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LIQUID CRYSTALS WITH VARIABLE DEGREE OF ORIENTATION

J.L. ERICKSEN

1. Introduction. For the small-molecule nematic liquid crystals commonly used in
display devices, what Chandrasekhar [1] calls the Oseen-Z5cher-Frank equations, hereafter
referred to as the OZF equations, have been quite successful in describing many static
phenomena. For phenomena involving flow, what he calls the Ericksen-Leslie equations
have been used rather successfully: they reduce to the OZF equations, for statics. Many
workers accept what he calls Parodi’s relation, an Onsager relation. Careful experimental
tests of this have not been made, as far as I know. Currie [2] points out that it does have
some status, as a stability condition. Kuzuu and Doi [3] note that the type of molecular
theory which they consider does imply this relation. I follow de Gennes [4] in referring to
the resulting equations as the EL or ELP theory, depending on whether Parodi’s relation
is presumed to hold.

Two things have motivated me to consider modifying the equations. For one thing,
I am interested in seeing the development of a mathematically sound theory of defects
which might be at rest, or moving. The static theory of point defects, based on the
OZF equations, is now rather well developed, as is discussed in surveys by Ericksen [5]
and Kinderlehrer [6]. I believe that the EL and ELP theories are capable of describing
moving point defects. However, no real progress has been made in developing pertinent
analyses, despite some serious efforts. More serious difficulties are encountered with some
observed kinds of disclinations (line defects). According to the aforementioned theories,
these more violent singularities cause energy integrals, etc. to diverge. In dealing with
rather specific situations, workers have patched up the theory, by excluding a tube of small
radius, assigning a finite “core energy” to it. I just don’t believe that one can use such
ideas as a basis for developing satisfactory mathematical theory, particularly for moving
defects. Such phenomena are of interest for both nematic and cholesteric liquid crystals.
In the latter, they are associated with the interesting “blue phases” discussed by Cladis
[7] and Sethna (8], among other things.

In tinkering with theories which work rather well, there is some danger that, in fixing
one flaw, one will find other good predictions affected adversely. Slowly, I have come to
the view that the risk is worth taking. There is a physically reasonable way of modifying
the equations to help tame the singularities, discussed a bit for static problems by Fan
[9], some years ago. Essentially, I will elaborate and generalize this. Roughly, it involves
introducing an additional scalar variable, the so-called degree of orientation. With this
comes a kind of elasticity not represented in the EL theory. As is to be discussed, this and
another mechanism are involved in various molecular theories of liquid crystal polymers
which are more or less like that of Doi [11]. The format presented by Macmillan {11] is



flexible enough to cover most proposals of this kind. So, the theory to be discussed can be
viewed as a kind of compromise between the EL or ELP theories, and theories of the latter
kind. Observations of such polymers do seem to indicate much more complex behavior
than is common for the small molecule liquid crystals. There is then plenty of room for
differences of opinion as to how best to develop theory for them.

Some good analysts have helped me to get some feeling for the modified theory, by
studying special forms of the equations or some which are at least very similar. Informally,
they have also helped me by showing educated guesses as to what might be provable.
Concerning the defects, work by Hardt [12], Lin [13] and Maddocks [14] have reinforced
my impression that the modified theory provides a decent basis for developing a sound
theory of line defects, and that it might be feasible to do so. Lin, particularly, helped
me to see a possibility, which had not before entered my mind, that the seemingly more
complicated equations might, in fact, be more tractable, for dealing with the problems of
moving point defects, than the EL equations. [ won’t claim that this is an established fact,
but do believe that it is a good possibility. In the liquid crystal polymers, observations
seem to indicate that it is rather common for defects to occur in large numbers, perhaps
including surface defects, associated with the “domain” structures such as are mentioned
by Wissbrun [15], for example. I am not so sanguine about find good ways of dealing with
the large numbers, but it might be feasible to determine whether equations of the kind
considered permit solutions of the surface-defect kind. Concerning the polymers, Calderer
[16,17,18] has done some interesting analyses, using special forms of the equations, relating

to flow phenomena observed in such liquids.

There is some prejudice that the EL equations represent asymptotic approximations
to various more general equations included in MacMillan’s [11] format, for very slow flows.
He gives the best available analysis of this, which is rigorous, but applicable only to a
very special set of situations. It has become clear that tricky singular perturbation theory
is involved, as was first realized by Kuzuu and Doi [3], as far as | know. One could try
some analogous asymptotic analysis, allowing for defects. However, this is too tricky for
me and, I expect, would be possible only subject to judicious assumptions about unknown
constitutive equations. In working through the program, we will, in part, get some as-
sessment of likely assumptions. I have written as if [ accepted the notion that theories
included in MacMillan’s [11] format are clearly the most sound. There is room to argue
about this, and he does discuss some of the pros and cons. I do find it interesting that the
bulk of the experimentation on polymers seems to fit the present format as comfortably
as it does the more complex format indicated. In this respect, the coverage by Wissbrun
[15] is, I think, reasonably representative. So, it seems that this intermediate theory could
be rather useful, as a basis for understanding some phenomena relating to the polymers,
Calderer’s [16,17,18] work being a first step in this direction.

2. Orientation Variables. Much of the interest in liquid crystals is associated with
efforts to control their orientation, so relevant theory needs to introduce variable(s) to
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describe this, in the situations likely to be of most interest. Among those concerned
with relevant molecular theory, there is some concensus of opinion that a good choice is
a second-order tensor M, representing a second order moment of an (unknown) orienta-
tion distribution function associated with the rather rigid, more or less rod-like molecules.
There is some debate about this but, without further ado, I accept it. Experimental es-
timates of it involve assuming that it is simply related to something else which is more
accessible experimentally, often the dielectric tensor associated with optical observations.

From its definition, it has some properties which do not depend on the form of the distri-
bution function, viz.

