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PREFACE

Liquid crystals are unusual materials. As their name suggests, they inhabit the grey area
between liquids and solids. They have long range orientational order, typically of the
unique axes of their component rod-like or plate molecules.Spatial variations of this
average direction of molecular orientation are resisted byso-called curvature (Frank)
elasticity. On the other hand liquid crystals can flow, albeit as anisotropic liquids.

Polymers too are unusual materials. Above the glass transition, the physics is mostly
dominated by the high entropy inherent in the disorder of their component long chain
molecules. Resistance to molecular shape change arises mostly from the imperative to
maintain high entropy. Viscoelastic flow and rubber elasticity are macroscopic manifest-
ations of this principle. Thus rubber, where the long molecules are linked together, also
inhabits the grey region between liquids and solids. Thoughnominally a solid, rubber is
capable of very high deformations, greater than any other type of solid. Its internal mo-
lecular motion is rapid, as in a liquid, with the resulting amorphous solid being highly
extensible rather than glassy. If it were not for the few crosslinks holding the chains into
a percolating network, rubber would flow under stress, as ordinary polymers and other
liquids do. The bulk (compression) modulus of typical rubber is of the same order as
that of all liquids, and solids, but the shear modulus is about 10−4

−10−5 times smaller.
Thus rubber essentially deforms as a liquid, that is by shearing at constant volume. It is
a weak solid and therein lies its enormous technological importance.

This book is concerned about the phenomena arising when these two marginal ma-
terials, liquid crystals and polymers, are combined into one even more mysterious ma-
terial – polymer liquid crystals. For two compelling reasons we shall concentrate on
such polymers crosslinked into networks, that is, on elastomers and gels made from
polymer liquid crystals:

1. Liquid crystal elastomers exhibit many entirely new effects that are not simply
enhancements of native liquid crystals or polymers. We shall see their thermal
phase transformations giving rise to spontaneous shape changes of many hun-
dreds of per cents, transitions and instabilities induced by applied mechanical
stress or strain, and some unusual dynamical effects. Strangest of all, we shall
see elastomers under some conditions behaving entirely softly, deforming as true
liquids do without the application of stress. All these new forms of elasticity have
their genesis in the ambiguities between liquid and solid that are present in li-
quid crystals and polymers, but are only brought to light in acrosslinked rubbery
network.

2. A molecular picture of rubber elasticity is now well established. Since the late
1930s its entropic basis has been understood and turns out tobe as universal as,
say, the ideal gas laws. The rubber shear modulus,µ , is simplynskBT wherens

counts the number of network strands per unit volume, and temperatureT enters
for the same entropic reason it does in the gas laws. There is no mention of the
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chemistry of chains or other molecular details and the picture is thus of great
generality. We call this the classical theory, to which various complexities such
as crosslink fluctuations, entanglements and nematic interactions have later been
added.
By contrast to simple polymers, which change shape only in response to external
forces, liquid crystal polymers do sospontaneously when they orientationally or-
der their monomer segments. Can one nevertheless create a picture of their rubber
elasticity of the same generality as that of classical rubber? It turns out that one
can, with the sole extra ingredient of chain shape anisotropy (a single number
directly measurable by experiment). We shall treat this anisotropy phenomen-
ologically and find we can explore it at great length. One could go into many
theoretical complexities, taking into account effects of finite chain extensibility,
entanglements and fluctuations – however, in all cases, the underlying symmetry
of spontaneously anisotropic network strands enters theseapproaches in the same
way and the new physical phenomena are not thereby radicallyinfluenced.
Alternatively, one could try to calculate the polymer chainanisotropy that ap-
pears in the molecular picture of rubber elasticity. There is, however, no universal
agreement about which way to do this. A further complicationis that polymer
liquid crystals can be either main chain or side chain variants, where the rod-like
elements are found respectively in, or pendant to, the polymer backbone. Nematic
and smectic phases of considerable complexity and differing symmetry arise ac-
cording to the molecular geometry. For instance side chain fluids can exist in 3
possible uniaxial nematic phases,NI , NII andNIII , with still further biaxial pos-
sibilities.
In this book, by concentrating onLiquid Crystal Elastomers, rather than polymer
liquid crystalsper se, we relegate these theoretical uncertainties in the under-
standing of polymer liquid crystals to a subsidiary role. Key physical properties
of crosslinked elastomers and gels are established withoutany detailed knowledge
of how chains become spontaneously elongated or flattened. When more molecu-
lar knowledge is required, an adequate qualitative understanding of nematic and
smectic networks can be obtained by adopting the simplest molecular models of
polymer liquid crystals. In contrast, a treatise on polymerliquid crystals would
have to address these issues rather more directly.

