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Abstract

Using a model derived from lubrication theory, we consider the evolution of a

thin viscous film coating the interior or exterior of a cylindrical tube. The flow is

driven by surface tension and gravity and the liquid is assumed to wet the cylinder

perfectly. When the tube is horizontal, we use large-time simulations to describe

the bifurcation structure of the capillary equilibria appearing at low Bond number.

We identify a new film configuration in which an isolated dry patch appears at the

top of the tube and demonstrate hysteresis in the transition between rivulets and

annular collars as the tube length is varied. For a tube tilted to the vertical, we

show how a long initially uniform rivulet can break up first into isolated drops and

then annular collars, which subsequently merge. We also show that the speed at

which a localized drop moves down the base of a tilted tube is non-monotonic in

tilt angle.

1 Introduction

A liquid film coating the interior or exterior of a cylindrical tube of circular cross-section
can evolve under the action of surface tension, gravity and viscous forces to spatially
non-uniform and time-dependent configurations of considerable complexity. Such films
are of widespread practical importance, for example as industrial coatings or as the
protective layer lining a lung airway, as well as being familiar through everyday experience
(such as rain-drops on a washing line). As long as the film remains thin relative to the
cylinder radius, so that the film’s dynamics can be modeled using lubrication theory, and
provided the film wets the cylinder’s surface, so that the film does not rupture in finite
time, the flow may be described by the spatially two-dimensional nonlinear evolution
equation (2.1) below. In this paper we present numerical and asymptotic solutions of
(2.1) demonstrating some key features of the film’s dynamics, including a new equilibrium
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configuration for horizontal tubes and complex transient behavior in tubes that are tilted
from the horizontal.

In the absence of gravity, surface tension γ acting on a thin wetting film coating a
long cylinder of radius a causes the film (via the Plateau–Rayleigh instability) to assume
a variety of quasi-static axisymmetric shapes, often termed collars and lobes. We use
the term collar to denote a small-amplitude annular unduloid of length 2πa that wets
the cylinder with zero effective contact angle; likewise an annular lobe has length less
than 2πa and non-zero effective contact angle. Lobes and collars are connected by thin
transition regions allowing fluid to drain slowly from lobe to collar, so that the film
thickness is everywhere bounded away from zero. Hammond [1] showed how an initially
uniform film on a cylinder of length greater than 2πa can evolve into collars and lobes
that are stationary over long times (see also [2, 3]). More recently, Lister et al. [4]
demonstrated that over even longer times, and for sufficiently long cylinders, collars can
exhibit surprisingly intricate dynamics, periodically sweeping along the tube from one
end to the other.

Such behavior is readily disrupted by gravity, even when the Bond number ρga2/γ is
small (here ρ is the fluid density and g gravitational acceleration). Weak gravitational
forcing causes a collar to move down a vertical tube, accumulating fluid at its leading edge
and depositing it at its rear. A very slowly moving collar deposits a very thin trailing
film, allowing the collar’s volume to increase over time to the extent that solutions of
(2.1) can exhibit finite-time blow-up; in practice, the film thickens so much that the thin-
film assumption underlying lubrication theory is violated [5]. Multiple collars exhibit
coarsening, with large collars traveling faster than smaller ones and subsequently merging
with them; this also promotes blow-up [6]. Blow-up may be regularized by retaining the
fully nonlinear expression for the interfacial curvature in the governing evolution equation.
This captures the growth of a collar on the exterior of a tube into an isolated bead or drop
[7, 8], or the growth and snap-off of a collar on the interior of a tube to form an occlusive
liquid bridge [9, 10]. Beads or bridges form on vertical tubes only if the Bond number
is sufficiently small; strong gravitational forcing suppresses the initial collar growth by
saturating the primary Plateau–Rayleigh instability at small amplitudes [11, 12].

