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Liquid interfaces : role of the fluctuations and analysis of ellipsometry
and reflectivity measurements

J. Meunier

Laboratoire de Spectroscopie Hertzienne de l’ENS, 24 rue Lhomond, 75231 Paris Cedex 05, France

(Reçu le 11 mars 1987, accepté le 24 juin 1987) 

Résumé. 2014 Nous montrons que les difficultés qui apparaissent dans l’interprétation des propriétés optiques des
interfaces liquides disparaissent quand on développe une théorie prenant en compte le couplage entre les
modes thermiques de fluctuations de l’interface. Une telle théorie permet de déduire les propriétés optiques
des interfaces critiques en ne prenant en compte que des paramètres macroscopiques. dont aucun n’est
ajustable. Lorsque les interfaces, tels que les monocouches de surfactants, présentent une rigidité, cette
théorie permet d’extraire un coefficient de rigidité à toute échelle des mesures d’ellipsométrie. La longueur de
persistance déduite de ce coefficient de rigidité est en accord avec les structures de phases observées.

Abstract. 2014 It is shown that the difficulties which appear in the interpretation of optical properties of liquid
interfaces disappear when we develop a coupled mode theory of thermal interfacial fluctuations. First, we are
able to calculate the optical properties of critical interfaces with only macroscopic non adjustable parameters.
Secondly, we can deduce the rigidity constant at any length scale of monolayers from ellipsometric
measurements. The persistence lengths of monolayers that we deduce are in perfect agreement with the phase
structures we observe.
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1. Introduction.

Optical measurements are currently used to get
information about planar liquid interfaces. In this
paper, we are interested in two of them : ellipsome-
try and reflectivity measurements. Ellipsometry is

the more sensitive one and has been used for a long
time [1, 2] while reflectivity measurements were
applied more recently to the study of thick liquid
interfaces [3-5]. These techniques are sensitive to
two features of interfaces : the thickness of a layer
(e.g. a surfactant layer) or a possible diffuse layer at
liquid vapor interfaces for instance [28-30] in which
the refractive index changes from nl to n2, the

indexes of the two superposed phases, and the

roughness of interfaces which is due to the thermal
motion. So the interpretation of these optical measu-
rements needs to connect the roughness with physical
parameters of the interface. Early analysis of ellipso-
metry measurements took into account only an
interfacial thickness [1, 2, 6]. In the same way Webb
and collaborators [3, 4] neglected the roughness of

critical interfaces in reflectivity measurements.

Later, a new analysis of these reflectivity measure-
ments [5] and of other ones [8] took into account the
roughness assuming that thermal fluctuations are a
sum of independent capillary waves. But this summa-
tion over capillary waves needs the introduction of a
cut-off at a microscopic scale to avoid any divergence
and the value of this cut-off is not well defined. This
is not dramatic in the case of the reflectivity where
this cut-off appears in a logarithmic term. The value
of the cut-off is very important in ellipsometry and
roughness was mentioned but could never be exactly
taken into account in the analysis of experimental
studies [7-9] except in the case of a surfactant

monolayer [10, 11]. In this case a natural cut-off is
introduced by the rigidity of the monolayer and
ellipsometry is then a good technique to measure
this rigidity. However new difficulties appear : on
the one hand the approximation of independent
surface modes used for this analysis leads to a

constant rigidity and it is well-known that the rigidity
is a function of the scale of observation [12, 13] ; on

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:0198700480100181900

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:0198700480100181900


1820

the other hand, the measured rigidity constant is
sometimes too large, sometimes too small, to explain
some properties of the monolayer [11, 14].
Our purpose is to take into account the coupling

of the modes ; then we show that the difficulties
mentioned above disappear and we obtain a very
good agreement between theory and experiment.
We first give a survey of the state of the problem

(Sect. 2). We examine the consequences of the

coupling between modes on the behaviour of the
surface tension, the rigidity and the persistence
length (Sect. 3), then on optical properties of inter-
faces (4). We show that most of the interfaces can be
described as thin but rough interfaces. The measure-
ments at critical interfaces and liquid-air interfaces
are compared to the calculated values of this model
(Sect. 5). The previously reported ellipsometric
measurements [10, 11] on surfactant monolayers at
the oil/water interface are investigated again and
new values of the rigidity are obtained (Sect. 6).

