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1 
 

General introduction 

 

 

 

 

 
1.1 Colloidal particles and suspensions 

Colloidal particles and suspensions abound in our world. Examples that we may encounter 

in everyday life are the shampoo we use to wash our hair, the milk we drink at breakfast, 

the clouds or fog that we see outside, the clay of which much of the Dutch soil is 

composed, the magnetic particles that cover the hard disk in our computers, the latex paints 

we apply to our homes’ walls, the toothpaste we use to clean our teeth, and so on. The 

feature that these examples share is the size of the particles that they are composed of. This 

size is in the range of 0.000001 to 0.001 millimetre, or, more conveniently, from about 1 

nm to about 1 µm. The term ‘colloidal’ refers to any particle, irrespective of its chemical 

composition or shape, that has at least one dimension in this range. In the examples above, 

the colloidal particles are insoluble and finely dispersed in a solvent, hence, such mixtures 

are called dispersions or suspensions. Milk is in fact a very special case because it consists 

of three colloidal species, i.e., fat globules of about 1 µm, casein micelles that are a factor 

10 smaller, 100 nm, and whey proteins that are only 3 nm in size. The main constituent of 

milk, however, is water, in which those particles are dispersed and which makes up more 

than 90% of the volume. Due to their specific surface chemistry, the colloidal particles do 

not aggregate or coalesce, at least they should not before the sell-by date. On prolonged 

standing, the milk goes bad and due to the acidification, the particles form large aggregates 

that settle on the bottom. In this way, the colloidal properties are completely lost. 

Obviously, when studying colloidal dispersions for their colloidal properties, this 
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emphasises the need to somehow prevent aggregation. While the term ‘colloid’ defines a 

particle’s size, in the following we will see that the shape of a colloidal particle influences 

its macroscopic behaviour drastically. 

 

 

1.2 Shape matters 

It has been known for a long time that colloidal dispersions are ideal model systems, 

which, under certain conditions, closely resemble atomic systems. At the beginning of the 

previous century, Nobel prize laureate Jean Baptiste Perrin found that dilute suspensions of 

colloidal spheres showed sedimentation behaviour similar to that of a dilute (near-ideal) 

molecular gas. The observed concentration profile was very well described by the 

barometric height distribution [1,2]. Interestingly, from his measurements he was able to 

obtain Avogadro’s number. 

At higher particle concentrations, the similarity between colloids and atoms remains. 

Colloidal spheres, interacting through a so-called hard potential, display a fluid to crystal 

phase transition on increasing concentration [3,4]. When the spheres are somehow rendered 

attractive, they display colloidal gas, liquid and solid (or crystal) phases, analogous to 

ordinary atomic or molecular substances [5,6]. This correspondence allows for a study of 

the underlying principles of matter in general on timescales that, due to the relatively large 

colloidal size, are much more convenient than the atomic timescales. 

In the 1920s and 1930s, it was found that suspensions of anisotropic colloidal particles, i.e., 

plates [7] and rods [8,9], displayed a transition from an isotropic (I) to a nematic (N) phase. 

The isotropic phase is the equivalent of the fluid phase of spheres, where there is no long-

range orientational or positional order. The nematic phase is in fact a liquid crystal without 

long-range positional order but which does possess long-range orientational order. Only a 

decade after the abovementioned observations and actually inspired by them, Lars Onsager 

recognised that the nature of I-N transition lies in the anisotropic shape of the particles 

[10,11]. In particular, he demonstrated that the stability of the nematic phase can be 

explained on a purely entropic basis by considering the competition between orientational 

entropy (favouring the isotropic state) and the entropy of excluded volume (which favours 

the nematic state). As the latter becomes more important at higher concentrations, a first 

order phase transition from an isotropic to a nematic phase may occur if the concentration 

of plates or rods is sufficiently high. Thus, even plates and rods with only a hard-core 

interaction may form a nematic phase. This notion has been confirmed by computer 

simulations [12-16] and experimental studies [17-28]. 

In addition to the I-N transition, it was found that rod-like colloids show the nematic to 

smectic-A phase transition [19,29-33]. The smectic-A phase consists of stacked layers of 

rods, with a liquid-like in-plane order and a one-dimensional crystalline stacking of the 

planes. A detailed description of this phase transition came with theory [34-40] and 

computer simulations [41-43], showing that again hard-core interactions are enough to 
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induce such ordering. From computer simulations by Veerman and Frenkel [13] and later 

Zhang and co-workers [44], it was found that hard disks may also form another liquid 

crystal phase, namely the orientationally and two-dimensional translationally ordered 

columnar (C) phase. This phase has also been observed experimentally in suspensions of 

sterically stabilised and charged colloidal plates [45-48]. Theory has proven to be useful in 

the understanding of the columnar phase as well [49]. 

Summarising, hard plate- and rod-like particles show phase behaviour that, due to their 

anisotropic shape, is richer and more complex than that of hard spheres. The (liquid crystal) 

phase behaviour of plate- and rod-like colloidal particles is by now rather well understood, 

which opens up the question as to how such systems behave in external fields. 

 

 

1.3 Scope of this thesis 

A logical prerequisite in the study of colloids in external fields is a firm understanding of 

the equilibrium behaviour of the particles in the absence of a field. As will be evident from 

the previous section, this is the case for plate-like colloids and therefore we attempt to 

study the phase behaviour of colloidal plates in external fields. Especially in view of the 

liquid crystal character of such suspensions this may be interesting.  

In Part I and II of this thesis, we make use of suspensions of sterically stabilised colloidal 

gibbsite (Al(OH)3) platelets that have been developed at the Van ’t Hoff laboratory [22,50]. 

In a recent study of this suspension, the isotropic, nematic, and columnar phases were 

reported [45]. However, there is one issue that was not resolved. Van der Kooij and co-

workers argued that they observed a columnar phase, based on the presence of three peaks 

in the small-angle X-ray scattering patterns, but they noted the absence of a fourth peak 

that should also have been present. In Chapter 2 of this thesis, we prepared an aligned 

columnar phase by using the influence of the sample walls (a morphological field). This 

allowed us to obtain conclusive evidence for the identity of the columnar phase, making the 

basis of knowledge of the equilibrium behaviour complete. In Chapter 3, we study the 

effect of a gravitational field on the suspension and find three phases (I, N and C) at the 

same time. We describe our results with a simple osmotic compression model. 

Part II is devoted to the study of our colloidal gibbsite suspensions in a magnetic field. In 

Chapters 4 and 5, we study the magnetic-field-induced alignment of the isotropic phase 

using small-angle X-ray scattering and birefringence measurements, respectively. From 

these, we are able to obtain an estimate of the diamagnetic susceptibility anisotropy of the 

platelets. Chapter 6 addresses the issue of the shift of the I-N phase transition in a magnetic 

field. In Chapter 7, we use both a magnetic and a morphological field to study the Frederiks 

transition in the nematic phase of our suspension. This allowed the first measurement of an 

elastic constant in a liquid crystal of colloidal plates. 

In the last part of this thesis, Part III, we develop a new model system, i.e., a suspension of 

charged colloidal gibbsite platelets. In Chapter 8, we study the equilibrium phase behaviour 
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of this system. Because ordinary ways to concentrate our suspensions fail, we use a 

gravitational field to sample the concentration range under consideration. We find that in 

spite of the soft electrostatic interaction potential the particles behave as hard platelets in 

showing the isotropic, nematic, and columnar phase. Chapter 9 presents a short study of the 

charged gibbsite platelets in a centrifugal field of 900 G. Due to the relatively fast settling 

of the particles, sedimentation equilibrium may not have been reached. Still, we find a 

sediment with columnar order. 
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2 
 

Evidence of the hexagonal columnar 

liquid crystal phase of hard colloidal 

platelets by high resolution SAXS 

 

 

 
Abstract 

We report small-angle X-ray scattering (SAXS) measurements of the 

columnar phase of hard colloidal gibbsite platelets. We have been able to 

create large oriented domains of the columnar phase both perpendicular 

and parallel to the sample wall, varying the volume fraction of platelets 

and adding non-adsorbing polymer to the dispersion. In conjunction with 

the increased resolution of the SAXS-setup, this allowed a detailed 

analysis of the columnar phase, providing unambiguous evidence for the 

hexagonal nature of the phase. 

 

 

2.1 Introduction 

It has long been known that dispersions of anisotropic colloids display liquid crystal 

phases. The earliest reports date back to the 1920s and 1930s, when suspensions of rod- 

and plate-like colloids were found to exhibit the isotropic (I) to nematic (N) phase 

transition. Some notable examples include ribbon-like vanadium pentoxide (V2O5) [8] and 

rod-like tobacco mosaic virus [9] particles and plate-like clay particles observed by 

Langmuir [7] in 1938. 

In retrospect, observing the I-N transition in suspensions of rod- and plate-like colloids is 

not very surprising. Already in the 1940s, just a few years after the mentioned experiments 
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and actually inspired by them, Lars Onsager proposed an explanation for the I-N transition 

on purely entropic grounds [10,11]: the competition between packing entropy (which 

favours the nematic state) and orientational entropy (favouring the isotropic state) 

determines the I-N phase behaviour. As the packing entropy becomes more important at 

higher volume fractions, the particles tend to align and form a nematic phase at high 

enough concentration. Onsager also showed that particle shape alone is enough to induce 

such behaviour. Thus, even hard rods or plates without any interaction may form a nematic 

phase. This notion has been confirmed by computer simulations [12-16], and since the 

seminal work of Onsager there have been quite a few experimental studies of hard and 

charged rod- [17-21,23-25,28] and plate-like [22,26,27] particles (see also Chapter 8) that 

also corroborate that idea. 

From computer simulations by Veerman and Frenkel [13], and later Zhang and co-workers 

[44], it was found that hard platelets may also form another liquid crystal phase, namely the 

orientationally and 2D translationally ordered columnar (C) phase. This phase has been 

observed experimentally in suspensions of sterically stabilised [45] and charged [46,47] 

colloidal plates. 

Although the behaviour of hard platelets is now rather well understood, there is an 

interesting issue, raised in one of these reports [51] that is related to the inherent size 

polydispersity in these synthetic suspensions of platelets: it is quite surprising that such 

systems, with a rather high polydispersity of up to 25%, show the columnar liquid crystal 

phase. In contrast, crystallisation of hard spheres is suspected to be frustrated due to the so-

called terminal polydispersity, with proposed values of 5% to 12% [52-56]. Nevertheless, 

on the basis of their small-angle X-ray scattering (SAXS) data, van der Kooij and co-

workers [45] argue that the observed high-density liquid crystal phase is most likely a 

hexagonal columnar phase. Their argument for a hexagonal packing of the columns is 

founded on the observation of three low-angle scattering peaks within the powder pattern. 

However, they noted the absence of a fourth low-angle peak that should also be present in 

the scattering pattern of a hexagonal structure. Conclusive evidence would require 

sufficiently large monodomains with columns perpendicular to the sample wall, revealing 

scattering patterns with a six-fold symmetry corresponding to hexagonal packing. Usually, 

oriented samples are prepared by applying an external field, e.g. magnetic fields [57-61] 

(see also Chapter 7) and shear flow [62-64]. Previously, we have been able to prepare large 

crystals of hard colloidal spheres for SAXS studies [65,66] using non-adsorbing polymer 

as a depleting agent. In this chapter we follow the same scheme and use sterically stabilised 

colloidal gibbsite platelets with non-adsorbing polymer. This resulted in columnar crystals 

with a much better signal-to-noise ratio compared to the previous study [45]. In addition, 

the depletion interaction is expected to favour a perpendicular orientation of the columns 

with respect to the sample walls. Due to these improvements, we have been able to resolve 

the missing scattering peak. Our results show that we indeed could prepare large oriented 

domains of columnar phase, allowing us to demonstrate its hexagonal columnar nature. 
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2.2 Experiment 

We synthesised hexagonal colloidal gibbsite (Al(OH)3) platelets [50] that were 

subsequently grafted with an end-functionalised polyisobutene and suspended in toluene to 

obtain a model system of hard platelets [22,45]. Transmission electron microscopy (TEM), 

see Fig. 2.1, and atomic force microscopy were used to determine the average corner-to-

corner diameter, D, and thickness, L, of the dry particle core, although the latter might 

contain a contribution of the collapsed steric stabiliser. The diameter distribution is also 

shown in Fig. 2.1. We found D  = 232 nm and L  = 13 nm and a polydispersity of σ = 

20% in both dimensions. In solution the thickness of the sterically stabilizing polyisobutene 

brush is an estimated 2 to 3 nm. This gives us effective dimensions of Deff = 237 nm and 

Leff = 18 nm. 

We prepared several samples of this dispersion with effective volume fractions ranging 

from 0.37 to 0.40 both with and without non-adsorbing polymer (polydimethylsiloxane, Mw 

≈ 423 kDa and Rg ≈ 33 nm [67]). The samples were thoroughly homogenised and 

subsequently put in flat capillaries (internal dimensions 0.3 × 3.0 mm2), after which they 

were put away to phase separate. Within a few days, phase separation was complete and 

yielded multiple phase equilibria [67]. Each sample at least exhibited nematic and 

columnar phases. Furthermore, Bragg reflections became visible, already hinting at the 

presence of a columnar phase. On a timescale of months, these colours got quite bright and 

distinct; see Fig. 2.2. We were not able to detect a change in the colour in time. The 

reflections allowed us to get an estimate of the hexagonal lattice spacing using Bragg’s 

(a) (b)
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Figure 2.1 – (a) shows a Transmission electron micrograph of the colloidal gibbsite platelets; the

scale bar denotes 500 nm. (b) depicts the normalised diameter distribution of the colloidal gibbsite

platelets used in this study, together with a Gaussian fit. From the fit, we obtain D  = 232 nm and

σ = 20%, based on 176 platelets measured. 
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law. 

From the set of samples, three representative samples (hereafter called A, B, and C) were 

selected for analysis with SAXS. The sample details are given in Table 2.1. We used the 

recently developed [68] high-resolution SAXS setup of the Dutch-Belgian beamline BM-

26 DUBBLE at the European Synchrotron Radiation Facility (ESRF, Grenoble, France). 

One of the challenges in the application of SAXS to our suspensions of colloidal platelets 

is related to the existence of two distinctly different spatial scales. Due to the small particle 

thickness, the face-to-face interparticle structure leads to scattering at relatively large 

angles. On the other hand, due to the relatively large particle diameter, the side-to-side 

180° 160° 140° 120° 100° 90°  

Figure 2.2 – Bragg reflections from the columnar phase of sample C. The upper part of the sample

is a nematic phase in equilibrium with the columnar phase. The colour of the reflections (red

through blue) varies with the incident Bragg angle 2Θ. The reflections already hint at the presence

of a columnar structure and allow making an estimate of the inter-columnar spacing as (100)d =

215 ± 15 nm, see Table 2.2. Close inspection of the nematic phase reveals a red colour (two most

left photographs), indicative of the structure factor peak at about the same position as the d(100)-

maximum in the columnar phase. (See colour version at page 131.) 

Table 2.1 – Details of the samples used in this study. Here, age is the time between sample 

preparation and measurement of the SAXS patterns, φ denotes the volume fraction of the platelets 

and cpol is the polymer concentration. 

sample age/d φ cpol/gl-1 

A 16 0.40 0.0 

B 8 0.37 0.0 

C 3 0.37 0.8 
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structure results in scattering at very small angles, requiring a high reciprocal-space 

resolution. To achieve the latter, the X-ray beam was carefully focused at the position of 

the X-ray detector consisting of a phosphor screen coupled to a 16-bit CCD camera 

(Photonic Science) with a pixel size of 22 µm. In order to increase the maximum accessible 

q-value, a relatively high X-ray energy of 18 keV (λ = 0.69 Å) and a shorter sample-

detector distance (about 5 m) were used. In addition, the detector and beam stop were 

mounted off-centre to maximise the q-range even further. These settings allowed us to 

achieve a resolution of 0.003 nm-1 (the full-width-at-half-maximum of the instrument 

function), which is at least 3 times higher than before [45]. The smallest accessible 

scattering angle corresponded to qmin = 0.023 nm-1. The maximum q values were about 

qmax,h = 0.4 nm-1 in the horizontal plane and qmax,v = 0.24 nm-1 in the vertical direction. 

 

 

2.3 Results and discussion 

As a first experiment, we measured the hexagonal lattice spacing d(100) using a simple 

Bragg experiment. Sample C was immersed in a cylindrical glass flask, filled with toluene 

to reduce optical reflections. We illuminated the sample with white light at Bragg-angles 

ranging from 2Θ  = 90 to 180° and recorded images Nikon Coolpix 995 digital camera, as 

shown in Fig. 2.2. Table 2.2 lists the results and the calculated d(100) lattice spacings. We 

obtain an average of (100)d  = 215 ± 15 nm and a resulting inter-columnar spacing aD = 

248 ± 17 nm, which agrees reasonably with value obtained in the SAXS experiment. 

Table 2.2 – The d(100) lattice spacings as obtained from the simple Bragg experiment; see Fig. 2.2. 

Using Bragg’s law, 2 sinnd λΘ = , with a refractive index of n ≈ 1.5, we find (100)d  = 215 ± 15 

nm and a resulting inter-columnar spacing aD = 248 ± 17 nm, which agrees reasonably with the 

more sophisticated SAXS experiment; see Table 2.3. 

2Θ/° colour λ/nm d(100)/nm aD/nm 

160 red 650 220 254 

140 orange 600 212 245 

120 green 550 212 245 

100 cyan 500 218 252 

90 blue 450 212 245 
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In Fig. 2.3, we show the obtained SAXS patterns for samples A to C. In the following we 

will index the reflections using Miller indices (hkl). For a hexagonal packing we expect 

reflections perpendicular to the columns with q(hk0) proportional to 2 2h hk k+ + , while we 

use l to indicate (liquid-like) order within the columns. Sample A shows the characteristics 

expected for a columnar phase, i.e., four scattering peaks with q-ratios of 1:√3:√4:√7 at 

small angles and a much broader, liquid-like peak at large angle. The small-angle inter-

columnar peaks have an apparent width of 0.003 nm-1, determined by the instrument’s 

resolution. The large-angle intra-columnar peak has a full width at half maximum of about 

0.07 nm-1. The ring-like features are typical for diffraction from a powder, hence, the 

domains of columnar phase must be much smaller than the irradiated volume (300 × 300 × 

300 µm3). We attribute the small domains to the relatively high volume fraction that causes 

fast crystallisation yielding small crystallites [69]. Sample B shows the columnar scattering 

peaks more clearly than sample A. In this case the scattering is dominated by a larger 

Figure 2.3 – SAXS patterns obtained in the columnar phase of samples A, B and C, along with the

assigned Miller indices. The upper panels depict the entire SAXS patterns, while the lower panels

present the magnified views of the small scattering angle regions near the beam-stop. Sample A

yields ring-like diffraction features typical for diffraction from a powder. In contrast, samples B and

C show strong predominant orientation of the columns, either along the vertical direction (in B) or

along the X-ray beam (in C), as shown by the inserted sketches. The hexagonal pattern in C points

to the presence of the hexagonal columnar phase. (See colour version at page 132.) 
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single domain, likely due to slower crystallisation and higher mobility at the lower volume 

fraction involved. The domain has vertically-oriented columns, as illustrated in the inset in 

panel B. The liquid-like (001) and (00-1) peaks are located outside the detector area, but 

they were visible in similar samples with skewed orientations. In sample C we find a single 

domain with columns directed perpendicularly to the wall and we observe a hexagonal 

scattering pattern due to inter-columnar scattering. Here the presence of non-adsorbing 

polymer is found to favour the face-to-wall anchoring of the gibbsite platelets, which can 

be understood by the stronger depletion attraction in this configuration. We also note that 

in the azimuthal direction the inter-columnar Bragg peaks are broad, of the order of 30°. 

This suggests a significant spread of the crystal orientations.  

From the SAXS patterns, we calculated averaged radial intensity profiles that are depicted 

in Fig. 2.4. Due to the improved resolution of the SAXS-setup, the inter-columnar (100), 

(110), (200) and (210) reflections are clearly resolved. Yet, we are not able to resolve the 

intrinsic width of the Bragg peaks. In addition, in samples B and C we benefit from the 

predominant orientation of the columnar domains that enhances the visibility of the inter-

columnar reflections. This is due to an increase of the intensity of the reflections 

themselves and to faster decay of the background scattering intensity Isc at q values from 
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Figure 2.4 – Averaged radial intensity profiles of the SAXS patterns. The profiles of sample B

were obtained from small (about 5-pixel wide) horizontal (B-hor) and vertical (B-ver) slices, while

A and C are azimuthal averages over the whole available detector area except for the part covered

by the beamstop (the same mask is used for both A and C). The curves are shifted vertically for

clarity. The dashed lines present the power law decays (I ∝ qn) with n = -2 and n = -3. 
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q(100) to q(001). The behaviour of the background can be understood by taking into account 

the anisotropy of the scattering of a single particle, i.e., the form factor ( )F q . For disk-like 

particles it can be factorised as ( ) ( ) ( )F q F q F q⊥ ⊥= × , where q  and q⊥  are the 

components of the scattering vector parallel and perpendicular to the platelet normal, 

respectively. In the q-range of interest (q(100) to q(001)) the first factor ( )F q  does not decay 

appreciably, while the second one decays as ( ) 3
F q q

−
⊥ ⊥ ⊥∝ . (This feature is also used in 

Chapter 4, where we analyse the scattering of platelets in a magnetic field.) Thus, the 

strongest scattering is observed for small q⊥ , when the scattering vector q  is nearly 

perpendicular to the platelets. In sample C this strong contribution is absent since the 

scattering vector q  is almost parallel to the platelets, so q q⊥≈ . As one can see in Fig. 2.4, 

the background intensity indeed closely follows power law decay ( ) n
scI q q∝  with 

exponent n = -3, arising from the decay of F⊥ . In contrast, in sample A, the particles have 

all possible orientations including those with q q≈ , which give the main contribution to 

the background. Averaging over all possible orientations leads to a power law decay with a 

smaller exponent n = -2. We have observed similar power-law decay with n = -2 in a dilute 

isotropic suspension (not shown). In sample B, both phenomena are visible – the 

background scattering intensity along the columns (perpendicular to the platelets, vertical 

direction) is much stronger and decays slower than parallel to the platelets (horizontal 

direction).  

We further note that, although the diffraction in sample B is dominated by a domain with 

vertically oriented columns, other orientations are also present, as deduced from the 

observation that the columnar reflections form rings, albeit with well-pronounced maxima 

in the horizontal direction. Also, the maxima of the (100), (110), and (210) reflections in 

the same direction suggest a spread in the orientations of the hexagons formed by 

neighbouring columns. In contrast, sample C shows long-range bond orientational order 

leading to a well-pronounced hexagonal pattern. Furthermore, the q-3-decay of the 

background also indicates the existence of one single domain within the irradiated volume 

in sample C. 

From the averaged radial intensity profiles we find the characteristic spacings as listed in 

Table 2.3. The intra-columnar spacings are calculated using the relation 

2 24
( 0)3 3D hka h hk k qπ= + + , while the average intra-columnar distance between the 

platelets is defined as (001)2La qπ= . Although samples A and B differ in overall platelet 

volume fraction, due to the first order character of the nematic-columnar transition, the 

volume fractions of their columnar phases are the same. This explains their corresponding 

aD. Sample C on the other hand contains non-adsorbing polymer, which enhances size 
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fractionation between the coexisting phases [67,70], resulting in a higher average particle 

diameter in the columnar phase and hence a larger columnar spacing. 

The formation of columnar crystals in our samples is actually quite surprising, considering 

the high polydispersity of our platelets. In general, phase separating colloidal systems, of 

spheres [56,71-73] or platelets [14,67,70,74], deal with this by fractionation of the particles 

between the phases, leading to sub phases with a smaller polydispersity than the parent 

suspension. In sample C, where non-adsorbing polymer enhances fractionation even more, 

this lowering of the polydispersity facilitates the formation of the single columnar crystal. 

In addition to phase fractionation, there is the possibility of local fractionation, which is 

likely to take place in sample A due to its being a powder. Local fractionation leads to 

crystals within the columnar phase having a different average particle diameter (hence 

slightly different periods) and a slightly lower polydispersity each. However, in sample C, 

which contains a (large) single domain, such local fractionation is much more difficult as it 

would require the particles to travel too large distances (at least 1000 times their own 

diameter). 

The q(hk0)-values for samples A, B, and C correspond to nearest-neighbour-distances of 257 

nm, 260 nm, and 268 nm, respectively. From the histogram (of the parent suspension) it is 

immediately clear that at least 21% of the particles do not fit into a columnar phase with 

these spacings. For sample C, where size fractionation is strongest, the average particle 

diameter is larger than the parent’s average, making accommodation of the particles in the 

columnar phase even more difficult. 