The flow of a liquid film on a horizontal tube is subject to two competing effects: grav-
ity causes draining of the flow towards the base of the tube to form a rivulet, whereas
surface tension, again acting through the Plateau–Rayleigh instability, seeks to cause the
film to break up into collars or isolated drops. Asymptotic drainage rates during the
formation of a rivulet were identified and analyzed by Jensen [13] in the mathematically
equivalent problem of surface-tension-driven flow of a thin film on a weakly curved tube
(see also [14, 15]); he also identified the solution structure of some of the nonaxisymmetric
capillary equilibria that form at small Bond number (uniform or wavy rivulets, isolated
drops or drops connected to their neighbors by thin rivulets). Weidner et al. [16], using
simulations of an evolution equation similar to (2.1) that included higher-order correc-
tions in film thickness, described the dynamic transition from a uniform film coating the
exterior of a cylinder to a pendent rivulet, which became wavy before breaking up to
form isolated pendent drops. These authors also described how a sufficiently thick film
can form an equilibrium nonaxisymmetric collar (a drop that extends around to the top
of the tube). At large Bond numbers the break-up of a pendent rivulet into drops can be
regarded as a form of Rayleigh–Taylor instability. De Bruyn demonstrated experimen-
tally the transition between Plateau–Rayleigh and Rayleigh–Taylor instabilities as the
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Bond number is increased [17], with the transition occuring when the film thickness is
comparable to the capillary length (γ/ρg)1/2. Duclaux et al. [18] identified experimentally
a criterion relating Bond number to film thickness necessary for liquid lining the interior
of a horizontal tube to snap-off to form an occlusive bridge.

In this paper we use time-dependent simulations and asymptotics to describe some
solutions of (2.1) representing the evolution of a thin film coating either the inside or
outside of a cylinder. We consider first film dynamics in a horizontal tube (Sec. 3). We
identify a capillary equilibrium not described by previous authors (which we term the
dry spot) and determine the stability of this and other equilibrium solutions; we extend
Jensen’s map of parameter space [13] to smaller Bond numbers where the dry spot arises,
and show that it is associated with hysteresis in the transition between rivulets and
collars. We then consider briefly the less studied case of a film coating a tilted tube
(Sec. 4), the generic situation in applications such as lung airways. Here the transverse
component of gravity drives fluid from the upper to the lower side of the tube while the
axial component drives fluid down its length. We illustrate the richness of the dynamics
and examine how an isolated drop slides down a tilted tube. Somewhat counterintuitively,
we find that drops slide most rapidly down tubes that are not vertical.

2 Model

We consider a cylindrical tube of radius a and length L, tilted at an angle α to the
horizontal (Figure 1). Gravity g acts vertically downwards. The surface of the tube
is parametrized by cylindrical polar coordinates θ and z, where aθ measures azimuthal
distance (θ = 0 is oriented upwards in a vertical plane) and az measures axial distance
along (α = 0) or below (α > 0) the horizontal. The tube is lined with a thin layer of
Newtonian liquid of thickness ǫah(z, θ, t), where ǫ ≪ 1 and h = O(1). The liquid has
uniform density ρ, surface tension γ and viscosity µ; time t is scaled on µa/ǫ3σ. The
liquid layer is assumed to be stress free at its free surface and to satisfy no slip at the
cylinder. Intermolecular (van der Waals) forces are neglected, consistent with perfect
wetting of the cylinder by the liquid.

Lubrication theory [19] then yields the following dimensionless leading-order evolution
equation for the film thickness:

ht +
[

1

3
h3

((

h + ∇2h
)

θ
+ δ sin θ cos α

)]

θ
+

[

1

3
h3

((

h + ∇2h
)

z
+ δ sin α

)]

z
= 0, (2.1)

where δ = ρga2/(γǫ) = O(1) is a reduced Bond number and subscripts z, θ and t denote
derivatives. The azimuthal component of gravity δ cos α sin θ drives draining flows from
the upper to the lower wall of the tube; the axial component δ sin α drives fluid down
the tube. We neglect O(ǫ) corrections to this equation, associated for example with
hydrostatic pressure variations across the film [16]. For horizontal tubes (α = 0) we
impose symmetry about θ = 0 and θ = π, setting hθ = hθθθ = 0 there, and impose no-flux
conditions hz = hzzz = 0 at z = ±L/2. For α > 0 we impose instead periodic boundary
conditions h(−L/2, θ) = h(L/2, θ), hz(−L/2, θ) = hz(L/2, θ), etc. The dimensionless
fluid volume

V =

∫ L/2

−L/2

∫

2π

0

h dθ dz (2.2)
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is an O(1) quantity that remains constant during the evolution of the film, and solutions
of (2.1) are in general parametrized by V , α, δ and L. When α = 0, equilibrium solutions
of (2.1) may be parametrized by (L,V), where V = V/πδ [13], because the pressure is
linear in h (see for example (3.4) below).