2. Optical properties of liquid interfaces.

2.1 ELLIPSOMETRY AND REFLECTIVITY. - A planar
liquid interface is more or less rough and thick. In
this letter, we shall consider interfaces with thickness
and roughness smaller than the wavelength of light
(A). Ej is the electric field of the incident light of
polarization j and En is the electric field of the

reflected light of polarization i, then :

where 0 is the incidence angle and j is equal to p or s
according as Ej is parallel or perpendicular to the
plane of incidence.

Ellipsometry allows us to measure the ratio

JL = (rps + rpp)/ (rss + rsp)’ The best sensitivity is

obtained at the Brewster angle 0 = 0 B and we shall
only consider this case. At this angle, the real part of
(rp, + rpp) vanishes and the phase difference
between Eps + Epp and Ess + Esp is ’iT /2 ; the ratio u
becomes i)TB where p B is the ellipticity, a real

number. This quantity may be written as the sum of
two contributions :

p B is the contribution of the thickness of the

interface p7R is the contribution of the roughness.
The other parameter used in ellipsometry mea-

surement is :

n has the dimension of a length and its value is

usually a few A. We get from (1) :

n L is given by the Drude formula [6] and 11 R by [7,
15] :

where § is the amplitude of the mode of wave
vector q of the roughness of the interface (the
vertical displacement of the interface at the point r
at the time t is ’(r, t) :

Equation (2) is only valid for q &#x3E; 2 iT /,k. A very
simple demonstration of equation (2) is presented in
the appendix A. Although the equation (2) is only
valid for q:&#x3E; 2 7T / À , numerical calculation of

17 R can be made for q ~ 2 iT /,k as is also shown in
appendix A.
The general expression of the interface reflectivity

is :

Let us consider a very simple case of normal
incidence which leads to rij(O) = 8ijr and Ri =
R ; with the assumption that the thickness of the
interface is described by an error function, one gets
[5] :

where k is the wave number of the light k =
2 7T/A ; RF is Fresnel reflectivity, i.e. the reflectivity
of an ideal interface without any thickness or rough-
ness :

Lp is the thickness of the interface, C2) the average
of the square amplitude of the roughness :

From equation (3), one sees that one cannot get
any information about interfaces such as

(Lp +  ,2) )112 :$ 100 A, i.e. most of free liquid sur-
faces and monolayers.

It must also be pointed out that the reflectivity is
equally sensitive to the different modes Cq, whereas
ellipsometry is more sensitive to the modes of large q
(formulae (2) and (3)).

2.2 THE APPROXIMATION OF INDEPENDENT MODES.
- The first approximation for ,2) and L q , i&#x3E; is

q

obtained with a model of independent capillary
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waves. Then the average of the square amplitude of
a mode q excitated by thermal motion is :

where y is the interfacial tension and, Ap . g the
gravity term which avoids the divergence of ( £§) at
small (Ap is the density difference between the two
phases and g = 981 cmls2). One obtains :

and :

lc = (y / åp . g i/2 is the capillary length ; qR and
qe are upper cut-offs for the capillary waves and
f2 m = K B Tl’y

Obviously, qR and qe - 1/ A whero A ,is the
correlation length §’ for a critical interface or a
molecular length for an interface between two fluids
far from a critical point. However this approach
gives no exact information about qe and qR values

, which is particularly dramatic in the case of ellip-
sometry where pRB is directly proportional to qe (see
Eqs. (2) and (7)).
The introduction of the two parameters qe and

qR is needed to avoid the high q divergences in the
summations. The origin of these divergences is the
lack of terms of degree higher than 2 in the

denominator of (5). In the case of a layer at the
interface, it is natural to introduce a curvature

energy term Kq 4 :

where K, the rigidity of the layer, is constant in the
approximation of independent modes. The inte-

gration of (8) leads to a new expression of ,2),
from which, when compared with equation (6),
qR value is deduced : 

In the same way, qe value is deduced by comparing
equation (7) with the integration of q  , :&#x3E; where

 ’:&#x3E; is given by (8) : 

Formula (9b) was used to deduce the rigidity
constant of surfactant monolayers from ellipsometric
measurements [10,, 11].