(2.1) M=MT trM=1,M >0

the latter inequality meaning that the eigenvalues of M are non-negative. Actually, they
are positive unless the directions of the little rods are all either parallel or perpendicular to
the same direction. My prejudice is that such configurations are unattainable, physically.
As a personal matter, I don’t feel very comfortable with equations of motion or equilibrium
for M which permit values to violate (2.1).

Following common practice, we use instead of M its deviator
(2.2) Q=M-1/3,

with eigenvalues @Q,(n = 1,2, 3) satisfying

- 2 1 ,:0,
(23) { 1§3Q71 S )aQ +Q2 +Q

-2 <3(Q + Q2) < 1 ete..

In the sense made clear by this, Q is a fairly small tensor and it is rather common to
assume that various functions of interest can be approximated well enough by polynomicals
of rather low degree in Q. We will consider this, partly because we need the first few terms
in expansions about Q = 0, for a different reason.

In terms of Q, we can distinguish three kinds of configurations. One consists of the
randomly oriented or isotropic configurations, with

(2.4) Q =0,
the only configurations for which @, = @2 = Q3. Then, there are the nematic config-

urations, for which exactly two of the three eigenvalues coincide. Then Q can be and

commonly is represented in the form

1
(2.5) Q:S(n@)n—gl),n-n:1,—1/’2§S§1,



where the scalar S is called the degree of orientation. By a reasonable interpretation
the OZF, EL and ELP theories presume that (2.5) always applies, with S a function
of the temperature 6 only. Then, the eigenvector n, called the director is commonly
identified with the optic axis of these optically uniaxial liquids. Of course, this is one way
to keep values of Q in the physically meaningful domain. The names are a bit confusing
in that (2.5) is also considered to apply to what many call cholesteric liquid crystals. The
important difference is one of material symmetry. Nematics display symmetry with respect
to reflections, while the cholesterics don’t: their molecules have a symmetry more like that
of a helical spring than that of a rod. Some refer to cholesterics as chiral nematics, which
is more apt. In either of these kind of nematic liquids, what workers commonly mean by
defects are points or curves where the optic axis is undefined. Mathematically, n would
be ill-defined at, say, isolated points where S vanishes. As noted above, the OZF and
EL theories won'’t let S vanish. Roughly, Fan’s [9] idea is to modify the theory so that S
can vanish at defects, where n is undefined. He noted some evidence that this can tame
the singularities enough to let integrals of interest converge. For reasonable governing
equations, one then needs to prove theorems concerning the sets on which S can vanish,
how this compares to sets on which n is singular etec.. As is discussed by Hardt [12] and
Lin [13], some good theorems of this kind have been proved. So, there is some reason to
believe that it is feasible to begin to develop a mathematically sound theory of defects, by
following his line of thought.

There is the third possibility, that the three eigenvalues of Q are all distinct, giving
what are called biazial nematic configurations. Theories fitting MacMillan’s [11] format
permit any of the three types of configurations to occur. Certainly it is not unreasonable
to think that flows or other influences could convert a rather stable nematic configuration
to one of the biaxial type, etc.. I[19] am one of those who have argued that, near isotropic-
nematic phase transitions, it should be quite easy to induce such changes. Accounting for
such possibilities does add significant complications to the equations, and the problems
of analyzing them. Experimental information concerning the biaxial configurations is still
quite slim and, for me, it is too early to think seriously about them. So, I will develop
theory representing a kind of compromise. Basically, it generalizes the EL or ELP theories,
by introducing the scalar S as a variable. Concerning constitutive equations, I will insist
upon some consistency with those used in the theories permitting the biaxial configurations.
Necessarily, the equations of motion will be rather different. So, the only real difference
concerns allowing for such a splitting of eigenvalues, if we are concerned with what are
normal stable nematic phases, in equilibrium. The theories of the kinds mentioned are all
of the near equilibrium kind, it being a matter of guesswork as to how far we can push

them, before getting into serious trouble.

Formally, theory to be discussed is quite similar to theories involving a vector field
with variable magnitude, such as is discussed by Leslie [20], for example. Hardt [12] and
Lin [13] treat some special cases which do fit this mold. In general, it is at least tricky
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to get a good mesh between these two kinds of theory. The idea is try to introduce some
vector m, depending on S and n, which adequately describes both S and n. Physically, n
is equivalent to —n, but S and —S describe physically different configurations. With the

vector description, it seems hard to incorporate these distinctions. For example, we could
write

(2.6) { Q =m®m-i|m?l,m=+Sn, when S >0,

=-m@m+ 3/m|*1,m = /—Sn, when § <0,
formally relating Q to a vector. Given m, we then don’t get a unique value of Q unless
we independently fix the sign of S, and there is no obvious way to determine this, given
only the value of m. From considerations of this kind, I conclude that the two kinds of

theories are really different, although one might well borrow or adapt ideas and analyses
from one to develop the other.

3. Basic Format. Here, I briefly sketch the format used to generate equations for
the quantities of interest, taken to be the fields S and n, the velocity v and the absolute
temperature . As might be expected from the preceding discussion, the considerations are
not very different from those used by Leslie [20] and they also fit pretty well the general
format discussed by Ericksen [21], so I will try to be brief. Here, the fields and constitutive
equations are considered as smooth.

I accept the usual idealization of these liquids as incompressible materials, with con-
stant mass density p and v satisfying the usual equation of continuity

(3.1) v-v=0.
Also, from (2.5),, the director is to satisfy the constraint
(3.2) n-n=1.

For v, I use the customary balance of linear momentum. In integral form, we have

d [
(3.3) —/ pvclx:/ odx+/ fdx,
dt Jo a0 Q

with © an arbitrary material region, or the differential equivalent
(3.4) pv =V -0+ f,

where the superposed dot denotes the material derivative. Here, ¢ is the (asymmetric)
stress tensor, f the body force per unit volume.