Detailed analysis of the scattering peaks in patterns of the aged 1-year-old samples 

suggests that there might be a different mechanism by which the polydispersity of the 

particles is incorporated. We find a sharp break in the compressibility of the columnar 

phase at a certain height, as well as broadening of the scattering peaks in the radial 

Table 2.3 – Measured q-values of the scattering in the columnar phase obtained from the radial 

profiles of the SAXS patterns, as well as the inter- and intra-columnar spacings aD, respectively, aL, 

as calculated from the q-values. 

sample q(100)/nm-1 q(110)/nm-1 q(200)/nm-1 q(210)/nm-1 q(001)/nm-1 

A 0.0282 0.0486 0.0561 0.0745 0.25 

B 0.0281 0.0482 0.0551 0.0741 - 

C 0.0272 0.0470 0.0541 0.0717 - 

 aD/nm aL/nm 

A 257 259 259 258 25 

B 258 261 263 259 - 

C 267 267 268 268 - 
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direction. On the other hand, the bond-orientational fluctuations are remarkably small, i.e., 

of the order of 7° rather than 30° as in Fig. 2.3C. These observations point to hexatic-like 

ordering of the columns and would explain the apparently easy formation of a columnar 

phase in such highly polydisperse systems [75]. 

 

 

2.4 Conclusion 

In this work we present clear evidence of the formation of hexagonal columnar liquid 

crystals in suspensions of polydisperse hard colloidal platelets. Apart from a powder of 

small columnar crystals we find macroscopically large single-domain crystals. Our results 

suggest that addition of non-adsorbing polymer promotes the formation of single-domain 

crystals (as we have observed before in a suspension of hard colloidal spheres [65]) with 

unique orientation and no sign of disordered areas. The macroscopically large crystals open 

up possibilities to fabricate nanostructured materials with a sub-micron periodicity that are 

of potential interest as, e.g., photonic materials. 
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Gravity-induced liquid crystal phase 

transitions of hard colloidal platelets 

 

 

 

 
Abstract 

The influence of gravity on a suspension of sterically stabilised colloidal 

gibbsite platelets is studied. An initially isotropic-nematic biphasic sample 

of such a suspension develops a columnar phase at the bottom on 

prolonged standing. This phenomenon is described using a simple osmotic 

compression model. We performed Monte Carlo simulations of cut 

spheres with aspect ratio 1/15L D =  and took data from the literature to 

supply the equations of state required for the model. We find that the 

model describes the observed three-phase equilibrium quite well. 
 

 

3.1 Introduction 

The influence of gravitational compression on suspensions of colloidal particles has 

received attention for a long time. At the beginning of the previous century Jean Perrin 

[1,2] verified with simple yet brilliant experiments that the concentration of colloidal 

particles in dilute suspension varied exponentially with height when allowed to reach 

dynamic equilibrium in the earth’s gravitational field. From these measurements he 

obtained Avogadro’s number. The extension of the ideas of Perrin to interacting systems 

has also appeared to be very fruitful [76-79]. Crandall and Williams [80] measured the 

effect of the earth’s gravitational field on the lattice constant of a colloidal crystal of 
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polystyrene spheres. Perhaps even more interesting is the effect of gravity on multiple 

phases. Takano and Hachisu [81] pioneered the measurement of the coexistence pressure of 

the disorder-order transition in a sedimented dispersion of monodisperse latex particles. At 

an electrolyte concentration of 10 mM they found good agreement with results of computer 

simulations for hard spheres [82]. Hachisu and Takano [83] and later Piazza, Bellini and 

Degiorgio [84] and Rutgers and co-workers [85] explored the possibility to obtain the 

equation of state (EOS) both in the fluid as well as the crystal state from the concentration 

profile as a function of height. In all three cases good agreement with the hard-sphere EOS 

was obtained at sufficiently high salt concentration. The equivalent of this in computer 

simulations was done by Biben, Hansen, and Barrat [86]. 

For anisotropic particles, i.e., rods and plates, experiments are much more limited. 

Colloidal hard rods and plates show intrinsically richer phase behaviour than hard spheres 

due to their shape. Apart form the isotropic fluid (I) and crystal phase, the nematic (N), 

smectic, and columnar (C) phases are encountered, so when the effect of gravity is also 

taken into account, this allows for the simultaneous coexistence of more than two phases. 

Only a few observations are available. In the 1950s, Oster [29] reported on an I-N biphasic 

suspension of tobacco mosaic virus rods that developed a third (Smectic-A) phase at the 

bottom of the sample after some time, an observation that was later confirmed by Kreibig 

and Wetter [30]. In neither case, a quantitative analysis was performed. Brian, Frisch, and 

Lerman [87] investigated sedimented suspensions of DNA-fragments at high salt 

concentration and analysed their results in terms of a scaled particle theory EOS. 

Very recently, a model system of hard plates was developed in our laboratory, consisting of 

sterically stabilised gibbsite platelets dispersed in toluene [22]. This suspension showed the 

liquid crystal phase transitions predicted for such particles [13,44], i.e., isotropic to nematic 

[22] and nematic to columnar [45]. On prolonged standing we find that an initially biphasic 

I-N sample developed a third phase at the bottom that we identify as a columnar phase on 

the basis of the optical Bragg reflections. This phenomenon can be explained by a simple 

osmotic compression model [47,88]. Using equations of state obtained from literature and 

from Monte Carlo (MC) computer simulations that we performed, we find good agreement 

with the experimentally determined individual phase heights. 

 

 

3.2 Experiment 

We synthesised a colloidal suspension of sterically stabilised gibbsite (Al(OH)3) platelets 

according to van der Kooij and Lekkerkerker [22]. Transmission electron microscopy 

(TEM) and atomic force microscopy were used to determine the average diameter and 

thickness of the particle core, thus disregarding the steric stabiliser. We found D  = 230 

nm and L  = 13 nm and a polydispersity of about 22% in both dimensions. The thickness 

of the sterically stabilising polyisobutene brush is estimated at 2 to 3 nm, where we take 
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into account a certain maximum stretching length for the polymer at this specific molar 

weight and an estimate for the extent of the steric repulsion. This gives us effective 

dimensions of Deff = 235 nm and Leff = 18 nm and hence an aspect ratio of 1/13L D ≈ . 

Fig. 3.1 shows a TEM micrograph of the platelets. 

We investigated the phase behaviour in the gravitational field by preparing a sample of this 

 

Figure 3.1 – Transmission electron microscope graph showing the gibbsite platelets (the stabilising

polyisobutene layer is not visible). The hexagonal shape of the nanocrystals is easily observed. The

scale bar denotes 500 nm. 

(a) (b)

I

N
C

 

Figure 3.2 – The three-phase sedimentation equilibrium. Photograph (a) depicts the complete

sample between crossed polarisers, where the upper right part is digitally enhanced to visualise the

I-N interface. The columnar phase contains a dark region at the upper right of the phase, probably

due to orientation of the platelets along the sample walls. Although not clearly visible, the N-C

interface is horizontal and sharp. (b) shows the columnar phase illuminated with white light to

capture the red Bragg reflections. (See colour version at page 132.) 
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dispersion at a concentration in the I-N biphasic gap, in a glass cell with a height of about 

30 mm. On a timescale of several days, the sample separated into an isotropic upper phase 

and a birefringent nematic lower phase. The phase-separated sample was investigated on a 

regular basis for one and a half year. After a few months, a third phase evolved at the 

bottom of the cell, which appeared to be a columnar phase, see Fig. 3.2. The columnar 

phase developed bright Bragg reflections (deep red to blue, depending on the angle of the 

incident light) in time. 

After one year, the sample did not show any appreciable change anymore and we found the 

heights of the phases to be 15.5, 8.5, and 2.5 mm for the isotropic, nematic, and columnar 

phase, respectively. 

 

3.3 Model 

3.3.1 Sedimentation-diffusion equilibrium  
Consider a suspension of monodisperse, hard disks with number density n(z) and buoyant 

mass ( )0* p pm v ρ ρ= − , with vp the single particle volume and ρp and ρ0 the mass densities 

of the particle and solvent, respectively. When sedimentation-diffusion equilibrium is 

reached, Eq. (3.1) describes the complete system [47,88]: 

 

 *
n

m gn
n z

∂Π ∂ − = ∂ ∂ 
. (3.1) 

 

To simplify the approach, we define reduced quantities. The pressure will be given by 
3

BD k TΠ = Π , the gravitational length scale *Bk T m gξ = , and the reduced concentration 
3c nD= . Substituting these expressions in Eq. (3.1) yields 

 

 
1 dz

dc
c c ξ

 ∂Π
= − ∂ 

. (3.2) 

 

For a single phase, the height top bottomH z z= −  is found by integrating Eq. (3.2) from ctop to 

cbottom 

 

 
1top top

bottom bottom

z c

z c

H dz dc
c c

ξ ∂Π
= = −

∂∫ ∫ . (3.3) 

 

The average concentration c  of this phase is given by 
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( )

( )1
top

top

bottom

top

bottom
bottom

c
c

c

z

c
z

c z dz dz
c c z dc

H dcdz
= =

∫
∫

∫
. (3.4) 

 

Using Eq. (3.2) this yields 

 

 ( ) ( )
top

bottom

c

bottom top

c

c dc c c
H c H

ξ ξ∂Π  = − = Π − Π ∂∫ . (3.5) 

 

For multiple phases in sedimentation equilibrium, Eqs. (3.3) and (3.5) apply to each of the 

phases. The total sample height sampleH  is obviously the sum of the individual phase 

heights Hα 

 

 sampleH H α

α

= ∑ , (3.6) 

 

where the summation ranges over all the phases. The average overall sample concentration 
samplec  can now be written as 

 

 ( ) ( )1sample
bottom topsample sample

c H c c c
H H

α α α α

α α

ξ  = = Π − Π ∑ ∑ , (3.7) 

 

where the c α  are the average phase concentrations. Taking into account that for two 

coexisting phases α and β (where α on top of β) 

 

 ( ) ( )a
bottom topc cβΠ = Π , (3.8) 

 

Eq. (3.7) together with Eq. (3.5) leads to the surprisingly simple result 

 

 ( ) ( )sample sample sample
bottom topsample

c c c
H

ξ  = Π − Π  . (3.9) 

 

 

3.3.2 Equation of state 
In order to calculate the individual phase heights for a given overall concentration from 

Eqs. (3.3) and (3.9) we need to know the EOS for the various coexisting phases. Zhang, 

Reynolds, and van Duijneveldt [44] performed MC computer simulations on cut spheres 

(particles obtained by slicing two caps off a sphere of diameter D, at two planes parallel to 
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the equatorial plane, each at a distance L/2) with aspect ratios of 1/10L D =  and 

1/ 20L D =  and obtained equations of state for both aspect ratios. As our particles have an 

aspect ratio that is in between these values, we decided to fill the gap ourselves. 

We have performed constant-NPT Monte Carlo simulations of a system of 1000 cut 

spheres with aspect ratio 1/15L D = . The box was rectangular with independently variable 

side lengths to accommodate the columnar phase. The EOS shown in Fig. 3.3 was obtained 

by expansion from the columnar phase into the isotropic as well as compression from the 

isotropic to the columnar. For each pressure we equilibrated for 400000 MC steps.  

The EOS shows two density jumps indicating first order phase transitions: the I-N 

transition and the N-C transition. Close to the transitions the system showed a small 

hysteresis in both cases. This is due to finite simulation time and finite system size – no 

fluctuation occurred on the time scale of the simulation that took the system over the 

nucleation barrier to the next phase. We could nevertheless locate the I-N transition to the 

accuracy we desired for this work, and found cI = 3.68 and cNI = 4.11, with a corresponding 

pressure of 24.8 1.0I N−Π = ± . The hysteresis around the N-C transition, however, was too 

strong. From the work of Zhang, Reynolds, and van Duijneveldt [44] it appears that the 
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Figure 3.3 – The equation of state from MC simulations for cut spheres with aspect ratio

1/15L D = . Circles are for the isotropic, crosses for the nematic, and triangles for the columnar

phase. The phase transitions are indicated with thick lines. The inset shows the region of the phase

transitions. 



Gravity-induced liquid crystal phase transitions of hard colloidal platelets 

33 

(a) (b)

(c) (d)

 

Figure 3.4 – Configuration snapshots from the MC computer simulations, illustrating the positional

and orientational order close to the I-N and N-C phase transitions. Shading or colour is used to

distinguish between different orientations of the platelets. Snapshots (a) and (b) display the

isotropic (c = 3.39, 20Π = ) and nematic phase (c = 4.62, 30Π = ) just below and above the I-N

transition, respectively. Clearly, the orientational order has increased, whereas (long range)

positional order is still lacking. Snapshots (c) and (d) show the nematic and columnar phase,

respectively, near the N-C transition (at state points c = 7.49, 73Π =  and c = 8.66, 82.5Π = ,

respectively). At the N-C transition, there is hardly any gain in orientational order, while the

positional order becomes two-dimensional in the columnar phase. (See colour version at page 133.)
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N-C phase transition concentrations (expressed as a volume fraction φ) are independent of 

the aspect ratio (either 1/10 or 1/20). Therefore, we interpolate to obtain the N-C transition 

concentrations in our system and find cNC = 7.75 and cC = 8.29 using the relation 

( )2

12 3L L
D D cπφ  = −  . The pressure at the transition is found to be 77.8 1.0N C−Π = ± . The 

resulting EOS is plotted in Fig. 3.3. We show configuration snapshots in Fig. 3.4 to 

illustrate the positional and orientational order just below and above the phase transitions. 

In order to use the obtained simulation data in our model, we fitted polynomials to the three 

branches of the EOS. Thus, three sets parameters were obtained that are given in Table 3.1. 

 

 

3.4 Results and discussion 

We now turn to the analysis of the sedimentation equilibrium that we have observed. The 

key parameter in our system is the gravitational length scale ξ defined above. Taking into 

account that for our hexagonal particles 2 223
8 3 6.5 10pv D L −= = ×  m3 and 0pρ ρ− = 835 

kg/m3, we find ξ = 0.77 mm. The measured total sample height is 26.4 mm, which yields a 

dimensionless height of 34.3H ξ = . By setting the overall concentration to a 

concentration in the I-N biphasic gap (as imposed by the experiment) we calculate the 

individual phase heights using the model detailed in Section 3.3.1 and the equations of 

state of Zhang, Reynolds, and van Duijneveldt [44] and the one we obtained. The results 

are presented in Table 3.2 and Fig. 3.5 visualises the evolution of the calculated phase 

heights with aspect ratio. From this figure it is clear that at our experimental aspect ratio of 

1/13 the phase heights are not correctly predicted. However, a fairly good description is 

obtained for 1/19L D = . A similar difference is found for a previous study of the same 

colloidal suspension of sterically stabilised gibbsite platelets. Van der Kooij, Kassapidou, 

and Lekkerkerker [45] found the experimental aspect ratio to be 1/14 for their platelets. 

Based on an analysis of the I-N and N-C coexistence concentrations, we observe that the 

effective aspect ratio in their case appears to be slightly lower as well, i.e., 1/17L D = . 

Table 3.1 – The fitting parameters to our simulation data for the equation of state for cut spheres 

with 1/15L D = . The equation of state is given by 
6

1

n

nn
A c

=
Π = ∑ , where 3

BD k TΠ = Π  and 

3c nD= . 

phase c A1 A2 A3 A4 A5 A6 

isotropic 0-3.86 1 0.79432 0.44616 -0.07468 0 0 

nematic 4.11-7.75 11.8418 -4.1226 0.83763 -0.04333 0 0 

columnar 8.29-15.0 -321.039 170.441 -34.5412 3.43735 -0.16856 0.00329678
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A possible reason for the discrepancy between theory and experiment could lie in the shape 

characteristics of the particles. The experimental platelets are polydisperse hexagonal 

particles, while the model is based on monodisperse circular disks. Recently, Bates [89] 

has reported on the influence of particle shape of infinitely thin platelets on the I-N 

transition. It is found that the transition densities are lowered just by 10% when going from 

circular to hexagonal platelets. In a study of the influence of polydispersity on the I-N 

phase transition for infinitely thin hard platelets, Bates and Frenkel [14] find that the 

transition densities for 22%-polydisperse disks deviate more substantially from the 

monodisperse values (cI = 3.56 and cN = 4.75 versus 3.68, respectively, 3.98 for the 

monodisperse case). This leads us to the conclusion that the calculated individual phase 

Table 3.2 – Heights in millimetres of the individual phases after settling of the sedimentation-

diffusion equilibrium, as measured and calculated. 

calculated height with 
phase measured height 

1/10L D =  1/15L D =  1/ 20L D =  

I 15.5 14.1 15.0 15.7 

N 8.5 3.0 6.8 8.5 

C 2.5 9.3 4.6 2.2 
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Figure 3.5 – The heights of the individual phases vs. aspect ratio, using the values given in Table

3.2. For each phase, the measured (horizontal lines) and calculated heights (lines with symbols) are

given. Dashed lines refer to the isotropic, solid lines refer to the nematic, and dash-dotted lines refer

to the columnar phase. The vertical dotted lines indicate the interval (around 1/19L D = ) where

our experiment is quite well described. 
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heights could very well be influenced by particle shape and polydispersity, although it is 

unclear to what extent. To address this issue would require an EOS and the chemical 

potentials for a system of polydisperse hexagonal platelets. These have been obtained for 

polydisperse hard spheres [79], but for hexagonal platelets the problem will perhaps be 

slightly more complex. 

 

 

3.5 Conclusion 

We have studied the influence of gravity on a suspension of sterically stabilised colloidal 

gibbsite platelets (hard platelets). An initially I-N biphasic sample developed a columnar 

phase at the bottom of the sample by sedimentation of the particles. This dynamical 

sedimentation-diffusion equilibrium was reached on a timescale of a year. In order to 

describe the phenomenon, we used a simple osmotic compression model, requiring an 

equation of state for the platelets. These were obtained from literature and from Monte 

Carlo computer simulations that we performed. We find that the model describes the 

observed three-phase equilibrium quite well, be it for an aspect ratio that is significantly 

smaller than the experimental value. 
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Sterically stabilised colloidal gibbsite 

platelets in an external magnetic field 
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4 
 

Small-angle X-ray scattering study of the 

magnetic-field-induced orientational order in 

the isotropic phase of colloidal gibbsite platelets 

 

 

 
Abstract 

We study the magnetic-field-induced orientational order of an isotropic 

phase of colloidal gibbsite (Al(OH)3) platelets by small-angle X-ray 

scattering (SAXS). At magnetic field strengths of 3 to 7 T these platelets 

show strong alignment, with an order parameter that attains values up to 

2 0.2S = − , which is fairly large considering that the maximum value is 
1

2 2S = − . We provide a model that, despite its simplicity, is able to 

describe the observed SAXS patterns reasonably well. In addition, the 

model yields an estimate of the diamagnetic susceptibility anisotropy χ∆ . 

 

 

4.1 Introduction 

The study of colloidal suspensions submitted to electric and magnetic fields is a very old 

subject. It dates back to the end of the 19th century, when John Kerr [90] discovered that 

certain pure liquids showed birefringence when subjected to strong electric fields. This 

electro-optical effect is now known as the Kerr effect. 

Kerr contributed to the field of magnetic birefringence as well and was actually the first to 

report this phenomenon in a suspension of chemically precipitated magnetite [91]. 

Majorana [92-98] and Cotton and Mouton [99-103] studied magnetic birefringence in 

suspensions of so-called “fer Bravais”, a suspension of iron oxides that was commonly 
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used in pharmacy at that time. Cotton and Mouton furthermore found that pure liquids also 

showed magnetic birefringence [104], a phenomenon that is nowadays known by the 

discoverers’ names. 

In recent years, Lemaire and co-workers [25,105,106] have studied suspensions of colloidal 

goethite (α-FeOOH) nanorods that, as a matter of fact, are closely related to the 

suspensions studied by Majorana and Cotton and Mouton. Suspensions of these rods, 

somewhat comparable to ferrofluids, are very sensitive to an external magnetic field and 

align in a field of the order of 0.2 T. In addition, they display a very peculiar phenomenon, 

i.e., the reorientation of the rods with increasing field strength. Below about 0.35 T, the 

rods align parallel to the field, while above this value they turn perpendicular to it. 

As opposed to inorganic rods, isotropic suspensions of organic particles, such as virus 

particles, need much higher fields (up to 20 T) to induce magneto-optical effects. Examples 

include rod-like cellulose microcrystals [107], tobacco mosaic virus (TMV) [108,109], fd 

virus [110-112], and Pf1 virus [113] particles, as well as plate-like biological membranes 

[114]. Although the shape of those particles is highly anisotropic, their intrinsic 

diamagnetic susceptibility anisotropy 0χ∆  (i.e., of the bulk material) is much lower, giving 

rise to a much lower “effective” diamagnetic susceptibility anisotropy per particle χ∆  than 

e.g. inorganic goethite rods. 

Here, we report a study of an isotropic phase of colloidal gibbsite (Al(OH)3) platelets in a 

magnetic field. In view of the abovementioned, we may expect magnetic-field-induced 

orientational order at much lower field strengths (3 to 5 T) compared to organic moieties, 

as these inorganic anisometric particles have high diamagnetic susceptibility anisotropies. 

We decided to study different field-induced phenomena of our gibbsite platelets. First of 

all, in this chapter, we will investigate the magnetic-field-induced order with small-angle 

X-ray scattering (SAXS). We show that the platelets indeed show considerable order at 

moderate fields. The anisotropic scattering patterns that we obtained can be analysed using 

a model that allows probing the orientational distribution function directly from the 

scattering data. Despite its simplicity, it gives us a value for the diamagnetic susceptibility 

anisotropy χ∆ . 

 

 

4.2 Theory 

4.2.1 The orientational distribution function 
Let us consider a single plate-like particle immersed in a magnetic field with magnitude B 

directed along the z-axis. The orientation of the platelet is indicated by the platelet normal 

ê , which makes an angleθ  to the magnetic field direction (the z-axis), see Fig. 4.1. For a 

mineral crystal like gibbsite, the magnetic susceptibility χ will be different along the 

different axes of the particle. Therefore, the magnetisation along these axes will differ as 

well. Thus, the induced magnetisation m  of the particle can be written as 
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 ˆ ˆm B e B eχ χ⊥ ⊥ ⊥= + . (4.1) 

 
The corresponding magnetic energy wmag (per particle) is then given by 

 

 ( )2 2 2 2 21 1 1 1 1
cos

2 2 2 2 2
magw m B B B B Bχ χ χ χ θ χ⊥ ⊥ ⊥ ⊥

 = − ⋅ = − + = − − − 
 

 (4.2) 

 

We define χ∆  as 

 

 χ χ χ⊥∆ ≡ − . (4.3) 

 

Neglecting the non orientation-dependent term, equation (4.2) can be written as 

 

 ( ) 2 21
cos

2
magw Bθ χ θ= − ∆ , (4.4) 

 

or, equivalently, in terms of the second order Legendre polynomial ( ) ( )21
2 2 3 1P x x= −  and 

retaining only the orientation-dependent terms 
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Figure 4.1 – Sketch of the magnetic and scattering coordinate system. Symbols are explained in the

text. 
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 ( ) ( )2
2

1
cos

3
magw B Pθ χ θ= − ∆ . (4.5) 

 

In our case, as will be shown later on, χ∆  is negative, hence in a magnetic field the 

platelets align with their normals perpendicular to the field, as the magnetic energy is 

lowest in this configuration. An isotropic phase of gibbsite particles that is aligned in a 

magnetic field will – strictly speaking – not be isotropic anymore and is called paranematic 

to distinguish it from the nematic phase at zero field. For the particles considered here, a 

marked difference between these phases in a magnetic field is their symmetry. At zero 

field, the isotropic phase obviously has no symmetry axis. The nematic phase is aligned in 

a certain arbitrary direction, called the director, and has uniaxial symmetry. As soon as 

these phases are only slightly aligned, e.g. by a magnetic field, their symmetry changes. 

Due to the sign of diamagnetic susceptibility, the director of the nematic phase will be 

orient perpendicular to the magnetic field. Hence, the nematic phase will become biaxial. 

On the other hand, the alignment in the paranematic phase can be described with one axis 

and, hence, this phase is uniaxial. The orientational distribution function (ODF) ( )f θ  of 

the paranematic phase therefore only depends on θ , see Fig. 4.1. 

