A THESTS
entitled
LIQUID JET IMPINGEMENT NORMAL TO
A DISK IN ZERO GRAVITY

Unclas:
(;3/34
20s75
by

Thomas L. Labus

as partial fulfillment of the requirements of the Doctor of Philosophy Degree in Enginerring Science

The University of To1edo July 1976

An Abstract of
LIQUID JET TMPINGEMENT NORMAL TO A

DISK IN ZERO GRAVITY

Thomas L. Labus
Submitted in partial fulfillment of the requirements of the Doctor of Philosophy in Engineering Science Degree

> The University of Toledo
> July 1976

An experimental and analytical investigation was conducted to determine the free surface shapes of circular liquid jets impinging normal to sharp-edged disks under both normal and zero gravity conditions. An order of magnitude analysis was conducted indicating regions where viscous forces were not significant when computing free surface shapes. The demarcation between the viscous and inviscid region was found to depend upon the flow Reynolds number and the ratio between the jet and disk radius.

Experiments conducted under zero gravity conditions yielded three distinct flow patterns. These flow patterns were defined as surface tension flow, transition flow, and inertia flow. The flow regions were classified in terms of the relative effects of surface tension and inertial forces. The transition between regions was correlated with the system Weber number and the ratio of the jet to the disk radius. The normal gravity plume shapes were observed to jump from one apparently stable flow pattern to another until steady-state was reached.

A zero gravity inviscid analysis was performed in which the governing equations and boundary conditions in the physical plane were transformed into an inverse plane. In the inverse plane, the stream function and velocity potential became the coordinates thus removing the prime difficulty in free surface problems, that of having to guess at the true position of the free surface. The governing equations were nonlinear in the inverse plane thus requiring a numerical solution in which sets of nonlinear algebraic equations were solved simultaneously. Comparisons between experiment and numerical computations were made for the infinite and finite plate cases with the result that good agreement for the free surface shapes were obtained.

The author wishes to express his gratitude to the following people:

To Ken DeWitt, for his technical guidance and companionship.
To Frank Molls and Steve Sidik of Computer Services for supplying valuable subprograms and data analysis.

To Ray Sotos and the Sipport personnel at the 100 -Foot Drop Tower and Zero Gravity Facility, ior their assistance during the experimental tests.

To B111 Masica, Don Petrash, Tom Cochran, Gertrude Collins, and the NASA Lewis Training Branch, for supporting this research.

To Irene Snyder for being able to read my writing in order to type the rough draft of this thesis.

This thesis is dedicated to my wife, Janet, for her patience and understanding during the past ten years and to my parents, Janet and Ted, who provided the initial stimulation as well as continuing encouragement. It is in no small way dedicated to Frank, Jennifer, Eric,
Abstract Page
Acknowl edgments i1i
Table of Contents iv
List of Tables vii
List of Figures viii
Nomenclature $x i$
I. INTRODUCTION 1
II. LITERA'TURE SURVEY 3
A. Experimental Studies 3
B. Analytical Studies 4

1. Steady two-dimersional potential fiow 4
2. Steady axisymmetric viscous flow 6
C. Nur:arical Studies 6
3. Steady two-dimensional potential flow 6
4. Steady axisymetric potential flow
1
1
5. Unsteady two-dimensional and axisymmetric potential flow 8
6. Steady potential flow including gravitational effects 8
7. Steady potential flow including surface tension 8
8. Steady three-dimensional potentiai 1 low 9
III. ORDER OF MAGNITUDE ANALYSIS 10
A. Formulation 10
B. Continuity Equation 17
C. Momentum Equations 17
D. Physics of z_{o} 18
E. Results 20
IV. ZERO GRAVITY EXPERIMENTATION 22
A. Apparatus and Procedure 22
9. Test facility 22
10. Experiment 22
11. Test 1iquids 24
12. Test procedure 24
B. Experimental Results 25
13. General considerations 25
14. Effect of nozzle height 27
15. Steady state flow patterns 27
16. Zero gravity results 29
V. POTENTIAL FORMULATION 30
A. Governing Equations and Boundary ,onditions in Physical Plane Including Surface Tension 30
17. General formulation 30
18. Introduction of Stokes stream function 30
19. Derivation of boundary conditions in terms of ψ 34
20. Nondimensionalization of governing equations and bound- ary conditions in physical plane 35
21. Surface tension dominated model 36
B. Inverse Plane Formulations 38
22. Transformation formulas 38
23. Introduction of velocity po':ential 39
24. Relationships between ψ and ϕ 39
25. Inverse plane formulation 40
26. Governing equations for inverse functions 41
27. Infinite flat plate excluding surface tension 43
28. Derivation of bcundary conditions in inverse plane for r formulation 44
29. Derivation of boundary conditions in inverse plane for z formulation 45
30. Finite plate excluding surface tension 46
31. Finite plate including surface tension 47
32. Surface tension dominated model-finite plate 48
VI. CENTRAL FINITE DIFFERENCE REPRESENTATION 50
A. Formulation 50
33. General considerations 50
34. Interior nodal points 51
B. Excluding Surface Tension 52
35. Infinite flat plate 52
36. Finite plate 53
C. Surface Tension 53
VII. DISCUSSION OF NUMERICAL TECHNIQUES 54
VIII. NUMERICAL RESULTS 56
A. Exclusion of Surface Tension 56
37. Infinite flat plate (Weber number $=\infty$) 56
38. Finite plate 57
B. Surface Tension Downated Model 59
C. Discussion of Zero Gravity Results 63
IX. NORMAL GRAVITY EXPERIMENT SECTION 66
A. Apparatus and Procedure 66
39. Experiment 66
40. Test liquids 67
41. Test procedure 68
B. Results
68
68
42. Steady-state flow pattern 68
43. Unstable jumps 69
44. Experiment data
70
70
45. Data analysis 71
X. CONCLIJSIONS 74
XI. APPENDIXES 77
XII. BIBLIOGRAPHY 198

J.IST OF TABLES

Table Page
1 Liquid Properties at $20^{\circ} \mathrm{C}$2 Summary of Parameteis - Zero Gravity
3 Sumary of Parameters - Normal Gravity

L.1ST OF FICURES

Figure Page
1 Schematic of liquid jet impinging on a flat plate
2 Flow pattern as a function of nozzle heighte3 Flow pattern as a function of jet radius
4 Results of order of magnitude analysis
5 Experiment packige
6 Flow system schematic
7 (a) Top view of jet reservoir
(b) Side view of jet reservoir
8 Schematic diagram of sharp-edged disk
9 Liquid jet impinging on flat solid plate
10 Zero gravity experimental results
11 Physical plane model of liquid jet impingement
12 Limensionless governing equation and bounciary conditionsin physical plane employing Stokes stream function
13 Surface tension model in physical plane
14 Dimensionless governing equations and boundary condi-tions
15 (a) Inverse formulation excluding surface tension(r solution) for infinite plate
(b) Inverse formulation excluding surface tension(z solution) for inf inite plate
16 (a) Inverse formulation excluding surface tension
(r solution) for finite plate
(b) Inverse formulation excluding surface tension
(z solution) for finite plate

17 Inverse formulation including surface tension (r solution) for findte plate

18 (a) Surface tension model - inverse formulation (r solution)
(b) Surface tiension model - Inverse formulation (\% solution)

19 Nodal point representation for rectangular mesh
20 (a) Finite difference representation for infinite plate (r solution)
(b) Finite difference representation for infinite plate (z solution)

21 (a) Finite d...-erence representation for finite plate (r solytion)
(b) Finite difference representation for finite plate (z solution)

22 (a) Finite difference representation for surface tension dominated modis (r solution)
(b) Finite difference representation for surface tension dominated model (z allution)

23 Numerical solution of ilquid jet impinging on infinite flat plate (coarse mesh)

24 Print-plot of liquid j-: impinging on infinite flat plate (fine mesh)

25 Numerical solution of liquid jet fmpinging on finite plate $\left[\left(R_{0} / L\right)=1 / 2\right]$

26 Print-plot of numerical solution for impingement on a finite plate $\left[\left(R_{0} / L\right)=3 / 4\right]$.

27 Scheratic diagram of vesocity discontinuity occurring in surface tension model

28 Numerical solution of surface tension dominated model ($\mathrm{We}=4, \mathrm{R}_{\mathrm{o}} / \mathrm{L}=1 / 2$)

29 Comparison of numerical $*$, sults for infinite plate with reference 39

30 Comparison of numerfeal resulis for finite plate . inertial flow with experiments ($\mathrm{R}_{\mathrm{o}} / \mathrm{L}=1 / 2$)
-inertial flow with experiments $\left(R_{0} / L=3 / 4\right)$
(a) Experimental test rig - front view
(b) Experimental test rig - side view view
Cross-section of setting chamber33Photograph of sharp-edged disk
35
Schematic of steady state normal gravity impingement
36
Photographs indicating flow patterns before and afterJump
37Variation of plume width with Weber number

NOMENCIATURE

\wedge	numerical constant
a	stream function focrement
B	numerical constant
Bo	Bond number, $\rho 8 \mathrm{R}_{0}^{2 / \sigma}$
b	numerical constant
C	numerical constant
$\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$	numerical constants
c	numerical constant
D	$=1 / \alpha^{2}$
d	designated reference point
f_{0}	unknown scale factor, m
$\mathrm{f}, \mathrm{f}_{1}, \mathrm{f}_{2}$	fictitious points
8	acceleration due to gravity, m/sec ${ }^{2}$
g	gas
H	distance between plate and nozzle, m
i	any point on free surface
\hat{i}, \hat{j}	unit vectors
J	Jacobian
$K \phi$	numerical constant
I,	disk radius, m
$\hat{\mathbf{n}}$	unit normal on free surface
0	stagnation point:
p	pressure, $\mathrm{N} / \mathrm{m}^{2}$

.	M / / 心
$1 \therefore r$	fintie difformer amalogy of is/ar
11	liquid visuostity, $\mathrm{g} / \mathrm{m}^{\text {\% }}$-sec
${ }^{\prime}$	liguid donsily, fr/m3
1)	Itquld surfacr linsion, N / π
;	velocity potental, $\mathrm{m}^{2} /$ sere
x	$=r_{f} \cdot r_{4}, m$
ψ	Stokes' stream function, $\mathrm{m}^{3} / \mathrm{sec}$
Superscripts and subscripts:	
Cr	critical
,	differentiation with respect to r
*	denotes dimensionless quantities
1,2,3,4	nodal point locations
s	surface

I. INTRODUCTION

A krowledge of the dynamics of free liquid jets is required for the solution of a variety of problems associated with fluid flow within propellant tanks under low gravitational conditions. In particular, an understanding of the liquid jet - impact process, as occurs when liquid impinges upon baffies or tank walls during an inflow or reorientation maneuver, will be required in order to predict liquid-propeliant location, heat transfer rates and pressure distributions. The area of liquid jet impingement also has direct applicability to the spacecraft fire safety problem, in which water jets are employed as extinguishant agents under low gravity conditions. In order to Le'able to predict required delivery flow rates, the accurate prediction of flow surface coverage as a function of jet momentum is needed.

There generally appears to be three chief obstacles which have in the past prohibited the attainment of solutions to steady-state liquid jet-solid interaction problems. The major obstacle is the presence of the free surface. In order to apply numerical techniques to the solution of free-jat problems it is necessary to define the area over which the computations are made by boundaries defined by the free liquid surface. Unfortunately, the location of the free-surface is one of the items sought from the solution so that various techniques must be devised to circumvent this situation. Furthermore, analytical techriques are restricted solely to two-dimensional problems, whether
a free surface exists or not. The second obstacle is gravity. Liquid jets in air (free jets), unlike liquid-into-liquid jets and gas-intogas jets (submerged jets), are affected significantly by gravitational forces. The free-surface shape and velocity profiles are dependent on both the magnitude and the orientation of gravity. The addition of gravity necessarily complicates a model either through the governing equation or through the boundary conditions. Neglecting gravity in the model makes questionable the comparison of the theory with normaigravity experimental data. The final obstacle is surface tension, an effect which has generally been neglected in almost all studies on free jets. The addition of surface tension into a model leads to nonlinear free surface boundary conditions.

The purpose of this report is to present the results of an experimental and analytical siudy conducted at the NASA Lewis Research Center concerning zero gravity isothermal liquid jet impingement. An axis mmetric liquid jet was impinged normally onto a sharp-edged disk under conditions in which both inertial and surface tension forces are of importance. The experimental free surface shapes were correlated with known system parameters. An analytical model was formulated and the free surface shapes and streamlincs were calculated for a number of discrete cases.

II. LITERATURE SURVEY

A. Experimental Studies

Very few experimental studies have been conducted to examine free jets impinging on solid surfaces. No work has been conducted where the major concern was either the shape of the free surface or the measurement of velocity profiles within the jet. Also, only one experiment has been conducted using a two-dimensional jet. A two-dimensional jet is one in which the flow emanates from a rectangular slot in which the width of the jet is very large relative to the thickness of the jet. Schach (38) measured the pressure distribution and analytically calculated the free surface shape and velocity distributions for jets impinging onto flat panels at various impingement inclinations relative to the direction of flow. The jet employed had dimensions of 21 by 115 mm . According to Schach, the jet diverged spatially after impinging upon the panel and thus it can only be considered as truly twodimensional close to the centerline. An excellent account of an elaborate experimental apparatus for oljraining a quiescent circular water jet in normal gravity is given by Donnelly, et al. (11). Their major concern was jet stability under imposed audio frequency disturbances and, therefore, the impingement phenomenon was not directly observed. Rupe (37) and Stephens (41) experimentally measured the pressure distribution caused by circular jets striking solid surfaces in normal gravity. However, neither Rupe or Stephens meas-
ured the free-surface shape or discussed ary instabilities which occurred.

In nearly all flows where a circular liquid jet strikes a large flat surface, typically what happens in normal gravity is that the liquid jet impinges on the surface and moves radially outward from the stagnation point until a certain radial distance is reached whereupon an instability known as a circular hydraulic jump occurs. The jump is characterized by an abrupt increase in the liquid depth and turbulent fluid motion. Koloseus, et al. (22) were concerned solely with predicting the behavior of the circular hydraulic jump. A water jet impinging on a flat plate of epoxy material was employed In these experiments. The circular hydraulic jump was the subject for a very complete study conducted by Nirapathdongporn (33), whose report contains an excellent description of various devices for measuring jet shapes and jet diameters.

All of the above mentioned studies deal with normal-gravity, liquid jet-solid impingement. There have been no experimental studies on the impingement of liquid jets under zero-gravity conditions. B. Analytical Studies

1. Steady two-dimensional potential flow. - A number of papers and books have discussed steady-state two-dimensional free jets itnpinging on a variety of surfaces using analytical techniques. The majority of these studies were concerned with irrotational, incompressible, inviscid flow, in which the effects of gravity and surface tension were neglected. One of the major attractions of this type of problem is that it can be handled using complex potential theory and, therefore, can be treated analytically.

Abstract

A two-dimensional jet striking an infinitely flat surface at various angles was examined by Batchelor (4), who solved for the limiting stream thickness as a function of flow impingement angle and jet diameter. However, no atぇempt was made to predict free-streamline shape. Schach (38) treated the impingement as a function of angle using Prandtl's hodograph method, and obtained the equations for the free surface shapes, flow distribution, and pressure distribution for the case of impingement on an infinitely wide plate. Kochin, et al. (21) also examined the impingement of a two-dimensional jet obliquely to an infinice flat plate, and discussed the case of impingement on a plate of finite length. The equation of the freesurface for the case of a two-dimensional jet striking a flat surface at right angles is presented by Milne-Thomson (30) witu also solved for the velocity components within the jet. An excellent discussion of the techniques fisr handling two-dimensional free jet problems is presented by Gurevich (14). Some of the two-dimensional flows examined by Gurevich include flow around a finite vedge, perpendicular to a finite plate, obliquely to an infinite flit plat. and flows where a variety of solid objects are positioned adjacent to one wall or between two walls. Chang, et al. (9) analyzed the two-dimensional flow of a jet interacting with a number of flat segments at angles to one another. The results include flow turning angles but not frce surface shapes or velocity profiles. The irrotational flow pattern of a free jet discharging from a slot and flowing past a wedge was analyzed by Arbhabhirama (3). A11 of the above texts and articles were concerned with analytical techniques for obtaining solutions. The area of steady two-dimensional potential flow represents the most

complete area of research in the field of jet impingement.
2. Steady axisymmetric viscous flow. - Watsor. (43) has analytin cally investigated free jet-impingement for the case of large Reynolds numbers where the viscous forces are confined to a thin boundary layer adjacent to the plate. A similerity solution was obtained for both the two-dimensional and axisymmetric velocity profiles and free surface shapes for the case of normal impingement. As mentioned by Watson, the similarity solution can only be expected to be valid when the radial distance is sufficiently large for the incident jet to have lost its influence. The effects of gravity and surface tension were neglected in the analysis. Watson solved for the radial position of the circular hydraulic jump.
C. Numerical Studies

1. Steady two-dimensional potential flow. - When the shape of the solid upon which the jet impinges becomes complex, numerical techniques for the solution of free jet problems have to be applied. Jeppson (19) presents an excellent article in this regard. Jeppson employed the stream function and the velocity potential as the independent variables and the coordinates as the dependent variables. A similar inversion approach has been previously used to silve a variety of fluid dynamics problems as shown in references $5,20,31,42$, and 44 and is mainly attributable to Thom and Apelt (42). Using this technique, Jeppson was able to circumvent the problem of working in the physical plane and having to guess at the true position of the free surface. The latter iterative approach was used in references $1,8,13,27,32,36$, and 40 with 1 imited success. Jeppson solved the problem of the two-dimensional flow over a wedge, and, as such, is
the only one to have attempted numerical solutions of this problem. Lastily, Chan (7) applied the finite element method to a number of free-surface flow problems, including the flow from a circular orifice.
2. Steady axisymmetric potential flow. - The solution of axisymmetric flow problems cannot utilize the powerful tool of complex analysis. For this reason, only numerical solutions can be attempted for problems of this nature.

LeClerc (25) studied the impingement of an axially symmetric 1iquid jet perpendicular to a flat surface. The shape of the free surface was found using an electrical analogy. This method thus fixed the position of the free surface and enabled the author to anply standard finite-differencing methods and employ Sorthwell's relaxation technique to solve Laplace's equation. Jeppson (19) applied his inversion technique to find the flow pattern and free-surface shape for the case of axisymmetric flow past a variety of bodies of revolution, including cones. Jeppson also applied his technique to the solution of a jet of inviscid, incompressible fluid issuing from a nozzle into the free atmosphere. He indicates how his method may be extended to a variety of cther problems. Schach (39) used a semianalytical technique based on Trefftz's approximate method to find the shape of an axisymmetric free jet impinging normally on a plate. Also presented in Schach's article was the pressure distribution on the plate which was calculated from the velocity distribution using Bernoulli's equation. Young, et al. (45) and Brinauer (6) determined the flow pattern past two disks immersed in axifymmetric flow. Both Young and Brunauer solved Laplace's equation in the physical plane.

No analyses have been conducted for the case in which an inviscid free jet impinges upon a plate of finite thickness.

The articles mentioned above encompass all the known solutions with regard to axisymmetric jet impingement. References 7, 8, 20, 27, and 40 deal specifically with numerical methods applied to free surface problems in which no impingement occurs. Jeppson (20) employed an inverse formulation while the others worked in the physical plane.
3. Unsteady two-dimensional and axisymmetric potential flow. Huang $(17,18)$ has investigated unsteady flows and considered the impact phenomena for both two-dimensional and axisymmetric jets. The major interest in these articles was in obtaining the initial pressure distribution due to liquid impact.
4. Steady potential flow including gravitational effects. The addition of gravity in analyses for potential flows causes no serious formulation problem for either the two-dimensionai or axisymmetric case. The reason for this is because its effect enters only through the free-surface boundary conditions and not the governing equations. Jeppson (19) included gravity in his analysis of the impingement on a two-dimensional wedge. Moayeri, et al. (31) Southwell, et al. (40) and Chan (8), all considered the effect of gravity in dealing with steady, potential, free-surface problems in which no impingement occurs.
5. Steady potential flow including surface tension. - Zhukovskif (46) has indicated how to include the eifects of surface tension. He examined a two-dimensional problem using complex analysis, but his method is not extendable to either axisymmetric or three-dinensional
¿lows.
6. Steady three-dimensionol potential flow. - Intil very recent. ly, very little had been accomplished in the area of three-dimensional potential flow with a free surface, much less including impingement. Davis and Jeppson (10) devaloped a computer program to solve freesurface problems of this type using the inverse method. Michelson $(28,29)$ also examined jets under these conditions. He treated the case of an axisymmetric jet impinging obliquely on a flat surface, and analytically showed the occurrence of wedge-shaped dry zones when the impingement angle was less than a critical value. Free-surface shapes are not obtainable using Michelson's method.
III. ORDER OF MAGNLTUDE A:IAI,YSIS

^. Formulation

The problem under consideration is the viscous flow of a circular liquid jet as it impinges normally to an infinite flat plate, as shown in Figure 1. The objective is to determine the free surface shape of the impinging liquid and the velocity profiles within the jet. In general, flows of the type described will depend on viscous, surface tension, inertial and body forces. Physical intuition tells us that if the velocity is large and the diameter of the plate is sufficiently small, there will te regions wherein viscous forces are not of prime importance in determining the resulting flow behavior, particularly the free surface shape. The riscous forces, in this case, will be confined to a thin boundary layer on the plate which originates from the stagnation point. The location of the stagnatior point is shown in Figure 1. The jet or nozzle radius is R_{o} and the distance between the plate and nozzle is given as H. A cylindrical coordinate system (r, z) emanating from the stagnation point is chosen. An order of magnitude analysis will permit the governing equations to be simplified so that an analytical solution can be attempted. For axisymmetric, isothermal, incompressible steady flow under weightless conditions, the governing equations in cylindrical coordinates can be written: Continuity:

$$
\begin{align*}
& 1 \quad \therefore(r u)+\frac{v}{3 \%}=0 \tag{1}\\
& r \quad r
\end{align*}
$$

Momentum:
r Component:

$$
\begin{equation*}
\rho\left(u \frac{\partial u}{\partial r}+v \frac{\partial u}{\partial z}\right)=-\frac{\partial P}{\partial r}+u\left\{\frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial}{\partial r}(r u)\right]+\frac{\partial^{2} u}{\partial z^{2}}\right\} \tag{?}
\end{equation*}
$$

z Component:

$$
\begin{equation*}
\rho\left(u \frac{\partial v}{\partial r}+v \frac{\partial v}{\partial z}\right)=-\frac{\partial P}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v}{\partial r}\right)+\frac{\partial^{2} v}{\partial z^{2}}\right] \tag{3}
\end{equation*}
$$

Boundary conditions are required on the flat plate, along the axis of symmetry, at the nozzle exit, on the free surface, and at $r=L$.