For S and n, I use rather similar formats. For S, it is a scalar equation of the form

(3.5) P=v-T+G +GFE.



Here, P represents a generalized momentum, with the terms on the right representing
generalized forces. Briefly, G! represents a kind of internal body force, G being associated

with external effects, like applied electromagnetic fields. Similarly, for n, we have a vector
equation of the form

(3.6) ir:V-T—}-g]—i—gE,

interpreted in an analogous way. Roughly, there are the “forces of constraint”, associated
with (3.1) and (3.2), entirely similar to those considered by Leslie [20], in his treatment of
the EL theory. For 6, we start with an energy balance of the form

d

1 . :
. T Q(e—{-§p|v|2)clx: /OQ[(V-G—{-H-T)dS-i—(ST—q)-dS]

+/(f-v+GE$+gE~n—7*)dx.
Q

On the left, we have separated out the obvious translational kinetic energy, but e can
include rotational kinetic energy associated with motion of n, for example. Also, q 1s
the heat flux vector, r covering rate of heating in the interior. Going to the differential
equivalent, and using the preceding equations to rearrange this, we get

e =tr[vve? + v(n)rT]+ vS- T

3.8 : .
(3.8) +(P-chHS+(r-gh -n-v.q-r

As a form of the second law, I accept the Clausius-Duhem inequality,

(3.9) nZv-(q/8)+r/8,

where 7 is the entropy per unit volume. Leslie [20] considers a more general form, which
leads to some differences in conclusions. In my opinion, the differences are of minor import,
physically, and at least for the present, it seems to me better to exclude these complications.
We now introduce

(3.10) ©o=e—PS—7-n-6n,

which I’ll call the Helmholtz free energy density, although it also resembles action. By
using this, and eliminating v - q + r between (3.8) and (3.9), one gets the inequality
¢ Str[vv(o? + 77vn+ T ® vS)]
(3.13) _P$-G'$+VS T-7-i—g'-n
+ tr(%'rT) —q-ve/6.
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As usual, the idea is to use this to get restrictions on constitutive equations, here for
@,0,P,T,G!, 7, gl and q. Following the pattern of theories mentioned earlier, I assume
that, except for terms of the Lagrangian multiplier kind, associated with the constraints,
these are functions of the list

(3.14) n,1n,vn,S,S,vSs, vv,8,vo.

Then, by arguments much like those used by Leslie [20], one can deduce that

(¢ is in dependent of Vv and V0,
O’=-—])1—V11Ta—27%—V5®6—3v%+6',
— _9
P as’
I _ a ~
Y4 —%f + an,
T = 5%% +nQ®b,
gl = —%f +an—vnb+cn+ g,
\ n= _%%7
(3.13) then reducing to
(3.16) A (oveTy g n—GS—q-v8/6 20,

with A as a measure of dissipation. In (3.15), p is the usual arbitrary pressure, a Lagrange
multiplier associated with (3.1). Similarly, the scalars a and ¢ and vector b are arbitrary

functions of position and time, multipliers associated with (3.2).

There are the various implications of invariance, again much like those discussed by
Leslie [20]. In part, most of the constitutive equations are assumed to be invariant un-
der the group of smooth rigid motions or, briefly, to be objective. There is one caveat,
in that the assumption is not so reasonable for ¢, which might cover rotational kinetic
energy. For it, it is reasonable to assume that it is at least invariant under Galilean trans-
formations, involving the time-independent rotations and translations depending linearly

on time. Then, by reasoning which is essentially the same as that used by Ericksen [22],
one gets the differential identity

de f do . Op r Op Q¢ _ p_ .1
(3.17) U n® o +nE ER + vn Som avllVn

Similarly, the parts of o, etc. depending explicitly on ¢ might well only exhibit this lesser
invariance, but I think it reasonable to assume that remainders, like 6, G etc. are objective,
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and that this also applies to A. This produces a differential identity, formally identical to
that used in the EL theory.

(3.18) -6 =g@n-nQ@g.
This, along with (3.15) and (3.17) produces another identity
(3.19) o—ol =vnrf —rvnT +gl@n-—n@g +ren-—nen,

as a replacement of Cauchy’s condition that the stress tensor be symmetric. As in the EL
theory, this produces a balance law implied by previous equations for v etc.,

d

7 (XApV + nam)dx = / (xA0dS + na7dS)
Q

(3.20) o

+ / (xaf + n,\gE)dx.
JQ

As is discussed by Stephen and Straley [23], one can view (3.6) as the equation guaranteeing
the balance of couples involved in (3.20). This has helped to identify some of the pieces,
physically: nag® is a body couple per unit volume, n,7 a couple stress tensor.

In these general terms, the equations are much like those associated with the EL theory,
although we do have the additional equation for S. In this, the concensus of opinion is
that, for at least most purposes, the “molecular inertia” terms are negligible. I'll accept
this, assuming that P = 0,n = 0. From (3.15), one can see that there is then no loss in
generality in assuming that

(3.21) ¢ =5, v5n,vn,f),a=0,

which simplifies matters a bit. It then follows from our assumptions that constitutive
equations for ¢, o etc. are objective.

Following the pattern of theories mentioned earlier, we specialize more, to theory of
the “near equilibrium” kind, assuming that the constitutive functions for 6, G, g and q are
linear in the variables which vanish in equilibrium, »iz.