At low particle concentrations, where the interparticle interactions are negligible, the ODF 

of the particles is simply given by the Boltzmann factor of the magnetic energy 

 

 ( ) ( )2
2 cos1 1

exp
3

B P
f

Z kT

χ θ
θ

 ∆
=  

 
, (4.6) 

 

where Z is a normalisation constant. For low magnetic field strengths, this expression can 

be linearised as 

 

 ( ) ( )2
2 cos1 1

1
4 3

B P
f

kT

χ θ
θ

π
 ∆

= + 
 

. (4.7) 

 

The order parameter, defined as ( )2 2 cosS P θ≡ , is then given by 

 

 
2

2

1

15

B
S

kT

χ∆
= , (4.8) 

 

which immediately shows that for negative ∆χ the particles align with their normals 

perpendicular to the magnetic field (S2 < 0). Note that for an infinitely sharply peaked 
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distribution function around 1
0 2θ π= , with the platelet normals perpendicular to magnetic 

field, ( ) ( )1 1
2 2f πθ δ θ π= −  and hence the lower bound for 1

2 2S = − . 

In order to calculate the orientational distribution function for higher concentrations, we 

need to take into account the effect of interparticle interactions. This can be done in an 

Onsager-like approach, minimising the free energy expression containing the orientational 

entropy, packing entropy and magnetic energy. At low field strengths, the distribution 

function is only weakly perturbed and can be written as 

 

 ( ) ( )2

1
1

4
f Pθ ε

π
= + . (4.9) 

 

with 1ε . Guided by Straley [115], it follows that 

 

 ( ) ( )2
2 cos1 1 1

1
4 3 1

B P
f

kT

χ θ
θ

π φ φ ∗

 ∆
= + − 

, (4.10) 

 

with φ the volume fraction and φ∗  the so-called spinodal volume fraction, above which the 

isotropic state becomes locally unstable. This equation closely resembles Eq. (4.7). The 

corresponding order parameter is given by 

 

 
2

2

1 1

15 1

B
S

kT

χ
φ φ ∗

∆
=

−
, (4.11) 

 

in agreement with earlier results [109,115]. We note that this result is valid for both rod- 

and plate-like particles. Treating Eq. (4.10) as if it were the result of a Taylor expansion, 

we obtain 

 

 ( ) ( )2
2 cos1 1 1

exp
3 1

B P
f

Z kT

χ θ
θ

φ φ ∗

 ∆
=  − 

, (4.12) 

 

which can be looked upon as a rescaled Boltzmann distribution.  

 

4.2.2 Small-angle X-ray scattering 
Here, we will derive a simple model in order to analyse the SAXS data. The model is based 

on the observation that the Fourier transform, and hence the form factor, of an infinitely 

thin platelet (with thickness-to-diameter ratio 0L D = ) is an infinitely thin rod, directed 
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along the platelet normal. Similarly, for finite platelets with low aspect ratio ( )1L D , in 

a certain range of wave vectors, the scattering is strongly directed along their normals. This 

leads to a very simple relation between the scattered intensity (as recorded in the SAXS 

patterns) and the orientational distribution function of the platelets. 

In a SAXS experiment, the time-averaged intensity of the scattered X-rays is measured. 

The so-called Rayleigh ratio ( ) ( )2
0 0R q R I q VI=  is a measure of the scattered intensity 

I(q), which is normalised by taking into account the intensity of the incident beam I0, the 

scattering volume V, and the sample-detector distance R0. For spherical particles the 

Rayleigh ratio can be written as [66,116] 

 

 ( ) ( ) ( )2 2
0R q Nr Z F q S q= , (4.13) 

 

the product of the form factor F(q) and the structure factor S(q). Here the prefactor contains 

the number density of the particles N, the Thompson radius 2 2
0 er e m c≡ , and the excess 

number of electrons in the colloidal particle relative to an equivalent volume of solvent Z. 

The scattering wave vector q is defined as 

 

 
4

sinq
π
λ

= Θ , (4.14) 

 

where λ  the wavelength of the X-rays and 2Θ  the scattering angle. Since the form factor 

and structure factor are coupled in the case of non-spherical particles, they cannot simply 

be factorised like for spheres. However, for particles at very low concentrations, the 

structure factor ( ) 1S q ≈ . The Rayleigh ratio then becomes 

 

 ( ) ( )2 2
0 ,R q Nr Z F q γ= . (4.15) 

 

The angular brackets denote ensemble averaging over all particles with different angles γ, 

the angle between a particle normal ê  and the wave vector q . Fig. 4.1 illustrates the setup 

and the used symbols. In addition, we note that γ is related to θ  and φ  (determining the 

platelet orientation with respect to the x-axis), and ψ  (that determines the orientation of the 

scattering vector in the xz plane) according to 

 

 cos cos cos sin sin cosγ θ ψ θ ψ φ= + . (4.16) 

 

The formfactor of a cylinder is classically given by Guinier and Fournet [117] as 
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 ( ) ( ) ( ) 2
1 1

1 2 2

1 1
2 2

sin sin cos
,

sin cos

J qD qL
F q

qD qL

γ γ
γ

γ γ
 

=  
 

, (4.17) 

 

with J1 the Bessel function of the first kind. It is convenient to factorise the form factor in 

its perpendicular components by defining the scattering vector components q  and q⊥  

parallel and perpendicular to the platelet normal ê  as 

 

 
cos

sin

q q

q q

γ
γ⊥

=

=
 (4.18) 

 

and substitute in Eq. (4.17) to obtain 

 

 ( ) ( ) ( ) ( ) ( )
2 21 1

2 1 2

1 1
2 2

sin
,

q L J q D
F q q F q F q

q L q D
⊥

⊥ ⊥ ⊥
⊥

   
= =    

    
. (4.19) 

 

Fig. 4.2 depicts the two components ( )F q  and ( )F q⊥  of the form factor of a cylindrical 

disk with aspect ratio 1/18L D = . (This specific value is dictated by the experiment, see 

Section 4.3.1.) As can be observed in Fig. 4.2, there is a q-domain where the components 
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Figure 4.2 – The two components of the form factor of a cylindrical disk with aspect ratio

1/18L D = , as defined in Eq. (4.19). In the intermediate regime, F⊥  decays very fast, while F

decreases only slowly with q. 
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of the form factor differ substantially in magnitude. In this so-called “intermediate regime” 

[117], where 2 2
D Lqπ π , ( ) 1F q ≈  and remains nearly constant, while ( )F q⊥  decays to 

values 1 to 3 orders of magnitude lower than ( )F q . Thus, for a given value of the 

scattering vector q, scattering essentially comes only from platelets oriented such that q⊥  is 

small, i.e., for small angles of γ. Hence, we have a very narrow scattering peak. This is 

explained in detail in the Appendix to this chapter. 

In order to calculate the scattered intensity of an ensemble of platelets with a certain 

orientational distribution function ( )f θ , as a function of q and ψ in the detector plane, we 

have to evaluate the following integral (cf. Eq. (4.15) and using Eqs. (4.16) and (4.18)) 

 

 ( ) ( ) ( ) ( ), , , sinI q F q f F q q d dψ γ θ θ θ ϕ⊥∝ = ∫∫ . (4.20) 

 

For weakly perturbed orientational distributions, ( )f θ  is slowly varying over the very 

narrow scattering peak. This allows us to take it out of the integral, however, by doing this 

we make a rather crude approximation. We hence obtain 

 

 ( ) ( ) ( ) ( ), sinI q f F q F q d dψ θ ψ θ θ ϕ⊥ ⊥∝ = ∫∫ . (4.21) 

 

As ( ) 1F q ≈ , the integral depends only on ( )F q⊥ ⊥  and we approximate the latter by 

 

 ( ) 0

0

1

0

q q
F q

q q
⊥

⊥ ⊥
⊥

<
≈  >

, (4.22) 

 

where 1
0 23.83q D=  is the first minimum of F⊥ . (The last step is equivalent to treating a 

circle as a square with a length equal to the circle’s diameter.) The condition γ γ< ∆ , or, 

equivalently, 1γ , is fulfilled if θ ψ≈  and 0ϕ ≈ , following Eq. (4.16). Furthermore, for 

small angles, ( )0 0arctan q q q q  and hence 

 

 ( ) ( )2

2

1
sinF q d d

q
θ θ ϕ γ⊥ ⊥ ∝ ∆ ∝∫∫ . (4.23) 

 

We now obtain the very simple result 

 

 ( ) ( )
2

,
f

I q
q

ψ
ψ ∝ . (4.24) 



SAXS study of the magnetic-field-induced orientational order of colloidal platelets 

47 

 

This implies that the ODF can be obtained directly from the scattering data at constant q in 

the intermediate regime, making our data analysis quite straightforward. In our model, the 

scattered intensity depends on q (it decays monotonously), while the anisotropy of the 

scattering, as measured from e.g. the ellipticity of the iso-intensity lines, is independent of 

q. It will become clear, however, that in reality this is not the case: the anisotropy decreases 

with increasing q, slightly obstructing the determination of the ODF. 

 

 

4.3 Experiment 

4.3.1 Preparation and characterisation 
We synthesised hexagonal colloidal gibbsite (Al(OH)3) platelets [50] that were 

subsequently grafted with end-functionalised polyisobutene and suspended in toluene to 

obtain a model system of hard platelets [22,45]. This specific batch was the same one as 

used in the experiments described in Chapters 2 and 3. Transmission electron microscopy 

and atomic force microscopy were used to determine the average corner-to-corner 

diameter, D, and thickness, L, of the dry particle core, although the latter might contain a 

contribution of the collapsed steric stabiliser. We found D  = 232 nm and L  = 13 nm 

and a polydispersity of about 20% in both dimensions. In solution, the thickness of the 

sterically stabilising polyisobutene brush is an estimated 2 to 3 nm. This gives us effective 

dimensions of Deff = 237 nm and Leff = 18 nm and hence an aspect ratio of 1/13L D ≈ . We 

note that the electron density of the polymer layer is comparable to that of the solvent. 

Therefore, the X-ray scattering from the polymer layer is negligible, yielding an “effective 

SAXS aspect ratio” that is equal to that of the gibbsite core, i.e., 1/18L D = . We have 

therefore used 1/18 rather than 1/13 in Section 4.2.2 on small-angle X-ray scattering. 

 

4.3.2 Samples and methods 
A stock dispersion of the sterically stabilised gibbsite platelets was prepared in the 

isotropic phase. The volume fraction of the stock was calculated from the mass 

concentration (determined by drying a known amount of dispersion at 85°C to constant 

weight) and the previously measured particle mass density ρp = 1.7 g/ml as stockφ  = 0.219. 

From the stock solution, three dilutions were prepared at volume fractions of φ  = 0.165, 

0.109, and 0.050. These samples were put in Lindemann cylindrical glass capillaries 

(internal diameter 0.7 mm) and subsequently flame sealed. The dispersion used in this 

study shows the I-N phase transition. From the evolution of the phase volumes with 

volume fraction, we found the isotropic and nematic phase boundaries to be located at Iφ  = 

0.238 and Nφ  = 0.255. 
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We used the SAXS setup of the Dutch-Belgian beamline BM-26 DUBBLE at the European 

Synchrotron Radiation Facility (ESRF, Grenoble, France). The scattered X-rays were 

detected using a 13 × 13 cm2 multiwire Argon-filled detector, with a pixel size of about 

250 µm. An X-ray beam of 17 keV (wavelength λ  = 0.73 Å) and a sample-detector 

distance of about 8 m were used. The accessible q-range was 0.05 to 0.70 nm-1 both in the 

horizontal and vertical direction. The setup was calibrated using the fibre diffraction of wet 

rat-tail collagen, which has strong characteristic peaks at 2 / 67.2q nπ=  nm-1 (n = 1, 3, 5). 

The beamline was equipped with a helium-cooled superconducting magnet, giving a 

horizontally directed magnetic field and capable of reaching a maximum magnetic field of 

Bmax = 7 T that was homogeneous in a volume of 1 cm3. To avoid the influence of gravity, 

the measurements were performed within 8 days after sample preparation. SAXS patterns 

were acquired at six different field strengths yielding uniformly spaced values of B2 

between 0 to 49 T2. Each pattern was corrected for detector sensitivity and background 

scattering. 
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Figure 4.3 – Iso-intensity lines of a few of the small-angle X-ray scattering patterns obtained in this

study, as a function of volume fraction φ and field strength squared B2. The magnetic field is

oriented horizontally. Clearly, the ellipticity of the scattering patterns increases with increasing

volume fraction and field strength, while it decreases with increasing wave vector q, as more easily

observed in Fig. 4.9. In the measurement of the ellipticity of the patterns, we have made use of two

points A and B on the iso-intensity line; an example is shown in the upper right pattern. 
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4.4 Results and discussion 

The most striking feature of the (in zero field) isotropic dispersions of gibbsite platelets is 

the strong anisotropy of the scattering at high magnetic field, which is displayed in Fig. 4.3. 

Given the fact that the magnetic field is oriented horizontally, this figure shows that the 

particles align with their normals perpendicular to the field. This means that indeed ∆χ has 

a negative value. We can follow two approaches in order to obtain the values of χ∆  and 

φ∗  from our scattering data. In the first approach, in Section 4.4.1, we use the simple 

relation between the scattered intensity and the ODF, as derived in the previous section. In 

the second approach in Section 4.4.2, we make use of the observation that the iso-intensity 

lines are ellipse-like. 

 

4.4.1 Measurement of the orientational distribution function 
We have derived a simple relation between the scattered intensity and the ODF in Section 

4.2.2, Eq. (4.24), and repeat it here:  

 

 ( ) ( )
2

,
f

I q
q

ψ
ψ ∝ . (4.25) 

 

The q-2-dependence of the scattered intensity is demonstrated in Fig. 4.4, where we show 

scattering profiles of an isotropic phase at zero field and at B2 = 40 T2. In the intermediate 

regime, which has an approximate range of 0.03 nm-1 < q < 0.4 nm-1, the intensity is 
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Figure 4.4 – Scattering profiles of the isotropic phase, φ = 0.05, at zero field, obtained by radial

averaging, and at B2 = 40 T2, obtained for a thin slice (width < 0.01 radians) with ψ = 0. The dashed

line indicates that the scattered intensity roughly follows q-2-decay. 
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reasonably well described by a q-2 decay at constant ( )f ψ . From Eq. (4.25) we obtain 

 

 ( ) ( ),if I qψ ψ∝ , (4.26) 

 

when measured at an arbitrary value of qi in the intermediate regime. The (real) ODF does 

not depend on q but is solely determined by the characteristics of the dispersion and the 

applied magnetic field. In our model, the ODF does not depend on q either; it depends only 

on the anisotropy of the scattered intensity ( ),iI q ψ  at constant qi. However, in our 

experiment, we observe that the anisotropy of the scattering decreases with increasing q. 

This means that the ODF will depend on the qi where we measure it. 

We obtain ( ),iI q ψ  from the SAXS patterns by taking thin circular slices at three 

intermediate q-values (0.1, 0.2, and 0.3 nm-1). For each slice, we average a small range of 

q-values (q ± 0.003 nm-1) to improve statistics. We further average the scattered intensity 

by making use of the centrosymmetry of the scattering. 

( ( ) ( ) ( )1 1
2 2, , ,i i iI q I q a I q aψ ψ ψ π= = + = +  for 0 < ψ < π.) With appropriate 

normalisation, these data simply represent the ODF, as illustrated in Fig. 4.5. 

The ODF is given by (Eq. (4.12)) 
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Figure 4.5 – An example of the ODF ( )f ψ that was obtained from the SAXS patterns (of the

same sample as used in Fig. 4.4, φ = 0.05, B2 = 40 T2, and q = 0.2 nm-1). The solid line is a fit using

Eq. (4.29), yielding K2 = -0.18 and S2 = -0.004. The dashed line indicates the isotropic ODF. 
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 ( ) ( )2
2 cos1 1 1

exp
3 1

B P
f

Z kT

χ θ
θ

φ φ ∗

 ∆
=  − 

. (4.27) 

 

This rescaled Boltzmann distribution is valid only for low volume fractions, 1φ φ∗ . 

Therefore, in a first analysis, we only use the SAXS patterns at the lowest concentration (φ 

= 0.05) to obtain χ∆ . The ODF (as presented in Fig. 4.5) is fitted using a two-parameter fit 

 

 ( ) 2
1 2exp cosf K Kψ ψ =   , (4.28) 

 

where K1 is the normalisation constant, taken such that ( ) 1f dψ Ω =∫  and 

 

 
2

2

1 1

2 1

B
K

kT

χ
φ φ ∗

∆
=

−
. (4.29) 

 

We have performed this procedure for the scattering patterns of the sample at various 

magnetic fields, and at three intermediate q values to obtain K2 for φ = 0.05 as a function of 

q and B2. The resulting data are shown in Fig. 4.6. We have fitted the data for each q-value, 
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Figure 4.6 – Measurement of the ODF at low volume fraction (φ = 0.05) for three q-values in the

intermediate regime. K2 is related to the ODF through ( ) 2

2exp cosf Kψ ψ∝    . The dashed lines

indicate linear fits through the data at different q-values, while the solid line is a fit through all data

points. From the slope of the solid line we obtain χ∆ . 
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as well as the complete data set using two-parameter linear fits, yielding the dashed curves 

and the solid one, respectively. We attribute the offset of the data to a systematic 

experimental error. As the effect appears stronger for lower q-values and for low volume 

fractions, it is probably due to anisotropic parasitic scattering. In view of this offset, we 

deliberately perform two-parameter fits. As seen in Fig. 4.6, the q = 0.1 nm-1-data are better 

described in this way than with a line through the origin, which supports this approach. 

From the figure it also appears that the slope of the curves, and hence the value of ∆χ to be 

determined, depends on the q-value where one measures the distribution function. 

However, as these three q-values cover the intermediate regime, we may assume that the 

value of χ∆  derived in this way is reliable if we take the spread in the slopes (of the 

individual q-values) as an estimate of the error in χ∆ . 

From Onsager theory for hard platelets it follows that the spinodal concentration has a 

value in between that of the I-N phase boundaries, and therefore we estimate 

0.25 0.02φ ∗ ≅ ± . (In the following, it will become evident that this is a reasonable 

estimate.) Using Eq. (4.29), we hence obtain χ∆  = -3 ± 1 × 10-23 J/T2. 

We now turn to an analysis of the complete set of data, i.e., we use the scattering patterns 

for all volume fractions (0.05 < φ < 0.219) and magnetic fields, in order to obtain χ∆  and 

φ∗ . From Fig. 4.6, it is observed that the slope of the solid fit (for all q-values) is close to 

that of the fit of q = 0.2 nm-1. Given the error in the slope, we proceed to perform the 

current complete analysis only for q = 0.2 nm-1 and treat the resulting values as 
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Figure 4.7 – Measurement of the ODF for the complete range of volume fractions and field

strengths at q = 0.2 nm-1. The solid line is a linear fit, yielding χ∆ = -3 ± 1 × 10-23 J/T2 and φ ∗ =

0.24 ± 0.02. The spread in the data, for different field strengths, is an estimate of the error in this

analysis. 
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representative for the intermediate q-regime. We have checked that this is the case for φ = 

0.219 as well. 

In the same way as described above, the ODFs are obtained from the SAXS patterns and 

fitted using Eq. (4.28). Plotting 2
2B K−  vs. φ yields Fig. 4.7. We take a linear fit through 

the data and obtain χ∆ = -3 ± 1 × 10-23 J/T2 and φ ∗  = 0.24 ± 0.02, where the spread in the 

data is an estimate of the error in the last two values. Our earlier estimate of the spinodal 

volume fraction indeed agrees with the experimental value obtained here. In addition, it lies 

in between Iφ  and Nφ . Table 4.1 lists the results obtained in this section. 

To get an impression of the magnitude of the alignment, we calculate the order parameter 

from the scattering data, for each field strength and volume fraction. As we take discrete 

data points rather than the analytical expression for the ODF, we use the following 

expression 

 

 ( ) ( ) ( ) ( )2 2 2
10

2 cos sin 2 cos sin
n

i i i
i

S P f d P f
n

π ππ ψ ψ ψ ψ π ψ ψ ψ
=

= ≅ ∑∫ . (4.30) 

 

The calculated order parameters are shown in Fig. 4.8. For the most concentrated sample at 

highest field strength, S2 = -0.18, which is about one third of the maximum value possible 

( 1
2− ) in this symmetry. 
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Figure 4.8 – The order parameter S2 as calculated from the scattering patterns using Eq. (4.30). 
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4.4.2 Ellipticity analysis 

In the previous section, we have obtained the values of χ∆  and φ∗  where we made use of 

the very direct relation between the ODF and the scattered intensity. Here, we approach the 

same SAXS patterns in a different way, using the same relation. The iso-intensity lines 

appear to be well described by ellipses, as has been observed before in the case of aligned 

Laponite platelets [118]. 

We first attempt to analyse our data using our simple model. Using home-written image 

analysis software, we determined the ellipticity, defined as the ratio of the long and short 

axes b/a, of the iso-intensity lines for each SAXS pattern at q-values from 0.1 to 0.4 nm-1. 

Fig. 4.9 shows how the ellipticity varies with qA, defined as the wave vector of the minor 

(horizontal) ellipse axis (see Fig. 4.3), for a selection of 5 samples. (These are: each 

volume fraction at the highest field strength, as well as a sample at zero field.) 

Let us define two points A and B along a given iso-intensity line such that ψA = 0 and ψB = 

2π . Obviously, ( ) ( )I A I B=  and hence it follows from Eq. (4.24) that 
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Figure 4.9 – Ellipticity b/a of several SAXS patterns as a function of qA, defined as the wave

vector of the minor axis of the ellipse-like iso-intensity line, see also Fig. 4.3. The q-range in this

graph covers the intermediate regime. The error bars on the top curve are representative for the

error on all curves. 
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Note that, although we explicitly use two values of q, our model assumes no q-dependence 

of the ellipticity b/a. Substituting the ODF (Eq. (4.12)), we obtain 

 

 
21 1

ln
4 1

b B

a kT

χ
φ φ ∗

∆  = −  − 
. (4.32) 

 

This equation relates the measured ellipticity b/a to χ∆  and φ∗ . Following the same 

argument as in the previous section, we analyse our data at low volume fraction first (φ = 

0.05). We plot ln[b/a] vs. B2 for three intermediate values of q in Fig. 4.10, and take linear 

fits through each of the three data sets, as well as the entire set. The slope of the latter 

yields χ∆ = -3 ± 1 × 10-23 J/T2, where again we took the spread in the slopes of the 

individual fits (in Fig. 4.10) as an estimate of the error and 0.24φ ∗ ≅  as obtained in the 

previous section. 

We proceed to perform the complete analysis (for all volume fractions) using only the 

scattering anisotropy at q = 0.2 nm-1 as representative for the intermediate regime. A plot of 

[ ]2 lnB b a  vs. φ is shown in Fig. 4.11, and yields a straight line that can be fitted using 
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Figure 4.10 – Ellipticity analysis at low volume fraction (φ = 0.05), for three intermediate q-values.

The dashed lines indicate linear fits through the data at different q-values, while the solid line is a

fit through all data points. From the slope of the solid line we obtain χ∆ . 
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χ∆  and φ∗  as parameters. We obtain χ∆  and φ∗  that agree with the values obtained in the 

previous section; see Table 4.1. However, a serious drawback of our model is that it 

assumes that the scattering anisotropy is constant in the intermediate regime. As judged 

from Fig. 4.9, this is clearly not the case. We therefore performed theoretical calculations 

of the scattering patterns, which show better agreement with our experimental results. 

 

4.4.3 Theoretical calculations of the scattering patterns 
We observe that the ellipticity of the iso-intensity lines in the experimental scattering 

patterns decays with q, while it is assumed constant in our simple model. To investigate 

this discrepancy, we performed theoretical calculations of the scattering patterns using the 

Boltzmann ODF for non-interacting platelets (Eq. (4.6)) and the form factor of a cylindrical 

Table 4.1 – Values of the diamagnetic susceptibility anisotropy χ∆  and spinodal volume fraction 

φ ∗ , obtained in from the scattering patterns following the ODF and ellipticity analyses. 

 ODF analysis ellipticity analysis 

 φ = 0.05 all φ’s φ = 0.05 all φ’s 

χ∆ /10-23 J/T2 -3 ± 1 -3 ± 1 -3 ± 1 -2 ± 1 

φ∗  – 0.24 ± 0.02 – 0.24 ± 0.03 
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Figure 4.11 – Ellipticity analysis for the complete range of volume fractions and field strengths at q

= 0.2 nm-1. The solid line is a linear fit, yielding χ∆ = -2 ± 1 × 10-23 J/T2 and φ ∗  = 0.24 ± 0.03. The

spread in the data, for different field strengths, is an estimate of the error in this analysis. 
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disk (Eq. (4.17)) with an aspect ratio 1/18L D = , following Lemaire and co-workers 

[118]. Clearly, this approach only holds for low concentrations and we will therefore 

compare our calculations with the experimental scattering pattern of the sample with φ = 

0.05, at B2 = 40 T2. We calculate the scattering patterns of the monodisperse cylindrical 

disks for two values of the Boltzmann factor, i.e., 21
2

ˆ 0.2B B kTχ= ∆ = −  and ˆ 1B = − , 

corresponding to χ∆  = –4 × 10-23 and –2 × 10-22 J/T2, respectively. Their iso-intensity lines 

are ellipse-like and allow for determination of the ellipticity as a function of qAD (with D 

the diameter of the disks), as depicted in Fig. 4.12 together with the experimental result. 