On plate

$$
u=0 \quad \text { on } \quad 2=0 \text {, all } r
$$

Along axis of symmetry

$$
\begin{align*}
& u=0 \\
& \frac{\partial v}{\partial r}=0 \tag{5}
\end{align*} \quad \text { on } r=0, \text { all } z
$$

At the nozzle

$$
v=-V \quad \text { on } 0 \leq r \leq R_{0}, z=H
$$

At $r=L$

$$
\begin{aligned}
& \mathrm{u}=\mathrm{u}(z) \\
& \mathrm{v}=\mathrm{v}(z)
\end{aligned}
$$

On the free surface, denoted by $z_{s}=f(r)$, two boundary conditions are required since the free surface position is an unkown to be determined as part of the solution. The details of the calculation

for the boundary conditions along the free surface can be fomd for Appendix Λ. (Sce eqs. (A.1.0) nd (1.14).)

On the free surface

$$
\frac{1}{2}\left(u^{2}+v^{2}\right)-\frac{o}{\rho r} \frac{d}{d r}\left[\frac{r \frac{d f}{d r}}{\sqrt{1+\left(\frac{d f}{d r}\right)^{2}}}\right]=\frac{1}{2} v^{2}-\frac{o}{\rho R_{0}} \quad \text { on } \quad z_{s}=f(r)
$$

and

$$
\begin{equation*}
-u \frac{d f}{d r}+v=0 \quad \text { on } \quad z_{s}=f(r) \tag{9}
\end{equation*}
$$

In equation (4), the no-flow and no-slip boundary conditions are applicd at the wall. Equation (5) is a statement involving the known geometrical symmetry of the problem, while equation (6) imposes an initially uniform velocity profile on the incoming jet. Equation (7) simply states the velocity distribution as the liquid leaves the control volume. Equation (8) is a statement of conservation of mechanical energy along a streamline, while equation (9) states that the normal velocity component on a streamline is zero. The second terms on the left and right sides of equation (8) are the contribution of surface tension to the mechanical energy balance.

The solution of the problem can be greatly facilitated by simplifying equations (1) to (8). Specifically, the method of obtaining the minimum parametric representation of a problem will be employed in order to simplify the governing equations. This method is described in detail by Krantz (23) and is the most systematic approach for scaling the governing equations. The initial step in the minimum parametric representation method is to form dimensionless variaties by introducing characteristic scale factors for all dependent and independent
varlables. The unknown scale factors are defined as $U_{0}, V_{0}, r_{0},{ }_{0}$, Po, and f_{0}.

Dimensionless variables are now defined as:

$$
\begin{equation*}
u^{*}=\frac{u}{U_{0}}, v^{*}=\frac{v}{V_{0}}, r^{*}=\frac{r}{r_{0}}, z^{*}=\frac{2}{z_{0}}, p^{*}=\frac{P}{P_{0}}, f *=\frac{f}{f_{0}} \tag{10}
\end{equation*}
$$

Introducing these dimensionless varlables into the differential equations and boundary conditions, and arbitrarily making the coefficient of one term in each differential equation and boundary condition equal to unity, results in:

Continuity:

$$
\begin{equation*}
\frac{\partial v^{*}}{\partial z^{*}}+\frac{U_{0} z_{0}}{V_{0} r_{0}} \frac{1}{r^{*}} \frac{\partial}{\partial r^{*}}\left(r^{*} u^{*}\right)=0 \tag{11}
\end{equation*}
$$

Momentum:

r Component:

$$
\begin{align*}
\frac{\rho U_{0} z_{0}^{2}}{r_{0}^{\mu}} u^{*} \frac{\partial u^{*}}{\partial r^{*}}+\frac{\rho V_{0} z_{0}}{\mu} v^{*} \frac{\partial u^{*}}{\partial z^{*}}= & -\frac{p_{0} z_{0}^{2}}{r_{0} \mu U_{0}} \frac{\partial p^{*}}{\partial r^{*}} \\
& +\frac{z_{0}^{2}}{r_{0}^{2}} \frac{\partial}{\partial r^{*}}\left[\frac{1}{r^{*}} \frac{\partial}{\partial r^{*}}\left(r^{*} u^{*}\right)\right]+\frac{\partial^{2} v^{*}}{\partial z^{2}} \tag{12}
\end{align*}
$$

z Component:

$$
\begin{align*}
\frac{U_{o}^{2} z_{0}}{r_{0} V_{0}} u^{*} \frac{\partial v^{*}}{\partial r^{*}}+v^{*} \frac{\partial v^{*}}{\partial z^{*}}= & -\frac{P_{0}}{\rho v_{0}^{2}} \frac{\partial p^{*}}{\partial z^{*}} \\
& \quad+\frac{\mu z_{0}}{r_{0}^{2} \rho v_{0}} \frac{1}{r^{*}} \frac{\partial}{\partial r^{*}}\left(r^{*} \frac{\partial v^{*}}{\partial r^{*}}\right)+\frac{\sum_{0}}{z_{0} v_{0}} \frac{\partial^{2} v^{*}}{\partial r^{*}} \tag{13}
\end{align*}
$$

Boundary conditions:
On wall

$$
\begin{aligned}
& u^{*}=0 \\
& v^{*}=0
\end{aligned} \quad \text { on } \pi^{*}=0, a 11 \quad r^{*}
$$

Nlong axis of symmetry

$$
\begin{aligned}
& u^{*}=0 \\
& \frac{\partial v^{*}}{\partial r^{*}}=0 \\
& \text { At the nozzle } \quad r^{*}=0, a l l 2^{*}
\end{aligned}
$$

$v^{*}=-\frac{V}{V_{0}} \quad 0 \leq r^{*} \leq \frac{R_{0}}{r_{0}}$

$$
u^{*}=0 \quad z^{*}=\frac{H}{R_{0}}
$$

$$
\text { At } \quad r=L / R_{0}
$$

$$
u^{*}=u^{*}\left(z^{*}\right) \quad \text { on } \quad r^{*}=\frac{L}{r_{0}}
$$

$$
v^{*}=v^{*}(z)
$$

On the free surface
and

$$
\begin{align*}
& \frac{1}{2}\left(u^{* 2} \frac{u_{o}^{2}}{v_{o}^{2}}+v^{* 2}\right)-\frac{\sigma}{\rho r^{*} v_{o}^{2}} \frac{f_{o}}{r_{o}^{2}} \frac{d}{d r^{*}}\left[\frac{r^{*} \frac{d f *}{d r^{*}}}{\left.\sqrt{1+\frac{f_{o}^{2}}{r_{o}^{2}\left(\frac{d f *}{d r^{*}}\right)^{2}}}\right]}\right] \\
& =\frac{1}{2} \frac{v^{2}}{v_{0}^{2}}-{ }_{o} R_{0} v_{0}^{2} \quad \text { on } z_{s}^{*}=\frac{i_{0}^{* j}}{2_{0}} \tag{1.8}
\end{align*}
$$

The scale factors must now be determined. This is done by setting some of the resulting dimensionless groups in the equations and boundary conditions equal to zero or unity, the groups chosen defending upon the physical conditions for which the equations are being scaled (23). Characteristic lengths are usually determined from the dimensionless groups generated by the boundary conditions, while characteristic times, velocities, etc., are determined from dimensionless groups generated by the differential equations. The guidelines in determining the unknown scale factors are:
(:) Do not introduce any mathematical contradictions
(2) Do not violate physical intuition.

Boundary conditions. - Examining the boundary conditions. it is apparent that the following dimensionless groups are introduced:

It is known that v has the range 0 to $-V$, r has the range 0 to L, Z has the range 0 to H and $f(r)$ also has the range 0 to H. Therefore, seting,

$$
\begin{equation*}
\frac{V}{V_{0}}=1 \quad \text { and } \quad \frac{L}{r_{0}}=1 \tag{20}
\end{equation*}
$$

implies that

$$
\begin{equation*}
V_{0}=V \quad \text { and } \quad r_{0}=L \tag{21}
\end{equation*}
$$

and yields two of the six unknown scale factors.
Some of the above remaining dimensionless groups cannot be set equal to one or zero without introducing contradictions. Setting $V_{0}=V$ and $r_{0}=f$ into the above ratios, and since it would be expected that

$$
\begin{equation*}
f_{0}=z_{0} \tag{22}
\end{equation*}
$$

the following meaningful ratios remain:

$$
\frac{H}{z_{0}}, \quad \frac{U_{0}^{2}}{v^{2}}, \quad \frac{\sigma z_{0}}{\rho V^{2} L^{2}}, \quad \frac{z_{0}^{2}}{L_{0}^{2}}, \quad \frac{U_{0} z_{0}}{V_{L}}
$$

Setting the second or fourth ratio equal to one or zero woild violate physical intuition. Therefore, the ratios to be considered are

$$
\frac{H}{z_{0}}, \quad \frac{\sigma z_{0}}{\rho V^{2} L^{2}}, \quad \frac{U_{0} z_{0}}{V L}
$$

At this point an attempt was made to set $H / Z_{0}=1$ such that z_{0} would equal H. This seemed logical because 0 to H was the range of 2. However, this leads to some confusing results in terms of the physics. For a given flow condition, it is argued that for a certain (minimum) value of H up to $H=\infty$, the flow pattern in the vicinity of the plate is not expected to change. This is shown schematically in Figure 2. This argument has been experimentally verified and will be discussed at some length in Section IV, Experimentation. The major point is that H cannot be a characteristic length in the problem either with reference to z_{0} or f_{0}. This leaves two remaining ratios from consideration of the boundary conditions.

$$
\frac{\sigma z_{0}}{\rho V^{2} L^{2}} \quad \text { and } \quad \frac{U_{0} z_{0}}{V L}
$$

Accordingly, all possible information from the boundary conditions has been obtained. Two of the six scale factors and a relationship between two others has been determined. The governing equations must now be examined.

B. Continuity Equation

From the physics of the protiem, it is nown that mass must be conserved. Hence, the continuity equation must be valid in its dimensionless form (eq. (11)). If the dimensionless derivatives $\partial v * / \partial z^{*}$ and $\left(1 / r^{*}\right)\left(\partial / \partial r^{*}\right)\left(r^{*} u^{*}\right)$ are to be of the same order of magnitude, it is required that

$$
\begin{equation*}
\frac{u_{0} z_{0}}{V_{0} r_{0}}=1 \tag{23}
\end{equation*}
$$

With $V_{0}=V$ and $r_{0}=L$, it is found that

$$
\begin{equation*}
\frac{U_{0} z_{0}}{V L}=1 \tag{24}
\end{equation*}
$$

Solving for U_{0},

$$
\begin{equation*}
U_{0}=\frac{V L}{z_{0}} \tag{25}
\end{equation*}
$$

This, of course, is an equation relating two unknowns, U_{0} and z_{0}. It is noted that the same information could have been obtained by setting the second of the two ratios remaining from the consideration of the boundary conditions equal to one.
C. Momentum Equations

It is the objective of this analysis to define that portion of the fiow for which an inviscid solution is valid. For this case, the pressure forces are balanced by the inertia forces. This fact allows us to determine the scale factor for the pressure, P_{o}. If the dimensionless pressure gradient in equation (13) is to be the same order of magnitude as the dimensionless inertia term,

$$
\begin{equation*}
\frac{\mathrm{P}_{0}}{\rho v_{o}^{2}}=1 \tag{26}
\end{equation*}
$$

This implies that

$$
p_{0}=\rho V_{o}^{2}=\rho v^{2}
$$

thus, the characteristic pressure is the stagnation value.
D. Physics of z_{0}

The remaining unknown to be determined is z_{0}. At this point some physical arguments are necessary. Recall that it has been shown that H cannot be considered as a characteristic scale factor for the problem at hand for reasonably large values of H. However, the free surface shape is expected to change as R_{0} varies (see Fig. 3). Therefore, from physical considerations this suggest that characterIstic values of z_{o} vary as R_{0}. Defining

$$
\begin{equation*}
z_{0}=R_{0} \tag{28}
\end{equation*}
$$

then U_{0} can be found from equation (25).

$$
\begin{equation*}
\mathrm{U}_{\mathrm{o}}=\frac{\mathrm{VL}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{o}}} \tag{29}
\end{equation*}
$$

Sumarizing, the following has been determined

$$
\begin{aligned}
V_{0} & =V \\
r_{0} & =L \\
z_{0} & =R_{0} \\
f_{0} & =R_{0} \\
U_{0} & =\frac{V L}{R_{0}} \\
P_{0} & =\rho v^{2}
\end{aligned}
$$

These scale factors can now be substituted into the governing equations to obtain the minimum parametric representation of the problem. The results are as follows:

$$
\begin{align*}
\operatorname{Re} u^{*} \frac{\partial u^{*}}{\partial r^{*}}+\operatorname{Re} v^{*} \frac{\partial u^{*}}{\partial z^{*}}=-\operatorname{Re} & \left(\frac{R_{0}}{L}\right)^{2} \frac{\partial p^{*}}{\partial r^{*}} \\
& +\left(\frac{R_{0}}{L}\right)^{2} \frac{\partial}{\partial r^{*}}\left[\frac{1}{r^{*}} \frac{\partial}{\partial r^{*}}\left(r^{*} u^{*}\right)\right]+\frac{\partial^{2} v^{*}}{\partial z^{2}} \tag{30}
\end{align*}
$$

$\operatorname{Re} u^{*} \frac{\partial v^{*}}{\partial r^{*}}+\operatorname{Re} v^{*} \frac{\partial v^{*}}{\partial z^{*}}=-\operatorname{Re} \frac{\partial p^{*}}{\partial z^{*}}$

$$
\begin{equation*}
+\left(\frac{R_{0}}{L}\right)^{2} \frac{1}{r^{*}} \frac{\partial}{\partial r^{*}}\left(r^{*} \cdot \frac{\partial V^{*}}{\partial r^{*}}\right)+\frac{\partial^{2} v^{*}}{\partial z^{2}} \tag{31}
\end{equation*}
$$

where Re is the Reyisolds number defined as

$$
\begin{equation*}
R e=\frac{\rho V R_{0}}{\mu} \tag{32}
\end{equation*}
$$

The equations are now in the form in which it can be determined what the conditions must be such that viscous forces are not significant. The major parameters in this problem are $\left(R_{0} / L\right)$ and Re. Since all the starred or dimensionless terms in equations (30) and (31) are of unit order, only the coefficients of the individual terms need be considered in order to make statements regarding simplifications. Considering equation (30), it can be seen that since $\left(R_{0} / L\right) \ll 1$, both the inertia and pressure forces will be an order of magnitude greater than the viscous forces provided that,
$\operatorname{Re} \gg 1$

$$
\begin{equation*}
\operatorname{Re}\left(\frac{R_{0}}{L}\right)^{2}>1 \tag{33}
\end{equation*}
$$

From equation (31), since $\left(R_{o} / L\right)^{2} \ll 1$, no nev information is obtained. The governing equations will be reduced to a simplified form of Euler's equations of motion.

$$
\begin{align*}
& u^{*} \frac{\partial u^{*}}{\partial r^{*}}+v^{*} \frac{\partial u^{*}}{\partial z^{*}}=-\left(\frac{R_{0}}{I}\right)^{2} \frac{\partial p^{*}}{\partial r^{*}} \tag{34}\\
& u^{*} \frac{\partial v^{*}}{\partial r^{*}}+v^{*} \frac{\partial v^{*}}{\partial z^{*}}=-\frac{\partial p^{*}}{\partial z^{*}} \tag{35}
\end{align*}
$$

E. Results

Restricting the viscous forces to be at least wo orders of magnitude smaller than the inertial or pressure forces, there results
$\operatorname{Re} \geq 100$
$\operatorname{Re}\left(\frac{R_{0}}{L}\right)^{2} \geq 100$
Since (R_{0} / L) is less than one by definition, the coefficient to consider is the second one in equation (36), since this will be the limiting one. Under the following restrictions,
(1) $\operatorname{Re} \geq 100$
(2) $\frac{R_{0}}{L}<1$
the Euler's equation of motion are obtained. The equation $\operatorname{Re}\left(R_{0} / L\right)^{2}=100$ is shown graphically in Figure 4. The line shown in Figure 4 separates the inviscid from the viscous region. A physical. understanding of the problem is made clearer by reference to this plot. The higher the incoming jet Reynolds number becomes, the thinner will be the boundary layer at sume fixed radial position from the stagnation point. As seen from Figure 4, at lower values of the ratio R_{0} / L (perhaps obtained by increasing the disk radius L), higher Reynolds numbers are required in order to avoid viscous influence. Finally, within the viscous region, the boundary layer will
grow until a radial length is reached where it becomes equal to the free surface height. The effertive design of an experiment is now possible so that the flow can be considered essentially inviscid.

IV. ZERO GRAVITY EXPERIMENTATION

A. Apparatus and Procedure

1. Test facility. - The experimental investigation was conducted in the 2.2-second drop tower. The exact specifications of the facility, the mode of operation, and release and recovery syctems are described in detail in Appendix B. The drop tower provides us with a 2.2 second weightless environment in which to conduct the tests.
2. Experiment. - The experiment package used to obtain the data for this study is shown in Figure 5. It consists of an aluminum frame in which were mounted the jet reservoir, disk, a 16 millimeter high speed motion picture camera, supply tank, backlighting scheme, and batteries. The major functions were controlled by on-board sequence timers.

A diagram indicating the manner in which the flow system operates is shown in Figure 6. This is a pressure controlled system in which the flow was initiated by opening the solenoid valve. Prior to the drop, liquid was contained in the line between the liquid supply tank and the jet reservoir. In addition, the jet reservoir was completely filled with the test liquid.

Initially, the object was to employ two-dimensional jets during the experiments. Schach (38), was the only author who investigated two-dimensional jets, although it is impossible to determine how rectangular his jets really were. Several attempts were made to fabricate a two-dimensional nozzle (slot) for use in the zero gravity studies.

Initially, the slots built were quite crude; a rectangular hole cut in a section of plexiglass; a balsa wood jet sealed with epoxy cement. Later, slots were accurately designed in order to achieve the desired flow. The slot length was arbitrarily chosen as 5 centimetcrs and its width as 0.25 centimeters. Approximately 45° tapers were made to thi opening along both the: ide and narrow sides. The results of the zero gravity testing were as follows: The jet contracted in the long direction $\{5 \mathrm{~cm}$) and expanded in the narrow direction (0.25 cm). A tendency to become cylindrical probably due to the effects of surface tension, was observed. A redesigned version of the slot was tested, which employed absolutely no taper in the narrow direction. This also failed to yield a rectangular jet. When these approximate slot jets impinged on various flat plates, the jet diverged radially. In cther words, it was impossible to prevent spreading in the lateral direction for an unconstrained surface. Various methods were tried to eliminate this lateral spreading and to force the impingement flow to be completely two-dimensional. The flow was impinged on rectangular plates having the same width as that of the slot, 5 centimeters. The result of these tests was that the liquid simply fell off or went around the plate. A large rectangular plate was used and the region greater in width than 5 centimeters was sprayed with fluorocarbon since distilled water does not wet a fluorocarbon surface. This also failed. All attempts at using a two-dimensional slot jet were subsequently abandoned and axisymmetric jets were pursued.

A schematic drawing of the jet reservoir, which was fabricated out of acrylic plastic, is shown in Figures $7(a)$ and (b). The critical feature of the jet reservoir is the 45° taper to a circular hole of
diameter D. The range of diameters atudied was from 0.5 to 1.5 centimeters. In addition, the transition between the circular hole and conical taper was rounded smooth. The taper prohibits boundary layer buildup and allows the liquid jet to exit from the reservoir with a nearly uniform velocity prof: '.e. Based on the experimental results of reference 24, a total angle of 90° is more than sufficient to insure a uniform exiting velocity profile over the range of Reynolds numbers studied.

Sharp-edge disks, also fabricated from acrylic plastic, were mounted above the jet reservoir by means of a threaded rod such that the flat surface of the disk was at right angles to the impinging liquid jet. Sharp-edged disks were employed in the study rather than finite thickness disks in order to deveiop an analytical model for the flow. As was learned later, the thickness of the disk edge is only of importance for those flows dominated by the effects of surface tension. The diameters, 2 L , of the disks were 2.0 and 3.0 centimeters. A schematic drawing of the disks is shown in Pigure 8.
3. Test liquids. - Two test liquids were employed, anhydrous ethanol and trichlorotrifluoroethane. Their properties at $20^{\circ} \mathrm{C}$ ure listed in Table 1. No attempt was made to correct the fluid properties for temperature changes. It is noted that both of these test fluids possess a nearly 0° contact angle on an acrylic plastic surface. However, this was not the reason why they were chosen as teot fluids. They were chosen because of their relatively low viscosity and availability.
4. Test procedure. - Prior to a test run, the jet reservoir, disk and supply tanks were cleaned ultrasonically with a mild detergent.

After these parts were rinsed with methanol, they were dried in a warm air dryer. The supply tank was subsequently filled with the test liquid and the jet reservoir was filled by pressurizing the supply tank. This procedure eliminated air bubbles from the lines ensuring accurate flow rates. After the jet reservoir was completely full, the supply tank was sealed and two accumulator bottles (not shown in Fig. 5) were pressurized with gaseous nitrogen to a predetermined value. The accumilator bottles were designed to be of such a volume that no appreciable pressure drop occurred during the drop.

Electrical timers on the experiment package were set to control the inftiation and duration of all functions programmed during the drop. The experiment package was then balanced and positioned within the prebalanced drag shield. The wire support was attached to the experiment package through an access hole in the shield (see Fig. B3(a) in Appendix B). Properly sized spikes tips were installed on the drag shield. Then the drag shield, with the experiment package inside, was hoisted to the predrop position at the top of the facility (Fig. B1) and connected to an external electrical power source. The wire support was attached to the release system, and the entire assembly was suspended from the wire. After final electrical checks were made and the experiment package was switched to internal power, the system was released. After complecion of the test, the experiment package and drag shield were returned to the preparation area.
B. Experimental Results

1. General considerations. - In addition to the measurement and observation of steady state liquid flow patterns, two separate phenomena were observed. First, no circular hydraulic jump occurred during any
of the tests even though they are a common occurrence under normal gravity conditions. Secondly, the initial impact of the jet upon the solid surface provided another unusunl phenomena, that of th- reboundIng liquid droplet. At high flow rates, the jet broke up prior to impinging upon the disk. The fisst droplet tended to impinge upon and stick to the disk, spreading as it did. However, the second droplet impinged and rebounded off this wetted surface sometimes into the incoming liquid jet. This provided no serious problem with the attainment of a steady state flow pattern since this all occurred during the transient phase.