(3.22) S,n,vv, v,
with coefficients depending on
(3.23) S, n, 6,

but not on ¥n or VS. There, from (3.16), A becomes an homogeneous quadratic function
of the variables in (3.22), with coefficients depending on those in (3.23).
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With these assumptions, the matter of determining what forms of the constitutive
equatims are consistent with invariance assumptions has almost been done for us, by
Leslie [20]. This includes objectivity, and a bit more. He assumes, as is consistent with
experience, that the equations are invariant under the transformation n — —n. From
our view this can be viewed as one ninplication of the idea that the basic variable is Q,
one which is consistent with experience. For nematics, but not cholesterics, constitutive
equations should be invariant under improper as well as proper or transformations. We -
will focus on the nematics, noting the differences for cholesterics at the end of this paper.
I won’t belabor the relatively simple invariance problems associated with the additional
terms which arise, because S is now variable. '

Insofar as possible, I'll use labelling of moduli given by Leslie [20]. To within terms
which can be absorbed in Lagrange multipliers, I get

o= (ﬁlS +an-An)n@n+ e N@n+azn@N
+ a4A + asAn®@n+4 agn ® An.

(3.24)

Here, the o’s and 3’s can still depend on S and 6, and we use the notation

2A =9vv+vvT,
(3.25) 20 =vwvv-—wvTl,
N =n-Qn.

Similarly, we have

g = _’YIN - 'YQAH»’YI = &3 — Q2,72 = Qg — U5,
(3.26) G = —ByS — fsn - An,
q=Iv0+ K,V8-nn,

the three #’s being moduli not occurring in the EL theory. I do prefer a different la-
belling, to be introduced shortly, but record this, because it better fits rather common
practice. From (3.14) these, together with a specification of the constitutive equation for
¢, determine all of the constitutive functions. We will consider ¢ later.

From here on, we have two aims, not unrelated. One is to explore what else might
be said about the constitutive equations, based on fairly general ideas about molecular
theory. Also, for the defects, we would like to know something about how the constitutive
equations behave near them, that is for S near zero.

4. Onsager relations. Loosely related to molecular theory are Onsager relations.
Being mindful of criticisms such as are covered by Truesdell [24, Lect 7], I do have qualms
about their applicability. In the liquid crystal area, in particular, there has been a little
confusion about what they are, as is discussed by Lam [25]. I will give my interpretation
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of what they are, and make some use of them. The first step is to put (3.16) in a slightly
different form, writing it as a bilinear form

(4.1) 2D Y A =tr(vvsT)+h -+ HS + k- v0,

where

h=-g H=-G, k=—q/f.

As I interpret the relations, it is not relevant which of the entries are called forces or fluxes.
What is of import is how the terms transform under time reversals. To remember what

to do, I find it easier to divide the variables into two groups which behave similarly. As I
interpret,

(4.3) vv,n, S and k reverse sign ,

whereas 6, h, H and V6 don’t. If we were to regard ¢, h, H and V@ as linear functions of
vv,n, S and k, with coefficients depending on S, 6 and n, the Onsager relations would be
equivalent to the statement that, to within terms of the Lagrange multiplier kind,

. D oD oD oD
(44) 0'——,11—%,H—5§,V9—W.

It 1s in fact rather awkward to use k as an independent variable, instead of V8. However,
we can interchange these, by the usual device of introducing a Lagendre transform, viz.

oD

4, D=D—k-— =D -k V4.
(4.5) D=D-k 1 D—-k-vh
In terms of this, we have

oD oD oD oD
4, 6=——,h=—+ H=—k=———.
(4.6) =T T avo

Reverting to earlier notation, we then have

(4.7) 9D =tr(vvé')—g - n—GS+q-vh/6
with

. 0D oD . oD oD
“9 A R TR AT s

which can be applied to nematics or cholesterics. For (4.4) and (4.8), one obviously needs
some invertibility. Here this is not a very serious worry, but (4.8) might be considered
as more natural, given our ideas about constitutive equations. If I correctly understand
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remarks made by Lam [25], he accepts the equivalent of (4.4) for cholesterics, but was
unsure how to proceed, if he started with v instead of k or q, as an independent variable.

Comparing (4.8) with (3.24-26), I get two relations

» = as + ag,
(49) { e

Br = Bs,

the former occurring in the EL theory as Parodi’s relation. It is rather widely accepted,
although experimentists seem not to have tried to determine whether it holds accurately.
According to Currie [26], some curious instabilities are predicted, if it fails. I would find it
comforting to see some similar reason for accepting the latter equality, finding arguments
favoring these relations rather shakey. Kuzuu and Doi [3] do note that the former is
predicted by the type of molecular theory which they explore, enough to indicate that
there are molecular theories producing at least one of the two relations.

When (4.9) holds, one can use (3.16) and (3.24-26) to calculate that

A = aytrA? + (a5 + ag)n- A’n + a;(n- An)?
(4.10) + 7 INP? +29,N-An+ 5,52 + 24,50 An
— K(|V8)? — y(v8-n).

This should be non-negative and, for the present, I assume that it is, in the strict sense.
One can get the related inequalities to be satisfied by scalar moduli by reducing this to a
sum of independent quadratics. To do so, | introduce the projection operator

(4.11) P=1-n®n.

Bear in mind that, from (3.1) and (3.2), trA = 0. Let

1
B :A+5n-Anl -nN®PAN-PAn®n
(4.12) =

— gn -Ann @ n,
which satisfies
(4.13) B =B? Bn=0.trB =0.

Solving (4.12) for A gives a good decomposition of A into parts, associated with planes
having n as normal. In particular, a calculation gives

trA? = trB? + (n- An)? + |PAn|?
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It is easy enough to check that one can choose A and so that any two of the three terms
on the right vanishes, with the third being non-zero. So this expresses trA? as a sum of
independent quadratics. Similarly

An=PAn+n-Ann,

S0
(4.15) n-A’n=|An|* = [PAn|* + (n- An)?.
With more juggling of this kind, one can reduce A to the form

A =mtrB? + 55(n - An)? + n3|PAnj?,
(4.16) + v|N = APAn|]® + (S — un- An)?,
+ k1|8 — V0 -nn|* + ky(v - 6)?,

and verify that one can pick velocity fields, etc. so that, instantaneously at a point, just
one of the seven terms on the right is non-zero. This has some heuristic value, suggesting
simple experiments which might provide useful information concerning the moduli, etc..
One then has

4.17 AZ 0, strictly & n,(n =1,2,3),~v,6,k1 and ky > 0.
I

Essentially, this is the labelling and, as [ interpret it, the idea underlying this which is
used by Landau et. al. [27, e.g. (42.8)], except that they write 7, in place of 3. I do
prefer this to other labellings used, some of which are mentioned by Stephen and Straley
[23]. One can adjust it, to cover the possibility that (4.9) doesn’t hold, but I won’t do so.