The oscillations in the calculated ellipticity lines are suppressed in the experimental one, 

most likely due to polydispersity. The experimental curve is in between the calculated 

ones, indicating that in the experiment ˆ0.2 1B− > > −  and, hence, that we have obtained an 

underestimate for χ∆  with our simple model.  
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Figure 4.12 – Ellipticity of one experimental and two calculated scattering patterns. The

experimental result (of φ = 0.05, B2 = 40 T2, denoted by the open triangles and a solid line to guide

the eye) is taken from Fig. 4.9, the calculated patterns were obtained using the form factor of a

cylindrical disk with 1/18L D =  and the Boltzmann ODF for non-interacting plates with

21
2

ˆ 0.2B B kTχ= ∆ = −  (dashed line) and ˆ 1B = −  (dash-dotted line). The calculated lines show a

maximum around qAD ≈ 10 that is not observed experimentally due to the limited q-range. 
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4.4.4 General discussion 
The two procedures that we followed in analysing our data are both based on the same 

simple relation between the scattered intensity and the ODF, a relation that we have 

derived in Section 4.2.2. Let us now briefly discuss the model and how it limits our 

analysis. 

First of all, by using the Boltzmann factor for the magnetic energy, we restrict ourselves to 

near-ideal systems (φ ≈ 0). However, by introducing a rescaled version, the model should 

hold for not too high finite volume fractions ( 1φ φ ∗ ) as well. Surprisingly enough, from 

Chapter 5, Fig. 5.3 it appears that – within experimental accuracy – the suspension’s 

behaviour is well described by this rescaled Boltzmann distribution function, up to φ φ ∗≈ . 

From both analyses, we find the spinodal volume fraction as φ ∗  = 0.24 ± 0.03, which lies 

in between Iφ  and Nφ . Unfortunately, there is no straightforward method to measure φ ∗  

directly. 

In the derivation of the ODF we have used Straley’s result for weakly aligned states 

(expressed mathematically as 1ε  or 1
2 5S ), allowing only a slight perturbation from 

the isotropic state. Beforehand, one would expect this condition to be met only at low 

volume fractions or at low fields. From Fig. 4.8 we find that the most concentrated sample 

at highest field strength has S2 = -0.18, which is about 1
5 , hence, the sample is certainly not 

‘weakly aligned’. However, we find good agreement between the values of χ∆  obtained at 

low and high volume fractions, as well as between the separate analyses, leading to the 

conclusion that χ∆  = -3 ± 1 × 10-23 J/T2. However, in view of the theoretical calculations, 

we note that the value obtained is a lower bound. The limitations of our simple model 

become evident in the rather large error in χ∆ . 

 

 

4.5 Conclusion 

We have shown that colloidal gibbsite platelets form a nice model system in the study of 

magnetic-field-induced orientational ordering of platelets. The diamagnetic susceptibility 

anisotropy χ∆  is high enough to generate considerable effects at moderate field strengths, 

yielding a maximal S2 = -0.18. In our analysis, we take a rescaled Boltmann expression for 

the orientational distribution function. Given the special properties of the form factor of a 

plate-like particle in the so-called intermediate regime, we propose a simple model for the 

scattered intensity in this regime, making it a very transparent and straightforward 

approach. Although we neglect the q-dependence of the anisotropy of the scattering in our 

model, we are able to perform an analysis that does our data justice. The obtained value of 

the diamagnetic susceptibility anisotropy is likely an underestimate. In the next chapter we 

will study the magnetic-field-induced alignment using an optical technique and indeed 
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obtain a diamagnetic susceptibility anisotropy that is significantly higher. Although the 

technique employed there is much more sensitive, it does not provide direct access to the 

distribution function as in this study. 

 

 

Appendix 

In this appendix we will show that the scattering of plate-like particles is strongly directed 

along their normals, validating the approach in Section 4.2.2. We focus on the intermediate 

range, where 2 2
D Lqπ π . In this range, there is a significant difference between the 

components of the form factor, as was already shown in Fig. 4.2. Fig. 4.13 shows the small 

ellipse-like region, or central peak, where most of the scattering is found. 

Let us define xyz Cartesian coordinates as in Fig. 4.1. The platelet normal ê  then takes the 

form ( )ˆ sin cos ,sin sin ,cose θ ϕ θ ϕ θ= . We need to calculate the scattered intensity of an 

ensemble of platelets at a given position on the detector, i.e., for a given value of the 

scattering vector ( ) ( )0 0,0, sin ,0,cosx zq q q q ψ ψ= = . (We use small-angle approximation 

here, hence, 0yq ≅ .) From Fig. 4.13 it follows that the strongest contribution at this 

position comes from particles with their normals along the scattering vector, ê q , i.e., 

those that have the orientation θ = ψ0 and ϕ = 0. We extend this to the particles that have 
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Figure 4.13 – The scattering of a plate-like particle is strongly directed along its normal, as

demonstrated by (a) the form factor F(q) of a plate-like particle with 1/18L D = . As this is a

planar cut through the three-dimensional Fourier space, the central peak is in fact a three-

dimensional ellipsoid-like object rather than a two-dimensional ellipse-like object. For clarity, a

disk with the same aspect ratio and analogous orientation is projected in the scattering pattern. For

three circles, the corresponding qD-value is given. The dashed circles give the extremes of the

intermediate regime; the solid circles indicate the azimuthal paths along which we calculate the

scattered intensity that is given in (b) for qD = 4π, 10π, and 20π. 
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γ γ< ∆ , where ( ) ( )0arctanq q qγ∆ =  and 1
0 23.83q D=  is the first minimum of F⊥ . As a 

result we only count 80% of the scattering. The remaining 20% comes from particles with 

γ γ> ∆ . For the particles under consideration (with 1/18L D = ), γ∆  is approximately 8° 

at q Lπ= , demonstrating that we indeed have a very narrow scattering peak. 
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Magnetic birefringence study 

of the isotropic phase of 

colloidal gibbsite platelets 

 

 

 
Abstract 

We have studied the magnetic birefringence of a system of colloidal 

gibbsite platelets dispersed in toluene. Due to the relatively large 

diamagnetic susceptibility anisotropy χ∆ , isotropic suspensions of these 

platelets readily align in magnetic fields up to 2 T. We measure the field-

induced birefringence of the suspensions as a function of volume fraction 

and use the model derived in the previous chapter to analyse our data. We 

obtain a value of χ∆  that is slightly higher than that obtained in the 

previous chapter. 

 

5.1 Introduction 

One of the most striking features of liquid crystals (LCs), and perhaps also the most 

exploited one, as evidenced from e.g. the ubiquitous liquid crystal displays (LCDs) that 

surround us in everyday life, is their birefringence. The orientational order in LCs can be 

achieved by lowering the temperature (for thermotropic LCs) or increasing the 

concentration (for lyotropic ones). However, it is perhaps even more easily imposed by an 

external electric or magnetic field. Moreover, any external field that takes advantage of the 

anisotropic properties of the (macro) molecules under consideration is suitable [119]. 

Here, we present a study of the birefringence in an isotropic dispersion of colloidal gibbsite 

platelets (a so-called mineral liquid crystal or MLC [120,121]), induced by a magnetic 
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field. As has been shown in the previous chapter, this specific MLC is quite susceptible to 

a magnetic field, allowing a small-angle X-ray scattering (SAXS) study of the orientational 

order and providing direct access to the orientational distribution function (ODF). 

Measurement of the birefringence is a well-known technique that allows measurement of 

the field-induced orientational order and that has been employed before on various kinds of 

liquid crystals. Examples of these include the classic thermotropic LCs 5CB [122] and 

MBBA [123]. Among the lyotropic LCs are (bio) polymers like DNA [124], hard rods like 

tobacco mosaic virus (TMV) [109,125], fd [110-112] virus particles, and goethite rods 

[25,105]. 

In contrast to the SAXS measurements performed in the previous chapter, the current 

technique does not provide the ODF, but only its second moment: the order parameter S2. 

We further require knowledge of the specific birefringence ∆nsat, i.e., the value of the 

birefringence of a completely aligned sample of anisotropic particles (with S2 = 1), divided 

by its volume fraction; see Eq. (5.1). In such an aligned sample, the specific birefringence 

is determined solely by the optical anisotropy of the single particles. Bragg and Pippard 

[126] have noted that the optical anisotropy of a macromolecule is “due partly to the 

intrinsic birefringence of the molecule itself, and partly to the elongated form of large 

molecules of high refractive index which are immersed in a liquid of lower refractive 

index”. For our gibbsite particles both contributions are expected, as the particles have a 

slight refractive index-difference along their three perpendicular axes (na = nb = 1.57, nc = 

1.59 [127]) as well as a substantial difference with the solvent in combination with a quite 

pronounced shape anisometry. However, we will show that these contributions counteract.  

In this study, we aim to investigate the magnetic-field-induced order using optical 

techniques. Using the rescaled Boltzmann distribution function that was introduced in the 

previous chapter, we analyse our data in order to find the diamagnetic susceptibility 

anisotropy. 

 

 

5.2 Field-induced birefringence 

A classic way of determining the pretransitional order in liquid crystals is by measuring the 

field-induced birefringence [105,108,110,119,122-125,128-131]. It has been suggested that 

the birefringence ∆n of a dilute isotropic colloidal suspension is given by [105,132] 

 

 2satn n Sφ∆ = ∆ , (5.1) 

 

where ∆nsat is the specific birefringence, φ the volume fraction and S2 the order parameter. 

Note that the specific birefringence does not depend on the concentration, nor the amount 

and direction of alignment of the particles. 
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In this study, the orientation is induced by a magnetic field. In Section 4.2.1, Eq. (4.11), we 

have shown how, for low volume fractions, the order parameter S2 depends on χ∆  and B 

and repeat this result here: 
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In the derivation of this expression, it is assumed that the particles are only weakly aligned. 

It will be shown that this requirement is fulfilled. Substitution of Eq. (5.2) into (5.1) gives 
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Rewriting yields 
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which relates the observed field-induced birefringence 2n B∆  to the magnitude of 

satn χ∆ ∆ . Apparently, we may expect linear behaviour of 2n B∆  vs. φ  at low volume 

fractions ( 1φ φ ∗ ) when there are only individual interactions of the platelets with the 

magnetic field, while it should diverge on approaching the spinodal concentration φ∗  due 

to the collective effect of the platelets. 

 

 

5.3 Experiment 

5.3.1 Preparation and characterisation 
In this study we make use of sterically stabilised colloidal gibbsite platelets in toluene, 

synthesised according to the procedures in the literature [22,45,50]. We use the same batch 

that was used in Chapter 4 and refer to it for the experimental details of the preparation and 

characterisation (see Section 4.3.1). In addition to the described procedure, the stock 

dispersion used in this study was purified to remove some contamination, visible as a black 

layer at the I-N interface. We simply extracted the contamination by using a small pipette. 

Due to this extra step, the stock dispersion has slightly different characteristics, e.g., the 

isotropic and nematic phase boundaries are shifted to somewhat higher volume fractions. 
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5.3.2 Samples and methods 
In order to obtain the most concentrated isotropic stock dispersion, we brought the purified 

stock dispersion in the I-N biphasic gap. After phase separation, which took 1 day, the 

amounts of isotropic and nematic phase were about 90% and 10%, respectively. Both 

phases were extracted. The nematic fraction was used to study the effect of a magnetic field 

on a wall-aligned nematic phase (the Frederiks transition), as described in Chapter 7 of this 

thesis. 

The volume fraction of the isotropic phase was determined to be φ = 0.229, following the 

method described in Section 4.3.2. It was used to prepare 11 samples in spectrophotometric 

cells with volume fractions ranging from φ = 0.02 to φ = 0.246. In spite of carefully sealing 

the cells with Teflon tape, evaporation of the solvent could not be prevented, causing a 

shift of the samples’ volume fraction to slightly higher values with time. We kept track of 

the actual volume fraction by weighing each sample before performing the birefringence 

measurements. The path length of the cells d was chosen such that it increased from 1.00 

mm to 10.00 mm with decreasing volume fraction to counterbalance the lower 

birefringence at lower concentration. 

The birefringence was measured using a technique based on the modulation of the state of 

polarisation of the light [133]. This setup is suited to measure the linear birefringence ∆n 

very sensitively, as demonstrated by our measurement of the field-induced birefringence of 

toluene (the solvent). 

The setup, similar to that described in Ref. [105], used a green He-Ne laser (λ = 543.5 nm), 

a vertical polariser, a photoelastic birefringent modulator with its main optical axis at 45° 

from the vertical direction and oscillating at a frequency ν = 50 kHz to avoid the influence 

of mechanical vibrations, the sample immersed in a horizontal magnetic field perpendicular 

to the light beam, an analyser at 45° from the vertical direction and a photomultiplier as a 

detector. A lock-in amplifier measures the component of the photomultiplier signal Iν at the 

modulation frequency ν, which is related to the birefringence ∆n by 

 

 0

2
sin

nd
I Iν

π
λ
∆

= , (5.5) 

 

where I0 is kept constant and determined by calibration. The alternating magnetic field was 

generated by an electromagnet, sweeping with a triangular type of modulation from -0.8 T 

to 0.8 T and a period of 49 s, which was much larger than the typical response time of an 

isotropic solution (measured to be in the range 10-100 ms, depending on volume fraction) 

to ensure orientational equilibrium of the particles. 
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5.4 Results and discussion 

To illustrate the magnetic birefringence of the suspension of colloidal gibbsite platelets, we 

show the field-induced birefringence as recorded with a digital camera. This simple 

qualitative experiment was performed using a different biphasic (isotropic and nematic) 

sample in a spectrophotometric cell (path length d = 2.00 mm), immersed in a horizontal 

magnetic field and put between crossed polarisers (both making an angle of 45° with the 

vertical). Fig. 5.1 depicts this sample and the increase of the birefringence of the isotropic 

phase with magnetic field. Using a rough estimate 10optd n λ∆ ≈  [118] ( 0.6optλ ≈ µm the 

wavelength of the orange transmitted light) of the birefringence that can be detected with 

the naked eye, we evaluate the field-induced birefringence 2n B∆  in the coexisting 

isotropic phase. From Fig. 5.1, we observe that the birefringence becomes visible around 

B ≈ 0.5 T, yielding 2n B∆ ≈ 10-4 T-2. Later on we will show that this is indeed about the 

right order of magnitude. 

Measurement of the field-induced birefringence yields ∆n vs. B-curves, of which a typical 

one is shown in Fig. 5.2. The birefringence is proportional to B2. At the highest volume 

fractions, the curves showed some hysteresis, likely due to the fact that the samples had 

entered the biphasic gap. Still, the hysteresis was small enough to accurately determine 

(a) (b) (c) (d) (e)

I

N

 

Figure 5.1 – Illustration of the magnetic-field-induced birefringence in the isotropic phase of the

suspensions of sterically stabilised colloidal gibbsite platelets. An isotropic-nematic sample with

path length d = 2.00 mm is placed between crossed polarisers in a horizontal magnetic field (a) 0,

(b) 0.5, (c) 1, (d) 1.5, and (e) 2.0 T, generated using a Bruker BE25v Electromagnet. The sample is

observed between crossed polarisers, making angles of -45° and 45° with the vertical direction. As

can be seen quite clearly, the birefringence in the isotropic phase increases with increasing

magnetic field. The black patch in the nematic phase, which increases in size with the field

strength, is caused by so-called homeotropic anchoring of the platelets on the front and back walls

of the cell. This phenomenon is studied in Chapter 7. The birefringence gradient observed at the top

of the sample is due to sedimentation of the particles. (See colour version at page 134.) 
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2n B∆  by linearly fitting the ∆n vs. B2 curves. The volume fraction-dependent field-

induced birefringence is depicted in Fig. 5.3. As a demonstration of the setup sensitivity 

and as a background check, we have measured the field-induced birefringence of the 

solvent (toluene) as well, and found a value of 2n B∆  = 2.5 × 10-9 T-2. The so-called 

Cotton-Mouton constant KCM is obtained as 2
CMK n Bλ= ∆ , where λ is the wavelength at 

which it was determined. From the literature values [134] of the Cotton-Mouton constants 

of benzene (7.84 × 10-3 T-2m-1) and p-xylene (8.17 × 10-3 T-2m-1), measured at λ = 488 nm, 

we estimated that of toluene at 7 × 10-3 T-2m-1 at our experimental wavelength. Our 

measured KCM = 5 × 10-3 T-2m-1, which is slightly lower than the (estimated) literature 

value. 

For the coexisting isotropic phase, at φ = 0.24, the field-induced birefringence is about 

2 × 10-5 T-2. This is indeed of the same order of magnitude as the value we (very crudely) 

estimated above. We are able to make an estimate of the order parameter in this sample. 

Using Eq. (5.2), φ  = 0.24, φ ∗ = 0.26, B = 0.8 T, and χ∆ = -2 × 10-22 J/T2 as obtained later 

on, we find that S2 = -0.03, indicating that the condition for weakly aligned states is 

satisfied. The value of 2n B∆  of our isotropic suspension of colloidal gibbsite (Al(OH)3)  

platelets falls in between those of metal oxide and organic colloidal rods, see Table 5.1. 

This is understood on the basis of the electronic structure of the constituent atoms (d-block 
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Figure 5.2 – Typical curve obtained from the measurement of the field-induced birefringence, in

this case for a sample with φ = 0.219 and d = 1.00 mm. The open dots indicate measured data; the

solid curve is a parabolic fit through the data, demonstrating that 2n B−∆ ∝ . 
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Table 5.1 – Magneto-optical properties of several anisotropic colloidal particles, including plate-

like gibbsite particles studied in this thesis. To give an impression of the different shapes of the 

particles, we present the particles’ length (L), diameter (D), width (W), and thickness (T). We 

furthermore make a comparison of the magnetic-field-induced birefringence 2n B∆  in the isotropic 

suspensions at I-N coexistence. In order to make a fair comparison, we correct it for the volume 

fraction and have therefore calculated 2

In Bφ∆ . The right-most column gives the diamagnetic 

susceptibility anisotropy per particle. 

particle dimensions 
Iφ  

2

In Bφ∆ /T-2 χ∆ /10-23 J/T2 

goethite lathe L = 150 nm, W = 25 nm, T = 10 nm [105] 0.06 [105] 0.5  [105] -2200 [105] 

V2O5 ribbon L ≈ 200 nm, W = 10 nm, T = 1 nm [137] 0.01 [137] 0.7  [105] – 

TMV rod L = 300 nm, D = 18 nm [138] 0.3 [109] 5 × 10-7 [109] 0.2 [108,109,125]

fd virus rod L = 900 nm, D = 6.5 nm [139] 0.02 [111] 5 × 10-6 [21] 0.5 [113,140] 

Pf1 virus rod L = 2000 nm, D = 6 nm [113] – – 1.2 [113] 

gibbsite plate D = 237 nm, T = 18 nm 0.24 8 × 10-5 -10 ± 5 
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Figure 5.3 – Field-corrected birefringence 2n B−∆ vs. volume fraction. This graph shows that the

field-induced birefringence diverges near the spinodal volume fraction φ ∗ , obtained from the fit in

Fig. 5.4 and indicated by the dashed line. The inset shows the low volume fraction region, with the

solid black line as the tangent to the fit at φ = 0, indicating ideal behaviour as described by the

Boltzmann ODF. The rescaled Boltzmann ODF is able to describe the collective behaviour, almost

up to φ ∗ , very well. 
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atoms like Fe and V in contrast to p-block elements like Al, C and N) as well as the particle 

volume (which is higher for platelets than for rods with the same dimensions). 

The volume-fraction-dependent field-induced birefringence follows the behaviour that was 

sketched at the end of section 5.2: at low volume fraction (φ < 10%), the curve shows 

almost linear behaviour, as shown in the inset in Fig. 5.3, while it diverges near φ∗ . 

Although the rescaled Boltzmann ODF was derived for not too high volume fractions 

( 1φ φ∗ ), it is able to describe the data surprisingly well, almost up to φ∗ . 

The value of φ∗  as well as satn χ∆ ∆  can be obtained from our measurements following 

Lemaire and co-workers [105]. Rewriting Eq. (5.4) we find 

 

 
2 15

1
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B kT

n n

φ φ
χ φ∗

 
= − ∆ ∆ ∆  

. (5.6) 

 

Plotting 2B nφ ∆  vs. φ then should yield a straight line with a vertical intercept of 

15 satkT n χ∆ ∆  and a horizontal intercept at φ∗ . This indeed appears the case from Fig. 5.4. 

satn χ∆ ∆  and φ∗  can be used as linear fit parameters, yielding -3.6 ± 0.1 × 10-25 J/T2 and 

0.26 ± 0.03, respectively. The value for φ∗  closely agrees with the value obtained in 

Chapter 4. Now we know the value of satn χ∆ ∆ , we will determine the specific 
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Figure 5.4 – The same information as Fig. 5.3, now in a representation with 2B nφ ∆  vs. φ. Using

Eq. (5.6), we obtain satn χ∆ ∆  = -3.6 ± 0.1 × 10-25 J/T2 and φ ∗  = 0.26 ± 0.03 from this graph. 
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birefringence satn∆  in order to obtain χ∆ . 

According to Eq. (5.1), 2satn n Sφ∆ = ∆  and therefore, we have to determine satn∆  by 

measuring the birefringence of a completely aligned sample (with 2S  = 1) with known 

volume fraction. In order to prepare completely aligned sample, we improved the 

orientational order of a nematic phase by rotating it in a magnetic field around an axis 

perpendicular to the field. Apart from improved alignment, we expect reorientation of the 

nematic director parallel to the rotation axis. (This is due to 0χ∆ < , which also results in 

the positive order parameter that we use below. This is explained in more detail in the next 

chapter, Section 6.3) We have performed the procedure above to two different samples, 

whose birefringence was measured in two different ways. First we prepared a nematic 

phase (φ  = 0.27) in a flat optical capillary with thickness d = 200 µm. It was rotated in a 

magnetic field (B = 1.0 T) for 10 minutes and we used a polarisation microscope to check 

the alignment before and after measurement of the birefringence, see Fig. 5.5. We observed 

that the orientational order had relaxed to a certain extent, and therefore estimate the order 

parameter at 2S  ≈ 0.8 rather than 1. The birefringence of the sample was measured using 

an optical birefringent compensator to obtain the specific birefringence as satn∆ = 2.1 ± 0.5 

× 10-3. A second nematic phase, in coexistence with an isotropic phase, with φ  = 0.255, 

was prepared in a thicker cell (d = 2.00 mm) and put in a horizontal magnetic field at B = 

1.4 T. The cell was rotated and Fig. 5.6 shows the evolution of the birefringence in time. 

The nematic phase, which initially consisted of multiple domains, coalesces completely to 

form a monodomain nematic phase with its director vertical. Using an interference colour 

P

A
 

Figure 5.5 – Aligned nematic sample used in the determination of satn∆ . At an angle of 0° with the

polariser the sample appeared completely black. The scale bar denotes 1 mm. (See colour version at

page 134.) 
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chart [135], we find that the bright green interference colour finally visible is a “second-

order” green, with a retardation ∆  = 800 ± 40 nm. We estimate 2S  ≈ 0.8 and using the 

relation n d∆ = ∆ , we find satn∆  = 2.0 ± 0.5 × 10-3 agreeing very well with the first 

measurement. 

We are now able to calculate χ∆ = -2.0 ± 0.7 × 10-22 J/T2 and note that this is one order of 

magnitude higher than the value obtained in Chapter 4. 