When δ = 0 and ∂θ = 0, (2.1) reduces to the evolution equation studied in, for
example, refs. [1, 3, 4]. The limit α = 0, δ > 0 has been considered in refs. [13] (exploiting
the fact that, to leading order, substrate curvature in a curved tube has the same effect as
gravity in a straight tube) and [16] (who included higher-order terms); the limit α = π/2,
∂θ = 0 was considered in, for example, refs. [5, 6, 20]. Full details of the derivation of
this class of equation may be found in these earlier works.

When solving (2.1) numerically, we exploited symmetry where possible, working in
the domain 0 ≤ θ ≤ π and (when α = 0) 0 ≤ z ≤ L/2. We used second-order ac-
curate centered finite-difference schemes to discretize the spatial derivatives in (2.1),
keeping the time derivative continuous. The grid used M × N points in (z, θ). The
spatial discretization was done using either a 21-point stencil or a 13-point stencil [21].
The resulting system of coupled ODEs were solved using the multistep implicit schemes
DDASSL (when applying no-flux conditions, requiring inversion of a banded matrix) and
DASPK (when periodic conditions were applied, requiring inversion of a sparse matrix)
from the SLATEC library [22]. Typically we used M = 101, N = 51, using grid refine-
ment where necessary to ensure accuracy. Solutions were validated against independent
one-dimensional codes [4, 13, 23] and against exact and asymptotic results (see below).
In all our simulations h remained strictly positive, ensuring that singularities associated
with moving contact lines were avoided.

For a horizontal tube, we either used the initial condition

h(z, θ, 0) = 1 + 1

2
cos (πz/L) cos θ, (2.3)

or alternatively continuation methods, whereby the final film configuration from one
simulation was used as the initial condition for a new simulation with slightly different
parameter values.

3 Horizontal tubes

At large times, in a horizontal tube, fluid accumulates in equilibria with zero effective
contact angle, surrounded by regions in which h → 0 as t → ∞ (e.g. a thinning lobe
between two collars). We denote such regions as “dry,” although there is no mechanism
for finite-time film rupture within the present model.

We classify possible equilibrium solutions using the scheme shown in Figure 2. A
drop (D) is an isolated dome of fluid that sits at the bottom of the tube. A localized
annular collar can either be axisymmetric (AC ), as described by Hammond [1], or non-
axisymmetric (NAC ) [16]. A rivulet can either be uniform (UR) or wavy (WR), coating
the bottom of the tube and having a straight or wavy effective contact line respectively
[13]. A dry spot (DS ) is an isolated region along the top of the tube in an otherwise
completely coated tube that has near-zero fluid thickness. The symmetry of all these
solutions under reflections in θ = π and z = 0 requires us to compute only in the square
ABDC, where A= (0, 0), B= (0, π), C= (L/2, 0), and D= (L/2, π). We denote the fluid
height at these corners by hA, hB, etc. While solutions of the type WR, UR, D, AC and
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NAC have been described previously in this context [1, 13, 16, 17], to the best of our
knowledge dry spots have not.

3.1 The effect of increasing gravity

Figure 3 shows the effect of increasing δ in a domain of length L = 3π, whereby a collar
becomes a rivulet. The fluid has fixed volume V = 6π2 in these simulations, so that
V = V/πδ decreases. For δ = 0 we find that a stable axisymmetric collar forms as
t → ∞. It has width 2π and is centered on z = 0, with thinning lobes in π < |z| < 3π/2.
The fluid heights at the collar’s effective contact line (along z = π) and at corners C
and D decay with h ∼ t−1/2 and t−1/4 respectively, consistent with [1]. Increasing gravity
slightly (0 < δ . 0.6) causes a loss of symmetry, and the collar becomes nonaxisymmetric
(Figure 3(a)), becoming deeper and longer along the base of the tube (so that hA < hB,
Figure 3(e)). Increasing the Bond number further (0.6 . δ . 1.3) turns the collar into
an isolated drop (Figure 3(b)), for which hA, hC and hD → 0 as t → ∞ (figure 3(e)).
Increasing the Bond number to 1.3 . δ . 2.65 causes the drop to elongate axially until it
reaches the domain boundaries, becoming a wavy rivulet (Figure 3(c)), with 0 < hD < hB

(figure 3(e)). For δ & 2.65 the rivulet becomes axially uniform (Figure 3(d)). Simulations
in this case starting from (2.3) exhibited two distinct decay rates towards the equilibrium,
as reported in [13], with the film thickness at the rivulet’s effective contact line satisfying
first hmin ∼ t−1/2 and later hmin ∼ t−3/5, as different physical effects drive film drainage.
The computed WR/UR transition at δ ≈ 2.65 (V ≈ 7.113) is in excellent agreement with
the value V ≈ 7.114 predicted using a linear stability analysis in [13].