A calculation gives

(= Qa,
Ny = oy + 3ay /2 + as + ag — B3/ B,
N3 =204 + as + a6 — Ya /71,

7=
(4.18) 4 6 = B,
A== /7,
1= —PB1/Ba,
k= —I,

L k” = —I\:l — I\;—Q,
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or the inverse form

ay =11/2+ 12 — 13 — Ay + 426,

200 =9 — 11 = —(A+ 1)y,

az =71+ 72 = (1= A)y,

Q4 =11,

2a5 = =21, + 13 + AMA + 1)y,

206 = 2(as +72) = =2 + 13 + A(A = 1)y,

(4.19) | —
By =6
Y1 =79,
Y2 = — A7,
I, = -k,

\ Koy =1k — I\I”.

Given the special form of A here occuiring, one can replace (4.8) by

VN
94
<0 = Fov>
4.
(4:20) 25 — 248
25 = ~ 5%
5 oA
2q = =055,

with A expressed in the form (4.10) or (4.16). Bear in mind that, in this section, we are
not considering cholesterics, and, in fact, (4.20) does not apply to them.

By assuming that (4.9) applies, we need just two scalar constitutive equations, one for
A and one for ¢. In considerations to follow, I'll assume this, to simplify matters a bit.

With some additional labor, one could work through the more general case.

5. Energetics. First, we specialize (3.21), following the pattern of theories mentioned
earlier. There is the idea that, for the temperatures of interest, we are dealing with nematic
phases. With this is associated the idea that ¢ is minimized by some nematic configuration,
with S = S54(6) and n a constant unit vector field, so

W(S,vS,n,vn,0) = @(S,vS5 n,vn, ) — o(Se(8),0,n,0,0)
>
= 0.

(5.1)

Also, such theories use an assumption which is reasonable if ¥.S and ¥n are suitably small,
and is used in the rather successful OZF and EL theories: W is a quadratic function of
these variables, so

(5.2) W =W, + W, + Wy,

13



with Wy independent of these variables, V;, linear in them and W, an homogeneous
quadratic in them. Near defects, ¥n certainly gets large, so the most obvious approach
might be to try functions more nonlinear. I don’t find it easy to give a clearcut reason for
not going this route. So, | am letting intuition guide me, strongly, to take a different path.
With n physically equivalent to —n, we should have

(5.3) W(S,vS,n,vn,0)=W(S,vS, —n,—vn,0).

For nematics, but not cholesterics, W should also be invarient under reflections, in partic-
ular central inversions, giving the conditions

(5.4) W(S,vS,n,vn,8) =W(S,—vS,—n,vn,¥§),
and it isn’t hard to show that this combination of conditions implies that
(5.5) W, =0.

Of course, W should also be invariant under the group of rotations. Since a rotation can
be found, mapping one unit vector to any other, this implies that Wy is independent of n
and, with (5.1), we should have

(5.6) Wo(S,8) 2 Wo(Se(8),6) = 0.

Physically, S is only meaningful for S € [-1/2,1], from (2.5). At S = 1, one has the
perfectly oriented systems and, at S = —1/2, one has all the molecular directions perpen-

dicular to n. The notion that these are unlikely to be attained suggests the assumption
that

(5.7) lim  Wy(S,8) = lim Wy(S,8) = o,
S—"1/2 S—1

and this should at least help keep S within its allotted bounds. However, I don’t know of
clear evidence that it is important to assume this. As [ interpret, the OZF and EL theories
presume that S = 5y(8), always, making it irrelevent to consider the function Wy. If some
one has designed experiments to determine it, I don’t know of this. In any event, we here
have a kind of elastic energy not occuring in the OZF or EL theories.

When VS5 = 0, the possible forms of 1V, can be read off from the analysis of Frank
[28], for the OZF theory, and it is not hard to determine the additional terms occuring
when V.S # 0. Omitting details, one finds that W 1s of the form

2W, = K(v-n)? + Ky(n - curl n)? + K3|n, curl nf?
(5.8) + (K + Ky)[trvn® — (v -n)?] + L;|vS|?
+ Ly(vS -n)? 4+ Lyv-nvS-n+ LyvS-(Vnn),
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where the K’s and L’s are functions of S and §. The labelling of the K’s corresponds to
what is now rather commonly used, for the OZF theory. Rather commonly, liquid crystal
workers regard as equivalent two such functions if their difference can be written as the
divergence of some vector. The likely prospects are associated with the identity

(5.9) V- [f(vnn - v-nn] = f[7,"rV112 —(v-n)?
+Vf - (vnn— Vv -nn),

where f is any smooth scalar function of position. By considering f as a function of S,

one gets expressions like those occurring in (5.4).

To cover inequalities implied by (5.1), it helps to arrange terms a bit, as we did for A.
Assuming that the inequalities are strict, we can write W, in the form

2W, = K1(v -n)? 4+ Ky(n - curl n)® + K3|na curl n|?
(5.10) + (K + K)[trvn® — (v -n)?] + K5|vS — vS - nn — vvnn/?
+ K¢(vS-n—0ov-n)?,

where
( K=K, -0?K¢ =K, — L}/4(L, + L),
K3 = K3 —1?Ks = Iy — L2 /4L,
Ks = Ly,
(5.11) A
Iy = Ll + LQ,
v = —LAJ/'ZL],
g = —-L\;/ZL

Also, the first four terms are familiar from the OZF theory, so we can copy inequalities
involving them, from Ericksen [29]. We get the strict inequalities as

‘IX—’l > O,I{Q > IIX'.-ll,.K::; > O,ZT\:l — Ko — K4 >0
(5.8)

K5 > 0,1{ > 0.