The jet generally appeared to go through three phases during the impingement process. The initial phase, including the droplet pinchoff and subsequent impingement, was termed the transient phase. After a certain period of time, a steady state flow pattern was achieved from which the free surface shapes were measured and observations were made. A third phase was reached shortly after the jet had reached its equilibrium configuration. The flow pattern developed an instability. Initially, the instability started from the jet which began to oscillate, and then spread to the plume. Since the time over which the jet and flow pattern appeared stable and smooth was finite, steady state data could be cbtained. It was observed that the time before breakdown was inversely proportional to the back pressure during the flow. At 1 psia, for example, the jet remained stable for 1.5 seconds while at 10 psi , it was stable for approximately 0.4 seconds. An attempt was made to lengthen the time over which stability occurred by packing the nozzle chamber with steel wool. This appeared to be effective in improving the overall stabili:y but had the negative
effect of introducing a low lavol portubat Ion thromghont the toss and, thus, was not employed dur lug my of tho rexperimonts.
2. Effect of nogelo hotght. - Sovaral losts woro ronducted infLably to determing the effect of H, the distance botweren the nowio. and the disk, on the rxperimental flow patitern. It was detcrmined that there is no effect on the liquid flow provided wht the ratio of the nozzle height H to the fet diancter is greater than 3 . As a result, all zero gravity experiments were conducted in order to eliminate fifs effect. This fact, which was determined experimentally, supports the argument made in Section III, Order of Magnitude Analysis, concerring the assertion that H could not be a scale factor for the axial coordinate.
3. Steady state flow patterns. - The approximate steady state flows for three different jet velocities are shown photographically in Figure 9. The direction of flow of the liqiid jet is vertically upwards. The threaded rod and bolt observed in the film clips is the disk holder which connects the sharp-edged disk assembly to the rig frame. The jet velocity increases from left to right in the figure. Three distinct classifications of flow patterns were observed to occur and are shown labeled in Figure 9 as surface tension flow, transition flow, and inertia flow. Surface tension flow (Fig. 9(a)) is defined as that flow in which the liquid flows completely around the disk with no separation occurring from the disk edge. In transition flow (Fig. 9(b)), surface tensfua and inertia forces are both importall. Transition flow is defined as flow in which separation occurs from the disk and the resulting lifuid sheet efther collects upon itaelf forming an envelope or has the tendency to do so. Jnertia flow (Fig. 9(0))
is defined as that fiow in which the liguld nejanates from the disk with no liquid turnting towards the fot centerdsue atompting torm an anvelope. The flow patiorn shown for transition flow fa mot rally the steady atate flow patern one would expect if mondy fitatr eondt. thons could lave boon reachod. flar roason for this is ats follows: Some liquid ta always raveling toward the disk from the point at whic:i the envelope meets. This liquid flow strikes the bark of the baffle and subsequently disrupts the inftially formed envelope. The recirculation flow then is a strong function of the geometry of the disk holder, an uncontrollable parameter. This important distitiction means that an analysis for free surface shapes would have to account for the geumetry of the disk holder in the transition region. The surface tension flow is generally slow ansl, as a result, does not quite reach a steady state configuration on the back side of the disk. The inertia flow tests (represented by Fig. $9(\mathrm{c})$) always reached steady state.

The experimental tests were conducted in the inviscid region of Figure 4. Depending on the particular ratio of ($\mathrm{K}_{\mathrm{o}} / \mathrm{L}$), there exists a minimum Reynolds number below which the runs can no longer be considered as viscous-free. The experimental results are listed in tabular form in Table 2 in which all the important parameters as well as the flow classifications are contained. One additional parameter, the Weber number, is listed in Table 1 . As will be shown in the next ection, when the Reynolds rumiber is no longer a parameter to consider for flow classifications, the Weber number and ritio (R_{0} / L_{0}) remain. The : fer number $\rho \mathrm{v}^{2} \mathrm{R}_{\mathrm{o}} / \sigma$, it basically the ratio of inertia to burface tension forces. In the flow category colum, S indteatea
surface tension flow, T indicates transition flow, and I is inertia flow. Finally, it is noted that the designated flow classification for some cases, particularly those bordering transition or inertia flow, could easily fit ints either category.
4. Zero gravity results. - The data contained in Tabje 2 is shown graphically in Figure 10. The Lines indicated in the figure were faired in by hand and sep.urate the various flow classifications. It is observed that at any particular value of the ratio $\left(R_{0} / L\right)$, the flow classification is dependent only on the system Weber number. Two critical Weber numbers occur at a constant value of $\left(R_{0} / L\right)$. The lowest critical Weber number separates the surface tension flow from the transition flow while the higher critical Weber number separates the transition flow from the inertia flow. In addition, the critical Weber number between regimes was found to decrease as (R_{0} / L) was increased.

V. POTIENTIAL. FORMUI,ATION

A. Governing Equations and Boundary Conditions in Physical

Plane Including Surface Tension
In Section III, Order of Magnitude Analysis, it was shown that at any particular value of R_{o} / L if $R e>R_{c r}$ the flow in the regics of the disk cin be considered as viscous free. It is further assumed that the jet will continue to remain viscous free after leaving the disk. There will be no shear stress between the exiting radial jet and the ambient air surrounding it.

1. General formulation. - Consider the flow of a circular liquid jet impinging normally on a circular disk as shown in Figure 11. R_{0} is the jet radius, L is the disk radius, and H is the distance between the jet reservoir and the disk. The incoming jet velocity is given as V and the initial velocity profile is assumed to be uniform. There will be two free surfaces involved. The upper free surface is defined as $z_{s}=f_{1}(r)$ and the lower surface as $z_{s}=f_{2}(r)$. In addition, a third surface is required for the complete formulation of the houndary value problen. Initially, this surface was chosen as the straight line FE shown in Figure 11. However, this .roved to be inconvenient since FE is arbitrary and, thus, has no known boundary condition. It was found convenient to instead choose the surface $z=f_{3}(r)$ to be a surface along which the velocity potential is constant. Varions points in the physical plane have been designated with lotters rath: ing: from A to (for convenienee. In cylindrical coordinates. the governing:
equations and boundary conditions in terms of prinary variables (u,v) are given as follows:

Continuity:

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}(r u)+\frac{\partial v}{\partial z}=0 \tag{38}
\end{equation*}
$$

Momentum:
r Component:
$\rho\left(u \frac{\partial u}{\partial r}+v \frac{\partial u}{\partial z}\right)=-\frac{\partial p}{\partial r}$
z Component:

$$
\begin{equation*}
\rho\left(u \frac{\partial v}{\partial r}+v \frac{\partial v}{\partial z}\right)=-\frac{\partial p}{\partial z} \tag{40}
\end{equation*}
$$

The following bouncary conditions are applied,
On DC
$\mathrm{v}-\mathrm{O}$ on $\quad=0,0 \leq r \leq \mathrm{L}$
On $A B$
$u=0 \quad 0 \leq r \leq R_{0}, z=H$
On BC
$\frac{\partial V}{\partial r}=0 \quad T=0,0<z \leq H$
On AG
$\frac{1}{2}\left(u^{2}+v^{2}\right)-\frac{\sigma}{\rho r} \frac{d}{d r}\left(-\frac{r f^{\prime}}{\sqrt{1+f_{1}^{2}}}\right)=\frac{1}{2} v^{2}-\frac{\sigma}{\rho R_{o}} \quad$ on $\quad z_{s}=f_{1}(r)$

And

$$
\begin{align*}
& -u f_{1}^{\prime}+v=0 \quad \text { on } \quad z_{s}=f_{l}(r) \\
& O n \quad D E \\
& \frac{1}{2}\left(u^{2}+v^{2}\right)-\frac{\sigma}{\rho r} \frac{d}{d r}\left(-\frac{r f_{2}^{\prime}}{\sqrt{1+f_{2}^{\prime ?}}}\right)=\frac{1}{2} v^{2}-\frac{\sigma}{\rho R_{0}} \quad \text { on } \quad \%_{s}=r_{2}(r) \tag{46}
\end{align*}
$$

And

$$
\begin{equation*}
-u f_{2}^{\prime}+v=0 \quad \text { on } \quad z_{s}=f_{2}(r) \tag{47}
\end{equation*}
$$

On GE
$u+v f_{3}^{\prime}(r)=0 \quad$ on $z=f_{3}(r)$
The derivation for the boundary condition along GE is as follows. Along GE, the velocity potential ϕ is constant. By definition, the velocity vector $\dot{\nabla}$ is normal to an equipotential surface. This means that

$$
\begin{equation*}
\vec{\nabla} \times \hat{n}=0 \quad \text { on } \quad z=f_{3}(r) \tag{49}
\end{equation*}
$$

The unit normal to $f_{3}(r)$ is
where \hat{i} is the unit vector in the radial direction and \hat{j} is the unit vector in the axial direction, and

$$
\begin{equation*}
\vec{v}=u \hat{i}+v \hat{j} \tag{51}
\end{equation*}
$$

Application of equation (49) results in

$$
\begin{equation*}
\frac{u+v f_{3}^{\prime}(r)}{\sqrt{f_{3}^{\prime 2} \div 1}}=0 \tag{52}
\end{equation*}
$$

From which equation (48) follows.
2. Introduction of Stokes Stream Function. - The primary variables contained in the governing equationd are the scaler velocity components u and v. The fact that two functions are required to describe one vector field is cumbersome. As shown in the theory of hydrodynamics, the number of functions can be reduced for several important cases, one of these being axisymmetric flow. A function ψ, defined as Stokes stream function, can be introduced which automatically satisfies
the continuity equation. With the additional requirement of irrotationality, the governing equation in terms of Stokes stream function will result. According to Chan (7), Stokes stream function is a mathcmatical device used to describe the flow and has the following properties. First, when the stream functio: is set equal to a constant, it results in different annular stream surfaces in axisymmetric flow. Secondly, when it is differentiated properly, it yields the velocity components. Thirdiy, taking the difference between the values at two adjacent stream surfaces yields the flow rate.

Starting with equation (38), the continuity equation for axisymmetric flow, a guess is made at what u and v are in order to satisfy continuity identically. Assume

$$
\begin{equation*}
u=-\frac{1}{r} \frac{\partial \psi}{\partial z} \tag{53}
\end{equation*}
$$

And

$$
\begin{equation*}
v=\frac{1}{r} \frac{\partial \psi}{\partial r} \tag{54}
\end{equation*}
$$

Substitution of equations (53) and (54) into equation (38) shows that continuity is identically satisfied by these two gues.es. In addition, the assumption is made that the flow is also irrotational. As a result

$$
\begin{equation*}
\text { Cur1 } \vec{v}=0 \tag{55}
\end{equation*}
$$

For axisymmetric flow, this can be written,

$$
\begin{equation*}
\frac{\partial u}{\partial z}-\frac{\partial v}{\partial r}=0 \tag{56}
\end{equation*}
$$

Replacing u and v in the above by their relationships to pesilts in the governing equation for axisymmetric flow in l:rms of stokes stram tunction

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial z^{2}}-\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{\partial^{2} \psi}{\partial x^{2}}=0 \tag{57}
\end{equation*}
$$

3. Derivation of boundary conditions in terms of ψ. - Since $B C$, $C D$, and $D E$ are all a part of the same streariline, they must all have the same value for Stokes stream function. Let us arbitrarily set that value equal to zero. The value of ψ alon: $A B$ and $A G$ can be calculated from equation (54).

$$
\text { On } \quad A B
$$

$$
\begin{equation*}
-v=\frac{1}{r} \frac{\partial \psi}{\partial r} \tag{58}
\end{equation*}
$$

Integrating this yields

$$
\begin{equation*}
\psi=-\frac{\mathrm{Vr}^{2}}{2} \tag{59}
\end{equation*}
$$

On AG since $A G$ is a line of constant ψ,
$\psi=-\frac{V R_{o}^{2}}{2}$
In addition, equation (44) applies. Substitution of equation (53) and (54) into (44) yields

$$
\begin{equation*}
\frac{1}{2 r^{2}}\left[\left(\frac{\partial \psi}{\partial z}\right)^{2}+\left(\frac{\partial \psi}{\partial r}\right)^{2}\right]-\frac{\sigma}{\rho r} \frac{d}{d r}\left(\frac{r f^{\prime}}{\sqrt{1+f_{1}^{\prime 2}}}\right)=\frac{1}{2} v^{2}-\frac{\sigma}{\rho R_{0}} \quad \text { on } \quad z_{s}=f_{1}(r) \tag{61}
\end{equation*}
$$

On DE
$\frac{1}{2 r^{2}}\left[\left(\frac{\partial \psi}{\partial z}\right)^{2}+\left(\frac{\partial \psi}{\partial r}\right)^{2}\right]-\frac{\sigma}{\rho r} \frac{d}{d r}\left(\frac{r f_{2}^{\prime}}{\sqrt{1+f_{2}^{2}}}\right)=\frac{1}{2} v^{2}-\frac{\sigma}{\rho R_{0}} \quad$ on $\quad z_{s}=f_{2}(r)$

It is noted that the second boundary conditions on the free surfaces, namely $-u f_{1}^{\prime}+v=0$ and $-u f_{2}^{\prime}+v=0$, are fully equivalent to the specification of the value of Stokes stream function along that
surface. Since $\psi=\psi(r, 2)$, it car be expanded and $d \psi$ set equal to zero along $A G$ and ED.

On GE, equation (48) becomes
$-\frac{\partial \psi}{\partial z}+\frac{\partial \psi}{\partial r} f_{3}^{\prime}(r)=0 \quad$ on $z=f_{3}(r)$
4. Nondimensionalization of governing equations and boundary conditions in physical plane. - The governing equation in terms of Stokes stream function (eq. (57)) and the boundary conditions (eqs. (58) to (63)) are now put into dimensionless form by introducing arbitrary scale factors. Let the scaie factor for the stream function be $-V R_{o}^{2}$. Let dimensionless quantities be represented by stars, i.e., ψ^{*} is dimensionless. The results of this manipulation are shown in Figure 12. Three parameters appear in the specification of boundary conditions. They include the Weber number, We, and the dimensionless length ratios L / R_{0} and H / R_{0}. Recalling the arguments in the Order ó Magnitude Analysis section, H / R_{0} is not really a parameter provided it is larger than some minimum value. The dimensionless velocity components can be calculated from the following expressions

$$
\begin{align*}
& \frac{u}{V}=\frac{1}{r^{*}} \frac{\partial \psi^{*}}{\partial z^{*}} \tag{64}\\
& \frac{v}{V}=-\frac{1}{r^{*}} \frac{\partial \psi^{*}}{\partial r^{*}} \tag{65}
\end{align*}
$$

The procedure for solution of the boundary value problem as set up in dimensionless form in the physical plane (Fig. 12) would be as follows: Initially, realistic variations for $f_{1}^{*}(r), f_{2}^{*}(r)$, and $f_{3}^{*}(r)$ are assumed. Using only one of the two given boundary conditions on AG and GE (i.e., $\psi^{*} 1 / 2$ and $\psi^{*}=0$) solve for ψ^{*} using finite difference methods. With the initial solution for ψ^{*} check the va-

1idity of the second of the two boundary conditions on ΛG and $G F$. If the boundary conditions are not satisfied, new variations in fi, f_{2}^{*}, and f_{3}^{*} must be assumed. A second iteration to ψ^{*} must be obtained and so on. One of the serious drawbacks of this outlined iteration scheme is the lack of knowledge concerning how to update assumed values of f_{1}^{*}, f_{2}^{*}, and f_{3}^{*} based on previous solutions. In other words, there is no logical way in which to make changes to the shape of the initially assumed control volume.
5. Surface tension dominated model. - For Weber numbers between 5 and 30 (depending on the ratir, R_{0} / L), experimental data shows that the resulting steady-state flow pattern is surface tension dominated (see Fig. 9(a)). By previous definition, surface tension flow is defined as that flow in which the liquid flows completely around the disk with no separation from the edge. It is the intent to model this flow in order to solve for the theoretical free surface shapes and velocity profiles. Assuming axisymmetry, the physical plane model is shown in Figure 13. In the model, at some cross-section far downstream, the flow is assumed to approach the initially uniform flow it possessed at $A B$. The exiting plane is denoted by $G E$ in the model. C and C^{\prime} are both located at $r=0,2=0, C$ is located on top of the plate while C^{\prime} is on the bottom. The free surface $f_{1}(r)$, is not assumed to possess mirror symmetry about the $z=0$ position. In cylindrical coordinates, the governing equations and boundary conditions in terms of the primary variables (u, v) are given as follows: Continuity:

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}(r u)+\frac{\partial v}{\partial z}=0 \tag{66}
\end{equation*}
$$

Momentum:
r Component:
$\rho\left(u \frac{\partial u}{\partial r}+v \frac{\partial u}{\partial z}\right)=-\frac{\partial p}{\partial r}$
z Component
$\rho\left(u \frac{\partial v}{\partial r}+v \frac{\partial v}{\partial z}\right)=-\frac{\partial p}{\partial z}$
The following boundary conditions are applied
On DC
$v=0 \quad$ on $z=0,0 \leq r \leq L$
On DC'
$v=0 \quad$ on $\quad z=0,0 \leq r \leq L$
On $A B$
$u=0 \quad 0 \leq r \leq R_{0}, z=H$
On BC
$\frac{\partial v}{\partial r}=0 \quad$ on $\quad r=0,0<z \leq H$
On $C^{\prime} E$
$\frac{\partial v}{\partial r}=0 \quad$ on $r=0,-H \leq z<0$
On GE
$u=0 \quad 0 \leq r \leq R_{0}, z=-H$
On AG
$\frac{1}{2}\left(u^{2}+v^{2}\right)-\frac{\sigma}{\rho r} \frac{d}{d r}\left(\frac{r f_{1}^{\prime}}{\sqrt{1+f_{1}^{2}}}\right)=\frac{1}{2} v^{2}-\frac{\sigma}{\rho R_{0}} \quad$ on $\quad z_{s}=f_{1}(r)$
and

$$
\begin{equation*}
-u f_{1}^{\prime}+v=0 \quad \text { on } \quad z_{s}=f_{1}(x) \tag{76}
\end{equation*}
$$

Equations (75) and (76) represent two distinct pieces of information concerning $z_{s}=f_{1}(r)$. It is noted that f_{1}^{\prime} can be eliminated from
the set of equations by means of simple substitution. This fact will have implications later in the development luading to a major aimplification. The following expression would result,
$\frac{1}{2}\left(u^{2}+v^{2}\right)-\frac{\sigma}{\rho r} \frac{d}{d r}\left(\frac{r}{\sqrt{\frac{u^{2}}{v^{2}}+1}}\right)=\frac{1}{2} v^{2}-\frac{\sigma}{\rho R_{o}} \quad$ on $\quad z_{s}=f_{1}(r)$
Direct substitution of equations (53) and (54), the relations between the velocity components and Stokes stream function, into the governing equation and boundary conditions for the surface tension model results in the formulation shown in Figure 14 after nondimensionalization. Similar to the general formulation in the last section, the various lengths in the problem are scaled with respect to R_{o} and the scale factor for Stokes stream function is $-V R_{0}^{2}$.

B. Inverse Plane Formulations

The procedure for solving for the free surface shapes in the physical plane has been outlined previously. The difficulties encountered when making adjustments to the free surfaces between iterations and the lack of a logical manner in which to make the adjustments have been cited. This would be a time consuming task even in the absence of surface tension. A comsuterized scheme is sought which offers the possibility of achieving the free-surface results with a minimum of computer iteration time and user interaction.

