highly extensible material. Nevertheless, rubbarsslid in that an energy input
is required to change its macroscopic shape (in contradidaid, which would flow in
response). Equivalently, a rubber recovers its origiredesivhen external influences are
removed. Systems where fluctuations are limited by comggrare known in statistical
mechanics as ‘quenched’ - rigidity and memory of shape stieettty from this. It is
a form of imprinting found in classical elastomers and atsohiral solids, as we shall
see when thinking about cholesteric elastomers.

Can topology, frozen into a mobile fluid by constraints, adgtprint liquid crystal-
line order into the system? The expectation based on singhleonks would be ‘yes’.
This question was posed, and qualitatively answered, by &Gsennes in 1969. He
actually asked a slightly more sophisticated questions§liok conventional polymers
(not liquid crystalline polymers) into a network in the pease of a liquid crystalline
solvent. On removal of the solvent, do the intrinsicallytispic chains remember the
anisotropy pertaining at the moment of genesis of theirlwge® The answer for ideal
chains linked in a nematic solvent is ‘no’! Intrinsicallymatic polymers, linked in a
nematic phase of their own making, can also elude their tmpoil memory on heating.
How this is done (and failure in the non-ideal case) is a nijeme of this book.

Second, what effects follow from changing nematic orderthnd molecular shape?
The answer is new types of thermal- and light-induced shapages.

The third question one can ask is: While in the liquid-cristate, what connec-
tion between mechanical properties and nematic order d@esrosslinking topology
induce? The answer to this question is also remarkable atiddassed below. It leads
to entirely new effects — shape change without energy crserme mechanical effects
and rotatory-mechanical coupling. We give a preview belbthese effects in the form
of a sketch — details have to await the later chapters of tbk&.bo

Rubber resists mechanical deformation because the nethaiks have maximal
entropy in their natural, undeformed state. Crosslinkireptes a topological relation
between chains that in effect tethers them to the solid m#tgy collectively make
up. Macroscopic deformation then inflicts a change away ftloennaturally spherical
average shape of each network strand, and the ent®jslls. The free energy then
rises,AF = —TAS > 0. This free energy, dependent only on an entropy changdé itse
driven by molecular shape change, explains why polymers@arestimes thought of as

1 G. Allen saw the similarity of this question to that of crasking in the presence of a mechanical field,
a great insight considering how monodomain liquid crystast®mers are made today.
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FIG. 1.2. A unit cube of rubber in the isotropic (1) state. Embedith it is shown the
average of the chain distribution (spherical). The blodnghtes by a factoky, on
cooling to the nematic (N) state, accommodating the nowggted chains.

‘entropic springs’. Macroscopic changes in shape are ealigl molecular changes. In
conventional rubber it is always the macroscopic that drthe molecular; the induced
conformational entropy of macromolecules offers the elastistance.

Nematic polymers suffer spontaneous shape changes assheith changing levels
of nematic (orientational) order, Fig. 1.1. One now seewvarsal of influence: changes
at the molecular level induce a corresponding change at Hwascopic level, that is
induce mechanical strains, Fig. 1.2: a block of rubber eddeg by a factor ok, > 1
on cooling or ¥Am < 1 on heating. This process is perfectly reversible. Stguitirthe
nematic state, chains become spherical on heating. Butaneai strain must now ac-
company the molecular readjustment. Very large deformataye not hard to achieve,
see Fig. 1.3. Provided chains are in a broad sense ideah# twt that chain shape can
reach isotropy both for the imprinted case of de Gennes (ooval of nematic solvent)
and for the more common case of elastomers formed from ligujistalline polymers
(on heating). Chains experiencing entanglement betwesindtosslinking points also
evade any permanent record of their genesis. Many real meelastomers and gels in
practice closely conform to these ideal models. Others aneigdeal — they retain some
nematic order at high temperatures as a result of their @aértopology combining
with other factors such as random pinning fields and comiposit fluctuations. They
still show the elongations of Fig. 1.3, but residues of ndeality are seen in the elastic
effects we review below.