As will become clear, the strict inequalities fail at S = 0 and, in exploring this, you might
find it is easier to use (5.4). For the OZF theory, workers using (5.5) to get Ky + K4 = 0,
effectively, obviously then tolerate loss of the strict inequality. Clearly, W and ¢ differ by
an additive function of 6: the dependence of ©(Sy(6),0,n,0,6) on n being excluded by
invariance. This is, of course, involved in describing specific heats, but, otherwise, there is
little to be said about it.

Apart from some considerations associated with molecular theory, the format for these
theories is now complete. From such things as the singular perturbation theory mentioned
before, there is some suggestion that the ELP theory represents some approximation to
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this. Left to itself, in a heat bath at constant temperature, we can reasonably argue that
it will adopt a configuration minimizing W. So, S will take the value So(f), n becoming a
constant unit vector. For the latter, the liquid crystal has no reason to prefer one direction
over another. so, at the first step in a perturbation theory which might treat various weak
influences, we have this indeterminary. Experience with such situations suggests that the
next step should be to eliminate this indeterminacy, leaving S = Sy(6). The OZF and EL
equations suggest themselves, as candidates for equations to be used at this step. Certainly,
I would like to know whether rigorous asymptotic theory confirms this, or suggests some
modification. I am, after all, fishing for a modification to better handle defects, things
occurring on sets of measure zero. For exploring this, the present format seems to me to
be about as good as the more complicated equations considered by MacMillan [11]. At
the next step, I would expect the equality S = Sy(8) to be relaxed. This could occur with
or without the introduction of biaxial nematic configurations. As I see it, this is the place
to consider the more general theory, to try to assess which is the more likely possibility,
which would depend on the form of such equations. Clearly, there is more opinion than
fact in these remarks. I am aware that various workers interested in the polymers have

somewhat contrary opinions: more rigorous analyses could help clear the air.

6. Consistency conditions for Wy. So far, we have pretty well ignored the role
played by the second order tensor Q, discussed in § 2. Primarily, I will use ideas about it
to get estimates of the behavior of constitutive equations near S = 0, expecting that this
will be of some import in analyses of defects. The idea is to regard constitutive equations
for W and A as restrictions to nematic configurations of constitutive equations applicable
to the more general variety of configurations. The assumption is that they are smooth
near Q = 0. For Wy, we then start with a constitutive equation of the form

W()(Q,e),

invariant under the orthogonal group. As is discussed in some detail by Ericksen [19], this

is expressible in terms of two scalar invariants, which can be taken as

{ 7Y Q2 20,

K (det Q)/2,

(6.2)

these satisfying
(6.3) K228,

for real Q. Here the equality holds for nematic configurations if J # 0,J = 0 giving the
isotropic configuration. When Q has the nematic form given by (2.5), a calculation gives

(6.4) K = 8%/21,J = §%)9.
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To correct an erroneous statement in the above reference, I'll sketch the calculation of
another relevant inequality. From (2.3), it follows that relevant values of Q; and Q, fill
a triangle in the @1 — Q, plane: points in the boundary describe places where at least

one of the these eigenvalues Q,,Q2, Qs = —(Q; 4+ Q,) has the value —~1/3. By a simple
calculation, the eigenvalue equation is

(6.5) Q> -3JQ -2K =0
SO
(6.6) Q:_';lg' & J—-2K =1/27.

thus, the boundary of the triangle maps to this line in the J — K plane. One has

(67) T 0K = S[Q1 4+ Q3+ (@1 + Q2] + Q1Qal@s + Q2.

By applying derivative tests for extremals, one can show that this attains a minimum at
Q = 0, and a maximum on the boundary of the triangle. Thus, it takes on all values in
the interval

(6.8) 0= J—2K =1/27.

By inspecting the level curves for J in this plane, one can verify that this, together with
(6.3), define the physically meaningful domain for Wy, considered as a function of J and
K. When (6.6) holds, W, might reasonably be infinite, these values corresponding to the
cases where the molecules are all parallel or parallel to a plane. Otherwise, I'll asume 1t is
smooth. If it is near Q = 0, we should have

(6.9) Wo = aJ + o(|Q),

with a some function of 8. To get Wy (S, 8), we'll simply replace J and K by the functions
of S given by (6.4). Clearly, this does not produce strong limitations on the function

Wo(S, 8), but we do get, from (6.9), for S — 0,
(6.10) Wo(S,0) = o(S?),

If, in (6.9), a > 0, then W, will have atleast a relative minimum at Q = 0, an isotropic
phase which is at least metastable. This is likely for 6 near the isotropic-nematic phase
transition, and I don’t feel comfortable about using our theory in such situations. However,
analyses such as are given by Maddocks [14], among others, seem to indicate that having a

suitably shallow “energy well” here produces predictions much like those occurring when
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it is absent. Physically this is also not unreasonable. Well within the nematic range, I
would expect to have a < 0. From discussions with experts, etc. the “bi-phasic” regime
seems to be restricted to a narrow temperature band, so a might well become negative just
a few degrees below the phase transition temperature. Similarly, at low enough tempera-
tures, one generally encounters other “near-transition” complications, associated with the
appearance of smectic phases. Here, I refer to pure substances, the so-called thermotropic
liquid crystals. In solutions, concentration plays a similar role, the more dilute solutions

being isotropic, etc.. In these, one can also encounter other complications, for example
phase separation.

Particularly, those involved with the polymers have needed to introduce Wo(Q,#8),
generally guessing it to be some simple function. This is really what is done in some
molecular theories of the “mean-field” kind, for example that used by Fan [9]. Doi [10]
does briefly mention some possibilities for using available molecular theory to get more
complex functions.