These two reasons, the existence of novel physical phenomena and their relative inde-
pendence from the details of molecular interactions and ordering, explain the sequence
of arguments followed by this book. We introduce liquid crystals, polymers and rubber
elasticity at the rather basic level required for the universal description of the main topic
– Liquid Crystal Elastomers. Then we look at the new phenomena displayed by these
materials and, finally, concentrate on the analysis of key features of nematic, cholesteric
and then smectic rubbery networks.

Rubber is capable of very large extensions. Many important new phenomena of
nematic origin only occur at extensions of many tens of percents and are themselves
highly non-linear. Linear continuum theory is utterly incapable of describing such a
regime and this inadequacy is a motivation for our molecularpicture of nematic rubber
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elasticity. However, it is clear that in liquid crystal elastomers we have not only the Lamé
elasticity of ordinary solids and the Frank curvature elasticity of liquid crystals, but also
novel contributions arising from the coupling of the two. The richness and complexity
of this new elasticity are such that it is worthwhile also analysing it using the powerful
and general methods of continuum theory. There is a second motivation for studying
continuum theory – for smectic elastomers there is not yet any underlying molecular
theory and phenomenological theory is the best we can do. Because of their important
technological applications, for instance in piezo- and ferroelectricity, an understanding
of smectic elastomers is a vital priority. The latter chapters of our book are devoted to
this, addressing the linear continuum approaches to elastomers with more complicated
structure than simple uniaxial nematics. We also build a bridge between the elasticity
methods of rubber and the application of continuum theory into the non-linear regime.
At this point we revisit the symmetry arguments which explain why ‘soft elasticity’ is
possible and why it cannot be found in classical elastic systems.

We were tempted to take ‘Solid Liquid Crystals’ as our title.This would have been
apt but obscure. We hope that this book will illuminate the peculiar materials that merit
this description.

Mark Warner and Eugene Terentjev
26 February 2003
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1

A BIRD’S EYE VIEW OF LIQUID CRYSTAL ELASTOMERS

Liquid crystal elastomers bring together, as nowhere else,three important ideas:orient-
ational order in amorphous soft materials,responsive molecular shape andquenched
topological constraints. Acting together, they create many new physical phenomena
that are the subject of this book. This bird’s eye view sketches how these themes come
together and thereby explains the approach of our book.

In the early chapters we introduce the reader to liquid crystals and to polymers since
they are our building blocks. One could regard the first part of our book as a primer for
an undergraduate or graduate student embarking on a study ofpolymer or liquid crystal
physics, or on complex fluids and solids. Then elastomers arediscussed both from the
molecular point of view, and within continuum elasticity. We need to understand how
materials respond at very large deformations for which onlya molecular approach is
suitable. Also one needs to understand the resolution of strains into their component
pure shears and rotations, the latter also being important in these unusual solids. We
also provide a primer for the basics of these two areas that are otherwise only found in
difficult and advanced texts.

Classical liquid crystals are typically fluids of relatively stiff rod molecules with
long range orientational order. The simplest case is nematic – where the average order-
ing direction of the rods, the directornnn, is uniform. Long polymer chains, with incorpor-
ated rigid anisotropic units can also order nematically andthus form liquid crystalline
polymers. By contrast with rigid rods, these flexible chainselongate when their com-
ponent rods align. This results in a change of average molecular shape, from spherical
to spheroidal as the isotropic polymers become nematic. In the prolate anisotropy case,
the long axis of the spheroid points along the nematic director nnn, Fig. 1.1.

FIG. 1.1. Polymers are on average spherical in the isotropic (I)state and elongate when
they are cooled to the nematic (N) state. The directornnn points along the principal
axis of the shape spheroid. (The mesogenic rods incorporated into the polymer chain
are not shown in this sketch, only the backbone is traced.)