This extreme thermomechanical effect, and the phenomerigef1.5 and 1.7, can
only be seen in monodomain, well aligned samples. Without gpecial precautions

[ []

T

Isotropic =~ «—— Heating - Cooling—>  Nematic

FIG. 1.3. A strip of nematic rubber extends and contracts adcgtd its temperature.
Note the scale behind the strip and the weight that is lifted!
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during fabrication, liquid crystal elastomers are alwaystd in polydomain form, with
very fine texture of director orientations. The great breesugh in this field, developing
a first method of obtaining large, perfect monodomain neseltistomers, was made
by Kupfer and Finkelmann in 1991.

Rotation
by 90°

FiG. 1.4. (a) Rotations of the director and matrix by andglesdQ, respectively. From
(b) to (c) the director, and thus chain shape distributismptated by 99from n,
to n. The rubber is mechanically clamped and hence the chairg ithdt would
be naturally elongated alomgmust be compressed: the dotted spheroid in (c) is
compressed to the actual solid spheroid.

Nematic-elastic coupling was the third question we posebigares rise to new ro-
tational phenomena ubiquitous in liquid crystal elast@néris possible to rotate the
director and the rubber matrix independently, see Fig.d).43uch relative rotations of
the body and of its internal anisotropy axis show that necr@tistomers are not simply
exotic, highly-extensible, uniaxial crystals. Such miaierbelong to a class displaying
so-called Cosserat elasticity, but with the distincticat ttheformations and rotations can
be large in elastomers. Imagine now rotating the directalendlamping the body so
its shape does not change, Figs. 1.4(b) and (c). The napuddéte spheroidal distri-
bution, when rotated by 9o be alongn, has a problem. Chains do not naturally fit,
since the clamped body to which they are tethered is not sporedingly elongated
alongn to accommodate their long dimensions. Chains in fact muat bhaen com-
pressed to fit, at considerable entropy loss if they were gargotropic. A rotation of
18 recovers the initial state, so the free energy must be pieriadd turns out to be
F= %Dlsinz(e — Q). The rotational modulu®1, was first given by de Gennes in the
infinitesimal form%Dl(e —Q)2. A rotation of the director in Fig. 1.4(b) would lead to
a ‘virtual’ intermediate state depicted by dotted linesiig. B.4(c). Subsequent squeez-
ing to get back the actual body shape demanded by the clangitioon(full lines) of
Fig. 1.4(c) costs an energy proportional to the rubber meijyd, and to the square of
the orderQ, (sinceQ determines the average chain shape anisotropy). Dhus Q2.

In contrast to ordinary nematics, it costs energy to unifgmratate the director inde-
pendently of the matrix.

In liquid nematics it is director gradients that suffer Hraastic penalties, and thus
long-wavelength spatial variations of the rotation anglstavanishingly small energy.
Thermal excitation of these rotations causes even monoidameenatic liquids to scat-
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ter light and to be turbid. Not so monodomain nematic elastsnwhich are optically

clear because even long wavelength director rotationsaciiisite rubber-elastic energy
3D, 62 and cannot be excited, see Fig. 1.5. The excitations havéradea mass, in the

language of field theory.

fest
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N

FiG. 1.5. A strip of monodomain ‘single-crystal’ nematic rubbeis completely trans-
parent and highly birefringent (image: H. Finkelmann).

Local rotations, so central to nematic elastomers, yieldil@ls and spectacular
new elastic phenomenon which we call ‘soft elasticity’. tjive rotating the director
but now not clamping the embedding body, in contrast to Figs. 1.4(b) @)dOne
simple response would be to rotate the body by the same astihe alirector, and this
would clearly cost no energy. However, contrary to intuitithere is an infinity of other
ways by mechanical deformation to accommodate the anjsiotdistribution of chains
without its distortion as it rotates. Thus the entropy of ¢hains does not change, in
spite of macroscopic deformations. Figure 1.6 illustrdkesinitial and final states of
a 9@ director rotation. They are separated by a path of statesacterised by an in-
termediate rotation anglé and by a corresponding shape of the body, one of which
is shown. Thish-state is shown in the sketch (b) accommodating the spheiittidut
distorting it. A special combination of shears and elorgaicompressions is required,
but it turns out not very difficult to achieve in experiment!