We must however point out that the approxi-
mation of independent modes is not fully satisfac-
tory : .
- In the case of a critical interface, we expect

K = 0 and because of the divergence of the integrals
used in the above calculation, an heuristic cut-off
must be introduced. 
- The K experimental values deduced from

ellipsometric measurements using (9b) do not agree
with the observed structures in a mixture of oil,
water and surfactant [11, 14].
- It is well known that for large q the hydrodyn-

amic modes cannot be considered as independent
and consequently y and K are functions of q [12, 13].

In order to overcome these points, in the following
we will develop a mode coupling theory.

3. Surface tension, rigidity coefficient and persistence
length of an interface with coupled thermal modes.

3.1 SURFACE TENSION AND RIGIDITY. - y and K
respectively are now functions of the length scale

where y (q ) and K(q) are given by (see appen-
dix B) :

and a = 3/8 1T.
Integration of equation (11) gives :

where Voo is the macroscopic interfacial tension.

y (q ) is significantly higher than y ex&#x3E; only for large q
(q 2:: 106 cm-1 ). For simplicity, we will distinguish
two cases : 

’

- where the macroscopic surface tension vanishes
( l’ ex&#x3E; = 0).
Integration of equation (12) gives :

where Kl is the rigidity observed at a length scale
llql. By rearrangement of the terms of

equation (14), one gets :

The variation of H(Aq ) with Aq is represented in
figure 1. H is always positive and vanishes as

q ~ 0. This reduction of K with the increasing
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Fig. 1. - The reduced rigidity constant Kika T versus
Aq for an interface without macroscopic interfacial tension
( ’Y 00 = 0). A is a constant and q the wave vector.

observation scale agrees with the result obtained by
Peliti and Leibler [13] if we neglect the K variation in
the logarithm, i.e. provided we neglect the surface
tension term, akB Tq2, in equations (12) and (13)
- where the macroscopic surface tension does

not vanish :

There are two asymptotic solutions :

(a) for (K + akB T) q 2 one gets from

equation (12) : K = Koo’
(b) for (K + akB T) q 2&#x3E; y., one gets K(q)

which is given by expression (14).
(c) in the intermediate domain

using the dimensionless variables :

then equation (12) can be written :

Solutions of this equation are given in. figure 2.
Each solution can be identified with H 00’ the macro-
scopic value of H ; but we are interested in the
values of H for large Q. A better parameter to
characterize a solution is Z = (,HIQ) exp H12 a
for large Q. This parameter is constant for each
solution as long as the q2 term can be neglected. Its
value allows us to calculate H(Q) for large Q by
solving the equation :

the solution of which is given in figure 3.

3.2 PERSISTENCE LENGTH. - P. G. de Gennes and
C. Taupin [16] define the persistence length CK of a
monolayer by the following procedure : at the dis-

Fig. 2. - Solutions for the reduced rigidity constant H
versus the reduced wave vector Q for interfaces with

macroscopic interfacial tension 1’00 =1= 0. H is a constant
when the capillary energy is larger than the curvature

energy.

Fig. 3. - Z x Q versus H. This curve allows us to solve
the equation ZQ = BIH exp (H12 a) for given Z and Q.

tance r = g K the angular correlation (cos 0 (r)) of
the normals to the interface is 1/e. They determine
6K for a K independent of the scale. Taking into

, account the q-dependence of K, we obtain the

angular correlation :

A is a microscopic length related to the molecular
size in the monolayer and Jo the zero order Bessel
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function. The persistence length is useful in the case
of monolayer without macroscopic surface tension.
Using equation (12) with 1’00 = 0, H = K/kB T and
the approximations of reference [16], one gets :

The new expression of the persistence length be-
comes :

Here §K is the length over which the microscopic
rigidity constant is decreased by a factor e1.5. Sub-
stituting (14’) in (17), one gets :

4. Optical measurements on a rough liquid interface.

Coupled modes theory leads to a q4 term in the
expression of (£§) , even for K(q) = 0. This term
introduces a natural cut-off in summations I C2
and .Iq ’:&#x3E;. We first examine the case K = 0 which
is expected for a symmetrical profile of density
interfaces (i.e. critical interfaces [17]), then the case
K =F O.