To recall briefly, this threshold is determined as follows. Static equilibrium solutions
of (2.1) satisfy h = 0 or h ≥ 0 with uniform pressure, h + ∇2h − δ cos θ = −P . The
uniform rivulet h = hU(θ) therefore satisfies hU + hUθθ − δ cos θ = −PU in θ0 ≤ θ ≤ π,
for some constant PU , with hUθ(π) = 0 and hU = hUθ = 0 at the contact line θ = θ0. Its
location is determined uniquely according to

πV
L

=
(π − θ0)

2

sin θ0

− (π − θ0) cos θ0 − 2 sin θ0. (3.1)

To the uniform rivulet one can add a wavy pertubation of the form h = hU(θ) +
hW (θ) cos(2πz/L), and seek conditions under which the branch of WR solutions bifur-
cates from the UR solution. Linearising about the uniform state yields the eigenvalue
problem (1 − (4π2/L2)) hW +hWθθ = 0 in θ0 ≤ θ ≤ π. The symmetry boundary condition
hWθ(π) = 0 implies

hW = A cos

[

(

1 − 4π2

L2

)1/2

(π − θ)

]

(3.2)

for some amplitude A ≪ 1. The contact line condition hW (θ0) = 0 then demands that

(

1 − 4π2

L2

)(

1 − θ0

π

)2

=
1

4
, (3.3)

implying that rivulets with 0 ≤ θ0 < 1

2
π are unstable in sufficiently long tubes (with

length at least 4π/
√

3). Thus in the example shown in Figure 3, with L = 3π, uniform
rivulets with θ0 > 0.329π are stable.
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3.2 Non-axisymmetric collars

The structure of non-axisymmetric collars can be captured by a regular asymptotic ex-
pansion, which we now summarize briefly. For δ ≪ 1 and α = 0, a good approximation for
a non-axisymmetric collar can be obtained as a perturbation of an axisymmetric collar.
In equilibrium, (2.1) implies

∇2h + h − δ cos θ = K or h = 0 (3.4)

where K is a constant (proportional to the uniform pressure in the collar). Symmetry
conditions hθ = 0 apply at θ = 0 and θ = π and hz = 0 at z = 0. Along the collar’s
effective contact line z = C(θ), say, h = 0 and n · ∇h = 0, where n is the unit normal
to C (Figure 2(c)). The volume of the collar in the domain ABDC (Figure 2), namely
V̂ = V/4, is prescribed. Expanding h, C and K in the form

h = h0(z, θ) + δh1(z, θ) + δ2h2(z, θ) + δ3h3(z, θ) + O(δ4) (3.5)

yields a series of problems at each order. After careful expansion of boundary conditions
and integrals, and extensive algebra (following [13]; see [23] for full details), we find that

h =
V̂

π2
(1 + cos z) + δ

{

(z2 − π2)

2
cos θ

}

+ δ2

{

π4 cosh
√

3z

4V̂ cosh π
√

3
cos 2θ − π4

4V̂
cos z

}

+ δ3

{

π6

8V̂ 2

(

[M − 1]

cosh(π
√

8)
cosh(

√
8z) cos 3θ + [M − 1] cos θ

)}

+ O(δ4), (3.6)

where M = π
√

3 tanh(π
√

3) and K = V̂ /π2 + o(δ3). The contact line z = C(θ) is

z = π − δ
π3

V̂
cos θ + δ2

{

π5

4V̂ 2
([2 − M ] cos 2θ + 2)

}

+

δ3

{(

π7

8V̂ 3
[M − 2] − π8

√
2

4V̂ 3
[M − 1] tanh(π

√
8) +

5π9

6V̂ 3

)

cos 3θ

+

(

π7

8V̂ 3
[M − 2] − π7

2V̂ 3
− π9

2V̂ 3

)

cos θ

}

+ O(δ4). (3.7)

Figure 4 shows the fluid heights hA and hB computed using (3.6) including terms of
order δ, δ2 and δ3 (curves are extended into h < 0 for visual clarity; physical solutions
of course require h ≥ 0), compared to large-time numerical simulations, for a range of δ
and L = 3π. Agreement is good, extending (at O(δ3)) as far as the NAC/D transition
near δ = 0.6 at which hA → 0.