In order to cross-check the value of the specific birefringence, we calculate it following 

Lemaire and co-workers using the expression [105,126] 

 

 ( ) ( ) ( )
2 2 2 2 2 2

0 0 0 0

2 2 2 2 2 2 2 2 2
0 0 0 0 0 0

1

2 2
c a b

sat

c c a a b b

n n n n n n n
n

n N n n n N n n n N n n

  − − −  ∆ = − +
 + − + − + −   

, (5.7) 

 

 

Figure 5.6 – Isotropic-nematic sample in a magnetic field, rotated around its vertical axis at an

average rate of 6 revolutions per minute (a) just before starting rotation and after rotating for (b) 1

and (c) 2 minutes. The magnetic field was directed horizontally, B = 1.4 T, the polarisers made an

angle of -45° and 45° with the vertical direction. Due to this specific geometry, a (uniaxial) nematic

phase is prepared with its director along the vertical rotation axis. Using an interference colour

chart [135], we find that the green interference colour finally emerging is a “second-order” green,

with a retardation ∆ = 800 ± 40 nm. In this specific sample, due to the magnetic field, the amount of

nematic phase had increased from 80% to 97%. This phenomenon is described in more detail in

Chapter 6. Furthermore, we note that we have in fact induced the Frederiks transition in the sample,

i.e., a reorientation of the nematic director field due to a magnetic field. This phenomenon is

discussed in Chapter 7. (See colour version at page 135.) 
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where na, nb, and nc the refractive indices of the gibbsite platelet along the three 

crystallographic axes, and Na, Nb, and Nc the depolarising factors along the same axes. The 

depolarising factors can be calculated by treating the particles as ellipsoids [136] with the 

same aspect ratio as the gibbsite core ( 1/18L D = ), yielding Na = 0.04, Nb = 0.04, and Nc = 

0.92. This in turn yields the specific birefringence as satn∆ = 1.2 × 10-2. This value is one 

order of magnitude larger than measured experimentally. However, we note that the 

calculation only takes into account the form birefringence. As explained in the 

introduction, the effective or measured birefringence has two contributions: the intrinsic 

(material) birefringence and the form birefringence. As these contributions counteract in 

the case of our gibbsite particles, the discrepancy can be explained. Therefore, in the 

calculation of χ∆  from the value of satn χ∆ ∆ , we should use satn∆  as measured in our 

experiment and, hence, we obtain χ∆  = -2.0 ± 0.7 × 10-22 J/T2. 

In the previous chapter, we have obtained a value of the diamagnetic susceptibility 

anisotropy that is considerably lower, χ∆  = -3 ± 1 × 10-23 J/T2. However, given the 

shortcomings of the model employed in Chapter 4, this has to be taken as a lower bound. 

We hence conclude that the diamagnetic susceptibility anisotropy of our gibbsite platelets 

can be given as χ∆  = -1 ± 0.5 × 10-22 J/T2. In Table 5.1 we present a comparison of the 

values of χ∆  for different anisotropic colloidal particles. It appears that the value of our 

gibbsite platelets is higher than that of organic rods, and lower than that of the inorganic 

rod goethite. 

 

 

5.5 Conclusion 

We have studied the magnetic birefringence of an isotropic suspension of sterically 

stabilised colloidal gibbsite platelets dispersed in toluene. We have measured the 

birefringence as a function of volume fraction and analysed our data using a rescaled 

Boltzmann orientational distribution function. In contrast to the study in Chapter 4, we here 

fulfil the requirement of weakly aligned states. From this and the previous chapter, we 

obtain the diamagnetic susceptibility anisotropy of our platelets as χ∆  = -1 ± 0.5 × 10-22 

J/T2. In the next chapters, we will study the effect of the magnetic field on the phase 

transition densities, as well as the Frederiks transition, both requiring this value of χ∆ . 
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6 
 

Magnetic-field-induced shift of the 

isotropic-nematic phase transition 

of colloidal gibbsite platelets 

 

 

 
Abstract 

We present exploratory experiments of the isotropic-nematic phase 

behaviour of a suspension of sterically stabilised colloidal gibbsite 

platelets in a magnetic field. We observe a shift of the phase transition to 

lower volume fractions with increasing field, in agreement with theoretical 

calculations. We derive a Clausius-Clapeyron type relation to analyse our 

experimental results. 

 

 

6.1 Introduction 

In the previous two chapters, we have discussed the influence of the magnetic field on the 

isotropic phase of our colloidal dispersion of gibbsite platelets. Here, we will focus on the 

isotropic (I) to nematic (N) phase transition in a magnetic field. 

The isotropic to nematic phase transition can be understood on the basis of the so-called 

Onsager theory. In the 1940s, Onsager has shown why suspensions of anisometric particles 

– rods or plates – show the I-N phase transition [10,11]. It was demonstrated that the 

balance between orientational entropy (which favours the isotropic state) and packing 

entropy (favouring the nematic or aligned state) determines the phase behaviour. At low 

concentrations, orientational entropy dominates, yielding an isotropic state. As the packing 

entropy becomes more important at higher concentrations, a first-order phase transition 
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from an isotropic to a nematic phase may occur if the concentration of plates or rods is 

sufficiently high. 

On the basis of these considerations, one may already intuitively expect that external 

(aligning) fields may have an influence on the I-N transition. In 1982, Khokhlov and 

Semenov [142] put down a theoretical basis for this, by adding an extra term to the 

Onsager free energy that incorporates the field-induced alignment. Recently, Varga and co-

workers [143,144] have used the Parsons-Lee [145-147] rescaling method to describe the 

phase behaviour of hard rods in an external field. For platelets however, this method is only 

qualitatively correct [144,148]. 

As was shown by Khokhlov and Semenov, one can distinguish two scenarios for the 

alignment of rods or plates in an external quadrupolar field. A particle aligns with its 

normal ê  either parallel or perpendicular to the field, depending on the sign of the 

diamagnetic susceptibility anisotropy χ∆ . The magnetic energy per particle wmag is given 

by 

 

 ( )2 cosmagw P θ= −Φ , (6.1) 

 

where 21
3 BχΦ = ∆ ; see also Section 4.2.1. It follows that ê B  for 0Φ >  and ê B⊥  for 

0Φ < . We have sketched phase diagrams for both scenarios in Fig. 6.1. As observed in 

Chapter 4, our particles align with their normals perpendicular to the field and, hence, we 

deal with the second scenario, shown in Fig. 6.1b. 

Evidence for a shift of the I-N transition due to a magnetic field is still limited. A decade 

ago, Tang and Fraden [111] provided evidence for a magnetic-field-induced I-N phase 

transition in suspensions of rod-like fd virus particles on the basis of the time dependence 

c

Φ

critical point

PU NU

(a) (b)

c

tricritical point

PU NB

−Φ

 

Figure 6.1 – Sketches of the phase diagram of rods or plates in an external field, (a) for positive

and (b) for negative values of the field parameter Φ. The solid horizontal lines denote tie lines, c

denotes concentration. P and N refer to the paranematic and nematic phases, respectively; U

denotes uniaxial and B biaxial symmetry. 
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of the field-induced birefringence. Recently, Lemaire and co-workers [149] observed that 

when a magnetic field is applied to a biphasic goethite suspension, “the isotropic phase 

acquires a birefringence comparable to that of the nematic phase. At strong enough fields, 

the meniscus between the two phases fades and finally vanishes on the timescale of a 

week”. This strongly suggests the disappearance of the coexistence region typical of the 

first order character of the I-N transition beyond some value of the magnetic field. 

Here, we present visual observations of the shift of the I-N phase transition densities in a 

colloidal suspension of gibbsite platelets. We show that the densities are lowered due to the 

field. We follow a simple Clausius-Clapeyron type approach to analyse our data and find 

qualitative agreement. 

 

 

6.2 Experiment 

In this study we make use of the same dispersion of sterically stabilised colloidal gibbsite 

platelets [22,45,50] as in Chapter 4. We therefore refer to Section 4.3.1 for the 

experimental details of the preparation and characterisation. 

The suspension’s I-N phase boundaries (at zero field) are Iφ  = 0.238 ± 0.002 and Nφ  = 

0.255 ± 0.002. We prepared one sample within the I-N biphasic regime, at φ = 0.246. 

(Volume fractions were calculated from the mass concentration, determined by drying a 

known amount of dispersion at 85°C to constant weight, and the previously measured 

(a) (b) (c) (d)  

Figure 6.2 – A biphasic sample of a different batch of sterically stabilised colloidal gibbsite

platelets photographed between crossed polarisers at increasing magnetic field strength. The

amount of nematic phase increases with the field, at the cost of the isotropic (or paranematic) phase.

The sample is shown at B2 = (a) 0, (b) 1, (c) 2, and (d) 3 T2, respectively. (See colour version at

page 135.) 
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particle mass density ρp = 1.7 g/ml.) The sample was put in a spectrophotometric cell with 

a thickness of 2 mm. 

We studied the phase behaviour of the suspension in a magnetic field using a Bruker 

BE25v Electromagnet. This magnet, in combination with the specific magnet poles, 

produces a very homogeneous magnetic field in our sample, up to field strengths of 2.3 T. 

The field strength was monitored using a LakeShore 421 Gaussmeter. 

Before each measurement, we thoroughly homogenised the sample and suspended it 

between the poles of the electromagnet. Then, immediately, the magnet was brought at the 

intended field strength. The sample was left to phase separate in the field, which usually 

took 1 or 2 days. Using crossed polarisers and a cathetometer, we determined the relative 

amounts of isotropic and nematic phase. This procedure was executed for three field 

strengths and two sample volume fractions, where we kept track of the actual volume 

fraction by weighing the sample after dilution. 

 

 

6.3 Results and discussion 

We have determined the relative amounts of isotropic and nematic phase at eight state 
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Figure 6.3 – Phase diagram of the gibbsite platelets in a magnetic field. The volume fraction is

denoted by φ; 3c Dρ= is calculated from φ using 4 D
L

c πφ= . The open dots indicate the state points

at which we have measured the amount of isotropic and nematic phase. The solid dots indicate the

limits of the biphasic gap (binodal points) that were extrapolated from the open dots using the lever

rule. The solid lines indicate linear fits through the binodal points. Clearly, the isotropic-nematic

phase transition shifts to lower volume fractions with increasing field strength. P denotes the

paranematic and N the nematic phase. 
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points in the I-N biphasic regime, by variation of volume fraction and magnetic field. We 

observe an increase of the relative amount of nematic phase with increasing magnetic field, 

as illustrated in Fig. 6.2. To our knowledge, this is the first observation of this kind ever. 

Two pairs of state points (at a certain field strength) were used to obtain the edges of the 

biphasic region, the so-called limits of stability or “binodal” volume fractions, by 

extrapolation using the lever rule. Doing this, we implicitly neglect fractionation effects. It 

has been observed, however, that fractionation in this kind of dispersions is not very strong 

[22,67]. The procedure yields a phase diagram as depicted in Fig. 6.3. We connect the 

binodal points of each branch – in a first approximation – by straight lines. Clearly, the 

phase transition densities shift to lower values with increasing field. The slopes of the 

binodal lines are given in Table 6.1. They suggest the existence of a tricritical point around 

B2 ≈ 15 T2, in accordance with Fig. 6.1b. 

We now analyse our observations with a Clausius-Clapeyron type approach. Suppose an 

isotropic phase is in equilibrium with a nematic phase at zero field. Such a system is 

described by the equilibrium condition 

 

 ( ) ( )0 0I Nµ µΠ = Π , (6.2) 

 

where Π0 is the osmotic pressure of the system in zero field. On applying a magnetic field, 

the chemical potential will shift to a different value, at a different pressure, 0Π + ∆Π , 

 

 ( ) ( )0 0, ,I NB Bµ µΠ + ∆Π = Π + ∆Π . (6.3) 

 

Taylor expansion around Π = Π0 and B = 0 yields 

 

 ( ) ( ) ( ) ( )0 0 0 0

, 0 , 0

, ,NI
I I N N

T B T B

B B
µµµ µ µ µ

= =

∂∂   Π + ∆Π + ∆ Π = Π + ∆Π + ∆ Π   ∂Π ∂Π   
, (6.4) 

 

which, using Eq. (6.2), leads to 

 

Table 6.1 – Measured slopes of the paranematic and nematic binodal lines. The negative slope 

indicates that the phase transition densities shift to lower values with increasing field strength. 

binodal 2dB dc /T2 

paranematic -160 

nematic -38 
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( ) ( )0 0

, 0 , 0

, ,N I

NI

T B T B

B Bµ µ
µµ

= =

∆ Π − ∆ Π
∆Π =

∂∂    −   ∂Π ∂Π   

. (6.5) 

 

This has the typical Clausius-Clapeyron form: a change in the equilibrium pressure 

depends on the change in chemical potential. From thermodynamics, it follows that 

 

 
, 0

1I

T B I

µ
ρ=

∂  = ∂Π 
 and 

, 0

1N

T B N

µ
ρ=

∂  = ∂Π 
, (6.6) 

 

where ρ denotes the number density at zero field. In addition, 
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 (6.7) 

 

Here, 2
BS  is the order parameter along the z-axis (and the magnetic field) that is related to 

2S , the order parameter measured along the director of the nematic phase, by 

 

 2 2

1

2
BS S= − . (6.8) 

 

(This is the equivalent of a frame-of-reference change sometimes used in the field of NMR 

and quantum mechanics.) Substitution of Eqs. (6.6) - (6.8) in Eq. (6.5) yields 

 

 

2
2

1

6
1 1

I N

B Sχ

ρ ρ

∆
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−
. (6.9) 

 

We now wish to relate this exact result to the change in the coexistence densities of the 

phases by 
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 ∂Π − ∂ 

, (6.10) 

 

where α denotes either of the phases. Rewriting yields 
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   ∂Π
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 (6.11) 

 

where we have introduced dimensionless quantities 3D kTΠ = Π  and 3 4 D
Lc D πρ φ= =  

with D and L the average platelet diameter and thickness, respectively. In the value of 
2c Bα∆  we recognise the inverse slope of the binodal lines in a phase diagram where B2 is 

plotted against c. ( )c
α

∂Π ∂  is recognised as the compressibility of phase α, and, 

apparently, the slopes of the paranematic and nematic binodal differ due to a different 

compressibility of the phases at coexistence. 

Let us now turn to an analysis of our experimental results. In order to compare the slopes of 

the binodals found in our experiment with the theoretical predictions of Eq. (6.11), we need 

to know the compressibilities of both phases at equilibrium. The compressibility of the 

paranematic phase (in a magnetic field) is – to fourth order in B – equal to that of the 

isotropic phase, and, hence, can be obtained from computer simulations of hard disks. 

However, for the compressibility of the nematic phase one has to take the compressibility 

along the binodal, which is not available. 

In addition to the compressibilities, the diamagnetic susceptibility anisotropy χ∆  and 

nematic order parameter S2 are needed. As discussed in the previous chapter (Section 5.4) 

we take χ∆  = -1 × 10-22 J/T2. 

In Table 6.2 we present calculated slopes for three values of S2 and three values for the 

compressibility of the isotropic phase, obtained from computer simulations of cut spheres 

[44,150] (see also Chapter 3) with aspect ratios close to our experimental one, 

( ) 1/13
exp

L D ≈ . Clearly, the experimental slope is only well described when a relatively 

Table 6.2 – Slopes 2dB dc  of the paranematic binodal, calculated with our Clausius-Clapeyron 

equation (Eq. (6.11)) for a range of aspect ratios L D  and order parameters 2S  in the nematic 

phase. As discussed in the previous chapter, we take χ∆  = -1 × 10-22 J/T2. 

2dB dc /T2 
L D  ( )

I
c∂Π ∂  

S2 = 0.4 S2 = 0.6 S2 = 0.8 

1/20 6.4 [44] -67 -44 -33 

1/15 9.9 [150] -103 -69 -52 

1/10 15.0 [44] -156 -104 -78 
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low order parameter is used. Discrepancies might be due to the fact that the computer 

simulations employ monodisperse particles, while we deal here with a rather polydisperse 

experimental system. Furthermore, our experimental data are rather limited and more 

measurements, especially near the critical point, are required to draw quantitative 

conclusions. Nevertheless, we show that a relatively simple Clausius-Clapeyron type 

approach is able to give a reasonable estimate of the slope of the isotropic branch of the 

binodal. 

 

 

6.4 Conclusion 

We have studied the influence of a magnetic field on the isotropic-nematic phase behaviour 

of a suspension of sterically stabilised colloidal gibbsite platelets. We have found that the 

phase transition densities are driven to lower values in a magnetic field. Our observations 

suggest that the isotropic and nematic binodal lines meet in a critical point, in accordance 

with theoretical predictions that have been done before. We analyse our data with a simple 

Clausius-Clapeyron type approach. Despite its simplicity, it allows one to estimate the 

slope of the isotropic branch of the binodal. We furthermore note that future measurements 

are required to draw more quantitative conclusions from our experiment. 
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The Frederiks transition in a nematic 

phase of colloidal gibbsite platelets 

 

 

 

 
Abstract 

In this chapter, the effect of a magnetic field on the nematic phase of 

sterically stabilised gibbsite platelets is studied. It is found that a thin layer 

of this nematic phase shows a strong tendency to homeotropic anchoring 

on a wall. This condition enables us to induce the Frederiks transition 

reproducibly. The uniform Frederiks transition allowed for determination 

of the bend elastic constant 3K  = 2 ± 1 × 10-13 N, which appears to be 

close to that of rod-like colloidal fd virus particles. To our knowledge, this 

is the first reported measurement of an elastic constant of a nematic phase 

of hard disks. We furthermore present exploratory measurements of a 

“non-uniform” bend-splay Frederiks transition, showing typical transient 

periodic patterns. We measure the periodicity of the patterns as a function 

of sample thickness and magnetic field strength and find qualitative 

agreement with theoretical predictions. 

 

 

7.1 Introduction 

In the current chapter, which concludes Part II, we will study the nematic phase in a 

magnetic field, specifically the field-induced distortion of a thin nematic layer contained 

between two walls, known as the Frederiks transition [119]. 
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The origin of the Frederiks transition is the competition between the wall-imposed director 

orientation of the nematic phase, and a magnetic field opposing this orientation. Usually, a 

magnetic field is applied to a uniformly aligned nematic phase in such a way that the 

director tends to realign perpendicular to its initial direction. The final director field is that 

for which the magnetic field torque is balanced by the elastic restoring torque transmitted 

through the layer from the anchored boundaries and this depends on the values of the so-

called Franck elastic constants Ki of the nematic phase. The three elastic constants K1, K2, 

and K3 pertain to the three basic types of deformation in a nematic phase, i.e., the splay, 

twist, and bend deformation, respectively. Earlier experiments employing colloidal 

suspensions showing the Frederiks transition include rod-like tobacco mosaic virus [151], 

fd virus [140,152,153], and goethite [106] particles. 

It can be shown that the free energy density Fd of a deformed nematic phase is given by 

[119] 

 

 ( ) ( )( ) ( )( )2 22

1 2 3

1 1 1

2 2 2
dF K n K n n K n n= ∇ ⋅ + ⋅ ∇× + × ∇× , (7.1) 

 

where n , actually ( )n r , is a unit vector indicating the director field. From Eq. (4.4) it 

follows that the magnetic energy density Fm is given by 

 

 ( )21

2
mF n Bρ χ= − ∆ ⋅ , (7.2) 

 

where χ∆  denotes the diamagnetic susceptibility per particle and ρ  the number density of 

the particles in the nematic phase. Minimising the total free energy d mF F F= +  will yield 

the equilibrium director field. At very low field strengths, the magnetic energy will simply 

be too low to overcome the elastic forces in the nematic phase. At a certain threshold-value 

of the field Bc, the director field will start to deviate from the initial state. It can be shown 

that Bc is given by 

 

 ( 1, 2,3)i
c

K
B i

d

π
ρ χ

= =
∆

, (7.3) 

 

where d denotes the thickness of the nematic layer and Ki  the elastic constant of the 

deformation being applied. Eq. (7.3) is valid for a strongly anchored nematic phase, i.e., in 

which the director right at the wall is not disturbed by the magnetic field. In our 

experiments, this appears to be the case. 

If the distorting field is chosen only slightly larger than Bc, the Frederiks transition induced 

will be uniform or homogeneous, i.e., the director field will only smoothly vary in space 
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and time. At still higher fields, a non-uniform transition may be induced, involving a 

spatially periodic, transient instability in which adjacent domains of the sample rotate in 

opposite directions. Although such periodic structures do not have the lowest free energy, 

they are preferred from a dynamical point of view because they show a reduced effective 

viscosity due to backflow coupling. (This case has to be distinguished form the non-

uniform equilibrium periodic structure in the splay Frederiks transition that has been 

observed for 1 2 3.3K K >  and which follows from free energy calculations [154].) Thus, 

the non-uniform response to the external magnetic field is faster than the uniform Frederiks 

transition. As soon as a field of high enough strength is switched on, the sample is in 

unstable equilibrium, and small fluctuations of the director field grow exponentially in the 

presence of the destabilising field. Because of non-linearities, the mode with the fastest 

growth rate suppresses all slower modes and is finally observed macroscopically. The 

theoretical description of this mode selection mechanism was provided by Guyon and co-

workers [155]. The relation between the magnetic field strength, sample thickness and 

wavelength of the fastest growing mode λ follows from their theory and is given by 

[156,157] 

 

 

2 4 2
2 2

c

B d d
P Q R

B λ λ
     = + +     

    
, (7.4) 

 

where the coefficients P, Q and R are functions of the viscosities and elastic constants. 

Apparently, for larger fields the wavelength decreases, which makes sense, because, as the 

magnetic field strength increases it supplies more energy to allow for larger gradients. 

From Eq. (7.4) it follows that for fields exceeding a second threshold field 

 

 s cB B R=  (7.5) 

 

the non-uniform Frederiks transition will occur whose wavelength decreases with 

increasing magnetic field strength. 

Summarising, no Frederiks transition will occur for B < Bc. For a magnetic field strength 

Bc < B < Bs the uniform transition will occur, and for B > Bs the non-uniform Frederiks 

transition. One should take note of the fact that the periodic structures, created in the non-

uniform Frederiks transition, are transient phenomena. When subjected to the reorienting 

field for long enough time, the stripes will disappear and the nematic phase will reach a 

new equilibrium. 

In this study, we aim to determine the threshold value of the uniform Frederiks transition, 

which allows us to obtain the bend elastic constant K3. A prerequisite for an accurate 

determination of Bc is a well-defined initial configuration of the director field, e.g., 

homeotropic alignment [119]. This is a configuration of the nematic phase with the director 
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field perpendicular to the sample wall. It will be shown that our samples acquire such 

orientation relatively easily, facilitating our experiments. 

We will furthermore study the non-uniform bend-splay Frederiks transition in samples of 

the same nematic phase and determine the wavelength of the transient striped patterns as a 

function of field strength and sample thickness. A similar study was performed by Kuzma 

[158], who studied samples of disk-like micelles with negative diamagnetic susceptibility 

anisotropy in a rotating magnetic field, also probing the bend elastic constant. In a 

subsequent comment [159], Fraden and Meyer observed an analogy between rod- and 

plate-like particles by noting that “the splay geometry for the rod system is both formally 

and physically equivalent to the bend geometry for the disk system, and the appearance of 

stripes for disks in the bend geometry is expected”. Although our preliminary results do not 

allow for a quantitative analysis, they can be fitted with the theoretical expression (Eq. 

(7.4)) reasonably well. 

 

 

7.2 Experiment 

7.2.1 Preparation and characterisation 
In this study we make use of sterically stabilised colloidal gibbsite platelets in toluene, 

synthesised according to the procedures in the literature [22,45,50]. We use the batch that 

has been used in Chapter 4 and purified as explained in Chapter 5; see Sections 4.3.1 and 

5.3.1 for details. 

  

7.2.2 Samples 
In order to obtain a nematic phase of the platelet dispersion, we brought a sample of the 

stock dispersion in the I-N biphasic gap. After 1 day, the sample had phase separated, 

yielding about 90% isotropic phase and 10% nematic phase. Both phases were extracted. 

The isotropic fraction was used to study the magnetic-field-induced birefringence, as 

described in Chapter 5 of this thesis. The nematic phase was used to study the Frederiks 

transition. The volume fraction of the nematic phase was determined to be φN = 0.27, which 

corresponds to a number density of ρ  = 4.1 × 1020 m-3. 

As stated in the introduction, we need samples with a well-defined initial alignment to 

conduct our experiments. Therefore, we filled flat optical capillaries with the nematic 

phase. These capillaries (obtained from VitroCom, USA) have a thickness d ranging from 

20 to 300 µm, a width 10d and a length of about 70 mm. Each sample was prepared by 

sucking the nematic phase into the capillary using a vacuum pump. The capillaries were 

subsequently flame-sealed to avoid evaporation of the solvent. Due to the filling, the 

samples showed streaming birefringence and defects like the ones shown in Fig. 7.1. These 

disappeared over several days after which the samples became completely homeotropic, 

indicative of strong anchoring. Exceptions are the d = 200 and 300 µm-samples that did not  
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(a) (b) (c) (d) (e) (f)

I

N

 

Figure 7.2 – An isotropic-nematic sample of the sterically stabilised colloidal platelets at

coexistence between crossed polarisers (that make angles of -45° and 45° with the vertical

direction). This demonstrates the wall-imposed director field in the nematic phase and the Frederiks

transition. (a) - (e) have been shown earlier in Fig. 5.1 and depict the sample at increasing field

strength of 0 to 2.0 T. (f) depicts the sample after rotating it in the horizontal magnetic field of 2.0

T, inducing a reorientation of the nematic director field, i.e., the Frederiks transition. In (a) - (e), the

nematic phase contains a black region, seemingly indicating lack of orientational order. However,

due to the imposed director orientation by the walls, the sample has become homeotropic in the

centre. Clearly, the director field is dominated by the wall that is closest, as indicated by the

birefringence at the sides of the phase. At increasing magnetic field, the black patch extends as the

horizontal magnetic field stabilises homeotropic alignment. (See colour version at page 136.) 