One of the traditional ways to rotate the director in liquigistals is by applying an
electric (or magnetic) field and generating a local torquetdithe dielectric anisotropy.
Due to the nematic-elastic coupling, the director rotaisovery difficult if an elastomer
sample is mechanically constrained. Apart from a few exoapt(all characterised by
a very low rubber-elastic modulus, such as in highly swoliets) no electrooptical
response can occur. However, if the elastomer is mechanigatonstrained, the situ-
ation changes remarkably. In a beautiful series of experimy&rayama (2005,2006)

FIG. 1.6. Rotation of chain shape distribution, fraxgto n, with an intermediate state
6 shown. The unconstrained rubber deforms to accommodatettng director
without distorting the chain distribution.
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has confirmed the prediction of soft elasticity: that thedfielduced director rotation
has no energy cost, can easily reach @0ation angles and has associated mechanical
strains that almost exactly follow the sketch in Fig. 1.6.

Practically, when dealing with rubbers, one might insteagase a mechanical dis-
tortion (say an elongatioid,, perpendicular to the original director) and have the other
components of strain, and the director orientation, follovirhe result is the same —
extension of a rubber costs no elastic energy and is accdetpbayg a characteristic
director rotation. The mechanical confirmation of the camtés shown in stress-strain
curvesin Fig. 1.7(a) and the director rotation in Fig. 1)7(b

We have made liquid crystals into solids, albeit rather wsalids, by crosslink-
ing them. Like all rubbers, they remain locally fluid-like their molecular freedom
and mobility. Paradoxically, their liquid crystallinitylaws these solid liquid crystals
to change shape without energy cost, that is to behave foe steformations like a li-
quid. Non-ideality gives a response we call ‘semi-soft’efidis now a small threshold
before director rotation (seen in the electrooptical/naeital experiments of Urayama
(2005,2006), and to varying degrees in Fig. 1.7); thereaféformation proceeds at
little additional resistance until the internal rotatisrcomplete. This stress plateau, the
same singular form of the director rotation, and the reiaxadf the other mechanical
degrees of freedom are still qualitatively soft, in spitedhreshold.

There is a deep symmetry reason for this apparently mystesioftness that Fig. 1.6
rationalises in terms of the model of an egg-shaped chainhiison rotating in a solid
that adopts new shapes to accommodate it. Ideally, nemasitoeners are rotationally
invariant under separate rotations of both the refererate and of the target state into
which it is deformed. If under some conditions, not necefystre current ones, an
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Fig. 1.7. (a) Stress-deformation data of Kuipfer and Finkelm@r®94), for a series
of rubbers with the same composition and crosslinking dgrsit differing in pre-
paration history: some show a normal elastic response whilers are remarkably
soft. (b) The angle of director rotation on stretching neoaliastomer perpendicu-
lar to the director for a variety of different materials, fnd-inkelmanret al. (1997).
The solid line from, theoretical modeling, accurately mghrces singular points and
characteristic shape of data.
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isotropic state can be attained, then a theorem of Golatand Lubensky shows that in
consequence soft elasticity must exist. It is a questiomud with the fundamental tenet
of elasticity theory, the principle of material frame irfdifence. We shall examine this
theorem and its consequences many times in this book, imgwehat happens when
the conditions for it to hold are violated, that is when sewiithess prevails.

Elastic softness, or attempts to achieve it, pervade muthecélasticity of nematic
elastomers. If clamps or boundary conditions frustratéoum soft deformation tra-
jectories, microstructures will evolve to allow softnesthwihe cost of interfaces being
a relatively smaller price to pay. There are similaritiebAmen this so-called ‘quasi-
convexification’ and that seen in martensite and other sihagmory alloys.