4.1 INTERFACE WITHOUT RIGIDITY. - Substituting
(13) in (5), we get a natural cut-off for (6) and (7) :

and

The reflectivity of a thin interface with coupled
capillary modes is fully determined by two macro-
scopic parameters Ap and yoo, whereas ellipticity is
fully determined by one parameter ’Y 00’

It is shown (Sect. 5) that a coupled modes ap-
proach is in excellent agreement with experimental
data obtained from critical interfaces and no extra
thickness is needed to fit experimental values. This
point of view must be reconciled with the previous
one : a critical interface is a thick interface described

by a Fisk and Widom [3] profile of thickness

Lp, and thermal fluctuations are considered as

independent modes with a cut-off 7r/Lp. This last
point of view was used to analyse reflectivity
measurements.

For reflectivity, a thin interface with thermal
modes described by coupled modes theory is equival-
ent to a thin interface with independent modes and a
cut-off (Eq. (18)) :

Taking into account the formula [19, 20] :

(the experimental value for R is = 2.6) where 6 is the
correlation length above T,,, we obtain :

From the other point of view, the roughness of the
interface  ,2) can be separated into two parts :

where qmax is a cut-off (max  qR ). The second part :

can be interpreted as a diffuse layer with a profile
described by an error function [3, 5, 20] :

where Lp is the thickness of the layer.
The shape of this profile is very close to the Fisk

and Widom one [3]. By the choise of qrnax, it is

possible to adjust L2 to the value expected by the
Fisk and Widom theory [20] :

and

Taking into account equation (19) :

This value of the cut-off agrees with the one used in

reference [5].
Recently, Beyssens and Robert [20] reanalyse the
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experimental results using a « bare » surface tension
[18] for the capillary waves :

The value of r in their cut-off qmax = 7T /r is found
to be 4 or 5, a value smaller than the one in

formula (22) because yo is higher than 1’00’
In conclusion, there are two equivalent points of

view for the reflectivity of the interface :
- the interface is thick and is described by the

Van der Waals or Fisk and Widom density profile.
This description is only valid for fluctuations at small
scale and capillary waves must be introduced at large
scale with an empirical cut-off qmax ;
- the interface is thin but rough. The origin of

the roughness is capillary waves. The coupling
between these waves introduces a natural cut-off.

This description is equivalent to the previous one,
but needs no empirical cut-off for high q wave
vectors.

4.2 INTERFACES WITH RIGIDITY.- Let us now con-

sider a thin interface with rigidity and coupled
thermal modes. The cut-off 6c and QR are then
given by :

where H is a solution of equation (15). Numerical
values for Q, versus Z are given in figure 4.
QR is a function of two parameters : fm/fe and Z :

In practice QmQ ,10- 5 and H + a - 1. Thus the
above summation can be separated into two parts :

where

A’ is only a function of Z and is given in figure 4.
Because there is a monolayer at the rigid interfaces
studied in section 5, the measured ellipsometric
parameter is q = n L + 77 R.a L can be determined
independently and from q R, we can deduce the cut-
off Qe (Eqs. (2) and (7)) and then the parameter Z
(Eq. (23) or Fig. 4) which gives us the value of the
rigidity versus the scale of length (Fig. 2).
Although the same analysis can be done with

reflectivity measurements (Eq. (25)), this technique
is not sensitive enough to get accurate values for Z.

Fig. 4. - The reduced cut-off Qc and A’ versus Z.

5. Analysis of optical measurements at critical inter-
faces and at liquid-air interfaces.

The surface tension of a critical interface vanishes at
the critical temperature T = Tc :

So, the roughness of a critical interface is large and
easily observable not only by ellipsometry but also
by reflectivity. In these interfaces, the density profile
is symmetrical and that’s why the rigidity constant
must vanish [17] (K = 0). In this section, we com-
pare the available measurements with the calculated
values in our model for a thin interface with coupled
capillary waves (Sect. 3.1). The best test for this
model is ellipsometry because q is very sensitive to
the cut-off Q (,q R _ Qe)-

Liquid-air interfaces have no reason to have a
symmetrical density profile (K # 0) ; nevertheless
because the K value is expected to be low, the
approximation K ~ 0 seems reasonable, that’s why
in section 5.2 we shall compare experimental values
with the theoretical estimations of our model with
K=0.