3.3 The effect of increasing domain length

Figure 5 shows representative film heights as a function of domain length for fixed fluid
volume and Bond number (with V = 60), for which the stability boundary between
uniform and wavy rivulets is L ≈ 7.53 [13]. We obtained solutions via three different
approaches: integrating from the default initial condition (2.3) (Figure 5(a)); increasing
L incrementally, using the final state of each simulation as the initial condition for the
following simulation (Figure 5(b)); and decreasing L incrementally (Figure 5(c)), again
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using continuation. Solutions were run until t = 104 in all cases. These methods reveal
the existence of multiple equilibrium solutions and significant transient effects.

Figure 5(a) shows three distinct solutions: uniform rivulets up to the predicted stabil-
ity boundary; a short window of (apparently stable) wavy rivulets; and non-axisymmetric
collars for sufficiently large L. Under forward continuation (Figure 5(b)) the width of the
WR window is larger but the waviness of the rivulet’s contact line is of smaller amplitude
than in Figure 5(a). Because growth-rates are small near bifurcation points, we infer
that the small-amplitude wavy rivulets in Figure 5(b) are transient (denoted TWR): by
t = 104 they have not yet escaped from the nearby unsteady UR solution to saturate as
the equilibrium WR or NAC solutions captured in Figure 5(a).

A new type of transient solution was identified when using the method of forward con-
tinuation: the dry spot (DS, Figure 2(f)). As illustrated by the simulation in Figure 6(a),
over a range of times (t1 < t < t2), the solution domain has three wetted corners and
one corner having a height very close to zero. This example arose close to the WR/NAC
boundary; the WR solution for L/2 = 3.86 was used as the initial condition in a domain
of length L/2 = 3.87. In this case, the dry spot arose only transiently. In contrast,
using backward continuation from the NAC solution branch (Figure 5(c)), dry-spot so-
lutions were obtained that persisted for long times and therefore appear to be stable
equilibria (see Figure 6(b)). Further reductions in length again yielded TWR solutions
(Figure 5(c)); in this example, the TWR solutions are still approaching the nearby stable
UR solution at t = 104.

Figure 7(a) is a sketch of what we infer the equilibrium solution structure to be for
V = 60, using the apparent equilibrium values for hB in Figures 5. Hysteresis is evident.
The transient dry spot shown in Figure 6 arises near the right-hand fold F , in passing
from the WR to NAC branches. This transition is to be anticipated on topological
grounds, assuming the shape of the contact line evolves continuously. We assume that,
somewhere along the unstable solution branch between the two folds (shown dashed in
Figure 7(a)), equilibria change smoothly from WR to DS.

3.4 Parameter space

We can now construct a picture of (L,V)-parameter space (Figure 7(b)). Much of the
structure was identified previously (see figure 8 of ref. [13]), particularly the UR/WR
and WR/D boundaries and the transition to rivulets with two or more waves in the
solution domain (not shown). While Jensen [13] showed that the UR→WR transition
is supercritical for large V, he did not compute the WR/D boundary for V > 12 (and
thus not the full transition shown in Figure 3(e)). We propose in Figure 7(b) a possible
extension to the existing map of parameter space for large V that includes the D/NAC
boundary (well approximated by setting hA = 0 in (3.6); this boundary lies above V =
30). The transition NAC→D→WR→UR in Figure 3(e) is shown with a vertical arrow
in Figure 7(b). Based on the inferred bifurcation structure in Figure 7(a), and the
topological requirement that a continuous WR→NAC transition can only occur at a
codimension-2 bifurcation point, we postulate a likely structure of parameter space for
large V = V/πδ, notably that the folds F originate from the intersection point of the
NAC/D and WR/D boundaries. The expense of unsteady computations prevented us
from using the present methods to map out all these boundaries in detail; further work
is required to confirm these predictions.
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4 Tilted tubes