1



2 A BIRD’S EYE VIEW OF LIQUID CRYSTAL ELASTOMERS

So far we have no more than a sophisticated liquid crystal. Changes in average mo-
lecular shape induced by changes in orientational order do little to modify the properties
of this new liquid crystal. Linking the polymer chains together into a gel network fixes
their topology, and the melt becomes an elastic solid – a rubber. Radically new proper-
ties can now arise from this ability to change molecular shape while in the solid state.
To understand this we have to consider rubber elasticity.

In rubber, monomers remain highly mobile and thus liquid-like. Thermal fluctu-
ations move the chains as rapidly as in the melt, but only as far as their topological
crosslinking constraints allow. These loose constraints make the polymeric liquid into a
weak, highly extensible material. Nevertheless, rubber isa solid in that an energy input
is required to change its macroscopic shape (in contrast to aliquid, which would flow in
response). Equivalently, a rubber recovers its original state when external influences are
removed. Systems where fluctuations are limited by constraints are known in statistical
mechanics as ‘quenched’ - rigidity and memory of shape stem directly from this. It is
a form of imprinting found in classical elastomers and also in chiral solids, as we shall
see when thinking about cholesteric elastomers.

Can topology, frozen into a mobile fluid by constraints, act to imprint liquid crystal-
line order into the system? The expectation based on simple networks would be ‘yes’.
This question was posed, and qualitatively answered, by P-G. de Gennes in 1969. He
actually asked a slightly more sophisticated question: Crosslink conventional polymers
(not liquid crystalline polymers) into a network in the presence of a liquid crystalline
solvent. On removal of the solvent, do the intrinsically isotropic chains remember the
anisotropy pertaining at the moment of genesis of their topology?1 The answer for ideal
chains linked in a nematic solvent is ‘no’! Intrinsically nematic polymers, linked in a
nematic phase of their own making, can also elude their topological memory on heating.
How this is done (and failure in the non-ideal case) is a majortheme of this book.

Second, what effects follow from changing nematic order andthus molecular shape?
The answer is new types of thermal- and light-induced shape changes.

The third question one can ask is: While in the liquid-crystal state, what connec-
tion between mechanical properties and nematic order does the crosslinking topology
induce? The answer to this question is also remarkable and isdiscussed below. It leads
to entirely new effects – shape change without energy cost, extreme mechanical effects
and rotatory-mechanical coupling. We give a preview below of these effects in the form
of a sketch – details have to await the later chapters of the book.

Rubber resists mechanical deformation because the networkchains have maximal
entropy in their natural, undeformed state. Crosslinking creates a topological relation
between chains that in effect tethers them to the solid matrix they collectively make
up. Macroscopic deformation then inflicts a change away fromthe naturally spherical
average shape of each network strand, and the entropy,S, falls. The free energy then
rises,∆F = −T∆S > 0. This free energy, dependent only on an entropy change itself
driven by molecular shape change, explains why polymers aresometimes thought of as

1 G. Allen saw the similarity of this question to that of crosslinking in the presence of a mechanical field,
a great insight considering how monodomain liquid crystal elastomers are made today.
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FIG. 1.2. A unit cube of rubber in the isotropic (I) state. Embedded in it is shown the
average of the chain distribution (spherical). The block elongates by a factorλm on
cooling to the nematic (N) state, accommodating the now elongated chains.

‘entropic springs’. Macroscopic changes in shape are coupled to molecular changes. In
conventional rubber it is always the macroscopic that drives the molecular; the induced
conformational entropy of macromolecules offers the elastic resistance.