5.1 CRITICAL INTERFACES. - Ellipsometry : to our
knowledge, the only experimental results are due to
Beaglehole [7, 8] and concern argon liquid-vapor
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interfaces and critical interfaces of a cyclohexane-
methanol mixture.
The measurements at the liquid-vapor interface of

argon are performed far from the critical point
7c (31°  AT = Tc - T  66 °C) because it is difficult
to have windows free of strain in a high pressure cell.
The experimental values Am and the calculated

ones p B are given in tables I and II. In the two cases,
the difference between these two values is small

(smaller than 15 % in the first case and 6 % in the
second one) and can be explained by the exper-
imental uncertainties in y, -, and s2, pfj.
- Reflectivity : two critical interfaces were

studied with this technique [3, 4]. These measure-
ments include part of the scattered light in their

specular reflectivity measurements. The data

analysis can be done simply using equation (3) with
Lp = 0 but replacing C2 ) by , ’2), where , ’2)
represents the contribution of the wave vectors

q &#x3E; qmin, and qmin = k sin 0, 2 0 being the collection
angle. In this way, the contribution of the wave
vectors 0  q  q min that scatter light into the aper-
ture used to collect the specular reflection is substrac-
ted. So we must put 1/q2min in place of f2 in

equation (6).
The experimental data for L (Eq. (3)) are reported

in tables III and IV and compared with the calculated
values ,,2) 1/2 for three values of 0 : 0 ; 0.005 and
0.01 (the instrumental value of 0 is not known

exactly). A good agreement between experimental
values of L and calculated ones is obtained for the

liquid-vapor interface of SF6 (Tab. III) but there is a
large discrepancy for the critical interface in a

cyclohexane-methanol mixture (Tab. IV). Much bet-
ter agreement with experimental values is obtained
when additional thickness Lp - ,2) 1/2 is introdu-

ced.

Recently, Beyssens [20] noticed that the interfacial
tensions measured at this last interface [26] do not
agree with formula (19). This discrepancy seems to
be explained by an error in the measurement of
interfacial tension in reference [26]. Thus he propos-
ed to deduce l’ 00 from (19) with :

we obtain :

With this estimated value of y, the agreement
between the measured and the calculated reflectivity
is good (Tab. IV).

Table I. - The measured ellipticity pm B of the reflected light at Brewster angle on liquid-vapor argon versus
the temperature [7] and the calculated ellipticity pR B for a thin interface with the same macroscopic interfacial
tension y.. The critical temperature of argon is Tc = 150.9 *K. El, E2, l’ 00 are experimental values [7]. The
wavelength of the light was A = 6 328 A.

Table II. - The measured ellipticity pm B of the reflected light at Brewster angle on the critical interface of a
cyclohexane-aniline mixture versus the temperature and the calculated one p B for a thin interface with the same
macroscopic interfacial tension ’Y 00’ The critical temperature of the mixture is Tc = 29.6 °C and the wavelength
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Table III. - Liquid-vapor critical interface of SF6. The « thickness » L of the interface deduced from
reflectivity measurements and the one , 12&#x3E; 1/2 calculated for a thin but rough interface of same macroscopic
interfacial tension and for three collection angle 0. The critical temperature is T, = 45.53 °C, the wavelength of
the light 4 579 A. We must remark that the value L of reference [4] is divided by -,,/2 7r to agree with

formula (3).

Table IV. - Critical interface of a cyclohexane-methanol mixture. The- « thickness » L of the interface
deduced from reflectivity measurements and the calculated one for different collection angles 0 and for two
1’00 values. The first one is experimental, the second one is deduced from the correlation length (see Sect. 5.1).
We must remark that the value L of reference [3] is divided by .J2 7T to agree with formula (3). The wavelength
of the light is 6 328 A.

In conclusion, by considering the coupled mode
model, the hypothesis of diffuse layers is no longer
necessary to fit experimental results and only two
macroscopic parameters are needed to describe the
behaviour of critical interfaces. This conclusion
seems to be at variance with that of a recent

paper [27] in which the author claimed to distinguish
between a diffuse (Fisk-Widom) contribution to the
interfacial thickness near the critical point and
surface waves far from the critical point. In fact, the
conclusion of this author is based upon the use of

scaling laws in a large temperature range (T,/2 

T  TJ where there is no reason for them to remain
valid.