(a) (b)

 

Figure 7.1 – The nematic phase of sterically stabilised colloidal gibbsite platelets shows defects

typical for a nematic phase, like the (a) four-brush defect and (b) disclination lines indicated by the

white arrows. The scale bar denotes 500 µm and pertains to both micrographs. (See colour version

at page 136.) 
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become homeotropic. In addition, it was not possible to avoid flow in these relatively thick 

samples. Hence, they were not used in this study. 

The preferential orientation of the platelets with their planes along the wall is understood as 

due to the anisotropic shape of the particles. This notion has been discussed in Chapter 2, 

where we enhanced the depletion attraction between platelets and the wall using non-

adsorbing polymer. As an example, we show Fig. 7.2 (repeating Fig. 5.1) here, because it 

demonstrates the influence of a wall on the nematic phase (apart from the magnetic-field-

induced alignment of the platelets in the isotropic phase, as discussed in Chapter 5). 

 

7.2.3 Methods 
In this study, two types of experiments have been performed, both probing the bend elastic 

constant K3 of the nematic phase, as inferred from the geometry of the experiment [119]. In 

the first type, henceforth referred to as A, we applied a magnetic field perpendicular to the 

sample wall as sketched in Fig. 7.3, driving a uniform Frederiks transition. We have 

measured the critical field strength Bc for the onset of the uniform Frederiks transition. 

Before each measurement, we checked that the sample was completely homeotropic. A 

magnetic field was applied for a maximum of 1 h, after which the sample was inspected 

using a polarisation microscope to detect birefringence anywhere in the sample as an 

indication of the onset of the Frederiks transition. The field strength was increased and the 

sequence was repeated until the sample had become completely birefringent. We repeated 

this procedure for the range of sample thicknesses, at fields from 5 mT up to 0.5 T. 

x
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z 

(a) (b) 

~10 rpm

no 
nd 

B 

 
 

 nd 

d 

10d 

B, no 

Figure 7.3 – Sketch of the geometry of the two types of experiments performed in this study. In

experiment A, the magnetic field is applied perpendicular to the sample wall, inducing a uniform

Frederiks transition, while in experiment B, a non-uniform transition is induced by rotating the

sample around its long axis. From the geometry of the setup, it is found that we probe the bend

elastic constant K3 in both experiments [119]. 
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The second type of experiments, B, involved rotating the sample in the magnetic field, 

thereby driving a non-uniform transition that yields a very typical, transient periodic stripe 

pattern; see Fig. 7.3. Beforehand, we checked the samples to be completely homeotropic. 

Each measurement was conducted by rotating a sample around the capillary’s long axis in a 

magnetic field at an angular speed of about 10 revolutions per minute ( 0.17≅  Hz) for 

about 10 to 20 minutes. We inspected the sample at regular intervals during the rotation. 

This experiment was performed at magnetic field strengths from 0.2 to 0.8 T. 

 

 

7.3 Results and discussion 

7.3.1 The uniform Frederiks transition 
The uniform Frederiks transition threshold Bc was determined in experiment A. Fig. 7.4 

shows the onset of the transition in a sample with a thickness of 50 µm. Typically, the first 

signs of birefringence were found at the edges of the capillary. Table 7.1 lists the 

Table 7.1 – Uniform Frederiks transition threshold-value Bc as a function of sample thickness. The 

values are plotted in Fig. 7.5. 

d/µm Bc/T cB d⋅ /10-6 Tm 

20 0.40 ± 0.05 8 ± 1 

40 0.19 ± 0.02 7.6 ± 0.8 

50 0.08 ± 0.02 4 ± 1 

100 0.03 ± 0.03 3 ± 3 

A

P

(b)(a)

 

Figure 7.4 – The onset of the uniform Frederiks transition, in a sample with d = 50 µm at B = 91

mT. The sample is shown at (a) 0° and (b) 45° with respect to the polariser-orientation, as is

indicated by the arrows; the scale bar denotes 1 mm. The first signs of birefringence are visible at

the edges of the capillary, where they aid the reorientation. (See colour version at page 137.) 
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determined critical field at all thicknesses. It appeared difficult to precisely determine the 

critical field Bc for the 50 and 100 µm samples, which explains the rather large error bars 

on those values. The table also lists the values of cB d⋅ , which, in the case of strong 

anchoring, see Eq. (7.3), should yield a constant value. In Fig. 7.5 we plot Bc vs. 1/d; the 

slope of the linear fit yields cB d⋅  = 7 ± 2 µTm. This value allows for a calculation of the 

bend elastic constant K3. For the diamagnetic susceptibility anisotropy χ∆ , we take 
221 10χ −∆ ≅ × J/T2 as obtained in Chapter 5. Using Eq. (7.3), we obtain 3K  = 2 ± 1 × 10-13 

N. To our knowledge, this is the first measurement of one of the elastic constants of a 

nematic phase of hard disks. Unfortunately, there is no model available that predicts the 

elastic constants of hard disks. A comparison with the elastic constants of colloidal rods, 

however, is possible. The cholesteric phase of rod-like fd virus particles (at coexistence) 

has a twist elastic constant of 2K ≅  4 × 10-13 N [140,152,153], which is of the same order 

of magnitude as our platelet supension. For rods, there are models that predict the elastic 

constants [160-162] and, from these, it follows that 10K kT D≈  as a crude estimate, with 

D the diameter of the rod. If we suppose this relation holds for plate-like particles as well, 

we obtain K ≈ 2 × 10-13 N, in good agreement with our experiment. 

 

7.3.2 The non-uniform Frederiks transition 
In experiment B, a non-uniform Frederiks transition was induced, involving typical 

transient periodic structures [154,163]; see Fig. 7.6. At high magnetic field, the pattern 

appeared as early as after one revolution of the sample in the field. The wavelength of the  

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

B
c
/T

d
-1
/10

4
 m

-1

 

Figure 7.5 – The threshold field of the uniform Frederiks transition as a function of reciprocal

sample thickness. The linear fit through the origin yields cB d⋅ = 7 ± 2 µTm. 
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Table 7.2 – The wavelength λ of the transient periodic pattern as a function of field strength B and 

sample thickness d. 

B/T 
d/µm 

0.22 0.39 0.56 0.79 

20 – – – 160 

30 – – 120 68 

40 – – 200 180 

100 280 250 82 70 

 

(b)

(c) (d)

(a)
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µ
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Figure 7.6 – Evolution of the non-uniform Frederiks transition in a sample with thickness d = 100

µm at B = 0.56 T, rotated around the capillary’s long axis at 0.17 Hz, observed at (a) t = 5 s, (b) 86

s, (c) 200 s, and (d) 554 s. The sample makes an angle of 45° with the polarisers; the scale bar

denotes 1 mm. The wavelength of the periodic pattern increases from 82 µm at the start to a

saturation value of 104 µm. The evolution of the wavelength in time is depicted in Fig. 7.7. (See

colour version at page 137.) 
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Figure 7.8 – Scaled magnetic field strength vs. scaled stripe pattern wavelength. Our results follow

the predicted behaviour qualitatively, see Eq. (7.4).
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Figure 7.7 – Evolution of the wavelength λ of the periodic pattern of the non-uniform Frederiks

transition. These data relate to the same sample as shown in Fig. 7.6, we refer to the caption of that

figure for sample details. 
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pattern increased in time, in agreement with theory [164], and appeared to reach a 

saturation value. This is plotted for one sample in Fig. 7.7. For the complete range of 

samples, we have measured the initial wavelengths, i.e., right after the pattern became 

visible, and list them in Table 7.2. Inspired by the relation given in Eq. (7.4), we plot these 

data as ( )2

cB B  vs. ( )2
d λ  in Fig. 7.8. In view of the relatively large scatter of the data 

points, we are reluctant to perform a quadratic fit (as suggested by the theory) and suffice 

to note that our results follow the predicted behaviour qualitatively. A more accurate 

description calls for more measurements, as well as detailed information on the viscoelastic 

parameters of the studied nematic phase; information that is not yet available. 

The Frederiks transition has in fact been used earlier in this thesis. In Chapter 5, we used 

the technique of rotating a nematic phase in a magnetic field to produce a well-aligned 

uniaxial nematic phase in order to determine the saturation value of the birefringence, ∆nsat. 

Then, a sample with thickness d = 2.00 mm was rotated in a magnetic field of 1.4 T for 

several minutes, see Fig. 5.6. In Fig. 7.9 we depict the sample at an early stage in the 

procedure. There seems to be a spatial periodicity in this sample, suggesting a non-uniform 

Frederiks transition. However, this could equally well be due to the inhomogeneous initial 

state of the nematic phase. 

 

 

7.4 Conclusion 

We have studied the nematic phase of sterically stabilised colloidal gibbsite platelets. The 

strong homeotropic anchoring on the wall facilitates a study of the Frederiks transition in 

this nematic phase. It allows for the first experimental determination of the bend elastic 

constant in a nematic phase of hard disks. In previous studies, it was found that the elastic 

constants of hard rods scale as 10K kT D≈ , with D the diameter of the rod. Assuming 

that this relation holds for platelets as well, we find excellent agreement with our 

experimental value. The non-uniform Frederiks transition that was induced in our nematic 

Figure 7.9 – Early stage of the rotation of a nematic 

phase in a horizontal magnetic field, used in Chapter 5

to determine ∆nsat. Sample thickness d = 2.00 mm, B = 

1.4 T, the scale bar denotes 1 cm. The temporal

periodicity observed in this sample hints at the same

type of transient pattern as observed in the much

thinner samples in this study. However, the initial

alignment of this sample was not homeotropic, hence, 

we do not draw quantitative conclusions from this

observation. (See colour version at page 138.) 
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phases of colloidal platelets yields very typical transient stripe patterns that have been 

observed before in other nematogens. The predicted behaviour of the periodicity with field 

strength and sample thickness was confirmed by our measurements, although a quantitative 

analysis was not possible. In conclusion, our experimental results call for a thorough 

theoretical approach to the Frederiks transition in nematic phase of hard disks. 
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Liquid crystal phases in a suspension of 

charged colloidal gibbsite platelets 

 and the influence of 
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of charged colloidal platelets 

 

 

 

 
Abstract 

We study aqueous dispersions of charged colloidal gibbsite (Al(OH)3) 

platelets that show the isotropic (I) to nematic (N) phase transition. This is 

the first case where the I-N transition in a dispersion of charged colloidal 

platelets is not impeded by gelation since Langmuir’s classic work on 

dispersions of clay particles more than sixty years ago (I. Langmuir, J. 

Chem. Phys. 6, 873 (1938)). 

By variation of the ionic strength, we are able to tune the effective 

thickness-to-diameter ratio of the platelets in suspension, allowing us to 

observe the isotropic to columnar (C) phase transition in the same 

suspension as well. This scenario, i.e., both the I-N and the I-C transition 

in one suspension, has been predicted by computer simulations of hard 

platelets a decade ago (J. A. C. Veerman and D. Frenkel, Phys. Rev. A 45, 

5632 (1992)) and is hereby confirmed experimentally. 

In addition to the shape-dependent thermodynamic driving force, the effect 

of gravity is important. For example, a biphasic (I-N) suspension becomes 

triphasic (I-N-C) on prolonged standing, which is described by a simple 

osmotic compression model. 
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8.1 Introduction 

In the preceding chapters, we have studied various phenomena in a system of sterically 

stabilised gibbsite platelets dispersed in the organic solvent toluene. In this and the 

following chapter we will study the phase behaviour of suspensions of charge stabilised 

gibbsite platelets in water. Contrary to the relatively short-ranged steep steric repulsion 

between the gibbsite platelets in an organic solvent, we are now dealing with soft double-

layer repulsions, the range of which can be tuned by the salt concentration. The isotropic-

nematic phase transition in a system of charged colloidal platelets was reported by Irving 

Langmuir as early as 1938 [7]. In a remarkable paper he reported on sols of California 

bentonite clay particles that, after standing for several 100 hours, separated into two 

distinct phases. This separation was found to occur for sols containing between 2.0 and 2.2 

wt% clay particles. The phase-separated system can be identified as an isotropic phase (I) 

in equilibrium with a nematic (N) liquid crystal phase. This observation – among others 

[8,9] – inspired Lars Onsager to the theoretical explanation of the I-N phase transition 

[10,11]. 

Langmuir refers to his clay as “California bentonite”. The name bentonite is nowadays 

generally used to indicate montmorillonite, a dioctahedral smectite clay [165]. However, 

Langmuir did not have a montmorillonite in hand. From the adjective he uses we know that 

he was using a clay from California. From the elemental analysis, provided by Langmuir, it 

is clear that he worked with the trioctohedral smectite clay named hectorite in 1941 after its 

finding place Hector (California). 

Quite surprisingly, although Wyoming bentonite [166,167], Laponite [166,168,169] (a 

synthetic hectorite produced by Laporte Industries Ltd.), and synthetic Na-fluorohectorite 

[170,171] have been used quite extensively in experimental attempts to observe the I-N 

phase transition in clays, never again has a natural hectorite been used in such studies. This 

may be the reason that the I-N phase transition, as reported by Langmuir, has not been 

observed again in clay systems and that gelation is found instead. 

Here, we report a study of an aqueous dispersion of charge-stabilised gibbsite platelets. We 

find that this suspension does show the I-N phase transition. In addition, it shows the 

columnar (C) liquid crystal phase. The columnar phase has been predicted by computer 

simulations of hard platelets [13] before. Specifically, these simulations show that hard 

platelets undergo either the I-N and subsequently the N-C transition or directly the I-C 

phase transition, depending on the diameter-to-thickness ratio. Quite recently, these two 

scenarios have been observed experimentally. The I-N phase transition was reported to 

occur in suspensions of sterically stabilised gibbsite platelets [22] and mixed-metal 

hydroxides (Mg2-xAlx(OH2)
x+) [27], and the N-C transition only in the former [45]. In Part 

1 and 2 of this thesis, we have studied the sterically stabilised gibbsite platelets and the 

influence of external fields in detail. The second scenario (direct I-C phase transition) was 

observed in a suspension of charged nickel hydroxide (Ni(OH)2) platelets [46,172]. 

However, the scenarios have never been observed in one colloidal system. 
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In this chapter, we show that this can be achieved in our suspension of charge-stabilised 

colloidal gibbsite platelets by variation of the ionic strength. In addition, we find that 

gravity plays a major role in the phase behaviour of our platelet suspensions, like in the 

case of colloidal spheres [80,83-85,173] and rods [29,30,87,174]. Our results are described 

by a simple osmotic compression model that we developed. 

 

 

8.2 Experiment 

8.2.1 Preparation and characterization 
The suspension of gibbsite platelets was synthesised following a modified version of a 

procedure that was developed earlier at our laboratory [22,50]. To a solution of HCl (2 

litres, 0.09 M) aluminium sec-butoxide (0.08 M, Fluka Chemika, pract. >95%) and 

aluminium iso-propoxide (0.08 M, Acros Organics, 98+%) were added. It was stirred for 

17 days and subsequently heated for 65 hours at 85°C in a polypropylene vessel by means 

of a waterbath. The resulting turbid suspension was dialysed for 12 days against 

demineralised water in order to get rid of excess reactants and by-products. Gibbsite 

content was determined to be 6.5 g/l. 

It has been observed that the presence of Al13-ions (Al13O4(OH)24(H2O)12
7+) has a 

stabilising effect on suspensions of colloidal boehmite particles [18,23,175-177]. 

Furthermore, Hernandez [178] presented a systematic study of the adsorption of aluminium 

polycations, in particular Al13, on colloidal iron and aluminium oxyhydroxides and 

hydroxides (i.e., gibbsite particles). He used 27Al NMR to study the reaction of the Al13 

 

Figure 8.1 – Transmission electron micrograph of the hexagonal gibbsite platelets used in this

study. The scale bar denotes 500 nm. 
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species with the surface of these particles. He concluded that the adsorption leads to an 

increased surface charge, which in turn appears to enhance the stability of the particles. In 

view of this, we used Al13 ions (as produced by hydrolysis of aluminium chlorohydrate 

[23], Al2(OH)5Cl·2-3 H2O) to stabilise our gibbsite platelets. To 200 ml of gibbsite 

dispersion (as obtained from the synthesis), 1.0 g of aluminium chlorohydrate was added. 

This mixture was shaken vigorously for 1.5 minute after which it was put away at room 

temperature for 3 days. Through a sequence of sedimentation (20 h, 1400 G) and 

redispersion, excess Al13 was removed and sodium chloride added to bring the suspensions 

to the intended ionic strength, either 0.1, 1, or 10 mM. Measurements showed that the 

conductivity was close to that of the stock NaCl solutions. 

From the gibbsite dispersion, a sample was taken for investigation with transmission 

electron microscopy (TEM) by dipping a coated copper grid in very dilute suspension. The 

electron microscope was equipped with a CCD camera that was used to take micrographs. 

From such micrographs, as depicted in Fig. 8.1, the average particle diameter (defined as 

the average of the average corner-to-corner distances) was obtained using image analysis 

software. The anisotropic particle shape allowed us to determine the thickness of the 

platelets to within 0.1 nm using atomic force microscopy (AFM). Obviously, the effective 

particle dimensions in suspension depend strongly on the ionic strength; this issue will be 

addressed further on. The particle characteristics are listed in Table 8.1. 

 

8.2.2 Samples and methods 
To study the phase behaviour of our dispersions, weighed amounts of stock dispersion 

were put in spectrophotometric cells (path length 2.00 mm). The stock-particle 

concentration was determined by drying a known amount of dispersion at 75°C to constant 

weight. Variation of particle concentration in the cells was achieved by diluting with 

sodium chloride solution or by centrifugation, removal of supernatant and redispersion. 

After thorough homogenisation, the samples were stored at room temperature to reach 

phase equilibrium. Once phase-separated, the samples were checked for liquid crystallinity 

using crossed polarisers. 

 

Table 8.1 – Characteristics of the colloidal platelets used in this study, as obtained by TEM (for the 

diameter D ) and AFM (for the thickness L ). The given dimensions refer to the particle core; 

Dσ  and Lσ  express polydispersities. 

D  Dσ  L  Lσ  D L  

202 nm 38 nm (19%) 13.2 nm 3.6 nm (27 %) 15.3 
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8.3 Results and discussion 

8.3.1 Phase behaviour as determined by salt concentration 
At an ionic strength of 10 mM NaCl, the suspensions are isotropic at gibbsite 

concentrations up to about 260 g/l. Between crossed polarisers only flow birefringence is 

observed. However, on increasing the particle concentration to above the mentioned value 

the suspensions become permanently birefringent. On a time scale of 24 h, they separate 

into two distinct layers divided by a sharp interface. The birefringent bottom layer appears 

to be a nematic phase in equilibrium with the isotropic upper phase. This isotropic phase 

shows very strong flow birefringence with a decay time of about 0.3 s. The nematic phase 

shows a threaded texture that is very typical of a nematic phase [119]. The relative amount 

of nematic phase increases with increasing particle concentration; see Fig. 8.2. In contrast 

to earlier observations [26], the samples now become fully nematic, around 410 g/l. On 

increasing the concentration even further, gelation is observed instead of the expected N-C 

phase transition. Apparently, gelation still cannot be avoided when concentrating in the 

usual way. However, by letting gravity work on our suspension, we have been able to 

induce a high particle concentration in a very gentle way. This is described in more detail 

in Section 8.3.2. 

At somewhat lower ionic strength (1.9 and 1.4 mM), the suspensions also show the I-N 

phase transition. However, when going to even lower ionic strength (1 mM and below), the 

 

Figure 8.2 – The I-N phase transition observed between crossed polarisers. The ionic strength in

these samples is 10 mM and the gibbsite concentration (a) 328 g/l, (b) 356 g/l, and (c) 464 g/l.

Sample (c) is well into the nematic phase, in contrast with our earlier study [26] where gelation

impeded the formation of a completely nematic phase. (See colour version at page 138.) 
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nematic phase is not observed anymore. Suspensions at 1 and 0.1 mM NaCl show an 

isotropic phase at low gibbsite concentration (< 170 g/l) and I-C phase separation on 

increasing particle concentration. The columnar phase is easily identified by the presence 

of Bragg reflections; see Fig. 8.3. The relative amount of columnar phase increases with 

increasing particle concentration, up to the point where the samples become fully columnar 

(1 mM) or gel (0.1 mM). All observations are depicted in a phase diagram, Fig. 8.4. Note 

that the slope of the sol-gel line is opposite to that of clay suspensions studied earlier 

[166,168,169]. Apparently, as opposed to these clays, in our suspensions repulsion 

dominates the interparticle interactions. One exception has to be noted, however. Levitz 

and co-workers [179] find repulsive behaviour in Laponite suspensions at very low ionic 

strength as well. 

In order to compare our results with other ones, it is necessary to express our mass 

concentrations in dimensionless number densities ( )3ND V . It can easily be shown that the 

volume fraction φ of monodisperse hexagonal platelets in solution equals 

 

 23
3

8
D Lφ ρ= , (8.1) 

 

with D and L being the diameter and thickness of the particle, respectively, and N Vρ =  

being the number density. For polydisperse particles, Eq. (8.1) becomes 

 

Figure 8.3 – Phase separated sample in I-C equilibrium, (a) illuminated by white light and (b)

between crossed polarisers. (c) depicts a close-up of Bragg reflections in another columnar sample.

The Bragg reflections stem from the two-dimensional hexagonal lattice of columns of platelets,

with a lattice spacing of about 200 nm. (See colour version at page 139.) 
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Table 8.2 – Comparison of the I-N phase transition densities of our suspension with those of other 

studies. 

ref. method 
3

iso Dρ  3
nem Dρ

[14,89] MC with hard platelets, 19% polydispersea 3.2 4.0 

[22] experiment with hard platelets 2.5 2.7 

[181] theory on charged Laponite clay platelets 3.2  

this study experiment with charged platelets at 10 mM 2.9 4.6 

a From MC computer simulations, phase transition densities were found for monodisperse 

hexagonal disks [89] and polydisperse circular disks [14]. Following Bates [89], we find 
3 3.2iso Dρ =  and 3 4.0nemDρ =  as an estimate for 19% polydisperse hexagonal disks. 

0 100 200 300 400 500

0.1

1

10

0 1 2 3 4 5
ρ<D

3
>

 

Gel

(c)(b)(a)

C

I+N

I

+

C

N

I

io
n
ic

 s
tr

e
n
g
th

/m
M

gibbsite concentration/gl
-1

 

 

 

Figure 8.4 – Experimental phase diagram of the gibbsite suspension. Boundaries between the phase

regions are indicated with solid lines. Dashed lines indicate tentative phase boundaries. The plus

signs and accompanying characters refer to the samples in Fig. 8.2. 
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Following Van der Kooij and co-workers [180], we assume that D and L are uncorrelated 

and that the particle diameter distribution is symmetric, so 
33 21 3 DD D σ= +  and 

22 21 DD D σ= +  with σ  being the diameter polydispersity. This yields 
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which in turn can be rewritten as 

 

 ( )3 28
3 1 2

9
D pol

D
D

L
ρ σ φ= + . (8.4) 

 

The core volume fraction is related to the mass concentration through the mass density of 

gibbsite (2420 kg/m3). In our suspensions, the I-N phase transition, at 10 mM ionic 

strength, occurs between 260 g/l and 410 g/l, yielding dimensionless densities of 
3 2.9isoDρ =  and 3 4.6nemDρ = . Table 8.2 shows our results in comparison with that of 

other experimental [22] and theoretical [181] work and computer simulations [14,89]. 