We now tilt the tube (setting α > 0 in (2.1)) and impose periodic boundary conditions
in z. Figure 8 demonstrates the richness of the film’s dynamics. Using the axially
uniform rivulet shown in Figure 3(d) as an initial condition in a tube of length 12π, we
set α = 11π/24 and δ = 0.1. The initially uniform rivulet becomes wavy at t ≈ 105
before developing four distinct peaks (t ≈ 120). These peaks develop into adjacent drops
separated by thin connecting films (t ≈ 160). The drops eventually wrap around the
inside of the tube to create non-axisymmetric collars. One of the four drops is swallowed
by a neighboring collar just after t = 220. At t = 400, three non-axisymmetric collars are
traveling down the tube. This distribution coarsens to two and ultimately a single collar,
with large collars moving faster and ultimately absorbing smaller collars, as reported for
vertical tubes [6].

We do not attempt to disentangle all aspects of this behavior (beyond noting that the
UR→WR→D→NAC transition in Figure 8 recapitulates the sequence upwards along
the vertical arrow in Figure 7(b)), but instead we address one key feature, namely the
motion of an isolated drop down a tilted tube.

4.1 Motion of an isolated drop

We now consider an initial profile that consists of a drop of length Ld at one end of the
tube, surrounded by a thin precursor layer of thickness η ≪ 1:

h(z, θ, 0) = A(1 + cos [(1 − 2z/Ld) π])(1 + cos [(1 − θ/π) π]) + η. (4.1)

Figure 9 shows the evolution of this drop as it flows down a tube with α = π/12, δ = 1,
L = 12π, η = 0.001, A = 1 and Ld = 3π. For early times (roughly up to t = t3 = 1) there
is no movement of the contact line, but the front of the drop steepens as its maximum
increases in height and moves slowly down the tube; this is a form of ‘waiting time’
behavior. As the drop slides down the tube it loses volume to a thick deposited tail. The
profiles shown at t = 22 in figure 9 reveal a second maximum that forms in the tail, either
via a Rayleigh instability or possibly because the drop moves at an unsteady speed and
so deposits a nonuniform film thickness. This second maximum persists but travels at a
slower speed than the main body of the drop.

Figure 10 shows profiles of drops at t = 60 for a range of tilt angles. For α ≤ π/3,
the distance travelled increases with α. However, the drop in the vertical tube (α = π/2)
does not move as far down the tube as either of the drops in the tubes tilted at angles
α = π/3 or α = π/4, despite having a greater tilt. Tilting the tube reduces the azimuthal
gravitational component δ cos α, allowing the drop to spread around the inside of the
tube in the azimuthal direction, so increasing the width of both the drop and its tail.
For α = π/2 this widening has taken place to such an extreme that the tail of the drop
completely wraps around the tube’s interior. Figure 11 shows in more detail how the
drop speed depends on time and governing parameters. Figure 11(a) demonstrates that
the slower motion of a drop in a vertical tube (relative to the case α = π/3) is sustained
over long times; the effect is exaggerated by increasing the Bond number (Figure 11(b))
and drop volume (Figure 11(d)). Increasing the precursor film thickness to η = 0.01
has marginal effect; increasing by a further order of magnitude (Figure 11(c)) increases
drop speeds but again causes drops in vertical tubes to fall increasingly slowly compared
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to tilted tubes. We infer that the drop dynamics are controlled by a balance between
dissipation at the advancing contact line and release of potential energy (as in [5, 10]),
so that wider drops are subject to greater dissipation and therefore travel slower. (In the
most extreme case, α = π/2 in figure 11(d), the front of the drop wraps entirely around
the interior of the tube to become a collar for t & 8.) Additional factors complicate this
picture, notably reduction in drop volume by formation of a thick tail, and the dependence
of drop width on drop volume and tilt angle. These factors combine to make speed a
non-monotonic function of tilt angle.

5 Discussion

We have used simulations of an evolution equation derived from lubrication theory to
describe the behavior of films coating horizontal and tilted tubes. We have neglected
numerous physical effects that could influence such films, notably tube rotation, shear
stresses from external or internal flows, finite film-thickness effects that might lead to
drop or liquid-bridge formation, inertia, surfactants, substrate compliance, film rupture,
and so on. Even so, the competition between surface tension, gravity and viscous forces
yields a dynamical system of considerable complexity.