5.2 LIQUID-AIR INTERFACES. - Since the end of
the last century, a large number of experimental
results have become available. However, well con-
trolled clean interfaces are difficult to obtain, and
very large discrepancies in the experimental values
(for the same liquids) are reported in the literature.
Because of the care reported in his experiments, we
feel confident with the experimental values of

Bouhet [2] (Tab. V). As expected for interfaces with



Table V. - The measured ellipticity [2]TB’ and the calculated one TBRfor a thin interface of same macroscopic surface
tension with coupled capillary waves and no rigidity. A is the intermolecular length and A = 5 460 A.
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K:A 0, the experimental ellipticity PH is found

inferior or equal to the calculated one ; R (see
Eqs. (2) and (10)). The discrepancy between the
experimental values and the calculated ones is less
than 25 % for 18 liquid-air interfaces in table V and
larger for 6 other ones. This indicates that for all
liquid surfaces considered in table V, K  kB T.

Let us recall that the summation over the modes q
includes q larger than ff /A (A the intermolecular
length). This is because in a liquid the molecules are
randomly distributed, thus we have no high cut-off
at 7r/A as in a lattice. Nevertheless if we introduce a
cut-off 7r/A, we must substitute :

for qe in equation (7). In this case, the new value of
p B deduced from the theory is approximately half
the experimental value pm B . (The molecular length A
used here is A = (M / p N )1/3 where M is the molecu-
lar weight and N the Avogadro number.)

6. Monolayers at the oil-water interfaces.

Recently we measured the ellipticity of light at the
oil-water interface covered with a surfactant mono-

layer [10, 11]. The rigidity coefficient K of the
monolayer was deduced from q R using equations
(2), (7) and (9b). n R was obtained by substraction of
the contribution n L of the monolayer to n. The

rigidity deduced is approximately the rigidity Ke at
the length of scale A =1 /qe. It is a rigidity coeffi-
cient measured in the intermediate region
(Kq2 ~ y ) and it is affected by the interfacial

tension. The theoretical model presented above
allows us to deduce the rigidity coefficient K for any
q (or the parameter Z) from experimental values
Qe as indicated in section 4.2.
The purpose of these K measurements is to

explain the microscopic structures of oil-water-sur-
factant mixtures (bicontinuous phases, birefringent
phases...). In these mixtures, we have the same
surfactant monolayers as those studied by ellipsomet-
ry at the oil-water interface, but the thermal fluctua-
tions of these layers in bulk are such that the
interfacial tension l’ 00 vanishes and K(q ) is only
determined by Z. In particular, we can deduce the
persistence length §K of the monolayer (Sect. 3.3). If
the spontaneous curvature vanishes, the structure of
the phase is given by the value Of 6K. For

6K - 100 A, we expect a bicontinuous phase and for
larger 6K, birefringent phases.
Two monolayers were studied ; but in this paper

we shall only examine one case : an SDS-butanol
monolayer at the toluene-brine interface at 20 °C

[10]. The spontaneous curvature Co of this layer
vanishes for the optimal salinity S ~ 6.8 %. The

ellipsometric measurements were performed in the
salinity range (3 %-10 %).
We have deduced from these measurements the

rigidity coefficient H at a molecular scale (q =
2 x 107 corresponding to a molecular length
A = 5 A) : figure 5.

Fig. 5. - The reduced rigidity constant H for q = 2 x 107
(a molecular scale) versus the salinity, deduced from

ellipsometric measurements at the brine-toluene interface
covered with a monolayer of SDS and butanol.

In this case (SDS-butanol monolayer, Fig. 5), the
reduced rigidity coefficient H in the vicinity of

optimal salinity S - 6.8 % is 1.1 and gK/ A  70.
The persistence length g K in the vicinity of this
salinity is found to be §K = 350 A leading to bicon-
tinuous phases as expected.

7. Conclusion.

We have pointed out the origin of the difficulties of
analysis of the optical measurements on liquid
interfaces. To solve these difficulties, we have devel-
oped a coupled mode theory of interfacial thermal
fluctuations. We found for the surface tension a

q 2 variation at large q wave vectors and a logarithmic
increase of the rigidity K with q, at large q, as

expected. At small q, the rigidity keeps a positive
value, even for interfaces where the surface tension
vanishes (in this case K = 0 for small q).
The part of the optical properties of liquid inter-

faces due to thermal fluctuations has been deduced
from this theory.
Comparing optical measurements at critical inter-

faces, in which the rigidity vanishes, with the calcu-
lated values expected from this theory, we have
shown that no additional thickness is needed. The

advantage of this theory is that one needs only
macroscopic parameters - directly measurable - of
the interface to explain the optical measurements
whereas the previous theory needed an adjustable
parameter: a cut-off for capillary waves.
The rigidity constant of surfactant monolayers at

oil/water interfaces can be studied via ellipsometric
measurements. The value of K we deduce with this
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theory from experimental results allows us to calcu-
late a persistence length g K of the monolayer, in
perfect agreement with the bulk structure in a

mixture oil, water and surfactant.