Nematic polymers suffer spontaneous shape changes associated with changing levels
of nematic (orientational) order, Fig. 1.1. One now sees a reversal of influence: changes
at the molecular level induce a corresponding change at the macroscopic level, that is
induce mechanical strains, Fig. 1.2: a block of rubber elongates by a factor ofλm > 1
on cooling or 1/λm < 1 on heating. This process is perfectly reversible. Starting in the
nematic state, chains become spherical on heating. But mechanical strain must now ac-
company the molecular readjustment. Very large deformations are not hard to achieve,
see Fig. 1.3. Provided chains are in a broad sense ideal, it turns out that chain shape can
reach isotropy both for the imprinted case of de Gennes (on removal of nematic solvent)
and for the more common case of elastomers formed from liquidcrystalline polymers
(on heating). Chains experiencing entanglement between their crosslinking points also
evade any permanent record of their genesis. Many real nematic elastomers and gels in
practice closely conform to these ideal models. Others are non-ideal – they retain some
nematic order at high temperatures as a result of their orderand topology combining
with other factors such as random pinning fields and compositional fluctuations. They
still show the elongations of Fig. 1.3, but residues of non-ideality are seen in the elastic
effects we review below.

This extreme thermomechanical effect, and the phenomena ofFigs. 1.5 and 1.7, can
only be seen in monodomain, well aligned samples. Without very special precautions

FIG. 1.3. A strip of nematic rubber extends and contracts according to its temperature.
Note the scale behind the strip and the weight that is lifted!
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during fabrication, liquid crystal elastomers are always found in polydomain form, with
very fine texture of director orientations. The great breakthrough in this field, developing
a first method of obtaining large, perfect monodomain nematic elastomers, was made
by Küpfer and Finkelmann in 1991.
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FIG. 1.4. (a) Rotations of the director and matrix by anglesθ andΩ, respectively. From
(b) to (c) the director, and thus chain shape distribution, is rotated by 90o from nnno

to nnn. The rubber is mechanically clamped and hence the chains in (c) that would
be naturally elongated alongnnn must be compressed: the dotted spheroid in (c) is
compressed to the actual solid spheroid.

Nematic-elastic coupling was the third question we posed and gives rise to new ro-
tational phenomena ubiquitous in liquid crystal elastomers. It is possible to rotate the
director and the rubber matrix independently, see Fig. 1.4 (a). Such relative rotations of
the body and of its internal anisotropy axis show that nematic elastomers are not simply
exotic, highly-extensible, uniaxial crystals. Such materials belong to a class displaying
so-called Cosserat elasticity, but with the distinction that deformations and rotations can
be large in elastomers. Imagine now rotating the director while clamping the body so
its shape does not change, Figs. 1.4(b) and (c). The natural,prolate spheroidal distri-
bution, when rotated by 90o to be alongnnn, has a problem. Chains do not naturally fit,
since the clamped body to which they are tethered is not correspondingly elongated
alongnnn to accommodate their long dimensions. Chains in fact must have been com-
pressed to fit, at considerable entropy loss if they were veryanisotropic. A rotation of
180o recovers the initial state, so the free energy must be periodic, and turns out to be
F = 1

2D1sin2(θ −Ω). The rotational modulus,D1, was first given by de Gennes in the
infinitesimal form1

2D1(θ −Ω)2. A rotation of the director in Fig. 1.4(b) would lead to
a ‘virtual’ intermediate state depicted by dotted lines in Fig. 1.4(c). Subsequent squeez-
ing to get back the actual body shape demanded by the clamp condition (full lines) of
Fig. 1.4(c) costs an energy proportional to the rubber modulus,µ , and to the square of
the order,Q, (sinceQ determines the average chain shape anisotropy). ThusD1 ∼ µQ2.
In contrast to ordinary nematics, it costs energy to uniformly rotate the director inde-
pendently of the matrix.

In liquid nematics it is director gradients that suffer Frank elastic penalties, and thus
long-wavelength spatial variations of the rotation angle cost vanishingly small energy.
Thermal excitation of these rotations causes even monodomain nematic liquids to scat-
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ter light and to be turbid. Not so monodomain nematic elastomers which are optically
clear because even long wavelength director rotations costa finite rubber-elastic energy
1
2D1θ 2 and cannot be excited, see Fig. 1.5. The excitations have acquired a mass, in the
language of field theory.

FIG. 1.5. A strip of monodomain ‘single-crystal’ nematic rubber. It is completely trans-
parent and highly birefringent (image: H. Finkelmann).