There are the situations of physical interest, involving electromagnetic fields, for which
one needs at least crude estimates of the related field energies. For this, one can use
the obvious restrictions of functions discussed by Gramsbergen et ol [32]. More general
formulations are discussed by Longa et al [29].

7. Consistency conditions for Wj. here again, the implications of the idea that Q
is the more basic variable seem to be most restrictive for S near zero. On the other hand,
there is some tendency to assume that the constitutive equations really are polynomials
of low degree. It is then of some interest to know how low the degree can be, and not
involve some prediction obviously contradicted by known experimental findings. So, I will
try to accomodate both desires. The basic idea is that Wy is a homogeneous quadratic
polynomial in vQ, with coeffients which depend on 6, and are polynomials of low degree
in Q, these functions being invariant under the orthogonal group. By taking restrictions
of these, we’ll get some subset described of the equations described by (5.4), say. Energy
functions of interest have been characterized by Longa et al [30], so it is more a matter of

calculating and commenting on restrictions.

For the terms of lowest degree, independent of Q, there are three possible terms

I = Qi iQujk,
(7.1) Iy = Qi kQijk,
Iy = Qi1 Qinj,

in Cartesian tensor notation. With the slight rearrangement

— 1
(72) ‘/VQ = BI(I3 — I])+ B‘:_)(?)I] — ';IQ) + BQ(QIQ — 3]1),
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. a somewhat tedious calculation gives, for the restrictions

W3 = (By — B3)(vS -1n)? + By|vS|?
+2(2B, — By — 2B3)Sv -nvS-n
+2(By — By + B3)SVS - (Vnn)
+ (2B3 + B3)S?*[(V - n)* 4 [nx curl nf?]
+ (4B3 — B3)S?*(n - curl n)?
+ (Bi — By +4B3)S*[trvn® — (v - n)?],

(7.3)

with the superscript zero indicating that this is of degree zero in Q. Comparing this with
(5.4), we have, in particular,

It is easy to check that the strict inequalities (5.8) fail at S = 0. To compare with the OZF
theory, consider S as a non-zero constant. Then this estimate of W is a bit more flexible
than the molecular theory used by Nehring and Saupe [3.1], which does give I{; = K3 and
also fixes the ratio K3 /K. So also does that used by Fan [9]. Longa et ol [30] discuss
more recent versions of molecular theory. Experimentally, K3/K; # 1, this ratio varying
quite a bit, depending on the material and temperature. So, one needs some more general
function, to avoid this obvious contradiction. Special forms of W5 used by Hardt [12]
and Lin [13] are not completely consistent with (7.3), being chosen, in part, to permit
use of some analytical tricks. If one is only interested in the behavior near defects where,
hopefully, S ~ 0, this estimate might be good enough. However, it won’t hurt to consider
terms linear in Q. It doesn’t take much work to find that, nominally, there are the seven
possible terms, given by

Ji = QijQijnCQhpp,
Jy = Qi]'Qii’,l’(zjfl»‘l’
I3 = QijQip,¢Qjg.ps
(7.5) 8 Ji=QiQip,; Qg
Js = QijQip,qQip.g»
Jo = Q-ijQip,qQM,J"
Jr = QijQpq,iQpq.j-

It is not immediately obvious, but Longa et al [29] assert that these are not all independent,

but are connected by one linear relation. By another method, I have checked this, finding
that

(7.6) Wy — Ty — Jy — 2]y +2J5 — 2Js + J7 = 0.
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Logically, it is possible that more relations might be satisfied by the restrictions, but
my calculations indicate that this is not the case. Calculating the restriction of a linear
combination of such terms, I get a function of the form

W,y = S[Ci(VS -n)? + C; VS + C358v -nvS-n
(7.7) + C4SVS - (vnn) 4+ C55%(V - n)? 4 CsS?%tr(vn?)
+ C75*|van|? + CsS?|vn|?],

where the C’s are functions of 8, restricted by two equations, viz.

(7 8) { 1801 — 903 — 6C4 + 205 — CG — 6C7 =0,
5402 + 9C3 + 6C4 — 1405 — 1106 — 6C7 — 3608 = 0.
It isn’t hard to check that an energy function of the form W, = W 4+ W} can give

K, # K3, eliminating the obvious contradiction with experiment. According to Longa et
al [30], the corresponding polynomial of next highest degree, quadratic in Q, gives thirteen
independent terms. I have not checked it, but it seems rather likely that, for this and higher
order polynomials, the scheme imposes no limitations on the restriction, beyond what is
obvious from the fact that one is dealing with polynomials of known degree.

One can regroup some terms to form divergences, as indicated by (5.5). For the number
of such combinations, I get the same as do Longa et al [30] for the more general theory:
one for W3 and two for W.,.

8. Consistency conditions for A. For A, we start with the assumption that it is
an objective function, implying that it is reducible to a quadratic function of v and two
symmetric, traceless objective tensors. These can be taken as A, given by (3.25), and?