Because the I-N phase transition is driven by the excluded volume, electrostatic effects are 

of crucial importance. We take this into account by using effective particle dimensions, as 

explained below. As stated earlier, the main issue of this paper is the observation of two 

different regimes in one suspension. At relatively high ionic strength, the I-N phase 

transition is observed, while at low ionic strength, the I-C transition occurs. This can be 

understood on the basis of the phase diagram of Veerman and Frenkel, obtained by Monte 

Carlo (MC) computer simulations [13]. They studied cut spheres as a model system for 

hard platelets and found the I-N transition occurring for aspect ratios smaller than 

1/ 7L D = , while the I-C transition occurred for ratios larger than 1/ 7L D = . Our charged 

particles are not hard platelets; still we can map them on a hard platelet system by 

introducing an effective diameter and effective thickness, a notion that goes back to Onsager 

himself [10,11]. In such a description, the effective diameter of a platelet can be regarded 

as the core dimension plus some constant times the Debye length. Let us assume that this 

holds for the thickness as well and that the constant is the same for the diameter and 

thickness. In that case 
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where a is the constant to be determined and κ-1 is the Debye length. From Fig. 8.4, our 

experimental phase diagram, it appears that the ionic strength at the changeover is 1.2 ± 0.2 

mM, which corresponds to a Debye length of 9.1 nm. The effective aspect ratio eff effL D  at 

the changeover must be 1/7. Together with the core dimensions from Table 8.1 and Eq. 

(8.5) this yields a = 2.0. In other words, the interparticle distance at which two platelets 

presumably have a repulsion of about kT is 2.0 times the Debye length, which agrees with 

the value that Stroobants and co-workers found for charged rods [182], i.e., a = 2.9. 

However, this hard platelet picture fails. The core volume fractions at which the I-C phase 

transition occurs (at 1.2 mM) are 0.08core
Iφ =  and 0.10core

Cφ = . It can easily be shown that 

the effective volume fraction is related to the core volume fraction as follows: 

 

 

2eff eff
eff core

core core

L D

L D
φ φ

  
=   

  
, (8.6) 

 

where we now explicitly use superscripts. (Note that in Eqs. (8.1) - (8.4), the core volume 

fraction is used although this is not explicitly mentioned.) The effective volume fractions 

 

Figure 8.5 – An initially biphasic (I-N) sample that developed a third phase (C) over a timescale of

six months. (a) depicts the sample in reflection with white light, and (b) in transmission between

crossed polarisers. Again, Bragg reflections can be observed in the columnar phase; see (a). In (b),

the major part of the nematic phase appears dark, this is because of the alignment of the platelets

along the wall (homeotropic alignment). (See colour version at page 139.) 
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consequently are 0.22eff
Iφ =  and 0.26eff

Cφ = . These values should be compared with 

0.45Iφ ≅  and 0.50Cφ ≅  that follow from the simulations of Veerman and Frenkel [13]. 

Clearly, the soft repulsive tail of the electric double layer between the platelets lowers the 

effective volume fractions at which the I-C transition occurs. 

 

8.3.2 Phase behaviour as explored by gravity. 
As mentioned before, the suspensions at 10 mM become fully nematic, but the columnar 

phase does not show up at this ionic strength because of gelation. However, by letting 

gravity act on our suspensions, we have been able to induce a high particle concentration in 

a very gentle way, avoiding the formation of a gel. A sample containing isotropic and 

nematic phase in coexistence (in a 60:40% ratio) was left at room temperature to observe 

the effect of gravity. After 6 months, we found that the sample contained three phases 

instead of the initial two, the upper two phases being isotropic and nematic, respectively, 

whereas the lower phase appeared to be columnar; see Fig. 8.5. This columnar phase shows 

a grainy texture and bright Bragg reflections due to the two-dimensional positional order. 

The measured relative heights of the phases are listed in Table 8.3. Close inspection of the 

sample reveals a particle concentration gradient as a function of height, indicating a 

balance between gravity and osmotic pressure. Using a simple model, which has been 

presented in Chapter 3 of this thesis, this balance and the resulting three-phase equilibrium 

can be described qualitatively. We have shown that each phase α has a height 

 

 
1top

bottom

c

c

H dc
c c

α

α

α αξ ∂Π
= −

∂∫ , (8.7) 

 

where we have introduced the gravitational length scale Bk T m gξ ∗= , with buoyant mass 

m∗ , and the reduced quantities 3
BD k TΠ = Π  and 3c Dρ= , with number density ρ. 

Furthermore, it is found that the average concentration cα  of each phase is given by 

 

Table 8.3 – Relative heights of the phases in the sample in sedimentation equilibrium, as measured 

in our experiment and calculated with the osmotic compression model. 

 experiment model 

I 0.61 0.54 

N 0.21 0.13 

C 0.18 0.33 
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This result simply expresses hydrostatic equilibrium in which the difference in osmotic 

pressure above and below a layer is balanced by the weight of the layer. Interestingly, 

noting that 

 

 sample

a

H H α= ∑ , (8.9) 

 

we find that Eq. (8.8) holds for the complete sample as well: 

 

 ( ) ( )sample sample sample
bottom topsample

c c c
H

ξ  = Π − Π  , (8.10) 

 

just like the case of one phase. This equation, together with Eqs. (8.7) and (8.9), allows for 

explicit calculation of topc  and bottomc  and, hence, the sedimentation profile once the 

equation of state (EOS) is known. For charged platelets, no EOS is known. However, a 

hard-platelet EOS was given by Zhang and co-workers [44] for platelets with an aspect 

ratio of 1/10. We take this EOS for a qualitative approach to the problem, resulting in a 

calculated sedimentation profile that is shown in Fig. 8.6 and the corresponding phase-
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Figure 8.6 – The sedimentation profile (relative height vs. concentration) that was calculated using

the osmotic compression model. The overall concentration was set to c = 4.1 (in the I-N biphasic

gap) as dictated by the experiment. 
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heights in Table 8.3. Apparently, this approach describes the sample reasonably well. 

 

8.4 Conclusion  

Our work demonstrates that it is possible to synthesise charged colloidal platelets that 

systematically display the I-N phase transition, dispelling the mystery of the I-N transition 

in such systems. Modification of the particle surface with cationic aluminium tridecamers 

appears to play an essential role in facilitating liquid crystal formation. In addition, through 

variation of the ionic strength, we have been able to tune the effective aspect ratio of the 

platelets. This enabled us to observe both the I-N and I-C phase transition in one 

suspension, a scenario predicted by MC computer simulations a decade ago. 

The effect of gravity is quite important. A biphasic (I-N) sample became triphasic (I-N-C) 

after standing for several months, which is described by a simple osmotic compression 

model that we developed. In the next chapter, we will study the same kind of aqueous 

gibbsite dispersion in a centrifugal field at 900 G. 
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Formation of a columnar phase of charged 

colloidal platelets in a centrifugal field 

 

 

 

 
Abstract 

Sediments of aqueous dispersions of gibbsite platelets were obtained by 

centrifuging at 900 G. The observed Bragg reflections in the sediments 

suggest the formation of a columnar phase. The order of the colours of the 

reflections suggests size fractionation of the platelets, with the largest ones 

accumulating at the bottom of the sample. Small-angle X-ray scattering 

measurements and real space transmission electron microscopy images of 

different fractions of the sediment confirm the existence of a columnar 

phase and significant size fractionation. 

 

 

9.1 Introduction 

Sedimentation in the earth’s gravitational field is a convenient means to concentrate 

colloidal suspensions that takes advantage of the difference between the mass density of 

the particles and solvent. It can be used to prepare iridescent phases of colloidal spheres 

[183,184], rods [29,30,33] and platelets (see Chapter 8). Although this process is very slow 

– it may take months to years – the inherent slowness of the sedimentation assists the phase 

separation process. The sedimentation process can be accelerated using a centrifuge. 

Centrifugation is a well-known technique in the study of mesoscopic systems and it has 

been applied extensively in the field of colloid and biochemistry [185]. It can be used both 
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as a preparative technique, e.g., in the separation of cell constituents in biology, and as an 

analytical tool, like in the characterisation of colloidal particles on the basis of their 

sedimentation velocity. Although it may seem to be a very simple technique, it has led to 

several very important discoveries. In the study of colloidal gibbsite platelets, 

centrifugation is the most convenient way to concentrate samples, e.g., for phase behaviour 

studies as presented in Chapters 2 and 8. 

An important parameter in sedimentation studies is the gravitational length scale ξ , which 

we have used before in Chapters 3 and 8. It gives the height that an object must be lifted – 

in a gravitational field – to increase its potential energy by 1 kT. It can be shown that, in the 

case of centrifugation, it is given by [79,185] 

 

 
2

kT

m r
ξ

ω∗= , (9.1) 

 

where ( )0p pm v ρ ρ∗ = −  denotes the buoyant mass of the particles, with pv  the particle 

volume and pρ  and 0ρ  the particle and solvent mass density, respectively, ω  the rotation 

speed, and r  the average distance to the rotation axis. For our colloidal gibbsite platelets, 

the gravitational height is about 1 mm in the earth’s gravitational field, which is about 5000 

particle diameters. However, in the centrifugation experiments that we perform, it reduces 

to about 1 µm and becomes only 5 particle diameters. In that respect, it is remarkable that, 

as often as we centrifuge an aqueous dispersion of gibbsite platelets, we obtain an 

iridescent sediment with colours that vary over the visible spectrum when illuminated with 

white light; an example is shown in Fig. 9.1. The distinct Bragg reflections are an 

indication of positional – likely columnar – order in the sediment. In contrast, suspensions 

of colloidal spheres centrifuged at 1000 G typically yield amorphous sediments that do not 

show Bragg reflections at all. (We note that micrometre-sized spheres, sedimenting in the 

earth’s gravitational field and having a gravitational length that is smaller than their 

diameter, still form crystalline sediments on a flat wall [186,187].) 

One exception has to be mentioned, however. In the 1950s, tipula iridescent virus (TIV) 

particles, with the shape of a regular icosahedron and a diameter of about 130 nm, were 

found to exhibit iridescent layers when centrifuged [188,189]. In fact, this is the first 

observation of a synthetic colloidal crystal. The TIV sediment showed Bragg reflections 

with “a smooth gradation in colour ranging from violet at the bottom through green to red 

at the top” [188]. This gradation can be understood on the basis of osmotic compression. 

Surprisingly, we find exactly the opposite: in our sediment, the Bragg reflections with 

longest wavelengths (green) are found at the bottom, while the shortest wavelengths 

(violet) are found at the top; see Fig. 9.1. Hence, our observations cannot be explained on 

the basis of osmotic compression effects. We suggest that the “reversed” colour gradient is 

due to significant size fractionation, with the largest particles accumulating at the bottom. 
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Triggered by these considerations, we decided to study the sediment in detail. From small-

angle X-ray scattering (SAXS) measurements, we obtain the lattice spacing and its 

evolution with the height in the sediment, demonstrating the presence of a columnar phase. 

Following Maeda and Maeda [190], we used real space imaging on a rapidly frozen sample 

to investigate the composition of the sediment at different heights, confirming that size 

fractionation takes place. 

 

 

9.2 Experiment 

We performed this study with the same dispersion as was used in the previous chapter and 

refer to Section 8.2 for the details on synthesis and characterisation. A transmission 

electron micrograph of this dispersion is shown in Fig. 9.2. The preparation of our charge-

stabilised gibbsite platelets involves treatment of the particles with Al13 ions to increase 

their surface charge. After this treatment, excess Al13 ions are removed by a sequence of 

sedimentation and redispersion (27 h at 900 G). After the first sedimentation step, the 

sediment shows bright green and violet Bragg reflections, indicative of the columnar phase, 

see Fig. 9.1. The lower part of the sediment consists of a rather transparent layer. On top of 

1 cm

clear
supernatant
(removed)

green

transparent

violet

 

Figure 9.1 – The preparation of charge-stabilised gibbsite platelets involves a sequence of

sedimentation and redispersion to remove excess Al13 ions. After the first sedimentation step the

sediment, as depicted from below on the photograph, shows bright green and violet Bragg

reflections, indicative of the columnar phase. The bottom part is a transparent glass-like layer. (See

colour version at page 140.) 
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that is a more turbid layer, displaying green Bragg reflections in the lower part, and violet 

reflections in the upper part. After the second and third sedimentation step, replacing the 

supernatant by NaCl-solution, the Bragg reflections are less intense. Clearly, the Al13 

tridecamers removed in the sequence play an important role, perhaps as a depleting agent. 

In Chapter 2 we have found that the presence of a depleting agent enhances the formation 

of columnar crystals in suspensions of sterically stabilised gibbsite platelets and such a 

scenario may occur here as well. 

We prepared a sample to study the sediment with small-angle X-ray scattering (SAXS). 

From the dispersion described above, we took a sample just before the first sedimentation 

step. After concentrating the sample ten times (in order to obtain enough material to create 

a high enough sediment), we put it in a flat capillary with internal dimensions 0.3 × 3 mm2. 

Gibbsite content in this sample was about 70 g/l and the aluminium chlorohydrate 

concentration 5 g/l. The sample was centrifuged for 26 h at 900 G. Subsequently, the 

supernatant was removed and the capillary was flame sealed to conserve the sediment. The 

sediment showed the bright green and violet Bragg reflections that are also visible in Fig. 

9.1. Moreover, almost two years after preparation, these Bragg reflections are still present 

and have hardly diminished, proving that the columnar phase is well conserved. 

We have measured SAXS patterns at increasing heights from the bottom to the top of the 

sediment. We used the SAXS setup of the Dutch-Belgian beamline BM-26 DUBBLE at the 

European Synchrotron Radiation Facility (ESRF, Grenoble, France). 

The scattered X-rays were detected by a phosphor screen coupled to a 16-bit CCD camera 

(Photonic Science) with a pixel size of 22 µm. An X-ray beam of 18 keV (wavelength λ  =  

 

Figure 9.2 – TEM micrograph of the parent suspension. The scale bar denotes 500 nm. Fig. 9.6

shows the particle diameter distribution. 
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Figure 9.4 – The inter- ( 2 24
( 0)3

3D hka h hk k qπ= + + ) and intra-columnar ( (001)2La qπ= )

nearest-neighbour distances and the average platelet diameter D as a function of height in the

sediment. aD and aL have been obtained by SAXS measurements and D by real space imaging

with TEM. Error bars denote the typical error in the SAXS measurements. 
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Figure 9.3 – (a) an example of a SAXS pattern, at y = 2 mm above the bottom of the tube, and (b)

the corresponding horizontal and vertical slices through the pattern. The (100) peak and liquid-like

(001) peak are clearly observed, whereas the (110) peak, although not as strong, can still be

discerned. In the horizontal direction, the (100) maximum is located at a lower q-value than in the

vertical direction, indicating anisotropic deformation of the sediment. The nearest-neighbour

distances calculated from q(100) and q(110), and q(001) are given in Fig. 9.4. 
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0.689 Å) and a sample-detector distance of about 5 m were used. The accessible q-range 

was 0.026 to 0.37 nm-1 in the horizontal and 0.026 to 0.23 nm-1 in the vertical direction. 

The setup was calibrated using the fibre diffraction peaks of dry rat-tail collagen fiber, 

which has strong characteristic peaks at 2 / 65.0q nπ=  nm-1 (n = 1, 2, 3). 

In addition to the SAXS analysis, we have prepared a sample for investigation with 

transmission electron microscopy (TEM). We filled a cell with the same (10 times 

concentrated) stock dispersion. After centrifuging the sample, we immersed it in liquid N2 

to instantaneously freeze the complete sample. The sediment was subsequently cut into 

slices, each 1 mm thick. Care was taken to avoid melting of the sample during this 

procedure. Each slice was dispersed in a water-ethanol mixture, from which copper grids 

were prepared for TEM. From three of the slices, taken at heights y = 0.5, 3.5, and 6.5 mm, 

TEM micrographs were obtained. Image analysis software was used to determine the 

average platelet diameter and polydispersity in the fractions. 

 

 

9.3 Results and discussion 

The bright Bragg reflections in the sediment already hint at the presence of a columnar 

phase. This is confirmed by the SAXS measurements. A typical SAXS pattern is shown in 

Fig. 9.3, together with horizontal and vertical slices. The maxima in the scattering patterns 

are indexed by Miller indices (hkl). For a columnar phase (with hexagonal packing) we 

expect reflections perpendicular to the columns with q(hk0) proportional to 2 2h hk k+ + , 

while we use l to indicate (liquid-like) order within the columns. The SAXS patterns 

indeed show maxima with q-ratios 1:√3, as well as a broad liquid-like peak at large angle. 

The (200) and (210) higher-order peaks are not observed in this study, in contrast to our 

study of sterically stabilised gibbsite platelets in Chapter 2. In view of the ring-like 

diffraction and the fact that the (100) and (001) peaks are visible at the same time, we are 

led to the conclusion that we deal with a columnar phase that consists of many small 

domains, yielding powder diffraction. The sediment in Fig. 9.1 indeed appears to consist of 

numerous small crystallites. 

From the scattering maxima, we obtain nearest-neighbour distances between 

( 2 24
( 0)3 3D hka h hk k qπ= + + ) and within ( (001)2La qπ= ) the columns as given in Fig. 

9.4. Following the same procedure as in Chapter 3, the visual observations allow us to 

make a crude estimate of aD as 210 and 160 nm in the bottom and top part, respectively, 

agreeing with the SAXS measurements. 

From Fig. 9.4, it appears that both the inter- and intra-columnar nearest-neighbour 

distances increase upon going down in the sediment. This observation suggests size 

fractionation, with the largest particles accumulating at the bottom of the vessel. To shed 

light on this issue, we have studied the sediment at different heights using real space 

imaging with TEM. Fig. 9.5 shows three representative TEM micrographs that demonstrate  
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Table 9.1 – Average particle diameter D  and diameter polydispersity Dσ  (in absolute and 

relative units) in the parent suspension and the three sediment fractions, as obtained from TEM. 

 D  Dσ  

parent suspension 202 nm 38 nm (19 %) 

top, y = 6.5 mm 144 nm 59 nm (41%) 

middle, y = 3.5 mm 184 nm 38 nm (21%) 

bottom, y = 0.5 mm 229 nm 44 nm (19%) 
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Figure 9.6 – Particle diameter distributions of the three studied sediment fractions as well as the

parent suspension (Gaussian fit). (See colour version at page 140.) 

(a) (b) (c)

 

Figure 9.5 – TEM micrographs of three slices at heights (a) y = 6.5, (b) 3.5, and (c) 0.5 mm. The

scale bars each denote 500 nm. 
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the size fractionation. Fig. 9.6 shows the particle diameter distributions of the parent 

suspension and the three fractions as obtained from TEM micrographs; Table 9.1 gives the 

average diameter D  and diameter polydispersity Dσ  of these samples. Note that, 

although the absolute value of the polydispersity does not change very much, relative to the 

average platelet diameter it decreases by about a factor 2. In another study, this feature is 

exploited to reduce the size polydispersity of colloidal gibbsite platelets [191]. Due to their 

rather anisotropic shape, the gibbsite platelets are hardly imaged edgewise with TEM. This 

makes analysis of the thickness distribution in the sediment practically not possible with 

this technique. With atomic force microscopy, such an approach would likely be feasible. 

In Fig. 9.4 the average platelet diameter is plotted as a function of the height in the 

sediment. 

As can be seen in the figure, the average particle diameter is almost equal to the inter-

columnar spacing throughout the sediment, suggesting that there is hardly any further 

compression of the columns possible. However, there appears to be a slight difference in 

aD-spacings along the horizontal and vertical direction, at each height. It could point to 

anisotropic deformation of the columnar crystallites. In the centrifugal field it is possible to 

have anisotropic deformation because Dξ ∼ . However, the measurements are performed 

at normal gravity, where Dξ , and one expects isotropic compression. Still, our 

sediment seems to be stuck because it retains the anisotropic deformation. 

Furthermore, the relative change in aD – over the height of the sediment – is a factor of 

about 1.5, whereas aL varies with a factor of 2. If there is compression within the columns, 

the fractionation in the platelet thickness L  would have to be even stronger than a factor 

of 2. To draw any further conclusions, we need to measure the average platelet thickness in 

several sediment fractions. 

Recently, there has been a study of the equation of state of a dense columnar liquid crystal 

of hard (monodisperse) cylindrical disks [49] that gives a relation between the inter- and 

intra-columnar compression and the density of the columnar phase. It follows that if 

Da D≈ , like in our sample, one would expect that the volume fraction approaches that of 

close packing, 0.91cpφ ≅ . However, we find an estimate that is much lower. From the 

initial gibbsite concentration of 70 g/l and the sample and sediment heights, 57 and 7 mm, 

respectively, we estimate the gibbsite concentration in the sediment at 570 g/l. Using the 

mass density of gibbsite (2400 g/l), this yields a gibbsite core volume fraction of 

0.24coreφ ≈ . (The effective volume fraction, taking into account the Debye length, will 

only be slightly higher due to the presence of a large amount of multivalent ions.) 

Although core cpφ φ< , it appears to be exactly in between the random-close-packing volume 

fractions of hard platelets with aspect ratios of 1/10L D =  ( 0.32rcpφ = ) and 1/20 

( 0.18rcpφ = ) [192]. This suggests that the sediment consists of a significant fraction of 
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randomly close-packed parts, which explains the relatively high level of background 

scattering in Fig. 9.3. 

In this study, we find strong size fractionation in the gibbsite dispersion at 900 G. The 

question arises as to whether one expects strong fractionation in the sample studied in 

Chapter 8. There, we have used the same colloidal dispersion, which showed multiple 

phases in equilibrium due to sedimentation, albeit at only 1 G. The two important factors 

that determine the sedimentation behaviour of (colloidal) particles are the sedimentation 

velocity and the gravitational length scale, both favouring the largest particles at the bottom 

of the sediment. A comparison of the previous study (Chapter 8) with the current one, 

however, is not straightforward, although intuitively one may expect stronger fractionation 

in stronger gravitational fields. In a study of the sedimentation behaviour of polydisperse 

hard spheres, it was found that the problem of a settling multi-component mixture is 

difficult to solve [79]. However, detailed results for the density profiles of concentrated 

bidisperse hard-sphere colloidal suspensions in sedimentation equilibrium have been given 

[86]. 

 

 

9.4 Conclusion 

We have observed green and violet Bragg reflections in sediments of aqueous dispersions 

of gibbsite platelets, suggesting that a columnar phase is formed.  

Moreover, the order of the colours, i.e., violet on top and green at the bottom, opposes 

earlier experiments employing colloidal spheres (tipula iridescent virus) that show 

gravitational compression. Hence we suggest strong size fractionation of the platelets, with 

the largest platelets accumulating at the bottom of the sample. 

From small-angle X-ray scattering measurements, we find that the sediment has indeed 

columnar signature and that the lattice spacing increases upon going down in the sediment. 

Investigation of three slices of the sediment (taken at different heights) by transmission 

electron microscopy confirms that size fractionation takes place. 

In conclusion, we have shown that through the action of gravity, we are able to produce 

new phases, as shown in Chapter 8. Moreover, the application of very high gravitational 

fields does not appear to hinder the formation of a columnar phase. 
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Summary 

 

In this thesis, the liquid crystal phase behaviour of colloidal platelets in external fields was 

studied. As stated in the introduction to this thesis, the equilibrium phase behaviour of 

colloidal platelets in the absence of a field is by now reasonably well understood, enabling 

a study of the phase behaviour of such particles in external fields. We have specifically 

focussed on morphological, gravitational, magnetic and centrifugal fields. 

Part I of this thesis gives a closer look on the liquid crystal phases of the sterically 

stabilised colloidal gibbsite platelets. It has been observed, both in computer simulation 

and experiment, that suspensions of plates display the liquid crystalline nematic and 

columnar phases. In Chapter 2, we make use of a morphological field (the sample walls) to 

create large oriented domains of the columnar phase with unique orientation. The addition 

of non-adsorbing polymer to the suspensions appears to aid the formation of such large 

domains. The domains were studied using small-angle X-ray scattering (SAXS), providing 

unambiguous evidence for the hexagonal nature of the columnar phase, evidence that had 

been lacking hitherto. 

Chapter 3 focuses on the effect of the earth’s gravitational field on the suspension of 

sterically stabilised gibbsite platelets. We observe that an initially isotropic-nematic sample 

develops a third, columnar phase at the bottom on prolonged standing. This phenomenon is 

described using a simple osmotic compression model. We performed Monte Carlo 

simulations of cut spheres with an aspect ratio of 1/15L D =  and took data from the 

literature to supply the equations of state required for the model. We find that the three-

phase equilibrium is quite well described by our model, be it for an aspect ratio that is 

somewhat lower than the experimental one. In conclusion, the gravitional field allows 

sampling of a large range of concentrations in one sample, displaying all possible phases at 

one time. 

In Part II, we have subjected the suspension of the sterically stabilised colloidal gibbsite 

platelets to external magnetic fields. A first and important observation is that we find 

significant magnetic-field-induced orientational order in the isotropic phase. First, in 

Chapter 4, we use small-angle X-ray scattering (SAXS) to measure this field-induced 

order. In order to analyse our SAXS data, we derive a simple model that relates the 

scattered intensity of the isotropic phase to the orientational distribution function. Despite 

its approximations, it describes the observed SAXS patterns reasonably well and it yields a 

lower bound of the diamagnetic susceptibility anisotropy χ∆ . In Chapter 5, we measure 

the magnetic-field-induced birefringence of the isotropic phase. Again, we obtain a value 

of χ∆ , be it higher than in Chapter 4, giving us a range of the diamagnetic susceptibility 

anisotropy. From it, we take a likely value of χ∆ , which we subsequently use in the 

following two chapters. 