1. Transformation formulas. - An alternate approach to the physical plane solution is discussed in detail by Jeppson (19). In his article, Jeppson discusses a transformation technique into what is defined as the inverse plane. The coordinate axes in the inverse plane are the velocity potential and Stokes stream function \downarrow. The ad-
vantage to using the $\phi \psi$ space, or inverse plane, is that the free surface lies along a line of constant ψ and $i s$, therefore, at a known position. Of course, one must pay the price for knowing the position of the free surface. As will be shown shortly, the governing equation is no longer linear as it was in the physical plane.
2. Introduction of velocity potential. - The use of a scalor function defined as the velocity potential has been used previousiy in the specification of the boundary $G E$ (the exiting plane). The continuity equation for steady incimpressible axisymmetric flow is given by equation (38). The flow is also assumed to be irrotational such that the condition given by equation (56) is also valid. Equation (56) implies that there exists a scaler potential function ϕ such that

$$
\begin{equation*}
\vec{V}=\operatorname{grad} \phi \tag{78}
\end{equation*}
$$

from which it follows

$$
\begin{equation*}
\mathbf{u}=\frac{\partial \phi}{\partial \mathbf{r}} \tag{79}
\end{equation*}
$$

and

$$
\begin{equation*}
v=\frac{\partial \phi}{\partial z} \tag{80}
\end{equation*}
$$

Substitution of equations (79) and (80) yields the governing equation for steady axisymmetric flow in terms of the velocity potential

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial z^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{\partial^{2} \phi}{\partial r^{2}}=0 \tag{81}
\end{equation*}
$$

3. Relationship between ψ and Φ. It can now be stated that the relationships between the velocity potential and Stokes's stream function are given as:

$$
\begin{equation*}
u=\frac{\partial \phi}{\partial r}=-\frac{1}{r} \frac{\partial \psi}{\partial z} \tag{82}
\end{equation*}
$$

and
$v=\frac{\partial \phi}{\partial z}=\frac{1}{r} \frac{\partial \psi}{\partial r}$
4. Inverse plane formulation. - In order to formulate the problem in the phystical plane, r and z must be known as functions of ψ and ϕ. In other word.3, we are attempting to reverse the roles of the dependent and independent variables in the inverse plane. The requirud relationships are obtained noting that if $\psi=\psi(r, z)$ and $\phi=\phi(r, z)$, then there exist inverse functions $r=r(\phi, \psi)$ and $z=r(\phi, \psi)$ as shown in reference 13 such that

$$
\begin{align*}
& \frac{\partial r}{\partial \phi}=-\frac{1}{J} \frac{\partial \psi}{\partial z} \tag{84}\\
& \frac{\partial z}{\partial \psi}=-\frac{1}{J} \frac{\partial \phi}{\partial r} \tag{85}\\
& \frac{\partial z}{\partial \phi}=\frac{1}{J} \frac{\partial \psi}{\partial r} \tag{86}\\
& \frac{\partial r}{\partial \psi}=\frac{1}{J} \frac{\partial \phi}{\partial z} \tag{87}
\end{align*}
$$

and where the Jacobian J is defined as

$$
J=\left|\begin{array}{ll}
\frac{\partial \phi}{\partial r} & \frac{\partial \phi}{\partial z} \tag{88}\\
\frac{\partial \psi}{\partial r} & \frac{\partial \psi}{\partial z}
\end{array}\right|=\left(\frac{\partial \psi}{\partial r}\right)\left(\frac{\partial \psi}{\partial z}\right)-\left(\frac{\partial \phi}{\partial z}\right)\left(\frac{\partial \psi}{\partial r}\right)
$$

From the above set of equations follow two important relations. Substituting into equation (82) the values of $\partial \phi / \partial r$ and $\partial \psi / \partial z$ obtained from equations (84) and (85) yields

$$
\begin{equation*}
\frac{\partial z}{\partial \psi}=-\frac{1}{r} \frac{\partial r}{\partial \phi} \tag{89}
\end{equation*}
$$

Similarly, substitution of the values of $\partial \phi / \partial z$ and $w / a r$ from equations (86) and (87) into equation (83) yields

$$
\begin{equation*}
\frac{\partial \mathbf{r}}{\partial \psi}=\frac{1}{\mathbf{r}} \frac{\partial z}{\partial \psi} \tag{90}
\end{equation*}
$$

For mubsequent relations, it is necesmary to express the Jacobian In terms of the inverse function $r(\psi, \psi)$ and $z(\psi, \phi)$. Substituting equations (84) to (87) into equation (88) resultis in

$$
\begin{equation*}
J=J^{2}\left[\left(\frac{\partial \pi}{\partial \psi}\right)\left(\frac{\partial r}{\partial \phi}\right)-\left(\frac{\partial r}{\partial \psi}\right)\left(\frac{\partial \sigma}{\partial \phi}\right)\right] \tag{91}
\end{equation*}
$$

Now, using equations (89) and (90) in the above yields,

$$
\begin{equation*}
J=-\frac{1}{r\left[\left(\frac{\partial z}{\partial \psi}\right)^{2}+\left(\frac{\partial r}{\partial \psi}\right)^{2}\right]}=-\frac{r}{\left(\frac{\partial r}{\partial \phi}\right)^{2}+\left(\frac{\partial z}{\partial \phi}\right)^{2}} \tag{92}
\end{equation*}
$$

5. Governing equations for inverse functions. - Differentiating
equation (89) with respect to ψ yields

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial \psi^{2}}=-\frac{1}{r} \frac{\partial^{2} r}{\partial \psi} \partial \phi+\frac{1}{r^{2}} \frac{\partial r}{\partial \psi} \frac{\partial r}{\partial \phi} \tag{93}
\end{equation*}
$$

and combining this with the derivatives of equation (90) with respect to ϕ, which is

$$
\begin{equation*}
\frac{\partial^{2} r}{\partial \phi}=-\frac{1}{\partial \psi}\left(\frac{\partial r}{\partial \phi}\right)\left(\frac{\partial z}{\partial \phi}\right)+\frac{1}{r} \frac{\partial^{2} z}{\partial \phi^{2}} \tag{94}
\end{equation*}
$$

it is found that

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial \psi^{2}}=\frac{1}{r^{3}} \frac{\partial r}{\partial \phi} \frac{\partial z}{\partial \phi}-\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \phi^{2}}+\frac{1}{r^{2}} \frac{\partial r}{\partial \phi} \frac{\partial r}{\partial \psi} \tag{95}
\end{equation*}
$$

By using equations (89) and (90), the terms involving derivatives In equation (95) can be expressed entirely in terms of 2 , giving the important equation,

$$
\begin{equation*}
r^{2} \frac{\partial^{2} z}{\partial \psi^{2}}+\frac{\partial^{2} z}{\partial \phi^{2}}=-2 \frac{\partial z}{\partial \psi} \frac{\partial z}{\partial \phi} \tag{96}
\end{equation*}
$$

On the other hand, differentiating equation (89) with respect to ϕ and equation (90) with respect to ψ and combining the result leads to the equation

$$
\begin{equation*}
\frac{\partial^{2} r}{\partial \psi^{2}}=-\frac{1}{r^{2}} \frac{\partial^{2} r}{\partial \phi^{2}}+\frac{1}{r^{3}}\left(\frac{\partial r}{\partial \phi}\right)^{2}-\frac{1}{r^{2}} \frac{\partial r}{\partial \psi} \frac{\partial z}{\partial \phi} \tag{97}
\end{equation*}
$$

 for $r(\phi, \psi)$ la obtalmed:

$$
\begin{equation*}
\frac{\partial^{2} r}{\partial \psi^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} r}{\partial \phi^{2}}-\frac{1}{r}\left(\frac{\partial r}{\partial \phi}\right)^{2}+\frac{1}{r}\left(\frac{\partial r}{\partial \psi}\right)^{2}=0 \tag{94}
\end{equation*}
$$

For further discussion, equation (96) wlll be rofirres te at the 2 equation while equation (98) will be called the r equation. soth of these equations are nonlinear with the nonlinearity in the z equation also involving r. It is further noted that both of these equations are of the elliptic type, as shown in reference 19. This means that boundary conditions are required for all boundaries in the flow region. Since the r equation (eq. (98)) only involves that variable, a solution to the problem begins with its solution.

One final point involves the fact that the variables discussed in the above inverse transformations are all dimensional. It is noted that nondimensionalization of the above equations similar to the nondimensionalization done in the physical planc allows us to recover the same equation.

Let

$$
\left.\begin{array}{ll}
z^{*}=\frac{2}{z_{0}} & \text { where } z_{0}=R_{0} \tag{94}\\
r^{*}=\frac{r}{r_{0}} & \text { where } r_{0}=R_{0} \\
\psi^{*}=\frac{\psi}{\phi_{0}} & \text { where } \psi_{0}=-V R_{0}^{2} \\
\psi^{*}=\psi_{0} & \text { where } \phi_{0}=\cdots V R_{0}
\end{array}\right\}
$$

The results of this substitution yields exactly the same governing equations and transformation formulas in starred notation. In other words,

$$
\begin{equation*}
r^{*} 2 \frac{\partial^{2} z^{*}}{\partial \psi^{*}}+\frac{\partial^{2} z^{*}}{\partial \phi^{2}}=-2 \frac{\partial z^{*}}{\partial \psi^{*}} \frac{\partial z^{*}}{\partial \phi^{*}} \tag{100a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} r *}{\partial \psi^{*^{2}}}+\frac{1}{r^{*}} \frac{\partial^{2} r \star}{\partial \phi^{*}}-\frac{1}{r^{*}}{ }^{3}\left(\frac{\partial r^{*}}{\partial \phi^{*}}\right)^{2}+\frac{1}{r^{*}}\left(\frac{\partial r^{*}}{\partial \psi^{*}}\right)^{2}=0 \tag{100b}
\end{equation*}
$$

6. Infinite flat plate excluding surface tension. - The first problem to be examined in which we employ the inverse transformation is the flow of a circular liquid jet normal to a flat plate. At this point, we drop the starred notation to designate dimensionless quantities. It is assumed that all quantities appearing henceforth are dimensionless unless otherwise stated (i.e., r, z, ψ, ϕ, are now dimensionless). For the case in which surface tension is excluded, the physical plane model lepicted in Figure 12 must necessarily change. The model in Figure 12 is for the general case of a finite disk in which surface tension effects are important. For the case of an infinite flat plate, since the free surface $E D$ no longer exists, the designation D does not appear in the model. Furthermore, for the case in which surface tension forces are unimportant, the boundary conCition along the upper surface (referring to Fig. 12) can be written as follows:

> On AG

$$
\begin{equation*}
\frac{1}{\mathbf{r}^{2}}\left[\left(\frac{\partial \psi}{\partial z}\right)^{2}+\left(\frac{\partial \psi}{\partial r}\right)^{2}\right]=1 \tag{101}
\end{equation*}
$$

This expression is obtained by allowing the Weber number to approach

Infinity. The reasoning for letting the Weber number become large is because it ts the ratio of inertial to surface tension forces. The rase we aite examining is one in which the surface tension forces become vantshingly small or the inertial forces becoming large. Finally, the boundary GE will be nearly vertical implying that the velocity there is purely radial.
7. Derivation of boundary conditions in inverse plane for r
formulation.
On AB
$\left.\begin{array}{l}\text { In the physical plane, } \psi=\frac{1}{2} \mathrm{r}^{2} \\ \text { In the inverse plane, } \mathrm{r}=-\sqrt{2 \psi}\end{array}\right\}$
On BC
$\left.\begin{array}{l}\text { In the physicai plane, } \psi=0 \\ \text { In the inverse plane, } r=0\end{array}\right\}$
On EC
In the physical plane, $\psi=0$
Also $v=0$, by equation (83) this implies that $\frac{\partial \phi}{\partial z}$ an $\frac{\partial \psi}{\partial r}=\Omega$.
In the inverse plane (via eq. (87)), $\frac{\partial r}{\partial \psi}=0$
On GE
$\left.\begin{array}{l}\text { In the physical plane, } \frac{\partial \psi}{\partial r}=0 \\ \text { In the inverse plane, } \frac{\partial r}{\partial \psi}=0\end{array}\right\}$
On AG
In the physical plane, $-\frac{1}{r^{2}}\left[\left(\frac{\partial \psi}{\partial z}\right)^{2}+\left(\frac{\partial \psi}{\partial r}\right)^{2}\right]=1$

In the inverse plane, using equations (82) and (83), this becomes

$$
\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial z}\right)^{2}=1
$$

and upon using relations (85) and (87)

$$
J^{2}\left[\left(\frac{\partial z}{\partial \psi}\right)^{2}+\left(\frac{\partial r}{\partial \psi}\right)^{2}\right]=1
$$

Substituting in for J^{2} from equation (92) and then using (89)
and (90) yields the final form

$$
\begin{equation*}
\left(\frac{\partial r}{\partial \phi}\right)^{2}+r^{2}\left(\frac{\partial r}{\partial \psi}\right)^{2}=1 \tag{106}
\end{equation*}
$$

The results of the above calculations are shown in Figure 15 (a) in the Inverse plane. For the case of flow normal to an infinite flat plate, the r values can now be completely found once we solve the nonlinear governing equation. The variable z does not appear anywhere in the formulation. In addition, the boundary conditions for the z formulation were also derived and are indicated in Figure 15(b). It follows that the z solution car: ot be obtained until after r values are known since the r values are required on the free surface boundary and within the interior flow. The boundary conditions for the z formulation were derived as follows:
8. Derivation of boundary conditions in inverse plane for 2

formulation.

On $A B$
In the physical plane, $u=0$ which implies $\frac{\partial \phi}{\partial r}=0$
From equation (85), $\frac{\partial z}{\partial \psi}=0$
(107)

This implies that $z=z(\phi)$ alone and since
$A B$ is a line of constant ϕ,
in the inverse plane $z_{2}=$ constant

On BC
$\left.\begin{array}{l}\text { In physical plane, } u=0 \\ \text { From which it follows, in the inverse plane } \frac{\partial z}{\partial \psi}=0\end{array}\right\}$
On EC
$\left.\begin{array}{l}\text { In physical plane } \psi=0 \\ \text { In inverse plane } z=0\end{array}\right\}$
On GE
In physical plane, $v=0$
From equation (83), it follows that $\frac{\partial \psi}{\partial r}=0$
and Irom equation (86), we have in the inverse plane $\frac{\partial z}{\partial \phi}=0$
in $A G$
In the physical plane $\frac{1}{r^{2}}\left[\left(\frac{\partial \psi}{\partial z}\right)^{2}+\left(\frac{\partial \psi}{\partial r}\right)^{2}\right]=1$
In the inverse plane we can take over the equivalent ex-

$$
\begin{equation*}
\text { pression given by equation (106) } \left.\left(\frac{\partial r}{\partial \phi}\right)^{2}+r^{2}\left(\frac{\partial r}{\partial \psi}\right)^{2}=1\right\} \tag{111}
\end{equation*}
$$

Using enuations (89) and (90) to eliminate the derivative

$$
\text { involving } r \text { results in } r^{2}\left(\frac{\partial z}{\partial \psi}\right)^{2}+\left(\frac{\partial z}{\partial \phi}\right)^{2}=1
$$

9. Finite plate excluding suriace tension. - A second problem to be formulated is concerned with the impingement of a circular liquid jet normal to a disk of finite width. For the case in which surface tension effects are neglected, the model depicted in Figure 12 will vary only slightly. The only difference being that the boundary conditlons along the top and bottom free surfaces are now expressed as

$$
\frac{1}{r^{2}}\left[\left(\frac{\partial \psi}{\partial z}\right)^{2}+\left(\frac{\partial \psi}{\partial r}\right)^{2}\right]=1
$$

The r formulation in the inverse plane is shown in Figure 16(a). The only boundary condition that bears some explanation is that along GE, the exiting plane in the physical plane, from Figure 12,

$$
\begin{equation*}
\frac{\partial \psi}{\partial z}-\frac{\partial \psi}{\partial r} f_{3}^{r}=0 \tag{112}
\end{equation*}
$$

Using eçuations (84) and (86) this can be written

$$
\begin{equation*}
\frac{\partial r}{\partial \phi}+\frac{\partial z}{\partial \phi} f_{3}^{\prime}=0 \tag{113}
\end{equation*}
$$

Finally, using equation (90) to eliminate $\partial z / \partial \phi$,

$$
\begin{equation*}
\frac{\partial r}{\partial \phi} \cdot r \mathbf{r} \frac{\partial r}{\partial \psi} f_{3}^{\prime}=0 \tag{114}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial r}{\partial \phi}+r\left(\frac{\partial r}{\partial \psi}\right)\left(\frac{d z}{d r}\right)=0 \tag{115}
\end{equation*}
$$

The 2 formulation in the inverse plane is shown in Figuie 16(b). Here again, only the boundary condition along GE bears some explanation. Continuing with equation (115) and using equations (89) and (90) we obtain

$$
\begin{equation*}
r\left(\frac{\partial z}{\partial \psi}\right)-\left(\frac{\partial z}{\partial \phi}\right)\left(\frac{d z}{d r}\right)=0 \tag{116}
\end{equation*}
$$

The formulation of the problem of flow of a circular liquid jet normal to a finite disk in the inverse plane is now complete. The r solution (Fig. 16(a)) can no longer be obtained independent of the 2 solution due to the exiting jet boundary condition. Thus, the problem will necessitate a simultaneous solution of two partial differential equations of the nonlinear elliptic type.
10. Finite plate including surface tension. - A third problem that is formulated but not solved due to the complexity of applying it to a
real system involves the normal impingement to a finite disk in which both surface tension and inertial forces are important, These would include all the flows experimentally labeled as transition flows. Thfs represents a complete inverse formulation for the exact physical model represented in Figure 12. The results of the inverse formulation for the r solution are shown in Figure 17. The way in which the inverse boundary conditions along the free surface were derived will be made more clear in the next section.

11. Surface tension dominated mode1 - finite plate. - The final

 problem to be examined involves the surface tension dominated flow, described in Figure 14. The inverse plane formulation for the r solution is indicated in Figure 18(a). The boundary conditions are the same as derived previously with the exception of the free surface boundary. Along AG in the physical plane,$$
\begin{equation*}
\frac{1}{2 r^{2}}\left[\left(\frac{\partial \psi}{\partial z}\right)^{2}+\left(\frac{\partial \psi}{\partial r}\right)^{2}\right]-\frac{1}{W e} \frac{1}{r} \frac{d}{d r}\left[-\frac{r}{\sqrt{\left(\frac{\partial \psi / \partial z}{\partial \psi / \partial r}\right)^{2}+1}}\right]=\frac{1}{2}-\frac{i}{W e} \tag{117}
\end{equation*}
$$

In the derivation of equation (106), it was shown that

$$
\begin{equation*}
\frac{1}{r^{2}}\left[\left(\frac{\partial \psi}{\partial z}\right)^{2}+\left(\frac{\partial \psi}{\partial r}\right)^{2}\right]=\frac{1}{\left(\frac{\partial r}{\partial \phi}\right)^{2}+r^{2}\left(\frac{\partial r}{\partial \psi}\right)^{2}} \tag{118}
\end{equation*}
$$

In addition, using equations (84) and (86),

$$
\begin{equation*}
\left(\frac{\frac{\partial \psi}{\partial z}}{\frac{\partial \psi}{\partial r}}\right)^{2}=\frac{1}{r^{2}}\left(\frac{\frac{\partial r}{\partial \phi}}{\frac{\partial r}{\partial \psi}}\right)^{2} \tag{119}
\end{equation*}
$$

Therefore, the inverse boundary condition along ΛG becomes

$$
\begin{equation*}
\frac{1}{2} \frac{1}{\left(\frac{\partial r}{\partial \phi}\right)^{2}+r^{2}\left(\frac{\partial r}{\partial \psi}\right)^{2}}-\frac{1}{W e} \frac{1}{r} \frac{d}{d r}\left[\frac{r}{\left.\left.\sqrt{\frac{1}{r^{2}\left(\frac{\partial r / \partial \phi}{\partial r / \partial \psi}\right)^{2}+1}}\right]=\frac{1}{2}-\frac{1}{W e} .\right]}\right. \tag{1.20}
\end{equation*}
$$

which can be written

$$
\begin{equation*}
\frac{1}{2} \frac{1}{\left(\frac{\partial r}{\partial \phi}\right)^{2}+r^{2}\left(\frac{\partial r}{\partial \psi}\right)^{2}}-\frac{1}{W e} \frac{1}{r} \frac{d}{d r}\left[\frac{r^{2}}{\sqrt{\left(\frac{\partial r / \partial \phi}{\partial r / \partial \psi}\right)^{2}+r^{2}}}\right]=\frac{1}{2}-\frac{1}{w e} \tag{121}
\end{equation*}
$$

Multiplying through by 2 , and rearranging yields,

$$
\begin{equation*}
\left(\frac{\partial r}{\partial \phi}\right)^{2}+r^{2}\left(\frac{\partial r}{\partial \psi}\right)^{2}=\frac{1}{\left\{1-\frac{2}{W e}+\frac{2}{W e} \frac{1}{r} \frac{d}{d r}\left[\frac{r^{2}}{\left.\sqrt{\left(\frac{\partial r / \partial \phi}{\partial r / \partial \psi}\right)^{2}+r^{2}}\right]}\right]\right.} \tag{122}
\end{equation*}
$$

There has been no symmetry assumed for the r formulation, only axisymmetry. It is noted that the r formulation does not involve the variable z. This means that the r and z solutions can be obtained independentiy. The z formulation is indicated in Figure 18(b).
VI. CENTRAL FINITE DIFFERENCE REPRESENTATION

The finite difference operators for the nonlinear r and z elifptic partial differential equations resulting from the inversion were put into difference form. It was found from experience that considerable flexibility resulted if the difference equations were derived employing rectangular mesh. The reason for this becomes clearer as we progress into the numerical solution. Suffice to say that thi 3 allowed us to control the size of the flow region. Square meshes were originally attempted, but only led to solutions in the cases where the mesh sizes became vanishingly small.

A. Formulation

1. General considerations. - The partial derivatives appearing in the r and z governing equations are replaced by algebraic central finite difference operators. A complete derivation of the various operators is contained in reference 35. The notation used in this report is that shown in Figure 19. If the finite difference analogy of $\partial / \partial r$ is $\delta / \delta r$, the r derivatives can be written at point 0 as follows,

$$
\begin{align*}
& \frac{\delta r}{\delta \phi}=\frac{r_{1}-r_{3}}{2 \Delta \phi} \tag{123}\\
& \frac{\delta r}{\delta \psi}=\frac{r_{2}-r_{4}}{2 \Delta \psi} \tag{124}\\
& \frac{\delta^{2} r}{\delta \phi^{2}}=\frac{r_{1}+r_{3}-2 r_{o}}{\Delta \phi^{2}} \tag{125}
\end{align*}
$$

$$
\begin{equation*}
\frac{\delta^{2} r}{\delta \psi^{2}}=\frac{r_{2}+r_{4}-2 r_{0}}{\Delta \psi^{2}} \tag{126}
\end{equation*}
$$

Similarly, the central finite difference representations for the z derivatives are,

$$
\begin{align*}
& \frac{\delta z}{\delta \phi}=\frac{z_{1}-z_{3}}{2 \Delta \phi} \tag{127}\\
& \frac{\delta z}{\delta \psi}=\frac{z_{2}-z_{4}}{2 \Delta \psi} \tag{128}\\
& \frac{\delta^{2} z}{\delta \phi^{2}}=\frac{z_{1}+z_{3}-2 z_{o}}{\Delta \phi^{2}} \tag{129}\\
& \frac{\delta^{2} z}{\delta \psi^{2}}=\frac{z_{2}+z_{4}-2 z_{o}}{\Delta \psi^{2}} \tag{130}
\end{align*}
$$

2. Interior nodal points. - If equations (123) to (126) are substituted into the r governing equation (eq. (98)) with $\alpha=\Delta \phi / \Delta \psi$, the finite difference expression for all interior nodal points is obtained,

$$
\begin{align*}
r_{o}^{4}-\frac{r_{o}^{3}}{2}\left(r_{2}+r_{4}\right)+r_{o}^{2}\left[\frac{1}{\alpha^{2}}\right. & \left.-\frac{1}{8}\left(r_{2}-r_{4}\right)^{2}\right] \\
& -\frac{r_{o}}{2 \alpha^{2}}\left(r_{1}+r_{3}\right)+\frac{1}{8 \alpha^{2}}\left(r_{1}-r_{3}\right)^{2}=0 \tag{131}
\end{align*}
$$

In addition, if equations (127) to (130) are substituted into the z governing equation (eq. (96)), the finite difference expression for all interior nodal points is obtained

$$
\begin{array}{r}
z_{0}=\frac{r_{o}^{2}}{2\left(r_{o}^{2}+\frac{1}{\alpha^{2}}\right)}\left(z_{2}+z_{4}\right)+\frac{1}{2\left(r_{o}^{2} \alpha^{2}+1\right)}\left(z_{1}+z_{3}\right) \\
\\
\quad+\frac{1}{4\left(r_{o}^{2} \alpha+\frac{1}{a}\right)}\left(z_{2}-z_{4}\right)\left(z_{1}-z_{3}\right)
\end{array}
$$

where, es in the derivation of equation (131),

$$
\begin{equation*}
\alpha=\frac{\Lambda \phi}{\Delta \psi} \tag{133}
\end{equation*}
$$

B. Excluding Surface Tension

1. Infinite flat plate. - The finite difference representation for the infinite flat plate is shown in Figures $20(a)$ and (b). The algebraic expressions for the boundaries is derived by simultaneous application of the governing equation and boundary conditions at a fixed point. This application involves a fictitious point, f, outside the boundary which is subsequently eliminated. Point G represents a special point in the finite difference representation for the z solution since it is a part of two separate boundaries. The governing 2 equation (eq. (132)) was applied at point G which resulted in two fictitious points. Then the boundary conditions along both AG and GE were applied at point G. This allowed the elimination of the two fictitious points from the resulting finite difference expression. Detailed calculations for the boundaries are contained in Appendix C.
2. Finite plate. - The inverse formulation for the finite plate problem (Fig. 16), is shown in difference form in Figure 21. For this rase, the difference operator along $G E$ is more complicated than in the infinite plate case. In fact, both G and E represent special points in the formulation. However, one of these, point E, is specifiod as a known position ($r=$ constant). At point G the equation to be satisfied in the r formulation is shown at the top of figure 21 (a). In the formulation (Fig. 21(b), both points G and E are special points. The following equations hold there.