(8.1) Q=Q-0Q+QQ,

the co-rotational time derivative used by MacMillan [11], for example. In the quadratic,
the coefficients can depend on Q and #. The potential function D given by (4.5) is subject
to the same invariance requirements, so it will be of the same general form. Again, our
concern is with the polynomials of lower degree, to estimate the behavior of constitutive
equations as S — 0. To get all the terms known to relevant from experience with the
ELP theory, one needs to consider polynomials quadratic in Q, so this seems to be a good

1Some workers like to use other objective tensors, differing from Q by terms linear in Q and in A. The
general theory does not favor one such over another, it being a matter of grouping terms in different ways.
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place to stop. For this, I get the relevant terms as

(

(8.2) <

\

trA?,

3tr(A%Q) = S(3n- A’n —trA?),
3trQ%rA? = 25%trA?,

9tr(QA)? = 5?[9(n- An)? — 6n- A%n 4 trA?],
9tr(QZA?) = S2[3n- A%n + 2trA?),
3trQ? = 2(S? + 352|N|?),

9tr(tr(Q?Q) = 25(S5? + 352N |?),
9trQ*trQ? = 45%(5% + 352 |N|?),

r(QQ - QQ)? = —25'|N?,

trAQ =Sn-An+2Sn- AN,

3tr(AQQ) = S(Sn-An + Sn - AN),
3trQ%trAQ = 25%(Sn- An + 25n - AN),
9tr(Q*AQ) = S%(35n- An +55n- AN),
w62,

3vl-Qve = S[3(v8-n)? — |vh|},
3trQ?|vo|® = 25?|vh)?,

3vh-Q2ve = S?[3(vh-n)? —|vh|?,

where N is given by (3.25). For more general forms of Q, one should add two terms,
which can be taken as tr(QAQAQ) and tr(Q?Q?), which here reduced to combinations
of terms already listed.? Multiplying the first term in (8.2) by A;, the second by A, etc.,
and adding them up, we get an estimate of A of the form (4.10), with

(8.3)

f

\

a; = 94452,

o = Ay — ApS + 24552 + 4,5% + 24552,
as + ag = 34,5 — 64,5 +34;5%,

1 = 25%(3As + 3475 + 6455% — AgS?),
2vy = S(2A10 + A1 S + 441,52 + 5A4135%),
By = 2(Ag + A7S +2445?),

2B) = Ajg + A11S + 241257 + 341357,
—Ky = Ay — A1sS + 241457 — 41757,
—I{y = 34,55 + 34,:5°%.

2Relevant representation theorems for polynomials of arbitrary degree are presented by Smith [33], for
example. Wang [34] considers more general functions.
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Here the A’s depend on 6 only. As might be expected, the strict inequalities indicated by
(4.17) and (4.18) can’t hold at S = 0, although weaker versions can still hold. Pragmati-
cally, it would be hard to find experiments contradicting the idea that A is representable
in this form for all relevant values of S. Berry [35] presents results of calculations based
on molecular theories for lyotropic liquid crystals (solutions). These give functions which
are a bit more complicated but behave similarly, for S near zero. As might be expected,
different molecular theories give different functions. It seems premature to try to discuss
how best to select the various functions of S and # which are involved in these theories

but, certainly, this is a knotty problem. It is unrealistic to think that they could all be
determined by experiment.

9. Cholesterics. Formally, the analogous theory for cholesteric liquid crystals in-
volves some additional terms, roughly those which are invariant under rotations, but not
reflections. I'll not descuss these in detail, but will record the differences. For the energy

W, the energies Wy and W3 have the same form as for nematics but, instead of being zero,
W, can now be of the form

(9.1) Wy = M(S,8)n - curl n.
For S — 0, one gets the asymptotic form

(9.2) M = B(6)S? + B(6)S® + o( $®).
Physically, W should be bounded below, which requires that
(9.3) W, Z0,W,=0= W, =0

Usually, workers assume that W is minimized by configurations with S a positive constant
or, more realistically, some function of 8, and for n of the form

(9.4) n = (cos7z,sin7z,0),

in some rectangular Cartesian coordinate system, with 7 a function of #. In considering
so-called blue phases, Sethna [8] discusses cases of “frustration”, where no unit vector field
minimizes W. In these, one encounters more or less periodic arrays of line singularities
which should be mollified a bit, for a satisfactory mathematical theory. In the more
common phases to which (9.4) applies, line defects also occur. Also, if W is minimized by
a field of the form (9.4), Jenkins [36] notes that the OZF moduli must satisfy

(9.5) Ko+ K=o,

and suggests a more nonlinear function of ¥n to better describe configurations near such

minimizers. However, most workers seem to be content using the quadratic, commonly
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accepting (9.5) for the different reason discussed in § 5. This is the coefficient of a term
which can be written as a divergence, when S and 6 are constant. Predictions obtained
from the simpler form seem good enough to satisfy workers, in general.

For simplicity, I'll again assume that the Onsager relations apply, so one can calculate
Eon—equllibrium parts of the stress tensor, etec., using (4.6), if one knows the scalar function

D. A part of this, say Dy, has the same form as for a nematic, so it is only necessary to
specify the form of the remainder

(9.6) D.=D - Dy.

One finds that it is of the form

(9.7) D.=T(5,0)v6 -n An+ U(S,0)v0 - n,N.

Also, for S — 0, one has

08) { T = C(8)S + C(6)S? + o(S?),

U = D(6)S? + o( S?).

Obviously, the terms added to W and D remain when S is a non-zero constant, so they are
involved in the OZF and Leslie’s [37] analogous theories for cholesterics, being in this sense
familiar. However, many investigations presume that § = const. , so D, = 0. There is an
interesting exception, involving the term multiplied by U. Briefly, a temperature gradient
can cause h to undergo a spinning motion. A simple analysis of this is given by Leslie [37],
as an explanation of an old observation by Lehmann of “optical isotropy” induced by a
temperature gradient.

This completes our presentation of the basic equations, incorporating some features
suggested by molecular theories, without committing ourselves to any particular molecular
theory.

For both the nematic and cholesteric types, one can avoid assuming the Onsager re-
lations, in part, by introducing other comparable assumptions concerning stress and heat
flux, considered as functions of Q, Q ete. Dealing with such things as g and G is trickier
since,in the theory allowing more general variations in Q, one does not have such a vector
and scalar. The analogous quantity is a symmetric second order tensor, call it G. It is the
latter which should reduce to a function of Q etc. As I see it, the likely way of making the
identification is to set

. . . 1
(9.9) g =259n,G=t[f(n®n — 51)],
which fits the power balance
(9.10) g -n+GS=t§Q,

for Q of the nematic form. I'll not use the ink to elaborate this.
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