Summary 

128 

Chapter 6 focuses on the isotropic-nematic phase behaviour of our suspension in a 

magnetic field. We observe a shift of the phase transition densities to lower values, which 

is described using a Clausius-Clapeyron type approach to the problem. Despite its 

simplicity, it allows one to estimate the slope of the isotropic branch of the binodal lines. 

In Chapter 7, we study the competition between the wall- and magnetic-field-induced order 

in the nematic phase of our suspension, i.e., the Frederiks transition. The nematic phase 

appears to have a strong tendency to homeotropic anchoring on the wall. This condition 

enabled us to induce the Frederiks transition reproducibly. From the uniform Frederiks 

transition, we determined the bend elastic constant of the nematic phase. In addition, we 

use a rotating magnetic field to induce non-equilibrium transient stripe patterns in the 

nematic phase. We measure the periodicity of the patterns as a function of the magnetic 

field strength and sample thickness and find qualitative agreement with theoretical 

predictions. 

The last part of this thesis, Part III, is devoted to aqueous suspensions of gibbsite platelets. 

In Chapter 8, we first describe the synthesis of such dispersions. Then, we study the phase 

behaviour in the absence of an external field. For the first time since Langmuir in 1938, we 

find isotropic-nematic phase separation in a dispersion of charged plate-like particles. 

Furthermore, we observe the isotropic-columnar transition, depending on the ionic 

strength, which is understood on the basis of earlier computer simulations. 

We subsequently apply a gravitational field on the suspension and find that the resulting 

three-phase (isotropic, nematic and columnar) equilibrium is well described by the same 

osmotic compression model that was developed in Chapter 3. 

In the last chapter, Chapter 9, a centrifugal field of 900 G is applied to the aqueous gibbsite 

platelet dispersion. This appears to be less destructive than one would initially think: the 

columnar phase is still observed in such extremely strong fields. The order of the colour of 

the Bragg reflections of the columnar phase suggests size fractionation in the sediment, 

with the largest particles accumulating at the bottom of the phase. This is confirmed by 

SAXS measurements and real space imaging using transmission electron microscopy. 
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Samenvatting 

 

In dit proefschrift wordt het vloeibaar kristallijn fasegedrag van colloïdale plaatjes in 

externe velden bestudeerd. Het (fase)gedrag van colloïdale plaatjes in afwezigheid van een 

veld wordt tegenwoordig goed begrepen, wat verdere studie naar de invloed van een extern 

veld op dit gedrag mogelijk maakt. We hebben met name gekeken naar het effect van 

morfologische, gravitationele, magnetische en centrifugaalvelden. 

Deel I van het proefschrift gaat nog eens nader in op de vloeibaar kristallijne fasen, te 

weten de nematische en columnaire, die een suspensie van sterisch gestabiliseerde 

gibbsietplaatjes vertoont. In Hoofdstuk 2 wordt gebruik gemaakt van een morfologisch 

veld (de wanden van het monster) om grote en specifiek uitgerichte domeinen van de 

columnaire fase te maken. De toevoeging van niet-adsorberend polymeer blijkt de vorming 

van zulke grote domeinen te bevorderen. Vervolgens werden deze bestudeerd met kleine-

hoek Röntgenverstrooiing (in het Engels afgekort tot SAXS), waaruit ontegenzeggenlijk 

bleek dat wij hier met een hexagonale fase te maken hebben; bewijs dat tot op deze dag 

ontbrak. 

Hoofdstuk 3 richt zich op het effect van het zwaartekrachtsveld van de aarde op eenzelfde 

suspensie. We nemen waar dat een initieel isotroop-nematisch monster na lange tijd een 

derde, columnaire fase vormt op de bodem van het monster. Dit fenomeen wordt goed 

beschreven door een osmotisch compressie-model dat wij hiervoor ontwikkelden. Verder 

werden er Monte Carlo computer simulaties gedaan aan afgeknotte bollen met een dikte-

diameterverhouding van 1/15L D = , om hieruit de toestandsvergelijking te verkijgen. 

Samen met twee andere toestandsvergelijkingen uit de literatuur werden deze gebruikt in 

ons model. Dit leidt tot de conclusie dat het drie-fasenevenwicht, zoals experimenteel 

gevonden, goed wordt beschreven door ons model, zij het voor een iets lagere dikte-

diameterverhouding dan de experimentele. Het zwaartekrachtveld geeft aanleiding tot een 

concentratiegradiënt in één enkel monster, waardoor alle mogelijke fasen op hetzelfde 

moment zichtbaar worden. 

Deel II van dit proefschrift is gewijd aan de invloed van een magnetisch veld op de 

suspensie van sterisch gestabiliseerde gibbsietplaatjes. Een belangrijke waarneming is dat 

isotrope suspensies een significante oplijning vertonen onder invloed van het magnetisch 

veld. Dit verschijnsel wordt eerst in Hoofdstuk 4 bestudeerd met behulp van SAXS. Om 

onze data te analyseren hebben wij een eenvoudig model ontwikkeld dat de intensiteit van 

de verstrooide straling relateert aan de oriëntationele distributiefunctie. Ondanks de 

benaderingen in dit model beschrijft het de SAXS-patronen redelijk en levert het een 

ondergrens voor de waarde van de anisotropie van de diamagnetische susceptibiliteit, χ∆ . 

In Hoofdstuk 5 wordt het verschijnsel van de magnetisch veld-geïnduceerde oplijning 

bestudeerd met dubbelbrekingsmetingen aan de isotrope fase. Opnieuw wordt een waarde 

voor χ∆  gevonden, ook al is die nu beduidend hoger dan in Hoofdstuk 4. Samen 
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resulteert dit in een betrouwbaarheidsinterval voor χ∆ , waaruit we een meest 

waarschijnlijke waarde nemen die wij in de twee volgende hoofdstukken gebruiken. 

De gevoeligheid van de gibbsietplaatjes voor het magnetisch veld heeft invloed op het 

isotroop-nematisch fasegedrag; dit wordt in Hoofdstuk 6 bestudeerd. Wij vinden dat de 

isotroop-nematische faseovergang naar een lagere concentratie schuift als gevolg van het 

magnetisch veld. Met behulp van een Clausius-Clapeyron-achtige benadering kunnen wij 

dit beschrijven. Ondanks de eenvoud van deze benadering geeft het de helling van de 

isotrope tak van de binodaallijnen. 

In Hoofdstuk 7 komt de competitie tussen de wand (een morfologisch veld) en het 

magnetisch veld aan bod. Dit wordt ook wel de Frederiksovergang genoemd. De 

nematische fase van het sterisch gestabiliseerde systeem van gibbsietplaatjes vertoont een 

sterke neiging om aan een wand homeotroop te verankeren. Dit stelt ons in staat om de 

Frederiksovergang op reproduceerbare wijze te induceren. Uit deze experimenten kunnen 

wij de grootte van de “buig”-elastische constante (in het Engels: bend elastic constant), K3, 

bepalen. Verder gebruiken wij een roterend magnetisch veld om een niet-

evenwichtspatroon van strepen te genereren in de nematische fase. De golflengte van deze 

patronen is gemeten als functie van de dikte van het monster en de magnetische veldsterkte 

en komt kwalitatief overeen met theoretische voorspellingen. 

In het laatste deel van het proefschrift, Deel III, worden waterige suspensies van (geladen) 

gibbsietplaatjes bestudeerd. Eerst wordt in Hoofdstuk 8 de synthese van zulke suspensies 

beschreven. Verder kijken wij naar het fasegedrag in afwezigheid van een extern veld. 

Voor het eerst sinds Irving Langmuir (in 1938) nemen wij de isotroop-nematische 

faseovergang waar in een suspensie van geladen plaatvormige colloïden. Ook wordt 

(afhankelijk van de zoutsterkte) de isotroop-columnaire overgang waargenomen, iets dat 

kan worden begrepen op basis van eerdere computer simulaties. 

Vervolgens worden ook deze suspensies blootgesteld aan het aards zwaartekrachtveld en 

vinden ook hier een drie-fasenevenwicht (met de isotrope, nematische en columnaire fase) 

dat goed beschreven kan worden met het osmotische compressiemodel dat wij in 

Hoofdstuk 3 uiteen hebben gezet. 

In het laatste hoofdstuk, Hoofdstuk 9, worden de waterige suspensies aan een 

centrifugaalveld van 900 G onderworpen. Dit is minder destructief dan men in eerste 

instantie zou denken: de columnaire fase, met zijn karakteristieke Bragg-reflectiekleuren, 

wordt dan nog steeds waargenomen. De volgorde van de kleuren in de fase suggereert een 

groottefractionering van de gibbsietplaatjes, waarbij de grootste onderin zitten. Dit idee 

wordt bevestigd door metingen met SAXS en elektronenmicroscopie. 
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Colour versions of selected figures 

 

 

180° 160° 140° 120° 100° 90°  

Figure 2.2 – Bragg reflections from the columnar phase of sample C. The upper part of the sample

is a nematic phase in equilibrium with the columnar phase. The colour of the reflections (red

through blue) varies with the incident Bragg angle 2Θ. The reflections already hint at the presence

of a columnar structure and allow making an estimate of the inter-columnar spacing as (100)d =

215 ± 15 nm, see Table 9.2. Close inspection of the nematic phase reveals a red colour (two most

left photographs), indicative of the structure factor peak at about the same position as the d(100)-

maximum in the columnar phase. 
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Figure 2.3 – SAXS patterns obtained in the columnar phase of samples A, B and C, along with the

assigned Miller indices. The upper panels depict the entire SAXS patterns, while the lower panels

present the magnified views of the small scattering angle regions near the beam-stop. Sample A

yields ring-like diffraction features typical for diffraction from a powder. In contrast, samples B and

C show strong predominant orientation of the columns, either along the vertical direction (in B) or

along the X-ray beam (in C), as shown by the inserted sketches. The hexagonal pattern in C points

to the presence of the hexagonal columnar phase. 

(a) (b)

I

N
C

 

Figure 3.2 – The three-phase sedimentation equilibrium. Photograph (a) depicts the complete

sample between crossed polarisers, where the upper right part is digitally enhanced to visualise the

I-N interface. The columnar phase contains a dark region at the upper right of the phase, probably

due to orientation of the platelets along the sample walls. Although not clearly visible, the N-C

interface is horizontal and sharp. (b) shows the columnar phase illuminated with white light to

capture the red Bragg reflections. 
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Figure 3.4 – Configuration snapshots from the MC computer simulations, illustrating the positional

and orientational order close to the I-N and N-C phase transitions. Shading or colour is used to

distinguish between different orientations of the platelets. Snapshots (a) and (b) display the

isotropic (c = 3.39, 20Π = ) and nematic phase (c = 4.62, 30Π = ) just below and above the I-N

transition, respectively. Clearly, the orientational order has increased, whereas (long range)

positional order is still lacking. Snapshots (c) and (d) show the nematic and columnar phase,

respectively, near the N-C transition (at state points c = 7.49, 73Π =  and c = 8.66, 82.5Π = ,

respectively). At the N-C transition, there is hardly any gain in orientational order, while the

positional order becomes two-dimensional in the columnar phase. 
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(a) (b) (c) (d) (e)

I

N

 

Figure 5.1 – Illustration of the magnetic-field-induced birefringence in the isotropic phase of the

suspensions of sterically stabilised colloidal gibbsite platelets. An isotropic-nematic sample with

path length d = 2.00 mm is placed between crossed polarisers in a horizontal magnetic field (a) 0,

(b) 0.5, (c) 1, (d) 1.5, and (e) 2.0 T, generated using a Bruker BE25v Electromagnet. The sample is

observed between crossed polarisers, making angles of -45° and 45° with the vertical direction. As

can be seen quite clearly, the birefringence in the isotropic phase increases with increasing

magnetic field. The black patch in the nematic phase, which increases in size with the field

strength, is caused by so-called homeotropic anchoring of the platelets on the front and back walls

of the cell. This phenomenon is studied in Chapter 7. The birefringence gradient observed at the top

of the sample is due to sedimentation of the particles. 

P

A
 

Figure 5.5 – Aligned nematic sample used in the determination of satn∆ . At an angle of 0° with the

polariser the sample appeared completely black. The scale bar denotes 1 mm. 
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Figure 5.6 – Isotropic-nematic sample in a magnetic field, rotated around its vertical axis at an

average rate of 6 revolutions per minute (a) just before starting rotation and after rotating for (b) 1

and (c) 2 minutes. The magnetic field was directed horizontally, B = 1.4 T, the polarisers made an

angle of -45° and 45° with the vertical direction. Due to this specific geometry, a (uniaxial) nematic

phase is prepared with its director along the vertical rotation axis. Using an interference colour

chart [132], we find that the green interference colour finally emerging is a “second-order” green,

with a retardation ∆ = 800 ± 40 nm. In this specific sample, due to the magnetic field, the amount of

nematic phase had increased from 80% to 97%. This phenomenon is described in more detail in

Chapter 6. Furthermore, we note that we have in fact induced the Frederiks transition in the sample,

i.e., a reorientation of the nematic director field due to a magnetic field. 

(a) (b) (c) (d)  

Figure 6.2 – A biphasic sample of a different batch of sterically stabilised colloidal gibbsite

platelets photographed between crossed polarisers at increasing magnetic field strength. The

amount of nematic phase increases with the field, at the cost of the isotropic (or paranematic) phase.

The sample is shown at B2 = (a) 0, (b) 1, (c) 2, and (d) 3 T2, respectively. 
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(a) (b) (c) (d) (e) (f)
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Figure 7.2 – An isotropic-nematic sample of the sterically stabilised colloidal platelets at

coexistence between crossed polarisers (that make angles of -45° and 45° with the vertical

direction). This demonstrates the wall-imposed director field in the nematic phase and the Frederiks

transition. (a) - (e) have been shown earlier in Fig. 5.1 and depict the sample at increasing field

strength of 0 to 2.0 T. (f) depicts the sample after rotating it in the horizontal magnetic field of 2.0

T, inducing a reorientation of the nematic director field, i.e., the Frederiks transition. In (a) - (e), the

nematic phase contains a black region, seemingly indicating lack of orientational order. However,

due to the imposed director orientation by the walls, the sample has become homeotropic in the

centre. Clearly, the director field is dominated by the wall that is closest, as indicated by the

birefringence at the sides of the phase. At increasing magnetic field, the black patch extends as the

horizontal magnetic field stabilises homeotropic alignment. 

(a) (b)

 

Figure 7.1 – The nematic phase of sterically stabilised colloidal gibbsite platelets shows defects

typical for a nematic phase, like the (a) four-brush defect and (b) disclination lines indicated by the

white arrows. The scale bar denotes 500 µm and pertains to both micrographs. 
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Figure 7.4 – The onset of the uniform Frederiks transition, in a sample with d = 50 µm at B = 91

mT. The sample is shown at (a) 0° and (b) 45° with respect to the polariser-orientation, as is

indicated by the arrows; the scale bar denotes 1 mm. The first signs of birefringence are visible at

the edges of the capillary, where they aid the reorientation.  

(b)

(c) (d)
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Figure 7.6 – Evolution of the non-uniform Frederiks transition in a sample with thickness d = 100

µm at B = 0.56 T, rotated around the capillary’s long axis at 0.17 Hz, observed at (a) t = 5 s, (b) 86

s, (c) 200 s, and (d) 554 s. The sample makes an angle of 45° with the polarisers; the scale bar

denotes 1 mm. The wavelength of the periodic pattern increases from 82 µm at the start to a

saturation value of 104 µm. The evolution of the wavelength in time is depicted in Fig. 7.7. 
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Figure 7.9 – Early stage of the rotation of a nematic 

phase in a horizontal magnetic field, used in Chapter 5 

to determine ∆nsat. Sample thickness d = 2.00 mm, B = 

1.4 T, the scale bar denotes 1 cm. The temporal

periodicity observed in this sample hints at the same

type of transient pattern as observed in the much

thinner samples in this study. However, the initial

alignment of this sample was not homeotropic, hence, 

we do not draw quantitative conclusions from this

observation. 

 

 

Figure 8.2 – The I-N phase transition observed between crossed polarisers. The ionic strength in

these samples is 10 mM and the gibbsite concentration (a) 328 g/l, (b) 356 g/l, and (c) 464 g/l.

Sample (c) is well into the nematic phase, in contrast with our earlier study [26] where gelation

impeded the formation of a completely nematic phase. 
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Figure 8.3 – Phase separated sample in I-C equilibrium, (a) illuminated by white light and (b)

between crossed polarisers. (c) depicts a close-up of Bragg reflections in another columnar sample.

The Bragg reflections stem from the two-dimensional hexagonal lattice of columns of platelets,

with a lattice spacing of about 200 nm. 

 

Figure 8.5 – An initially biphasic (I-N) sample that developed a third phase (C) over a timescale of

six months. (a) depicts the sample in reflection with white light, and (b) in transmission between

crossed polarisers. Again, Bragg reflections can be observed in the columnar phase; see (a). In (b),

the major part of the nematic phase appears dark, this is because of the alignment of the platelets

along the wall (homeotropic alignment). 
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Figure 9.1 – The preparation of charge-stabilised gibbsite platelets involves a sequence of

sedimentation and redispersion to remove excess Al13 ions. After the first sedimentation step the

sediment, as depicted from below on the photograph, shows bright green and violet Bragg

reflections, indicative of the columnar phase. The bottom part is a transparent glass-like layer. 
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Figure 9.6 – Particle diameter distributions of the three studied sediment fractions as well as the

parent suspension (Gaussian fit). 
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Enkele gedachten achteraf 

 

Tja, daar sta je dan. Zo’n viereneenhalf jaar onderzoek samengeperst in één boekje. Met 

het risico van commentaar van de moeders in mijn omgeving, wil ik toch wel van een 

geboorte spreken als het gaat om het gereedkomen van dit proefschrift. Maar, in 

tegenstelling tot bijvoorbeeld de geboorten van Sam en Tijn is dit er een waarbij meerdere 

personen de weeën hebben moeten doormaken. 

Laat ik als eerste ‘geestelijk vader’ mijn promotor noemen. Henk, ik ben je dankbaar voor 

de inzet waarmee je mij de afgelopen jaren hebt begeleid. Je betrokkenheid en 

enthousiasme hebben mij enorm gestimuleerd en zonder jouw inbreng, op allerlei 

momenten in mijn onderzoek, was dit proefschrift er niet geweest. De laatste maanden voor 

de deadline waren hectisch. Ik ben je dan ook zeer erkentelijk voor de tijd die je steeds wist 

vrij te maken. (Met dank aan het Maarnse thuisfront en de andere AiO’s!) Je hebt mij 

verder de vrijheid gegeven om ouderschapsverlof op te nemen en de laatste twee jaar in 

deeltijd te werken. “Er is meer in het leven dan het werk” merkte je terecht op, en dat werd 

nog eens extra duidelijk toen je zelf opa werd van Max. Al met al zijn er de afgelopen jaren 

wel wat ‘kleine wondertjes’ gebeurd en dit proefschrift hoort daar zeker bij. 

De drie andere geestelijk vaders van dit werk zijn mijn co-promotoren; in alfabetische 

volgorde: Patrick, Andrei en Gert Jan. 

Patrick, I would like to thank you for your commitment to the work described in this thesis. 

In particular, you have contributed to Part II on the magnetic field. I am not exaggerating to 

state that your input has been vital. I have really enjoyed the collaboration, especially 

during the stay in spring 2003. Thank you for your hospitality at the Laboratoire de 

Physique des Solides (LPS). I am looking forward to going to Paris again, hopefully we 

manage to get the Marie Curie fellowship! 

Beste Andrei, ontzettend bedankt voor je hulp en bijdragen, in het bijzonder aan de 

hoofdstukken 2, 4 en 9. Zowel tijdens de meetsessies in Grenoble als tijdens de 

dataverwerking ‘thuis’ was je er om mij met SAXS-raad en daad bij te staan. De vele 

stimulerende discussies blijven mij zeker bij. Spaciba bolshoi! 

Gert Jan, dankjewel voor scherpzinnige en kritische blik. Met name in de eindfase was die 

nodig om mijn stukken op een hoger niveau te brengen. Ik kan slechts hopen dat ik ooit zo 

kritisch leer zijn op eigen resultaten als jij. 

Two other people with whom I had the pleasure to collaborate are Jacques Ferré and Jean-

Pierre Jamet of the LPS. I would like to thank you for the opportunity to jointly perform 

the birefringence measurements that are the basis of Chapter 5 of this thesis. 

Hoofdstuk 3 bevat de resultaten van computer simulaties uitgevoerd door Tanja Schilling. 

Tanja, ik wil je bedanken voor jouw bijdrage aan het hoofdstuk en ons gezamenlijk artikel. 

Onze contacten – zowel binnen als buiten het werk – heb ik erg prettig gevonden. 

Misschien dat wij dat nog eens een vervolg kunnen geven! 
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De invloed van mijn kamergenoot Rik is terug te vinden in hoofdstukken 4 en 6 van dit 

proefschrift. Rik, je scherpe inzicht en razendsnelle berekeningen zorgden voor een snelle 

vooruitgang van het werk. Verder wil ik je bedanken voor de talloze momenten dat ik bij je 

terecht kon met vragen, met als hoogtepunt natuurlijk de vraag: “Wat is ook al weer de 

waarde van S2 in de isotrope fase?” 

Essentieel voor het totstandkomen van hoofdstuk 4 was de aanwezigheid van een 

supergeleidende magneet op de DUBBLE bundellijn in Grenoble en daarvoor komt Wim 

Bras de dank toe. Wim, bedankt voor je inzet en ondersteuning, zelfs toen de magneet de 

geest gaf. I would like to thank Igor Dolbnya, a former member of the DUBBLE crew. His 

expertise has been invaluable during the SAXS measurements. 

Tijdens de afgelopen jaren zijn er enkele studenten geweest die hebben bijgedragen aan 

mijn onderzoek. René, Esther en Paul, bedankt voor de experimenten die jullie hebben 

uitgevoerd. Paul ziet zijn inzet beloond met een potentiële publicatie, maar dat betekent 

niet dat de meer exploratieve metingen van René en Esther minder interessant waren. 

Van de Van ’t Hoffers wil ik in het bijzonder Dirk, Roel en Stefano noemen. Mijn 

herinneringen gaan terug naar de studentenkamer, toen nog N731, naar een etentje in het 

IBB-complex en andere gezellige momenten. Jongens, bedankt! En voor de anderen: 

bedankt voor de gezelligheid en ondersteuning op allerlei vlakken. 

Grafische ondersteuning kwam er van Jan, Alois en Ingrid van de Audiovisuele Dienst 

Chemie. Jullie hebben mijn posters steeds weer bijzonder strak vormgegeven, bedankt! 

Aan het eind van deze gedachtegang kom ik natuurlijk bij mijn familie, in meerdere of 

mindere mate ook ‘geestelijk ouders’ van dit proefschrift. Papa en mama, jullie invloed op 

dit proefschrift is misschien minimaal, toch hebben jullie mij in de gelegenheid gesteld om 

‘gewoon’ naar school te gaan en ‘gewoon’ te gaan studeren, kortom, de mogelijkheid 

gegeven om te doen wat ik voor ogen had. Bedankt! 

Lieve Mieke, als moeder van Sam en Tijn hoef ik je niet te vertellen wat weeën zijn. Ook 

de barensweeën van dit boekje heb je van zeer dichtbij ondervonden en daarom mag jij de 

eerste zijn om mee te delen in het plezier van deze geboorte. Ik ben je heel erg dankbaar 

voor je steun, in het bijzonder gedurende de laatste maanden en ik zie er naar uit om met 

jou het buitenlands avontuur te beginnen. 

Lieve Sam en Tijn, tegen de tijd dat jullie dit lezen ligt 2005 waarschijnlijk al weer ver 

achter ons. Jullie geboorte was voor mij lang niet zo’n werk als het schrijven van dit 

boekje, maar heeft voor mij veel meer betekend en nog steeds is jullie aanwezigheid heel 

bijzonder. Ik heb ontdekt dat het – frustrerend genoeg – onmogelijk is om alles in je leven 

100% goed te doen en ik hoop daarom dat jullie, samen met alle anderen om mij heen, toch 

op z’n minst een redelijk deel van mijn toewijding hebben mogen ervaren… en dit geldt 

ook voor mijn eigen geestelijk Vader. Eigenlijk is er maar Een zonder wie dit proefschrift 

er niet zou zijn geweest! 
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