At point G

$$
\begin{array}{r}
z_{0}=\frac{r_{0}}{\left(r_{0}^{2}+\frac{1}{a^{2}}\right)}\left\{\frac{1}{r_{0}} \sqrt{\left[a^{2}-r_{0}^{2}\left(r_{0}-r_{4}\right)^{2}\right]}+2_{4}\right\}+\frac{2_{1}-r_{0} a\left(r_{0}-r_{4}\right)}{r_{0}^{2} a^{2}+1} \\
+\frac{r_{0}-r_{4}}{r_{0}^{2}+\frac{1}{\alpha^{2}}} \sqrt{\left[a^{2}-r_{0}^{2}\left(r_{0}-r_{4}\right)^{2}\right]} \tag{134}
\end{array}
$$

At point E
$z_{0}=\frac{r_{0}^{2}}{r_{0}^{2}+\frac{1}{\alpha^{2}}}\left\{z_{2}-\frac{1}{r_{0}} \sqrt{\left[a^{2}-r_{0}^{2}\left(r_{2}-r_{0}\right)^{2}\right]}\right\}+\frac{z_{1}-r_{0}^{\alpha\left(r_{2}-r_{0}\right)}}{r_{0}^{2} a^{2}+1}$

$$
\begin{equation*}
+\frac{r_{2}-r_{0}}{r_{0}^{2}+\frac{1}{a^{2}}} \sqrt{\left[a^{2}-r_{0}^{2}\left(r_{2}-r_{0}\right)^{2}\right]} \tag{135}
\end{equation*}
$$

Detailed calculations for all the additional boundaries encountered for the finite plate case are contained in Appendix C.
C. Surface Tension

The difference formulation corresponding to the Surface Tension model (shown in Fig. 18) is indicated in Figure $22(a)$ and (b). The only boundary condition that must be explained is the one along the free surface AG. Details of this calculation are contained in Appendix C. It is noted that (see Fig. 22(a)) the r solution can be obtained independent of the z solution.

VII. DISCUSSION OF NLMERICAL TECHNIQUES

Since the governing equations for the r and z formulations are nonlinear in the inverse plane, in general, the finite difference operations at the interior and boundary points will be nonlinear (see eqs. (131) and (132)). For the infinite flat plate case, as described in Figure 20, the solution begins with $r=r(\psi, \phi)$ from Figure 20(a). Secondly, with a knowledge of the r solution, the z formulation, shown in Figure 20(b), is solved for $z(\psi, \phi)$. However, in the case where the plate is finite, the r formulation also contains z along the exiting plane $G E$ (see Fig. $21(a)$). As a result, the r and z formulations must be solved simultaneously. The surface tension model, described in Figure 22, also allows the solution of the r equation independent of the z equations since z appears nowhere in the formulation.

In any case, when solving the r equation, the finite difference representation of the problem results in N nonlinear algebraic equations in N unknowns. A variety of methods were applied in order to obtain a solution to the simultaneous nonlinear equations. These included Lieberstein's extension of Youngs' work on over-relaxation to nonlinear elliptic partial differential equations (26), and the familiar Newton-Raphson method. None of the above methods were successful in obtaining a convergent solution. The technique suggested by Powe11 (34) resulted in the method used in this paper to obtain solutions. Basically, Powell developed a subroutine whicil was essentially
a "compromise between the Newton-Kaphson algorithm and the methods of steepent descents." In his paper, a Fortran subroutine 1 a deserfbed for nolving the nonlinear set of equations,

$$
\begin{equation*}
f_{K}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=0 \quad K=1,2, \ldots, N \tag{138}
\end{equation*}
$$

The objective is to minimite the function

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\sum_{K=1}^{N}\left[f_{K}\left(x_{1}, x_{2}, \ldots . x_{N}\right)\right]^{2} \tag{139}
\end{equation*}
$$

As with many iteration schenes, initial guesses are required for Xi . This particular algorithm has an advantage in that the initial guessed values do not have to be that close to the exact solution. The computer program for the r solution contains the main program and three subroutines. The subroutine EQNS is the one supplied by Powell. The user supplies the subroutine MATINV which inverts the matrices and the subroutine CALFUN which contains the nonlinear functions $F(X i)$. A knowledge of the r solution makes the z formulation explicit in the unknown z_{0} at each nodal point. As a result, a Gauss-Siedel linear iteration scheme was employed to obtain the solution.

For details of the subroutines, the reader is referred to reference 34. As we get into the computer results in the next section, a complete printout of the subroutine will be presented.

VIJT. NUMIRICAI. RESUH:S:S

A. Exelumion of Surface Tonsifon
 findte flat plate problem was numertally solved rinfloylnt a vory coarso mesh. Reforing to ligure $20(a)$, the total stram functio was divided into five equal parts. Recall that $\psi_{G}=1 / 2$ and which meant that the parameter $a=\Lambda \psi$ was set equal to. 0.1. dition, the ϕ axis was divided up into ejght equal parts. Ihis vision was purely arbitraicy. One consideration was that there wot be at least two vertical lines of constant ϕ between points i. and B. This resulted in a total of 39 unknown nodal points for r formulation indicated in Fjgure $20(a)$, and 41 unknown nodal poi for the 2 formulation shown in Figure 2C(b). The value of $D=$ where $\alpha=\Delta \phi / \Delta \psi$, was set equal to 0.0204 . In Figure 20(a), the vi of C along $G E$ was arbitrarily chosen as 4.0 while the value of for z along $A B$ was chosen as 3.315. The major reason for the assignment of these two values for r and z was to be able to co pare our numerical solution with the semi-analytical results for th infinite flat plate case with Schach (39). Actually, the major var able choice in the entire program is $D=1 / \alpha^{2}$. Basjeally, I) is a measure of how large the flow system is since rectangular mesh is b used, i.e., a measure of Λ_{4} and ϕ total. line only concorn is th A ϕ is not chosen too small. In that evont, \downarrow total would be too small to satisfy the incoming and exiting flow boundary conditlons.
$\Lambda \phi$ is chosin to large, f.e., a chosen too large er D chosen too smaji, all that is lost is accuracy due to larger mesh npacjngs. For the conise mesh infinite flat plate problem, the results of the numerfeal solution as well as the computer listing and final output can be found in Appendix D - "Compater Solutions/Listings." The solution to the : formulation (Fig. 20(a)) required 1098 calls of the subroutine used to solve the similtaneous nonlinear equation. The sum of the squares of the error to the exact solution was reduced to 0.00357 at the last iteration.

The final values for the coarse mesh solution (r, z) were used to make initial guesses for the values for the fine mesh solution. The r solution required the simultaneous solution of 159 non.linear algebraic equations. The z equation, again being explicit in z_{o}, resulted in 164 unknown values of z_{0}. The plot of the results from the computer program (details shown in Appendix D) are presented in Figure 24 in a print plot. The computer connected the nodal points with straight line segments. In general, there is very little difference betwean the fine mesh and coarse mesh solution. The fine mesh solution required the extended storage space option on the 1106 machine. The sum of the squares for the final r solution was reduced to 0.024 after approximately 1000 calls of the subroutine CALFUN used to solve the simultaneors nonlinear equations. For this case 1000 iterations were required to obtain a satisfactory z solution.
2. Finite plate. - As mentione in Section VII, Discussions of Numericai Technigues, the finite plate formulation also contains z on the exiting jet surface (see Fig. $21(a)$). As e. result, the method of solution consisted of the following steps:

Abstract

Inifially, assumed values of z along $G E$ were chosen. These values were used to compute an r solution. The computed r solution used 161 calls of the subroutine CALFUN to reduce the sum of the squares of the residuals at the nodal points to 0.00066 . With this r solution, the iinear iteration technique was used to calculate the complete z solution. Since the computed z solution resulted in refined approximations to the values of z along $G E$, changes could then be reflected in a new r computation.

For the finite disk case in which the ratio of the radius of the liquid jet to the radius of the disk was one-half, a second r calculation did not change when the 2 values were updated. A curve was faired through the calculated nodal points and is shown in Figure 25. Only two of the four available streamlines are shown in the figure. No attempt was made to refine the solution by completely doubling the number of vertical and horizontal grid lines. For this particular case, since no comparison with any existing analytical techniques existed, a more convenient value of 3.3 was chosen for $K \phi$. The value of D employed in the solution was 0.0138 . The only specification along GE was that Z was set equal to 0.25 . The computer listing as well as the calculated r and z values at each nodal point can be found in Appendix D.

The same method was used to numerically compute the finite plate case in which the ratio of the jet diameter to the disk diameter was three-fourths. There were 38 nodal points required for the r solution and 45 for the z solution. A complete print-plot of the resulis is shown in Figure 26. Two iterations were required for the 2 solution as well as for the r solution. The sum of the squares for the

I solution at the final iteration was 0.001 . The computer listing and printout can be found in Appendix D. Again, the value of $K \phi$ was arbitrarily chosen as 3.3.

The 2 solution corresponding to the r solution was obtained and is also presented in Appendix D along with its complete computer listing. The method applied to obtain the solution was a simple linear iteration technique since equations explicit in Z_{o} can be derived both in the interior and along the boundary points. There were 249 iterations required for the Z solution. Changes between the 248 th and 249 th iteration oscurred in the fifth decimal point.

A physical plane description of the infinite flat plate solution is presented in Figure 23. Only two of the four internal streamlines are shown in the figure. Curves were faired through the available calculated nodal points (r, z) by a best fit process. There appeared, at the onset, the question of whether or not the coarse mesh employed could sufficiently describe the flow. When applying boundary conditions at the free surface, a larger number of nodal points are desirable. As a result, the existing mesh was doubled. The total ψ was divided up into ten equal parts such that $a=\Delta \psi=0.05$, and the total ϕ was divided up into 16 equal parts.
B. Surface Tension Dominated Model

As previously mentioned, the r formulation for the surface tension dominated flow can be solved independent of the z formulation (refer to Figs. 22(a) and (b)). The initial case examined had a Weber number of 4 and the ratio of the radius of the jet to the radius of the disk was one-half. Also, the first solution to this problem as-
sumed only axisymmetry. The results of the numerical soiution, employIng a coarse mesh, resulted in a symmetrical r solution; symmetrical about the equipotential 1 ine emmanating from point D. This allowed us to make a simplification to the problem in that not only could axisymmetry be assumed, but also mirror image symmetry (i.e., symmetry about the $2=0$ plane). This is significant for problems in which the suiface tension effects are to be taken into account since the surface tension forces are highly dependent on the curvature of the free surface. By taking advantage of the symmetry involved, additional nodal points can be placed on the free surface without using extended computer storage.

Referring now to Figure 22(a), a vertical line was drawn (equipotential line) emmanating from point D, where $r=R D . R D$ is the dimensionless disk radius. The intersection of this equipotential line with the free surfacp $A G$ was defined as point M. Along $D M$, it is known that $z=0$. In addition, the variation of r with ψ can be computed. Let us now refer to Figure 27 in which the equipotential line $D M$ is depicted. Since $D M$ is an equipotential line, the velocity along this line must be equal to V, the incoming jet velocity with the exception of the point $r=L$ in the physical plane. At point D, a velocity discontinuity will exist. However, we can specify how r varies with ψ along this line as follows:

In the physical plane,
On DM

$$
\begin{equation*}
u=0 \quad \text { on } \quad z=0, L \leqq r \leqq R_{\max } \tag{140}
\end{equation*}
$$

where $R_{\text {ma:. }}$ is the maximum radius of the liquid flow pattern.

An expression for the stream function along $D M$ can now be derived since the radial velocity component along $D M$ is 0 , we have

$$
\begin{equation*}
0=-\frac{1}{r} \frac{\partial \psi}{\partial z} \tag{141}
\end{equation*}
$$

This implies that $\psi=\psi(r)$ alone. In order to find what the function is, the definition of the axial velocity is employed, namely, $v=(1 / r)(\partial \psi / \partial r)$, on $D M$

$$
\begin{equation*}
-V=\frac{1}{r} \frac{\partial \psi}{\partial r} \tag{142}
\end{equation*}
$$

Integrating this

$$
\begin{equation*}
\psi=-\frac{V r^{2}}{2}+\text { Constant } \tag{143}
\end{equation*}
$$

Applying the boundary condition that $\psi=0$ at $r=L$, the constant in (143) can be calculated. The following expression results,

$$
\begin{equation*}
\psi=-\frac{V r^{2}}{2}+\frac{\mathrm{VL}^{2}}{2} \tag{144}
\end{equation*}
$$

If this equation is nondimensionalized,

$$
\begin{equation*}
\psi^{*}=\frac{r^{*^{2}}}{2}-\frac{1}{2}\left(\frac{L}{R_{o}}\right)^{2} \tag{145}
\end{equation*}
$$

As we have done in the pist derivations, the starred notation is dropped.

$$
\begin{equation*}
\psi=\frac{r^{2}}{2}-\frac{1}{2}\left(\frac{\mathrm{~L}}{\mathrm{R}_{0}}\right)^{2} \tag{146}
\end{equation*}
$$

Solving for r,

$$
\begin{equation*}
\mathrm{r}=+\sqrt{2 \psi+(\mathrm{RD})^{2}} \tag{147}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{L}{R_{0}}=R D \tag{148}
\end{equation*}
$$

Equation (147) represents the boundary condition employed along DM in the inverse plane for the r formulation. The condition $z=0$ was used for the 2 formulation.

In the course of finding the solution to the 2 formulation, depicted in Figure 22(b), it was necessary to solve a cubic equation for the parameter T along the free surface. Physical as well as mathematical interpretation was required when choosing the proper root of the cubic since a possibility of three real roots existed. Referring to equation (C-78) in Appendix C, the only mathematically meaningful roots are those in which the absolute value of the parameter T was greater than or equal to one. However, the possibility still existed that all three roots would be real and in addition satisfy the requirement that their absolute values were greater than one. As a resuit, some physical insight was required when deciding upon which roots to employ in the equation relating T to the fictitious point f, (eq. (C-84)). For example, it is known that as the nozzle exit is approached along the free surface, $z=f(r)$ becomes steeper (i.e., $f^{\prime}(x)$ approaches infinity). This would coincide with the curvature terms dropping out of the boundary condition in the physical plane formulation. An alternate approach to viewing this is that the fictitious point f approaches the image point ${ }^{2} 4^{\circ}$. As a result, the value of the parameter T approaches unity. The algorithm selected for choosing the proper root of the cubic was to select the value of T closest to unity but ensuring that its absolute value was greater than or equal to one. During the course of finding the solution, problems in implementing this algorithm occurred, particularly when close to the nozzle, since the T values closest to one were slightly less than
one and were automatically discarded by the algorithm. Jhe resultinf potential lines and sticamlines appeared inaccurate when plotted up. The only way found to circumvent this problem was to set up an additional algorithm which set T identically equal to one for several free surface nudal points in the vicinity of the nozzle (i.e., those nodal points in which the computed r value was $\leq 1.00 \mathrm{~N}$). Physically, this reasoning is justified since it is known that $f^{\prime}(r)$ must approach infinity there.

The results of the numerical solution are indicated in Figure 28. The Weber number for this solution was 4 and the ratio of the radius of the 1 iquid jet to the radius of the disk was $1 / 2$. A value of 3.5 was chosen for $K \phi$, and D was set equal to 0.0204 . The computer listing can be found in Appendix D along with the computed r and z values for the nodal points. The sum of the squares for the r solution was 0.77×10^{-6} and since the r solution was independent of the z solution, a second iteration was unnecessary.
C. Discussion of Zero Gravity Results

The numerical solutions were compared with the available semianalytical results of Schach (39) for the case of the infinite flat plate. The method employed by Schach is attributed to Trefftz. The method used by Schach Jid not appear readily extendable to more complicated geometrical flows and could not be employed to account for the effects of surface tension. In making the comparison between reierence 39 and the numerical results, the fine mesh solution prosented in Figure 24 was used. The results of the comparison for the infinite flat plate are shown in Figure 29. The symbols indicated in the figure Were obtained from Figure 11 of Schach's paper by using an expandable
ycale. As a result there is some unknown error associated with the process of taking the results from the reference. In any case, the agreement looks particularly well with the sole exception of the first r coordinate greater than unity. Une final point with respect to the Infinite flat plate solution concerns the extreme left coordinate in Figure 29, namely, $r=4, z=0.125$. These two values are fixed by continuity, both in our numerical program and in the semi-analytical results of Schach. This result was obtained as follows; assuming constant density, the volumetric flow rate into the control volume at $A B$ must balance the flow out of the control volume at $G E$. In physical coordinates, the flow is given as $\pi R_{o}^{2} V$ and the flow out by $2 \pi R_{\text {jet }} Z_{G} V$. Equating these and cancelling leads to the fact that Z_{G} must equal $R_{o}^{2} /\left(2 R_{j e t}\right)$. Nondimensionalizing with respect to R_{o} yields

$$
\begin{equation*}
\mathrm{z}_{\mathrm{G}}^{*}=\frac{1}{2 R_{\text {jet }}^{*}} \tag{149}
\end{equation*}
$$

Dropping the starred notation and observing that $R_{j e t}=4$ at the left boundary of the control volume shows that Z_{o} must equal $1 / 8$.

As far as the finite plate is concerned, there was no available comparisons with past experimental or analytical work. As a result, comparisons were made with respect to our own zero gravity experimental data. The results are shown in dimensionless coordinates in Figures 30 and 31 . Figure 30 is for the case where the ratio of the jet radius to the disk radius is one-half and Figure 31 indicates the comparison when the ratio of tine jet radius to the disk radius is three-fourths. The comparisons were made with respect to the outer or fop fred surface since it was impossible to view the lower froc surface
because of the way in which the flow occurred. The results were generally good for both ratios compared. Experimental data points wore obtained from both sides of the axisymmetric sheet as it flowed around the disk. An averaging procedure was subsequently used to plot the continuous lines indicated in Figures 30 and 31 . The analysis corroborated the experiments in the sense that as the ratio (R_{0} / L) becomes smaller, the jet appears to leave the disk more tangentially.
IX. NORMAL GRAVITY EXPERIMENT SECTION
A. Apparatus and Procedure

1. Experiment. - The experimental test rig used to obtain the normal gravity data is shown in Figures $32(a)$ and (b). The rig consisted of an angle-iron frame in which was mounted a 10 galion supply tank, a settling chamber, a 56 gallon catch basin, a return pump, a control box, a clock, sequence timers, a regulator, and a supply tank. The major functions were controlled through the control box. Ahighspeed Mitchell Monitor motion picture camera (nominal speed 400 frames $/ \mathrm{sec}$) was located directly in front of the experimental test rig. The camera was mounted on a IJollensak camera stand which was fastened to concrete floor by means of conduit clamps.

The experiment could be conducted in either a pressurized or nonpressurized mode (gravity-feed). To operate in the pressurized mode, two vent valves located above the supply tank were closed and the system was pressurized through the regulator. The pressure level was recorded on the gage located immediately to the right of the regulator as shown in Figure 32(a). For both modes, the return pump was used to resupply liquid to the supply tank in order to maintain a nearly constant level of liquid. Since the supply tank was fabricated from stainless steel and provided no visible means for monitoring liquid level, attempts were made to connect a plastic hose between the needle valve located fust upstream of the solenoid valve and the side of the supply tank. This system was generally inaccurate and as a rule the
return pump was normally activated after completing two or three test: runs.

In order to maintain a circular liquid jet having an infifally uniform velocity profile, a settling chamber was designed to quiet the incoming flow. A similar technique was employed by Donnelly et al. (1.1) in their study of ilquid jet stability. The settling chamber, Fig. 33, was fabricated from stainless-steel and had a 30° tapered approach to a eircular hole in order to prevent boundary layer buildup. A total angle of 60° was employed in order to ensure a nearly uniform velocity profile at the exit to the settling chamber. Three settling chambers were employed having outlet diameters of $0.25,0.50$, and 1.0 centimeters. Problems developed when using an unbaffled settling chamber in that the entire flow developed a swirling action between 2 and 10 seconds after flow was initiated. In order to circumvent the swirling problem, the cylindrical section of the settiing chamber was fitted with a $1 \frac{3}{4}$ inch honeycomb spacer. A sixteen mesh stainless steel screen was mounted below the first screen and both screens were butted up against the bottom of the spacer. This technique seemed to eliminate any noticeable swirl in the flow.

Sharp-edged disks, fabricated from stainless steel, were mounted below the settilng chamber and positioned at right angles to the impinging liquid jet. A photograph of the disks employed in the study is shown in Figure 34. Their diameters ranged from 1 to 4 centimeters. The disks were mounted onto a stainless steel device capable of being adjusted at any angle to the incoming flow. However, ift this study the impingement was restricted to 90°.
2. Test 1iquids. - Two test liquids were employed, abhydrous
ethanol and distilled water. Their properties at $20^{\circ} \mathrm{C}$ are 11 sted in Table 1. No attempt was made to correct these fluid properties for temperature changes.
3. Test procedure. - Prior to a test run the settling chamber wan fllled with the test liquid by opening the solenoid valve while holding the bottom of the settling chamber closed. The liquid completely filled the settling chamber until it flowed out of the relief screw. At that point, the relief screw was closed and the outlet could be opened without loss of liquid from the settling chamber since it was a stable pressure supported system, This method worked when using distilled water for all the nozzle openings. It did not work for anhydrous ethanol in conjunction with the largest or 1 centimeter diameter opening. As a result, for those tests, the nozzle opening was kept sealed until the solenoid was opened at the start of each test.