Acknowledgments.

We are greatly undebted to S. Balibar, F. Gallet and
D. Sornette for helpful discussions.

This work has been performed within the frame of
the GRECO « Microemulsion » and of a contract
with the CEE.

Appendix A. 

The reflectivity coefficients, ps’ , pp’ rss, rsp have been
calculated at the second order in Cq for a thin and
plane interface with a sinusoidal deformation of

amplitude hq and wave vector q (p. 136-137, re-

f. [22]). At the Brewster angle 8B and for qA &#x3E; 1
formulae (20) and (21) in reference [22] become.

where cp is the angle of q with the plane of incidence
(0  cp  7T) and cotg OB = n1/n2

We obtain :

hq is the amplitude of a roughness of

wavelength : hq = 2 C q C q *, and we obtain for-

mula (2).
This derivation needs q  2 7T / À. In the case

q ~ 2 1T /A, we can easily obtain pB by a numerical
integration of formula (20) in reference [22].

Appendix B.

The energy of a layer is the sum of the capillary
energy and the curvature elastic energy. Two terms
contribute to the elastic energy. The origin of the
first one is the Gaussian curvature of the layer and is
a constant for small fluctuations of a well defined

layer because it depends only on the genus of this
layer. The origin of the second one is the mean
curvature C =1/R1 + 1/R2 where R1 and R2 are the
curvature radii of the layer

yo is the capillary constant and Ko is the rigidity
constant associated with the mean curvature. The

layers we consider are flat at equilibrium but thermal
motion constantly distorts the surface and gives rise
to a certain roughness. The summation over the
linear term in C vanishes and the energy of a layer
is :

with

The surface tension effectively measured at the
interface is :

For small fluctuations :

The interface is isotropic so

average of the term

is equivalent to that of (VC )2 (AC )2 ; the average of
the term
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vanishes and it can be omitted ; therefore

The first approximation is given by the quadratic
terms. The probability of a fluctuation in this

approximation is given by (the average of a term like
q ’q’ vanishes if q’ =f:: - q) :

and the fluctuations are independent, the mean

square amplitude of which is given by :

The next approximation takes into account the

coupling of the modes by terms up to ,4. ’is the sum
of fluctuations of q wave vector : qo, q,... and we
will suppose qo &#x3E; qi &#x3E; q2 ... The spatial average of a
term like’ q ’q’ ’q" vanishes and that of a term like
’q ’q’ ’q" ’q’" vanishes also, except for

’q ,- q ’q’ -q’- The Boltzmann factor up to 4 is :

Each quadratic term I q I q’I 2 I is ,much smaller than

each squared term I q but there are many more
quadratic terms than squate terms, so they have to
be taken into account, but the number of terms

q is of the same order of magnitude as the number
of square terms, and we can neglect them. The
probability that a mode q has an amplitude Cq is a
function of all the modes q’ &#x3E; q. The only indepen-
dent modes are those of wave vector qo (the highest
q), the probability of a mode qo is proportional to :

The mean square amplitude of a mode qo is that of
a free mode :

The probability of a mode ql is a function of the
modes qo and is proportional to :

The probability of a mode ql, when we take into
account all the possible thermal excitation of the
mode qo, by making an overall average of qo, is

proportional to (using  e - A) ~ e- A&#x3E;) :

The mode q1 appears as an independent mode with a
different surface tension y, 1 and a different rigidity
constant Kl. y 1 is the coefficient of ql and Kl the
coefficient of ql.

These relations give the surface tension yi 1 and the

rigidity constant Kl observed on a scale of length
tlql when yo aqd Ko are observed on a scale of
length 1 /qo. Assuming the possible values of q are
continuous :

where y (q) and K(q) are the surface tension and
the rigidity constant observed on a scale of length
l/q.
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