Local rotations, so central to nematic elastomers, yield a subtle and spectacular
new elastic phenomenon which we call ‘soft elasticity’. Imagine rotating the director
but now not clamping the embedding body, in contrast to Figs. 1.4(b) and(c). One
simple response would be to rotate the body by the same angle as the director, and this
would clearly cost no energy. However, contrary to intuition, there is an infinity of other
ways by mechanical deformation to accommodate the anisotropic distribution of chains
without its distortion as it rotates. Thus the entropy of thechains does not change, in
spite of macroscopic deformations. Figure 1.6 illustratesthe initial and final states of
a 90o director rotation. They are separated by a path of states, characterised by an in-
termediate rotation angleθ and by a corresponding shape of the body, one of which
is shown. Thisθ -state is shown in the sketch (b) accommodating the spheroidwithout
distorting it. A special combination of shears and elongations/compressions is required,
but it turns out not very difficult to achieve in experiment!

One of the traditional ways to rotate the director in liquid crystals is by applying an
electric (or magnetic) field and generating a local torque due to the dielectric anisotropy.
Due to the nematic-elastic coupling, the director rotationis very difficult if an elastomer
sample is mechanically constrained. Apart from a few exceptions (all characterised by
a very low rubber-elastic modulus, such as in highly swollengels) no electrooptical
response can occur. However, if the elastomer is mechanically unconstrained, the situ-
ation changes remarkably. In a beautiful series of experiments, Urayama (2005,2006)

FIG. 1.6. Rotation of chain shape distribution, fromnnno to nnn, with an intermediate state
θ shown. The unconstrained rubber deforms to accommodate therotating director
without distorting the chain distribution.
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has confirmed the prediction of soft elasticity: that the field-induced director rotation
has no energy cost, can easily reach 90o rotation angles and has associated mechanical
strains that almost exactly follow the sketch in Fig. 1.6.

Practically, when dealing with rubbers, one might instead impose a mechanical dis-
tortion (say an elongation,λ , perpendicular to the original director) and have the other
components of strain, and the director orientation, followit. The result is the same –
extension of a rubber costs no elastic energy and is accompanied by a characteristic
director rotation. The mechanical confirmation of the cartoon is shown in stress-strain
curves in Fig. 1.7(a) and the director rotation in Fig. 1.7(b).

We have made liquid crystals into solids, albeit rather weaksolids, by crosslink-
ing them. Like all rubbers, they remain locally fluid-like intheir molecular freedom
and mobility. Paradoxically, their liquid crystallinity allows these solid liquid crystals
to change shape without energy cost, that is to behave for some deformations like a li-
quid. Non-ideality gives a response we call ‘semi-soft’. There is now a small threshold
before director rotation (seen in the electrooptical/mechanical experiments of Urayama
(2005,2006), and to varying degrees in Fig. 1.7); thereafter deformation proceeds at
little additional resistance until the internal rotation is complete. This stress plateau, the
same singular form of the director rotation, and the relaxation of the other mechanical
degrees of freedom are still qualitatively soft, in spite ofa threshold.

There is a deep symmetry reason for this apparently mysterious softness that Fig. 1.6
rationalises in terms of the model of an egg-shaped chain distribution rotating in a solid
that adopts new shapes to accommodate it. Ideally, nematic elastomers are rotationally
invariant under separate rotations of both the reference state and of the target state into
which it is deformed. If under some conditions, not necessarily the current ones, an
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FIG. 1.7. (a) Stress-deformation data of Küpfer and Finkelmann (1994), for a series
of rubbers with the same composition and crosslinking density, but differing in pre-
paration history: some show a normal elastic response whileothers are remarkably
soft. (b) The angle of director rotation on stretching nematic elastomer perpendicu-
lar to the director for a variety of different materials, from Finkelmannet al. (1997).
The solid line from, theoretical modeling, accurately reproduces singular points and
characteristic shape of data.
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isotropic state can be attained, then a theorem of Golubovi´c and Lubensky shows that in
consequence soft elasticity must exist. It is a question of care with the fundamental tenet
of elasticity theory, the principle of material frame indifference. We shall examine this
theorem and its consequences many times in this book, including what happens when
the conditions for it to hold are violated, that is when semi-softness prevails.

Elastic softness, or attempts to achieve it, pervade much ofthe elasticity of nematic
elastomers. If clamps or boundary conditions frustrate uniform soft deformation tra-
jectories, microstructures will evolve to allow softness with the cost of interfaces being
a relatively smaller price to pay. There are similarities between this so-called ‘quasi-
convexification’ and that seen in martensite and other shape-memory alloys.