Calibration tests were made prior to every series of test runs. Electrical sequence times in the control box were used along with £raduated cylinders to determine the volumetric flow rate. At least three calibration tests were made before each series of runs, and an average value for the flow rate was thus determined. The impingement velocity (velocity at the disk) was calculated by correcting for the effect of gravitational forces.
B. Results

1. Steady-state flow patcerns, - Basically, two types of flow patterns were observed in the course of normal gravity liquid jet impingement. The first type occurred when a very high speed jet impinged upon a solid surface and spread out radially as a thin sheet. Thr shoet berame thimer until it became unstable and broke up into
small liquid dropletis. A second pattern ts shown schematically in Fifure 35. f:o breakup was obs rved firt this pattern; the fet curved upon 1.tself to form a surface of revolution or plume. The Incoming fet ver locity ts V and the radius of the circular liquid fet is K_{o}. The disk radius is denoted as L while Il is the distance betweren fion nozole and the disk. The maximum radius that the plume prisessed is denoted as R_{p}. The maximum plume radius wat the primary experimental variable for the normal gravity etudy since fo was easily measurable and characteristic of the entire flow pattern. For the case when the plume was not visitly disturbed, the plume would slowiy move to a final R_{p}, with visible surface ripples.
2. Unstable fumps. - In attempting to obtain steady-state impingement profiles, an unusual phenomenon was discovered. Instead of a single steady-state flow pattern, a number of unstable flow patterns were observed prior to the attaining of a stable steady state. Typically, the jet impinged upon the solid and formed a plume of some given radius with surface ripples present. If disturbed, either upstream or downstream of the plume, the jet would jump to another apparently stable configuration of larger plume radius. Normally, only one jump would occur in a single test run, but occasionally rwo jump:s or three apparently stable configurations were observed. A series of tests indicating the flow patterns before and after a fuinp are shown in Figure 36. Figures 36(a), (c), and (e) illustrate the behavior before the respective lumps, while Figures $36(b)$, (d), and (f) occur after the jumps. The plume size for the final configurations appoar to 1 : nearly double what they were initially, However, there does not appear to be any correlation between initial and final size. The jumps
are natural in oceurmenco, such as whon a minall liquid dropled rat bounds off the disk holder and fapinges upom this film, but ran for Indtiated by a distarbanme, such as a pencid penetrating the flow, The final stoady-arate configuration is stable for any addiflomal disLurbances, i.e., it remains at. some fixed plume shape. Under no eircumstances was the plume obsexved to funp to a smillor plum. confleuration; all jumps wexe to larger plume sizos.

The actual cause of these jumps remains unansuered at this writing. Some possible causes have been eliminated, such as swirling flow. If the flow were swirling, the steadymatate flow patterns would be significantly affected if half the flow over the disk was obstructed. However, the pattern was not affected at all when this was doue, It is tentatively concluded that the jumps are natural in occurrence. The inflal states and all transition states are unstable to small disturbances. For the purpose if the experimentai investigation, then, the steady-state was chosen as the state in which further disturbaices caused no change in the liquid flow pattern.
3. Experimental data. - The experimental runs were conducted such that the viscous dependence would be small. As shown in section III, deyending upon the ratio $\left(R_{0} / L\right)$, there exists a criticil Reynolds number above which the flow can be considered as essentially inviscid, The Reynolds number was calculated at the point of impingement on the disk (1.e., the approach velocity to the disk was corrected for gravitational effects). From analytical considerations, numerous dimensionless parameters arise and thus form the basis for correlating the pifmary variable, the plume size. These parameters include the Wobor number, which is the ratio of inertial to surface tension forces, and
the Bond number, which is the ratio between gravitational and surface tension forces. In addition, several geometrical ratios appear, such as R_{0} / L, the ratio of fet to the disk radius, and H / R_{o}, the ratlo of the nozzle height to the jet radius, The experimental results are listed in tabular form in Table 3. The last column contains the plume radius, nondimensionalized with respect to the jet radius. In examining the difference between zero and normal. gravity liquid jet impingemert, it can be seen that two additional parameters are required In order to completely define this phenomena in normal gravity. They ase the Bond number, Bo, and the dimensionless nozzle height, H / R_{0}. The Bond number relates the relative contribution of gravitational forces, while H / R_{0} has an effect in that jets flowing downward under the effect of gravity accelerate and thus shrink in size, thereby having an effect on the resulting flow.
4. Data analysis. - A linear regression analysis was employed in order to correlate the independent variable, R_{p} / R_{0}, with the remaining system parameters. Let us define the following variables,

$$
\begin{equation*}
Y=\frac{R_{p}}{R_{0}} \tag{150}
\end{equation*}
$$

$$
\begin{equation*}
Z_{1}=\frac{R_{0}}{L} \tag{151}
\end{equation*}
$$

$$
\begin{equation*}
Z_{2}=\frac{H}{R_{0}} \tag{152}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{Z}_{3}=\mathrm{We} \tag{153}
\end{equation*}
$$

$$
\begin{equation*}
z_{4}=\operatorname{Re} \tag{154}
\end{equation*}
$$

$$
\begin{equation*}
Z_{5}=B o \tag{155}
\end{equation*}
$$

The parameter 7_{4}, the Reynolds number, wats included to see what
the viscous influence was. The experimental data was fitted to the following complex model

$$
\begin{aligned}
& \frac{R_{p}}{\frac{R_{p}}{R_{0}}=} 22.8241+7.67129 x_{1}-41.2001 x_{1}^{2}+42.9330 x_{1}^{3}+1.91085 x_{2} \\
& \\
& \quad+8.90368 x_{3}+1.46319 x_{4}-2.07823 x_{5}+0.0696939 x_{2} x_{5}
\end{aligned}
$$

$$
\begin{align*}
& x_{1}=\frac{\frac{R_{0}}{L}-0.371839}{0.154239} \tag{157}\\
& x_{2}=\frac{\frac{H}{R_{0}}-9.22727}{7.195 ; i} \tag{158}\\
& X_{3}=\frac{W e-129.227}{75.7108} \tag{159}\\
& X_{4}=\frac{R e-4663.89}{1897.57} \tag{160}\\
& X_{5}=\frac{B_{0}-2.15602}{1.12058} \tag{161}
\end{align*}
$$

The value of R^{2} for the above statistical model was 0.981 . This means that 98.1 percent of the total variance in R_{p} / R_{0} is accounted for by the model. An examination of the signs in the equation for the complex model tells us how R_{p} / R_{o} varies with each of the parameters; R_{p} / R_{o} increases slightly as H / R_{0} and $R e$ are increased, and increases significantly with X_{3}, the Weber number. Since X_{f} is involved in two terms in the correlation, its variation depends on the strongest term (i.e., the one with the largest coefficient). As a result, R_{p} / R_{o} decreases with increasing Bo. The variation with X_{1} is more conftising since it is involved in three terms. The actual data
bears this out, $\mathrm{R}_{\mathrm{p}} / \mathrm{R}_{\mathrm{o}}$ sometimes increasing, or sometimes decreasing. The coefficient for X_{3} is essentially the largest of all (X_{3} is related to We), As a result, a simpler model was pursued using only We as the independent variable. The following equation resulted;

$$
\begin{equation*}
\frac{R_{p}}{R_{o}}=21.7059+10.1410 \frac{W e-129.227}{75.7108} \tag{1.62}
\end{equation*}
$$

For this simple model $R^{2}=0.916$, which means that the correlation accounts for 91.6 percent of the variance in the data, A plot of the data is displayed in Figure 37.

The Weber number turns out to be the most statistically significant variable. This is not to say that the other variables are not significant, but that the Weber number is the most dominant variable in determining R_{p} / R_{0}.

X. CONCLIUSIONS

Tero gravity. - An experimental and analytical investlgation was conducted to determine the free surface shape of circular liquid jets impinging nurmal to sharp-edged disks in zero gravity. The test liquids employed were anhydrous ethanol and trichlorotrifluoroethane. Jet radii were varied from 0.25 to 0.75 centimeter and disk radii of 1.0 and 1.5 centimeters were employed. The jet velocity was varied between 12 and 365 centimeters per second. Under the stipulation that the nozzle was located at least 5 centimeters from the disk, the investigation yielded the following results:

1. It was analytically determined that there exist flow regions where viscous forces are not significant when computing free surface shapes. It was shown that the Reynolds number $\rho V R_{0} / \mu$ and the ratio of jet to disk radius R_{o} / L uniquely define the flow regions. It was further shown that the Reynolds number specifying the transition between viscous and nonviscous flow decreased with increasing jet to disk radius ratio.
2. Within the inviscid region, three distinct flow regimes were experimentally found which depend uniquely on the Weber number $r \cdot V^{2} R_{o} / \sigma$ and the ratio of the jet to disk radius $R_{o} / 1$. . These flows were defined as Surface Tension Flow, Transition Flow, and Tnertia Flow. The critical Weher number between regimes was found to de-- roase with increasing jot to disk radius ratio.

lines was obtained for the case of implngement normal to all infinite flat plate and compared favorably with semi-analytical techntques in the literature.
3. A numerical solution yielding free surface shapes and streamInes was obtained for inertially dominated flows at ratios of jet to disk radius of one-half and three-fourths. The comparison with experiments showed good agreement for the upper free surface.
4. A surface tension dominated flow was formulated and solv. 1 numerically. The system Weber number was 4.0 and the ratio of the jet to the disk radius was one-half.

Normal gravity. - An experimental investigation was conducted to determine the characteristics of circular liquid jets impinging normal to a sharp-edged disk in normal gravity. The test liquids employed were distilled water and anhydrous ethanol. Jet radii between 0.125 and 0.50 centimeter were employed and the disk radii were varied between 0.5 and 2.0 centimeters. The jet velocity had the range of 75.5 to 484 centimeters per second. The distance between the nozzile and disk was varied between 0.25 and 5.0 centimeters. Under the stipulation that the Reynolds numbers were such that they exceeded the minimum value required to avoid viscous influence, the investigation yielded the following results:

1. The liquid flow pattern was observed to jump from ont apparently stable flow pattern to another until a completely stable comfiguration was reached. The jumps were trlggered by disturbanes inotis upstream and downstream of the disk and were apparently natural in uccurrence.
2. The dimensionless plume radius R_{p} / K_{0} was correlated is masm
of a linear regression analysis. A simple model, employing only the Weber number, accounted for nearly 92 percent of the experimental data.

The following empirical formula resulted

$$
\frac{R_{p}}{R_{0}}=21.7059+10.140 \frac{\mathrm{We}-129.227}{75.7108}
$$

where R_{p} is the plume radius, R_{0} the nozzle radius, and We the system Weber number.

Appendix A-Detailed Calculations of Pree Surface Boundary Conditions
There are two boundary conditions required for the catic of a free surface in a fluid dynamics problem. Tlis is in comparison to known boundaries in which only one boundary condition is required. The two conditions to be ratisfied are:
(1) Conservation of energy along a streamline
(2) The velocity normal to the streamline is zero. Consider the following geometry:

Figure A.1. - Schematic of Liquid Jet Impingement
where " 1 " represents any point on the free surface $z_{s}=f(r)$ and " d " designaces the reference point which is chosen as the point where the liquid jet exits from the nozzle.
(1) Conservition of energy along a streamline

Bernoulli's equation ritten hetwern points "i" and "l" boromes

$$
\begin{equation*}
\frac{1}{2}\left(n^{2}+v^{2}\right)+\frac{P_{i}}{i}=\frac{1}{2} v^{2}+P_{d} \quad \text { on } r=f(r) \tag{A1}
\end{equation*}
$$

The pressure at point $1, p_{1}$, is not the same as it is at point d, P_{d}, due to the effects of surface tension. In general,

$$
\begin{equation*}
P_{g}-P=J \tag{A-2}
\end{equation*}
$$

where Pg a known gas pressure, and

$$
\begin{equation*}
J=\frac{1}{R_{1}}+\frac{1}{R_{2}} \tag{A-3}
\end{equation*}
$$

where R_{1}, l_{2} are radif of curvature where

$$
\begin{equation*}
\frac{1}{R_{1}}=\frac{f^{\prime \prime}}{\left(1+f^{\prime 2}\right)^{3 / 2}} \tag{A-4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{R_{2}}=\frac{f^{\prime}}{r\left(I+f^{\prime 2}\right)^{1 / 2}} \tag{A-5}
\end{equation*}
$$

Combining (A-4) and (A-5) with (A-2) we find

$$
\begin{equation*}
P g-P=\sigma\left[\frac{f^{\prime \prime}}{\left(1+f^{\prime 2}\right)^{3 / 2}}+\frac{f^{\prime}}{r\left(1+f^{\prime 2}\right)^{1 / 2}}\right] \tag{A-6}
\end{equation*}
$$

which can be combined to yield,

$$
\begin{equation*}
P g-P=\frac{\sigma}{r} \frac{d}{d r}\left(\frac{r f^{\prime}}{\sqrt{1+f^{\prime 2}}}\right) \tag{A-7}
\end{equation*}
$$

Applying at point "d"

$$
2=H, \quad r=R_{0}, \quad \text { and } \quad \frac{d f}{d r}=f^{\prime}=\infty
$$

For large f^{\prime},

$$
\sqrt{1+f^{\prime 2}} \doteq \sqrt{f^{\prime 2}}=f^{\prime}
$$

Therefore, substitution into (A-7) yields

$$
\mathrm{Pg}_{g}-\mathrm{Pd}=\frac{\sigma}{\mathrm{R}_{0}}
$$

Applying at point "i"

$$
P g-P 1=\frac{d}{r d r}\left(\frac{d f^{\prime}}{\sqrt{1+f^{\prime 2}}}\right)
$$

Now (A-8) and (A-9) can be substituted into ($(1-1)$ to obtain

$$
\frac{1}{2}\left(u^{2}+v^{2}\right)-\frac{\sigma}{\rho r} \frac{d}{d r}\left(\frac{r f^{\prime}}{\sqrt{1+f^{\prime 2}}}\right)=\frac{1}{2} v^{2}-\frac{0}{\rho R_{0}} \quad \text { on } \%_{s}:=f(r)
$$

(2) The velocity normal to the free surface is zero

A portion of the free surface $z_{s}=f(r)$ is shown in Figure A. 2

Figure A.2. - Velocity Vectur at Free Surface
\hat{n} is the unit outward normal to the surface at some point and u and v are the velocity components such that $\vec{v}=u \hat{i}+v \hat{j}$. Since the velocjty normal to the surface is zero

$$
\begin{equation*}
\overrightarrow{\mathrm{V}} \cdot \hat{\mathfrak{n}}=0 \tag{A-11}
\end{equation*}
$$

With the surface given by $z_{s}=f(r)$, the unit normal is given as

$$
\begin{equation*}
\hat{n}=\frac{-f^{\prime} \hat{i}+\hat{j}}{\sqrt{1+f^{\prime 2}}} \tag{A-12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\vec{v} \cdot \hat{n}=-\frac{u f^{\prime}}{\sqrt{1+f^{\prime 2}}}+\frac{v}{\sqrt{1+f^{\prime 2}}}=0 \tag{A-13}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
-u f^{\prime}+v=0 \quad \text { on } \quad z_{s}=f(r) \tag{A-14}
\end{equation*}
$$

Appendix B - Zero Gravity Drop Tower Test Facility
The experimental data for this shudy were obtained in the Lewis Research Center's 2.2-Sccond Zero Gravity Facility. A schematic diagram of this facility is show in Figure B.1. The facility consists of a building 6.4 meters square by 30.5 meters tall. Contained within the building is a drop area 27 meters long with a cross section 1.5 by 2. 75 meters.

The service building has a shop and service area, a calibration room, and a controlled environment room. Those components of the experiment that required special handling were prepared in the controlled environment room of the facility. This air-conditioned and filtered room (shown in Fig. B. 2) contains an ultrasonic clvaning system and the laboratory equipment necessary for handling test ..iquids.

Mode of operation - A 2.2-second period of weightlessness is obtained by allowing the experiment package to free fall from the top of the drop area. In order to minimize drag on the experiment package, it is enclosed in a drag shield designed with a high ratio of weight to frontal area and a low drag coefficient. The relative motion of the experiment package with respect to the drag shield during a test is shown in Figure B.3. Throughout the test, the experiment package and drag shield fall frcely and independently of each other; that is, no guide wires, electrical lines, etc., are connected to either. Therefore, the only force acting on the freely falling experiment package
is the air drag assoctated with the relative motion of the package within the enclosure of the drag shield. Thjs air drag resulta in an equivalent gravitational acceleration acting on the experiment, which is estimated to be below $10^{-5} \mathrm{~g}^{\prime} \mathrm{s}$.

Release system. - The experiment packago, installed within the drag shield, is suspended at the top of the drop area by means of a highly stressed music wire attached to the release system. This release system consists of a double-acting air cylinder with a hardsteel knife edge attached to the piston. Pressurization of the air cyli...er drives the knife edge against the wire, which is backed by an anvil. The resulting not:h causes the wire to fail, smoothly releasing the experiment. No measmrable disturbances are imparted to the package by this release procedure.

Recovery system. - After the experiment package and drag shield have traversed the total length of the drop area, they are recovered by deceleiation in a 2.2-meter-deep container filled with sand. The deceleration rate (averaging $15 \mathrm{~g}^{\prime} \mathrm{s}$) is controlled by selectively varyIng the tips of the deceleration spikes mounted on the bnttom of the drag shield (Fig. B.1). At the time of impact of the drag shield in the decelerator container, the experiment package has traversed the vertical distance within the drag shield (coware Figs. B3(a) and (c)).
A. Jufinder fiat Plate

Ithe finite difference represemtations for the derivatives are Whose shown in the text (oqs. (123) to (130)). Rofor to figuress $15(a)$ and (b).

$$
\frac{\partial r}{\partial \psi}=0 \text { on } \mathrm{EC}
$$

Applying the r difference equation (eq. (131)) at point 0 , where r is a fictitious point outside boundary

$$
\begin{array}{r}
r_{o}^{4}-\frac{r_{o}^{3}}{2}\left(r_{2}+r_{f}\right)+r_{o}^{2}\left[\frac{1}{\alpha^{2}}-\frac{1}{8}\left(r_{2}-r_{f}\right)^{2}\right]-\frac{r_{o}}{2 a^{2}}\left(r_{1}+r_{3}\right) \\
 \tag{C-1}\\
+\frac{1}{8 a^{2}}\left(r_{1}-r_{3}\right)^{2}=0
\end{array}
$$

Nlong EC, $\frac{\partial x}{\partial \psi}=0$. This implies

$$
\begin{equation*}
\frac{r_{2}-r_{f}}{2 \lambda \psi}=0 \tag{c-?}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
r_{2} \because r_{r} \tag{c-7}
\end{equation*}
$$

Equation (c-1) becomes

$$
r_{0}^{4}-r_{0}^{3} r_{2}+r_{0}^{2} \frac{1}{2}-\frac{r_{0}}{2}\left(r_{1}+r_{3}\right)+\frac{1}{811_{2}^{2}}\left(r_{1}-r_{3}\right)^{2}=0 \quad(r \cdot 4)
$$

Application of $\partial \mathrm{r} / \partial \psi$ on GE yields the fact that $r_{2}=r_{4}$ and does not involve the unknown fictitious point f. However, ir/iq = 0 implies $r \neq r(\psi)$. Therefore, r murt only be a function of $\phi, r=r(\phi)$. But, along GE, $\phi=$ constant, $(\phi=0)$. Hence, $r=$ constant along GE.

$$
\left(\frac{\partial r}{\partial \phi}\right)^{2}+r^{2}\left(\frac{\partial r}{\partial \psi}\right)^{2}=1 \quad \text { on } \quad A G
$$

The r difference equation can be written

Along Ne:

$$
\left(\frac{\partial r}{\partial \phi}\right)^{2}+r^{2}\left(\frac{\partial r}{\partial \psi}\right)^{2}=1
$$

This implies

$$
\begin{equation*}
\left(\frac{r_{1}-r_{3}}{2} \frac{2}{\Delta \phi}\right)^{2}+r_{0}^{2}\left(\frac{r_{f}-r_{4}}{2 \Delta \psi}\right)^{2}=1 \tag{1:-6}
\end{equation*}
$$

Rearranging and letting $\Delta \psi=a$ (recalling, $\quad \|=1 \% / 6 ;$)

$$
\left(r_{f}-r_{4}\right)^{2}=\frac{1}{r_{0}}\left\{4 a^{2}-\frac{1}{r^{2}}\left(r_{1}-r_{3}\right)^{2}\right]
$$

Whereupon we can calculate the two expressions

$$
\begin{align*}
& r_{f}-r_{4}=\frac{1}{r_{o}} \sqrt{\left[4 a^{2}-\frac{1}{2}\left(r_{1}-r_{3}\right)^{2}\right]} \tag{c-s}\\
& r_{f}+r_{4}=\frac{1}{r_{0}} \sqrt{\left[4 a^{2}-\frac{1}{a^{2}}\left(r_{1}-r_{3}\right)^{2}\right]+2 r_{4}} \tag{c-6}
\end{align*}
$$

Inserting (C-8) and (C-9) inco ($\mathrm{C}-5$) yields the desired relation

$$
((0 \cdot 11)
$$

$$
\begin{aligned}
& r_{0}^{4}-r_{0}^{3} r_{4}+r_{0}^{2}\left\{\frac{1}{a^{2}}-\frac{1}{2} \sqrt{\left.\left[4 a^{2}-\frac{1}{2}\left(r_{1}-r_{3}\right)^{2}\right]\right\}}\right\}_{2 i^{2}}^{r_{0}}\left(r_{1} \div r_{3}\right) \\
& +\frac{1}{8}\left[\begin{array}{c}
2 \\
2 r^{2} \\
\left(r_{1}-r_{3}\right)^{2} \ldots 4 i^{2}
\end{array}\right]=0 \\
& \%=\text { constant on } A B \text {, 1et } z=10 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& r_{0}^{4}-\frac{r_{0}^{3}}{2}\left(r_{f}+r_{4}\right)+r_{0}^{2}\left|\frac{1}{2}-\frac{1}{8}\left(r_{f}-r_{4}\right)^{2}\right|-r_{0}^{2}\left(r_{1}+r_{2}\right) \\
& +\frac{1}{8 a_{4}}\left(r_{1} \cdots r_{i}\right)^{2} \quad(0-i)
\end{aligned}
$$