In horizontal tubes, we have extended the existing description of parameter space
for equilibrium solutions [13] to include the transitions between non-axisymmetric collars
and rivulets as gravity is increased (Figure 3), between non-axisymmetric collars and
uniform rivulets as tube length is decreased (which exhibits hysteresis, Figure 5) and
we have identified a new equilibrium solution (the dry spot) which arises at very low
Bond numbers. Our transient simulations were obviously not able to capture unstable
solution branches, and we also needed to interpret carefully results in the neighborhood
of near-neutrally-stable equilibria (Figure 5). Direct computation of equilibria as a free-
boundary problem is a valuable complementary approach that we used to characterize
non-axisymmetric collars (Section 3.2).

In a tube tilted to the vertical, axial and azimuthal draining flows compete with the
Plateau–Rayleigh instability (Figure 8) to allow dynamic transitions between rivulets and
collars. We showed how the speed of an isolated drop is non-monotonic in tilt angle, while
being strongly influenced by losing volume to a thick deposited tail (similar to that of a
wetting drop on a vertical wall [24]). We also found in our simulations that axial flows
may promote rivulet stability [23]; we will report on this feature elsewhere. The evolution
of thin films coating tilted tubes at low Bond numbers has received remarkably little
attention from experimentalists and we hope that this preliminary study will motivate
future work in this area.

Finally, it is worth noting some of the physiological implications of our findings. In
horizontal tubes, uniform films of thin, Newtonian wetting films drain to form spatially
non-uniform structures, be they rivulets, collars, drops or even dry spots (Figure 7(b)).
In tilted tubes also, rivulets or collars appear to be generic (Figure 8). This implies that
additional factors are required to ensure a relatively uniform coating of lung airways, such
as homeostatic fluid balance by the underlying epithelium, non-Newtonian effects such as
mucus yield stress and active transport by cilia. Non-uniformly distributed films, such as
those we have computed here, will have a critical bearing on the the protective capacity
of the airway liquid lining, and on the efficiency of drug-delivery therapies relying on
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Marangoni effects [25].
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Figure 1: Sketch of the problem: a thin film coats a cylindrical tube, tilted with its axis
at an angle α to the horizontal and coated on its interior with a thin liquid film.
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Figure 2: Sketches of possible equilibria in a horizontal tube: (a) drop (D), (b) axisym-
metric collar (AC ), (c) nonaxisymmetric collar (NAC ), (d) uniform rivulet (UR), (e)
wavy rivulet (WR) and (f) dry spot (DS ). The rectangle with corners A, B, C, D shows
the computational domain.
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Figure 3: Large-time near-equilibrium solutions of (2.1) for α = 0: (a) a non-axisymmetric
collar (δ = 0.3, V ≈ 62.8) at t = 104; (b) a drop (δ = 1, V ≈ 18.8) at t = 104; (c) a
wavy rivulet (δ = 2.4, V ≈ 7.9) at t = 9 × 103; (d) a uniform rivulet (δ = 3, V ≈ 6.3) at
t = 104. (e) Corresponding corner heights from late-time solutions.
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Figure 9: Contour plots (left) and axial profiles along θ = π (right) of a drop of fluid in
a tilted tube, with α = π/12, δ = 1, L = 12π and η = 0.001 at times t1 = 0, t2 = 0.15,
t3 = 1, t4 = 3, t5 = 8, t6 = 22, t7 = 60 and t8 = 160.
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drop of fluid sliding down a tube with δ = 1, η = 0.001 and L = 12π for angles α as
shown at t = 60.

18



0 25 50 75 100
0

5

10

15

20

25

30

35

40

π/2
π/3
π/4
π/6
π/12

t

zf

0 1 2 3 4 5 6
0

4

8

12

16

20

24

28

32

36

40

44

π/2
π/3
π/4
π/6
π/12

t

zf

0 10 20 30 40 50 60 70 80
0

4

8

12

16

20

24

28

32

36

40

44

π/2
π/3
π/4
π/6
π/12

t

zf

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

π/2
π/3
π/4
π/6
π/12

t

zf

(c) (d)

(a) (b)

Figure 11: Leading edge location zf of the advancing drop, plotted versus time for dif-
ferent values of α as indicated. (a) shows baseline case δ = 1, η = 0.001, L = 14π,
Ld = 3π, A = 1. Parameters are varied individually from baseline as follows: (b) δ = 10;
(c) η = 0.1; (d) A = 2.
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