Cholesteric liquid crystals have a helical director distribution. Locally they are very
nearly conventional nematics since their director twist occurs typically over microns, a
much longer length scale than that associated with nematic molecular ordering. They
can be crosslinked to form elastomers which retain the cholesteric director distribution.
Several phenomena unique to cholesterics emerge: Being locally nematic, cholesteric
elastomers would like on heating and cooling to lose and recover orientational order
as nematic elastomers do. However, they cannot resolve the requirement at neighbour-
ing points to spontaneously distort byλm, but in different directions. Accordingly, their
chains cannot forget their topologically imprinted past when they attempt to reach a
totally isotropic reference state (the second de Gennes’ prediction of 1969). Thus cho-
lesteric rubbers also cannot deform softly in response to imposed strains. Their optical
and mechanical responses to imposed stress are exceedinglyrich as a result. They are
brightly coloured due to selective reflection and change colour as they are stretched –
their photonic band structure changes with strain. They canemit laser radiation with a
colour shifted by mechanical effects. Further, the effect of topological imprinting can
select and extract molecules of specific handedness from a mixed solvent. Such rubbers
can act as a mechanical separator of chirality – a new slant ona problem that goes back
to Pasteur.

We have sketched the essentials of nematic (and cholesteric) rubber elasticity. This
survey leaves out many new phenomena dealt with in later chapters, for instance elec-
tromechanical Freedericks effects, photo-elastomers that drastically change shape on
illumination, rheology and viscoelasticity that crosses between soft and conventional
depending upon frequency and geometry, and so on.

Smectics are the other class of liquid crystal order. They have plane-like, lamellar
modulation of density in one direction (SmA), or additionally a tilt of the director away
from the layer normal (SmC). Many other more complex smecticphases exist and could
also be made into elastomers. In many smectic elastomers, layers are constrained not
to move relative to the rubber matrix. Deformations of a rubber along the layer normal
are thus resisted by a layer spacing modulus,B, of the order of 102 times greater than
the shear modulus of the matrix. Distortions in plane, either extensions or appropriate
shears, are simply resisted by the rubber matrix. Thus SmA elastomers are rubbery in the
two dimensions of their layer planes, but respond as hard conventional solids in their
third dimension. Fig. 1.8 shows this behaviour. Such extreme mechanical anisotropy
promises interesting applications.
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FIG. 1.8. In-plane fluidity and parallel rigidity in a smectic A elastomer (Nishikawa
et al., 1997). The Young modulus parallel and perpendicular to thelayer normals
differ very greatly - the rubber elasticity is two-dimensional.
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FIG. 1.9. (a) A SmA elastomer (Hiraokaet al., 2005). (b) Spontaneous shearλxz in
achieving the SmC state.

The director tilt associated with the transition from SmA toSmC induces distortion
in the polymer chain shape distribution. Since chain shape is coupled to mechanical
shape for an elastomer, one expects, and sees in Fig. 1.9, spontaneous distortion. This
response to order change is analogous to the elongations associated with orientational
order of chains on entering the nematic state, but here we instead have shear. The amp-
litude is also large, of the order of 0.4 in the figure. As in thenematic case, the broken
symmetry suggests a mechanism for SmC solids richer still than that of SmA elast-
omers, including SmC soft elasticity equivalent to that of Fig. 1.6.

The tilted, SmC, liquids also exist in chiral forms which must, on symmetry grounds
be ferroelectric. Their elastomers are too. Ferroelectricrubber is very special: mechan-
ically it is soft, about 104 times lower in modulus than ferro- and piezoelectrics because,
as sketched above, its molecules are spatially localised bytopological rather than ener-
getic constraints. Distortions give polarisation changescomparable to those in ordinary
ferroelectrics. But the response in terms of stress must necessarily be 104 times larger
than in conventional materials.

We end our preview as we started – solids created by topological constraints are soft
and highly extensible. Liquid crystal elastomers share this character with their important
cousins, the conventional elastomers. But their additional liquid crystalline order gives
them entirely new kinds of elasticity and other unexpected phenomena.