Applying the z difference (nutation (eq. (132)) at point 0 , where f is a fictitious point outside of boundary
$z_{0}=-\frac{r_{0}^{2}}{2\left(r_{0}^{2}+\frac{1}{\alpha^{2}}\right)}\left(z_{2}+z_{f}\right)+\frac{1}{2\left(r_{0}^{2} \alpha^{2}+1\right)}\left(z_{1}+z_{3}\right)$

$$
\begin{equation*}
+\frac{1}{4\left(r_{o}^{2} \alpha+\frac{1}{\alpha}\right)}\left(z_{2}-z_{f}\right)\left(z_{1}-z_{3}\right) \tag{c-11}
\end{equation*}
$$

Along $B C, \frac{\partial z}{\partial \psi}=0$. This implies

$$
z_{2}-z_{f}=0
$$

or

$$
\begin{equation*}
z_{f}=z_{2} \tag{C-12}
\end{equation*}
$$

Therefore, equation (C-11) becomes

$$
\begin{equation*}
z_{0}=\frac{r_{0}^{2} z_{2}}{r_{o}^{2}+\frac{1}{\alpha^{2}}}+\frac{1}{2\left(r_{0}^{?}{ }_{0}^{2}+1\right)}\left(\%_{1}+z_{3}\right) \tag{c-13}
\end{equation*}
$$

The z difference equation can be written

$$
\begin{align*}
z_{0}=\frac{r_{0}^{2}}{2\left(r_{0}^{2}+\frac{1}{\alpha^{2}}\right)}\left(z_{2}+z_{4}\right) & +\frac{1}{2\left(r_{0}^{2} \alpha^{2}+1\right)}\left(z_{1}+z_{f}\right) \\
& +\frac{1}{4\left(r_{0}^{2} \alpha+\frac{1}{\alpha}\right)}\left(z_{2}-z_{4}\right)\left(z_{1}-z_{f}\right) \tag{C-14}
\end{align*}
$$

Along GE, $\frac{\partial z}{\partial \phi}=0$ this implies $z_{1}-z_{f}=0$ or

$$
\begin{equation*}
z_{f} \equiv z_{1} \tag{c-15}
\end{equation*}
$$

Therefore, equation (C-14) becomes

$$
\begin{align*}
& z_{0}=\frac{r_{0}^{2}}{2\left(r_{0}^{2}+\frac{1}{\alpha^{2}}\right)}\left(z_{2}+z_{4}\right)+\frac{z_{1}}{r_{0}^{2} \alpha^{2}+1} \tag{C-16}\\
& r^{2}\left(\frac{\partial z}{\partial \psi}\right)^{2}+\left(\frac{\partial z}{\partial \phi}\right)^{2}=1 \text { on GA }
\end{align*}
$$

The 2 difference equation can be written
$z_{0}=\frac{r_{0}^{2}}{2\left(r_{0}^{2}+\frac{1}{\alpha^{2}}\right)}\left(z_{f}-z_{4}\right)+\frac{1}{2\left(r_{0}^{2} \alpha^{2}+1\right)}\left(z_{1}+z_{3}\right)$

$$
\begin{equation*}
+\frac{1}{4\left(r_{\mathrm{o}}^{2} \alpha+\frac{1}{a}\right)}\left(z_{\mathrm{f}}-z_{4}\right)\left(z_{1}-z_{3}\right) \tag{c-17}
\end{equation*}
$$

Along AG, $\mathbf{r}^{2}\left(\frac{\partial z}{\partial \psi}\right)^{2}+\left(\frac{\partial z}{\partial \phi}\right)^{2}=1$. Hence,

$$
\begin{equation*}
r_{0}^{2}\left(\frac{z_{f}-z_{4}}{2 \Delta \psi}\right)^{2}+\left(\frac{z_{1}-z_{3}}{2 \Delta \phi}\right)^{2}=1 \tag{C-18}
\end{equation*}
$$

which can be expressed as

$$
\begin{equation*}
\left(z_{f}-z_{4}\right)^{2}=\frac{1}{r_{0}}\left[a^{2}-\frac{1}{a^{2}}\left(z_{1}-z_{3}\right)^{2}\right] \tag{C-19}
\end{equation*}
$$

This yields the two relations,

$$
\begin{align*}
& z_{f}-z_{4}=\frac{1}{r_{0}} \sqrt{\left[4 a^{2}-\frac{1}{\alpha^{2}}\left(z_{1}-z_{3}\right)^{2}\right]} \tag{C-20}\\
& z_{f}+z_{4}=\frac{1}{r_{0}} \sqrt{\left[4 a^{2}-\frac{1}{\alpha^{2}}\left(z_{1}-z_{3}\right)^{2}\right]}+2 z_{4} \tag{C-2.1}
\end{align*}
$$

Inserting these last two equations in (c-17) eliminates the fictitious point z_{f}, yielding

$$
\begin{aligned}
& 2_{0}=\frac{r_{0}^{2}}{2\left(r_{0}^{2}+\frac{1}{\alpha^{2}}\right)}\left\{\frac{1}{r_{0}} \sqrt{\left[4 a^{2}-\frac{1}{\left.\alpha^{2}\left(z_{1}-r_{3}\right)^{2}\right]}+2 z_{4}\right\}}\right. \\
&+\cdots,
\end{aligned}
$$

$$
+\frac{1}{2\left(r_{0}^{2} \alpha^{2}+1\right)}\left(2_{2}+z_{3}\right)
$$

$$
+\frac{2_{1}-z_{3}}{4 r_{0}\left(r_{0}^{2} \alpha+\frac{1}{a}\right)} \sqrt{\left[4 a^{2}-\frac{1}{\left.a^{2}\left(z_{1}-z_{3}\right)^{2}\right]}\right.}
$$

A special $_{\text {boundary }}$ condition is required for

$$
\oint_{f} \quad{ }^{\text {since }} i_{t} x_{s}
$$

$$
z_{0}=\frac{r_{0}^{2}}{2\left(r_{0}^{2}+\frac{1}{\alpha^{2}}\right)}\left(f_{1}+z_{4}\right)+\frac{1}{2\left(r_{0}^{2} a^{2}+1\right)}\left(z_{1}+f_{2}\right)
$$

that $f_{2}=z_{1}$. Tie condition along $G E$,
we write , namely $\frac{\partial z}{\partial \phi}=0$, it is found

$$
\begin{equation*}
z_{0}=\frac{r_{0}^{2}}{2\left(r_{0}^{2}+\frac{1}{a^{2}}\right)}\left(f_{1}+z_{4}\right)+\frac{z_{1}}{r_{0}^{2} a^{2}+1} \tag{C-24}
\end{equation*}
$$

Applying the boundary condition along AG (see eq. (C-20))

$$
\begin{equation*}
f_{1}=z_{4}+\frac{1}{r_{0}} \sqrt{\left[4 a^{2}-\frac{1}{a^{2}}\left(z_{1}-f_{2}\right)^{2}\right]} \tag{c-25}
\end{equation*}
$$

but $f_{2}=z_{1}$, hence we write

$$
\begin{equation*}
f_{1}=z_{4}+\frac{2 a}{r_{0}} \tag{C-26}
\end{equation*}
$$

Equation (C-23) becomes

$$
\begin{equation*}
z_{0}=\frac{r_{0}\left(z_{4}+\frac{a}{r_{0}}\right)}{r_{0}^{2}+\frac{1}{\alpha^{2}}}+\frac{z_{1}}{r_{0}^{2} \alpha^{2}+1} \tag{C-27}
\end{equation*}
$$

such that $z_{0}=z_{0}\left(z_{1}, z_{4}\right)$ at point G.

B. Finite Plate

Referring to Figures 16 (a) and (b), the changes in the boundary conditions between the infinite and finite plate occur on $G E$ and the addition of the free surface $E D$. In addition, G becomes a special point in the r formulation while both G and E become special points in the z formulation.

$$
\left(\frac{\partial r}{\partial \phi}\right)+r\left(\frac{\partial r}{\partial \psi}\right)\left(\frac{d z}{d r}\right)=0 \text { on } G E
$$

Along $G E$, the r difference equation is

$$
\begin{array}{r}
r_{o}^{4}-\frac{r_{o}^{3}}{2}\left(r_{2}+r_{4}\right)+r_{o}^{2}\left[\frac{1}{\alpha^{2}}-\frac{1}{8}\left(r_{2}-r_{4}\right)^{2}\right]-\frac{r_{o}}{2 \alpha^{2}}\left(r_{1}+f\right) \\
 \tag{C-28}\\
\quad+\frac{1}{8 \alpha^{2}}\left(r_{1}-f\right)^{2}=0
\end{array}
$$

in finite difference form, the boundary condition is,

$$
\begin{equation*}
\frac{r_{1}-f}{\Delta \phi}+\frac{r_{0}}{\Delta \psi}\left(z_{2}-z_{4}\right)=0 \tag{C-29}
\end{equation*}
$$

solving for f,

$$
\begin{equation*}
f=r_{1}+\alpha r_{0}\left(z_{2}-\alpha_{4}\right) \tag{C-30}
\end{equation*}
$$

and, inserting this into the r difference equation yields the desired result.

$$
\begin{gather*}
r_{0}^{4-\frac{r^{3}}{2}\left(r_{2}+r_{4}\right)+r_{0}^{2}\left[\frac{1}{\alpha^{2}}-\frac{1}{8}\left(r_{2}-r_{4}\right)^{2}\right]-\frac{r_{0}}{2 a^{2}}\left[2 r_{1}+\alpha z_{0}\left(z_{2}-z_{4}\right)\right]} \\
 \tag{c-31}\\
\quad \frac{r_{0}^{2}}{8}\left(z_{2}-z_{4}\right)^{2}=0
\end{gather*}
$$

$$
\left(\frac{\partial r}{\partial d}\right)^{2}+r^{2}\left(\frac{\partial r}{\partial \dot{b}}\right)^{2}=1 \text { ou ED }
$$

The r difference equation can be written

$$
\begin{align*}
& r_{o}^{4}-\frac{r_{o}^{3}}{2}\left(r_{2}+r_{f}\right)+r_{o}^{2}\left[\frac{1}{\alpha^{2}}-\frac{1}{8}\left(r_{2}-r_{f}\right)^{2}\right]-\frac{r_{o}}{2 \alpha^{2}}\left(r_{1}+r_{3}\right) \\
&+\frac{1}{8 \alpha^{2}}\left(r_{1}-r_{3}\right)^{2}=0 \tag{C-32}
\end{align*}
$$

Using $\left(\frac{\partial r}{\partial \phi}\right)^{2}+r^{2}\left(\frac{\partial r}{\partial \psi}\right)^{2}=1$ on $E D$,

$$
\begin{equation*}
\left(\frac{r_{1}-r_{3}}{2 \Delta \phi}\right)^{2}+r_{o}^{2}\left(\frac{r_{2}-r_{f}}{2 \Delta \psi}\right)^{2}=1 \tag{C-33}
\end{equation*}
$$

Yields

$$
\begin{equation*}
\left(r_{2}-r_{f}\right)^{2}=\frac{1}{r_{0}^{2}}\left[4 a^{2}-\frac{1}{\alpha^{2}}\left(r_{1}-r_{3}\right)^{2}\right] \tag{C-34}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}+r_{f}=2 r_{2}-\frac{1}{r_{o}} \sqrt{\left[4 a^{2}-\frac{1}{\alpha^{2}}\left(r_{1}-r_{3}\right)^{2}\right]} \tag{C,-35}
\end{equation*}
$$

Substituting (C-34) and (C-35) into (C-32) we obtain

$$
\begin{array}{r}
r_{0}^{4}-r_{0}^{3} r_{2}+r_{0}^{2}\left\{-\frac{1}{\alpha^{2}}+\frac{1}{2} \sqrt{\left.\left[4 a^{2}-\frac{1}{a^{2}}\left(r_{1}-r_{3}\right)^{2}\right]\right\}-\frac{r_{0}}{2 a^{2}}\left(r_{1}+r_{3}\right)}\right. \\
+\frac{1}{8}\left[-4 a^{2}+\frac{2}{2}\left(r_{1}-r_{3}\right)^{2}\right]-0
\end{array}
$$

Now, point: E and 1 , will be special points since equation (c:-31) cannot be directly applied there. One of these positions can br specified as known, r constant. let us examine special point f

Applying equation ($C-10$) at point G,

$$
\begin{array}{r}
r_{o}^{4}-r_{o}^{3} r_{4}+r_{o}^{2}\left\{\frac{1}{\alpha^{2}}-\frac{1}{2} \sqrt{\left.\left[4 a^{2}-\frac{1}{\alpha^{2}}\left(r_{1}-f_{2}\right)^{2}\right]\right\}-\frac{r_{o}}{2 \alpha^{2}}\left(r_{1}+f_{2}\right)}\right. \\
+\frac{1}{8}\left[\frac{2}{\alpha^{2}}\left(r_{1}-f_{2}\right)^{2}-4 a^{2}\right]=0 \tag{C-37}
\end{array}
$$

Now, applying $\left(\frac{\partial r}{\partial \phi}\right)+r\left(\frac{\partial r}{\partial \psi}\right)\left(\frac{d z}{d r}\right)=0$ along $G E$ without involving f_{1},

$$
\begin{equation*}
\left(\frac{r_{1}-f_{2}}{2 \Delta \phi}\right)+r_{0}\left(\frac{r_{0}-r_{4}}{\Delta \psi}\right)\left(\frac{z_{0}-z_{4}}{r_{0}-r_{4}}\right)=0 \tag{C-38}
\end{equation*}
$$

Solving for f_{2},

$$
\begin{equation*}
f_{2}=r_{1}+2 \alpha r_{0}\left(z_{0}-z_{4}\right) \tag{C-39}
\end{equation*}
$$

Therefore, equation ($\mathrm{C}-37$) becomes

$$
\begin{gather*}
r_{0}^{4}-r_{0}^{3} r_{4}+r_{0}^{2}\left\{\frac{1}{\alpha^{2}}-\sqrt{\left.\left[a^{2}-r_{0}^{2}\left(z_{0}-z_{4}\right)^{2}\right]\right\}-\frac{r_{0}}{\alpha^{2}}\left[r_{1}+\alpha r_{0}\left(z_{0}-z_{4}\right)\right]}\right. \\
\quad+\left[r_{0}^{2}\left(z_{0}-z_{4}\right)^{2}-\frac{a^{2}}{2}\right]=0 \tag{C-40}\\
r\left(\frac{\partial z}{\partial \psi}\right)-\left(\frac{\partial z}{\partial \phi}\right)\left(\frac{d z}{d r}\right)=0 \text { on GE }
\end{gather*}
$$

Application of z difference equation yields,

$$
\begin{equation*}
z_{0}=\frac{r_{0}^{2}}{2\left(r_{0}^{2}+\frac{1}{\alpha^{2}}\right)}\left(z_{2}+z_{4}\right)+\frac{z_{1}+f}{2\left(r_{0}^{2} \alpha^{2}+1\right)}+\frac{\left(z_{2}-z_{4}\right)\left(z_{1}-f\right)}{4\left(r_{0}^{2} \alpha+\frac{1}{\alpha}\right)} \tag{c-41}
\end{equation*}
$$

Now, along GE, $r\left(\frac{\partial z}{\partial \psi}\right)-\left(\frac{\partial z}{\partial \phi}\right)\left(\frac{d z}{d r}\right)=0$, which in difference form can be written,

$$
\begin{equation*}
r_{0}\left(\frac{z_{2}-z_{4}}{2 \Delta \psi}\right)-\left(\frac{z_{1}-f}{2 \Delta \phi}\right)\left(\frac{z_{2}-z_{4}}{r_{2}-r_{4}}\right)=0 \tag{c-42}
\end{equation*}
$$

Solving for f,

$$
\begin{equation*}
f=z_{1}-r_{0} \alpha\left(r_{2}-r_{4}\right) \tag{c-43}
\end{equation*}
$$

Hence, equation (c-41) becomes

$$
\begin{aligned}
& z_{0}=\frac{r_{0}^{2}}{2\left(r_{0}^{2}+\frac{1}{2}\right)}\left(z_{2}+z_{4}\right)+\frac{2 z_{1}-r_{0} \alpha\left(r_{2}-r_{4}\right)}{2\left(r_{0}^{2} \alpha^{2}+1\right)} \\
&+\frac{\left(z_{2}-z_{4}\right)\left(r_{0} \alpha\left(r_{2}-r_{4}\right)\right]}{4\left(r_{0}^{2} \alpha+\frac{1}{\alpha}\right)} \\
& r^{2}\left(\frac{\partial z}{\partial \psi}\right)^{2}+\left(\frac{\partial z}{\partial \phi}\right)^{2}=1 \text { on ED }
\end{aligned}
$$

The $\%$ difference equation can be written,

$$
\begin{align*}
z_{0}=\frac{r_{0}^{2}}{2\left(r_{0}^{2}+-\frac{1}{\alpha^{2}}\right)}\left(z_{2}+z_{f}\right) & +\frac{1}{2\left(r_{0}^{2} u^{2}+1\right)}\left(z_{1}+z_{3}\right) \\
& +\frac{1}{4\left(r_{0}^{2} \alpha+\frac{1}{\alpha}\right)}\left(z_{2}-z_{f}\right)\left(z_{1}-z_{3}\right) \tag{c-45}
\end{align*}
$$

Applying $\mathrm{r}^{2}\left(\frac{\partial z}{\partial \psi}\right)^{2}+\left(\frac{\partial z}{\partial \phi}\right)^{2}=1$ on ED ,

$$
\begin{equation*}
r_{o}^{2}\left(\frac{z_{2}-z_{f}}{2 \Delta \psi}\right)^{2}+\left(\frac{z_{1}-z_{3}}{2 \Delta \phi}\right)^{2}=1 \tag{C-46}
\end{equation*}
$$

Solving for $\left(z_{2}-z_{f}\right)$.

$$
\begin{equation*}
z_{2}-z_{f}=\frac{-1}{r_{o}} \sqrt{\left[4 a^{2}-\frac{1}{a^{2}}\left(z_{1}-z_{3}\right)^{2}\right]} \tag{c-47}
\end{equation*}
$$

Also,

$$
\begin{equation*}
z_{\mathrm{f}}+z_{2}=2 z_{2}-\frac{1}{r_{0}} \sqrt{\left[4 a^{2}-\frac{1}{r^{2}}\left(z_{1}-z_{3}\right)^{2}\right]} \tag{c-48}
\end{equation*}
$$

Substitution of these last two equations into equation ($\mathrm{C}-43$) yields the desired expression

Applying equation (C-22) at point G yiclds,

$$
\begin{align*}
& z_{0}=\frac{r_{0}^{2}}{2\left(r_{0}^{2}+\frac{1}{\alpha^{2}}\right)}\left\{\frac{1}{r_{0}} \sqrt{\left[4 a^{2}-\frac{1}{\alpha^{2}}\left(z_{1}-f_{2}\right)^{2}\right]}+2 z_{4}\right\}+\frac{z_{1}+f_{2}}{2\left(r_{o}^{2} \alpha^{2}+1\right)} \\
&+\frac{z_{1}-f_{2}}{4 r_{o}\left(r_{o}^{2} \alpha+\frac{1}{i}\right)} \sqrt{\left[4 a^{2}-\frac{1}{\alpha^{2}}\left(z_{1}-f_{2}\right)^{2}\right]} \tag{C-50}
\end{align*}
$$

To find f_{2}, we apply $r\left(\frac{\partial z}{\partial \psi}\right)-\left(\frac{\partial z}{\partial \phi}\right)\left(\frac{d z}{d r}\right)=0$ without invol $\%$ ing f_{1},

$$
\begin{equation*}
r_{0}\left(\frac{z_{0}-z_{4}}{\Lambda \psi}\right)-\left(\frac{z_{1}-f_{2}}{2} \lambda_{\psi}\right)\left(\frac{z_{0}-z_{4}}{r_{0}-r_{4}}\right)=0 \tag{c-51}
\end{equation*}
$$

Solving for f_{2},

$$
\begin{equation*}
f_{2}: z_{1}-2 r_{0}:\left(r_{0}-r_{4}\right) \tag{c-52}
\end{equation*}
$$

Substitution into (c--50) yiclds

$$
\begin{align*}
& +\begin{array}{r}
r_{0}-r_{4} \\
r_{0}^{2}+\underset{n_{0}}{1} \\
{\left[a^{2} \cdots r_{0}^{2}\left(r_{0}-r_{4}\right)^{i}\right]}
\end{array} \tag{6;-5;3}
\end{align*}
$$

let ats examino the spectal point at f

Application of equation $(\mathrm{C}-49)$ at point E results in, $z_{0}=-\frac{r_{0}^{2}}{2\left(r_{0}^{2}+-\frac{1}{2}\right)}\left\{2 z_{2}-\frac{1}{r_{0}} \sqrt{\left[4 a^{2}--\frac{1}{2}\left(z_{1}-f_{2}\right)^{2}\right]}\right\}$

$$
\begin{align*}
& +\frac{1}{2\left(2_{0}^{2} \alpha^{2}+1\right)}\left(z_{1}+f_{2}\right) \\
& +\frac{r_{1}-f_{2}}{4 r_{0}\left(r_{0}^{2} x+\frac{1}{u t}\right)} \sqrt{\left[4 a^{2}-\frac{1}{\alpha^{2}}\left(z_{1}-f_{2}\right)^{2}\right]} \tag{C-54}
\end{align*}
$$

In order to find the fletitious polnt, fi, we ipply

$$
r\left(\frac{\partial z}{\partial \psi}\right)-\left(\frac{\partial z}{\partial \phi}\right)\left(\frac{d z}{d r}\right)=0 \text { on }(\operatorname{dE}, \text { without involving fi}
$$

$$
\begin{array}{r}
r_{0}\left(\%, \because_{0}\right)-z_{1}-1!z_{2}-r_{0}=0 \tag{}\\
n_{2}-r_{0}
\end{array}
$$