Cholesteric liquid crystals have a helical director digition. Locally they are very
nearly conventional nematics since their director twistuos typically over microns, a
much longer length scale than that associated with nematieqular ordering. They
can be crosslinked to form elastomers which retain the sherfie director distribution.
Several phenomena unique to cholesterics emerge: Beiafjlaematic, cholesteric
elastomers would like on heating and cooling to lose andvecorientational order
as nematic elastomers do. However, they cannot resolvetjuirement at neighbour-
ing points to spontaneously distort By, but in different directions. Accordingly, their
chains cannot forget their topologically imprinted pastewhhey attempt to reach a
totally isotropic reference state (the second de Gennesligion of 1969). Thus cho-
lesteric rubbers also cannot deform softly in response fmasad strains. Their optical
and mechanical responses to imposed stress are exceedaingds a result. They are
brightly coloured due to selective reflection and changeuoés they are stretched —
their photonic band structure changes with strain. Theyerait laser radiation with a
colour shifted by mechanical effects. Further, the effédbpological imprinting can
select and extract molecules of specific handedness fromedrablvent. Such rubbers
can act as a mechanical separator of chirality — a new slaatwablem that goes back
to Pasteur.

We have sketched the essentials of nematic (and cholgstaicer elasticity. This
survey leaves out many new phenomena dealt with in latertetgdor instance elec-
tromechanical Freedericks effects, photo-elastometsditeestically change shape on
illumination, rheology and viscoelasticity that crossesween soft and conventional
depending upon frequency and geometry, and so on.

Smectics are the other class of liquid crystal order. Thexe ldane-like, lamellar
modulation of density in one direction (SmA), or additidga tilt of the director away
from the layer normal (SmC). Many other more complex smeatieses exist and could
also be made into elastomers. In many smectic elastomgesslare constrained not
to move relative to the rubber matrix. Deformations of a rerddong the layer normal
are thus resisted by a layer spacing moduB)f the order of 18 times greater than
the shear modulus of the matrix. Distortions in plane, eithéensions or appropriate
shears, are simply resisted by the rubber matrix. Thus Sat@hers are rubbery in the
two dimensions of their layer planes, but respond as hardertgional solids in their
third dimension. Fig. 1.8 shows this behaviour. Such ex¢érenechanical anisotropy
promises interesting applications.
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FiGc. 1.8. In-plane fluidity and parallel rigidity in a smectic Aastomer (Nishikawa
et al., 1997). The Young modulus parallel and perpendicular tddler normals
differ very greatly - the rubber elasticity is two-dimens#.
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Fic. 1.9. (a) A SmA elastomer (Hiraokat al., 2005). (b) Spontaneous shegg in
achieving the SmC state.

The director tilt associated with the transition from SmASimC induces distortion
in the polymer chain shape distribution. Since chain shapsoupled to mechanical
shape for an elastomer, one expects, and sees in Fig. 1r&aspous distortion. This
response to order change is analogous to the elongationsass! with orientational
order of chains on entering the nematic state, but here viedd$ave shear. The amp-
litude is also large, of the order of 0.4 in the figure. As in tienatic case, the broken
symmetry suggests a mechanism for SmC solids richer sl that of SmA elast-
omers, including SmC soft elasticity equivalent to that iof. E.6.

The tilted, SmC, liquids also exist in chiral forms which rhus symmetry grounds
be ferroelectric. Their elastomers are too. Ferroeleatifiber is very special: mechan-
ically it is soft, about 16times lower in modulus than ferro- and piezoelectrics bseau
as sketched above, its molecules are spatially localisédgmlogical rather than ener-
getic constraints. Distortions give polarisation chang@aparable to those in ordinary
ferroelectrics. But the response in terms of stress mustssecily be 1Htimes larger
than in conventional materials.

We end our preview as we started — solids created by topabginstraints are soft
and highly extensible. Liquid crystal elastomers sharedharacter with theirimportant
cousins, the conventional elastomers. But their additibepaid crystalline order gives
them entirely new kinds of elasticity and other unexpecteghmmena.