Solving for f,'

$$
\left.f_{2}: \%_{1}-2 r_{0} u_{2}-r_{0}\right)
$$

Ftandy, obtaluthe from equat lon (c-ri4),

$$
\begin{align*}
& +\frac{r_{2}-r_{0}}{r_{0}^{2}+\frac{1}{a^{2}}} \sqrt{\left[a^{2}-r_{0}^{2}\left(r_{2}-r_{0}\right)^{2}\right]} \tag{c-57}
\end{align*}
$$

C. Surface Tension

$$
\left(\frac{\partial r}{\partial \phi}\right)^{2}+\mathbf{r}^{2}\left(\frac{\partial r}{\partial \psi}\right)^{2}=\frac{1}{\left\{1-\frac{2}{W e}+\frac{2}{W e} \frac{1}{r} \frac{d}{d r}\left[\frac{r^{2}}{\left.\sqrt{\left(\frac{\partial r / \partial \phi}{\partial r / \partial \phi}\right)^{2}+r^{2}}\right]}\right]\right\}} \text { on } \Delta G
$$

Applying r difference equation (eq. (131)) at polnt 0 where f is a fictitious point outside the boundary

$$
\begin{array}{r}
r_{o}^{4}-\frac{r_{o}^{3}}{2}\left(r_{f}+r_{4}\right)+r_{o}^{2}\left[\frac{1}{\alpha^{2}}-\frac{1}{8}\left(r_{f}-r_{4}\right)^{2}\right]-\frac{r_{0}}{2 \alpha^{2}}\left(r_{1}+r_{3}\right) \\
 \tag{C-58}\\
+\frac{1}{8 \alpha^{2}}\left(r_{1}-r_{3}\right)^{2}=0
\end{array}
$$

in difference form, the free surface boundary condition becomes

$$
\left(\frac{r_{1}-r_{3}}{2 \Delta \phi}\right)^{2}+r_{0}^{2}\left(\frac{r_{f}-r_{4}}{2 \Delta \psi}\right)^{2}=
$$

Simplifying by using $\alpha=\Delta \phi / \Delta \psi$ and defining $\alpha=\Delta \psi$ yields,

$$
\begin{equation*}
\frac{1}{\alpha^{2}}\left(r_{1}-r_{3}\right)^{2}+r_{0}^{2}\left(r_{f}-r_{4}\right)^{2}=\frac{4 a^{2}}{1-\frac{2}{W e}+\frac{2}{W e} \frac{1}{r_{0}} \frac{d}{d r_{0}}\left(\frac{r_{0}^{2}}{\sqrt{Q+r_{0}^{2}}}\right)} \tag{c-60}
\end{equation*}
$$

Now, examine

$$
\frac{1}{r_{0}} \frac{d}{d r_{0}}\left(\frac{r_{0}^{2}}{\sqrt{Q+r_{0}^{2}}}\right)
$$

As an approximation to this derivative Q is assumed as a constant. In actuality, $Q=f\left(r_{f}\right)$ and $r_{f}=f\left(r_{o}\right)$. Expanding

$$
\frac{1}{r_{0}} \frac{d}{d r_{0}}\left(\frac{r_{0}^{2}}{\sqrt{Q+r_{0}^{2}}}\right)
$$

yie1ds

$$
\begin{equation*}
\frac{1}{r_{c}} \frac{d}{d r_{o}}\left(\frac{r_{o}^{2}}{\sqrt{Q+r_{o}^{2}}}\right)=\left[\frac{2 Q+r_{o}^{2}}{\sqrt{\left(Q+r_{o}^{2}\right)\left(Q+r_{o}^{2}\right)}}\right] \tag{c-61}
\end{equation*}
$$

Therefore, the finite difference representation for the free surface becomes

$$
\begin{equation*}
\frac{1}{\alpha^{2}}\left(r_{1}-r_{3}\right)^{2}+r_{0}^{2}\left(r_{f}-r_{4}\right)^{2}=\frac{4 a^{2}}{1-\frac{2}{W e}+\frac{2}{W e}\left[\frac{2 Q+r_{o}^{2}}{\sqrt{Q+r_{o}^{2}\left(Q+r_{o}^{2}\right)}}\right]} \tag{C-62}
\end{equation*}
$$

r_{f} must be eliminated between equations ($C-58$) and ($C-62$). Let us define

$$
\begin{equation*}
x=\mathbf{r}_{f}-\mathbf{r}_{4} \tag{C-63}
\end{equation*}
$$

Equation (C-62) can be written

$$
\begin{equation*}
\frac{1}{a^{2}}\left(r_{1}-r_{3}\right)^{2}+r_{o}^{2} x^{2}=\frac{4 a^{2}}{1-\frac{2}{W e}+\frac{2}{W e}\left[\frac{2 Q+r_{o}^{2}}{\sqrt{Q+r_{o}^{2}\left(Q+r_{o}^{2}\right)}}\right]} \tag{c-64}
\end{equation*}
$$

Where

$$
\begin{equation*}
Q=\frac{\left(r_{1}-r_{3}\right)^{2}}{x^{2}} \cdot \frac{1}{\alpha^{2}} \tag{c-65}
\end{equation*}
$$

Inserting (C-63) into (C-58) yields
$\frac{r_{0}^{2} x^{2}}{8}+\frac{r_{0}^{3}}{2} x-r_{0}^{4}+r_{0}^{3} r_{4}-\frac{r_{0}^{2}}{a^{2}}+\frac{r_{0}}{2 a^{2}}\left(r_{1}+r_{3}\right)-\frac{1}{8 \alpha^{2}}\left(r_{1}-r_{3}\right)^{2}=0$
This is of the form

$$
A^{\prime} x^{2}+B^{\prime} x+C^{\prime}=0
$$

Hence

$$
\begin{equation*}
x=\frac{-B^{\prime}+\sqrt{B^{\prime 2}}-4 A^{\prime} C^{\prime}}{2 A^{\prime}} \tag{c-67}
\end{equation*}
$$

where

$$
\begin{align*}
& A^{\prime}=\frac{r_{0}^{2}}{8} \tag{C-68}\\
& B^{\prime}=\frac{r_{0}^{3}}{2} \tag{C-69}\\
& C^{\prime}=-r_{0}^{4}+r_{0}^{3} r_{4}-\frac{r_{n}^{2}}{\alpha^{2}}+\frac{r_{0}}{2 \alpha^{2}}\left(r_{1}+r_{3}\right)-\frac{1}{8 \alpha^{2}}\left(r_{1}-r_{3}\right)^{2} \tag{C-70}
\end{align*}
$$

The sign in front of the square root in equation ($C-67$) was chosen as positive since X must be greater than or equal to zero. In addition, $r^{2}\left(\frac{\partial z}{\partial \psi}\right)^{2}+\left(\frac{\partial z}{\partial \phi}\right)^{2}=\frac{1}{1-\frac{2}{W e}+\frac{2}{W e} \frac{1}{r} \frac{d}{d r}\left[\frac{r}{\sqrt{r^{2}\left(\frac{\partial z / \partial \psi}{\partial z / \partial \phi}\right)^{2}+1 .}}\right]}$ on AG

Applying z difference equation (132) at point 0 where f is a fictitious point outside the boundary

$$
z_{0}=\frac{r_{0}^{2}}{2\left(r_{0}^{2}+\frac{1}{\alpha^{2}}\right)}\left(f+z_{4}\right)+\frac{1}{2\left(r_{0}^{2} \alpha^{2}+1\right)}\left(z_{1}+z_{3}\right)+\frac{\left(f-z_{4}\right)\left(z_{1}-z_{3}\right)}{4\left(r_{0}^{2}+\frac{1}{(1}\right)}
$$

In finite difference form, the free surface boundary condition can be written,

$$
\begin{equation*}
r_{0}^{2}\left(f-z_{4}\right)^{2}+\frac{1}{a^{2}}\left(z_{1}-z_{3}\right)^{2}=\frac{4 a^{2}}{1-\frac{2}{W e}+\frac{2}{W e} \frac{1}{r_{0}} \frac{d}{d r_{0}}\left(\frac{r_{0}}{\sqrt{r_{0}^{2} Q^{*}+1}}\right)} \tag{c-72}
\end{equation*}
$$

where,

$$
\begin{equation*}
Q^{*}=a^{2} \frac{\left(f-z_{4}\right)^{2}}{\left(z_{1}-z_{3}\right)^{2}} \tag{C-73}
\end{equation*}
$$

As an approximation, Q^{*} is assumed to be a constant. Expanding

$$
\frac{1}{r_{0}} \frac{d}{d r_{0}}\left(\frac{r_{0}}{\sqrt{r_{0}^{2} Q^{*}+1}}\right)
$$

obtaining

$$
\begin{equation*}
\frac{1}{r_{0}} \frac{d}{d r_{0}}\left(\frac{r_{0}}{\sqrt{r_{0}^{2} Q^{*}+1}}\right)=\frac{1}{r_{0}\left(r_{0}^{2} Q^{*}+1\right) \sqrt{r_{0}^{2} Q^{*}+1}} \tag{C-74}
\end{equation*}
$$

Therefore, the finite difference representation along the free surface becomes

$$
\begin{equation*}
r_{0}^{2}\left(f-z_{4}\right)^{2}+\frac{1}{\alpha^{2}}\left(z_{1}-z_{3}\right)^{2}=\frac{4 a^{2}}{\left[1-\frac{2}{W e}+\frac{2}{W e} \frac{1}{r_{0}} \frac{1}{\left(r_{0}^{2} Q^{*}+1\right) \sqrt{r_{0}^{2} Q^{*}+1}}\right]} \tag{C-75}
\end{equation*}
$$

f must now be eliminated between equation ($C-71$) and ($C-75$). The manner in which this is done is as follows: Equation (C-75) is solved for $f=F_{c t}\left(z_{1}, z_{3}, z_{4}\right)$. The results are then inserted into equation (c-71). In this way, equation ($\mathrm{C}-71$) remains explicit in z_{0}. Actually, it will be more convenient to solve for the variable ($f-z_{4}$) instead of
f since equation ($C-71$) can be expressed as,

$$
\begin{equation*}
z_{0}=\frac{r_{0}^{2} z_{4}}{r_{0}^{2}+\frac{1}{\alpha^{2}}}+\frac{z_{1}+z_{3}}{2\left(r_{0}^{2} \alpha^{2}+1\right)}+\left(f-z_{4}\right)\left[\frac{2 \alpha r_{0}^{2}+\left(z_{1}-z_{3}\right)}{4 \alpha\left(r_{0}^{2}+\frac{1}{x^{2}}\right)}\right] \tag{c-76}
\end{equation*}
$$

Turning our attention to equation ($C-74$), it is solved for ($f-z_{4}$) $\frac{\alpha^{2} r_{0}^{2}\left(f-z_{4}\right)^{2}}{\left(z_{1}-z_{3}\right)^{2}}+1=$

$$
\begin{equation*}
\left\{\frac{\frac{4 a^{2} \alpha^{2}}{\left(z_{1}-z_{3}\right)^{2}}}{\left\{-\frac{2}{W e}+\frac{2}{W e} \frac{1}{r_{0}} \frac{1}{\left[\frac{r_{0}^{2} \alpha^{2}\left(f-z_{4}\right)^{2}}{\left(z_{1}-z_{3}\right)^{2}}+1\right.}\right] \sqrt{\frac{r_{0}^{2 \alpha^{2}\left(f-z_{4}\right)^{2}}}{\left(z_{1}-z_{3}\right)^{2}}+1}}\right\} \tag{c-77}
\end{equation*}
$$

A new variable T^{2} is introduced

$$
\begin{equation*}
T^{2}=\frac{\alpha^{2} r_{0}^{2}\left(i-z_{4}\right)^{2}}{\left(z_{1}-z_{3}\right)^{2}}+1 \tag{c-78}
\end{equation*}
$$

Also, let

$$
\begin{align*}
& c_{0}=\frac{4 a^{2} \alpha^{2}}{\left(z_{1}-z_{3}\right)^{2}} \tag{C-7y}\\
& c_{1}=1-\frac{2}{W e} \tag{C-80}\\
& c_{2}=\frac{2}{W e} \cdot \frac{1}{r_{0}} \tag{C-81}
\end{align*}
$$

Making these sulstitutions into equation (c-77) results in a cubic equation for T

$$
\begin{equation*}
T^{3}-\frac{C_{0}}{C_{1}} T+\frac{C_{2}}{C_{1}}=0 \tag{c-82}
\end{equation*}
$$

Rewriting this as follows:

$$
\begin{equation*}
T^{3}+a T+b=0 \tag{C-83}
\end{equation*}
$$

Once T is found from $(C-83),\left(f-z_{4}\right)$ is calculated from equation (C-78) as follows:

$$
\begin{equation*}
f-z_{4}= \pm \frac{z_{1}-z_{3}}{\alpha r_{0}} \sqrt{T^{2}-1} \tag{C-84}
\end{equation*}
$$

A. Infinite Flat Plate

1. Computer Listing
II. Coarse Mesh Solution for r and 2

IIL. Computer Listing
IV. Fine Mesh Solution for r and z
B. Findte Plate
V. Computer Listing ($\mathrm{R}_{\mathrm{o}} / \mathrm{L}=1 / 2$)
VI. Coarse Mesh Solution
VII. Computer Listing ($\mathrm{R}_{\mathrm{o}} / \mathrm{L}=3 / 4$)
VIII. Coarse Mesh Solution
C. Surface Tension Model
IX. Computer Listing
X. r Solution
XI. z Solution
I. r AND z COMPUTER PROGRAM/INFINITE PLATE/COARSE SOLUTION

URIGNDI. PAGE IS
OF POOR QUALITY

$$
\begin{aligned}
& \text { INFINITE FLAT PLATE } \\
& \text { asOR,IS EO } \\
& \text { FOR OIIA-C702f74-15 } 2913 \text { (,0) }
\end{aligned}
$$

STCYAGE USEO CODE(1) DOZ736: DATAIOS 005200: BLAMM COMMONI2I DODOD
mames

*NON天mNo

cryone

OAIE EJO274

ORIGNAL PAGFI IS
OF POOR QUALITY

管
070274
$\underset{~}{\text { w }}$

jik
ai

IWEIWITE FLAT PLATE

(2003: BLAMK COMnOMIz: 080000
000655
(
External references iblocn, mame;

[^0]

infinite flat plate

$$
\begin{aligned}
& E 30,32 \\
& =30, ~ \\
& n
\end{aligned}
$$

no oingnositics.

9, 39

as the 31: th CALL of calfum we heve

091770

TMFIMIE plate 2 solution

$-3 \begin{gathered}17=15 \\ 00 \\ 00 \\ k=15,1\end{gathered}$

$\stackrel{\Delta}{\Delta}$

范
a
\vdots
\vdots
\vdots
\vdots

infinite plate z solution

1. INEINITE FLAT PLA'IE/COARSE MESH

COMPUTER PROGRAM/INFINITE PLATE/FINE SOLUTION
 III. I AND z COMPUTER PROGRAM/NN DATE 082770

 infinite flat plate

comeon slocks
EXIERNAL FEFERENCES IGLOCN, NAME
\cos
col
EDNS
NINTRS
SIOEAGE USEO CODE(1) ETJESI: OATA1O

> 2003 ~ 561301
> $\begin{array}{lll}2003 & 0 & 061701 \\ 4504 & 3 & 165100 \\ 2005 & c & 661301 \\ 0006 & 0 & \end{array}$
6007
$c 010$
$n 011$
$\cos 2$
$n 015$
$c 014$

no diagnostics.

PAGE IS
 OF POOR QUALITI

SURROUIIINE ÉQN̈S ENTRY POINZ OOZS25
SJORAGE USED CODEII! DOZ652: DATAIOJ 000276; DLAMK COHNON(2) 000000
connon alocks

- STORAGE ASSIENHENT LBLCCK, TYPE, RELATIVE LOCATION: WAME,

[^1]

INFINITE FLAT PLATE

 IFIFMINOFHIN-CHHOOSS $41,41,42$

IESI WHETHER TO APPLY THE FULL NEXTOR CORRECTION
$\rightarrow 1$ IS $=$ Z
IFION-CDS $47,47,48$

$15(b x-035), 9,58,58$
$15=1080$

G*ULT $=0.0$
DO $51 \quad 1=1.0$

ORIGNAL PAGE IS
OE, POOR QUAJNX
mfintit flat plate

Rh:NAL PACF LS

60 WCBDCPI)
of CONTINUE
pedoder ine digeciions: : othat xk is ribsy
1F(Mx-1) 70,70,71

s so: 3.

$S P=S P+D=* D G$
67 IS $15=1$
$\ldots \begin{aligned} & x \times 11 \\ & \times 113 \\ & 6010 \\ & x 0\end{aligned}$

范
DATE 082774
IWFISIT FLAT OLATE
E TE.EG:TE THE OE OLTHCGCEAL JIAECTION MATRIX
CTESPTVL!

Us. LuNJ olywniti

1！しっここ「（6）	
141	
（」いこい1！	
C．．．．．ogiain ervar matrix	
co 2\％N＝：LNOPS	
155T：r．．？	
$\begin{array}{ll}\text { co } \\ \text { co } & 17 \\ 17 & \text { jai，4 }\end{array}$	
п＝と．？	
CJ 10 L＝1，4	
	IFt1－FA．J）R：a＊1．J
	TFSISAAxiltest，agstan
17	7 721！01）
	D0 19 I＝1．M
	co $19 \mathrm{~J}=1.4$
	$4=$－${ }^{\text {a }}$
	L0 19 L：1，4
18	
19	
	jFitestell．otlti ot to zl
	－continue
	－transter rival inverse
c．．．il	1 co $2=1: 1, \mathrm{M}$
	$0022 \mathrm{~J}=1, \mathrm{~N}$
	OET＝PロO）
	Pe．tunn
	Evo

$\therefore a_{i} \boldsymbol{\sim}$

142

$\ldots{ }^{*}$

1

> IWFImItE FLAT PLATE

\%

!

DATE OB2774
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots

3 $27 C 2 . j \mathrm{Ci4}$
25288214
15301702 $671178-02$
$182895-21$
$2317716-3$

~

.

1
0
0
0
0
0
0
0
0
0
0

(

豇品品号号

LE THjar exidath

-3
-9

St-ufn amats		c01000 012534			040000	044601
Вntcrarsotent	s(1)	acreco	00102,			
VELustress	(11)	ccis2s	051547			
- *nistresbs	:11)	ocicsc	ccil31	(12)	040000	
zatryerseat	s111	001112	CC1335	312)	0*0012	040031
\servarenos.	S111	0e1:30	cci40:	3(2)	040032	240074
-f $0-\boldsymbol{1 / 5 0 5 9}$	9111	201469	ac:74b	312)	0×007	0*0110
\because OMPrez	(11)	C01797	001771			
Vurgesesa	(11)	201772	002213	312)	040111	040205
	:111	032210	c3z40	3121	040206	040236
	(11)	-02.05	ccisis			
- Malarasta	s11]	202517	202557			
	(11)	cezsta	002613			
				8121	040237	042040
Sissersition	sid)	cost14	${ }_{-103110}$	3121 3121	${ }_{0}^{04824} 0$	082944 092503
	(11)	$00^{4} 268$	ccu45s	3(2)	042504	042642
\ivincorseng	(11)	craust	c09004	S125	042643	042046
	(11)	cceter	2i50ss	812)	042647	042677
-1:rcseam	(11)	nesaso	ccos 32	312)	042700	042754
-nfresery	141)	Ccos33	27520	3121	042753	${ }_{0}^{0.313130} 0$
ง195\%				310)	043131	(043202
5s,crone-a	(11)	007521	c15121	(12)	\$1303	${ }^{4} 43831$
us?0phersame	(11)	c10122		81	0	
	(111)	01610	210207			
	8111	c10210	010253	312)	D43443	0.3454
cs,risen-9	(11)	cle:s.	0.043	3121	043455	043575
54, $5=5$?	311) Si1,	ciows cicel	S1C4?	3121 $312)$	${ }_{0}^{043576}$	043576 0.3015
		clems	Eics3	(13)		

003616 O49661
BLANKSCOMHON 5101
$3(2)$
OFIGNAL PAGE IS
OF PGOR QUALITY

zisce th itipaiten we maves
50
0.
0
0

\because - $\mathrm{B}, \mathrm{E} \mathrm{E}$
果
$\because:<$

\square
\square

a 1

1.53

IV. infinite plate/fine mesh

ORIGEAL PAGE IS
OF POOR QUALITY

NO DIEGNOSTICS.
EvU OF CO~PILATION

1
\cong
苞
F
$\stackrel{y}{0}$
監
$\stackrel{4}{6}$

ORIGNAL PAGE IS
OF POOR QUALTIX

$\stackrel{\square}{-}$
蔓
120374
"
Orgech poor plan

> FINITE PLATE

3

$$
120374
$$

范

	－＊＂asw	S：1zas sursj		c4，0e0 10
	（11）			
	2：1，	E6173 $=1137$	：12）	
……	：111，	$5: 11 \geqslant 2$－ 3138	（12）	64021？ 240031
1，	（11）	zrirse 71000	3121	
－i．．．．	sil	ご1721		
＇ss，${ }^{\text {a }}$	311， ai，		36）	540111747255
\cdots	311		（12）	240206047236
＋יッ1／5	：11	05：955 32is10		
＋．3）	si11	5rasi，－7245		
－bis，	（11）	čish\％－ 2 为	312）	curi3 242440
18：4		0こ：nı4－2．074	：121	c44，441042444
viro，	sil	－ 0 － 25 S411	sii）	
r19	＇11：＇，			Ouzse：0．isuc
3	：1：1	2天：usb jexi42	Sis）	C4：41 cozels
－－2，	319	－3543 5 7033	312	Cuatsa 3 asiso
－．．．．4．	＇11）		3（\％）	24，111 04106
			s15）	36：5： 54

$\stackrel{n}{n}$

00

商落领～N

$\because \because$ Osenvily:In4

 ?

:212:3 $21: 6$

V1. FIMITE PLATEF $/\left(R_{0} / L\right)=1 / 2$

VII. r AND z COMPUTER PROGRAM/FINITE PLATE/($\left.R_{c} / L=3 / 4\right)$

ORIGINAL PAGE IS
OF POOR QUALITY

0

80
$\therefore 2 \times 5 \times 6=555=3$

$\xrightarrow{\rightarrow 1}$
0.

5
0
0
为

- Pr
$-\ldots$
$\cdots-\sim$

-als PRCiñam

EXIENAAS MEFEFENCES IELOCK. WAMEI
coos mivies

giti *ita00 ?
 m Exizit 50

.

ORIGRNIL RIGE IS
GF PUUR QUALITY

-t:ncstics.

?

:1164.

\because, \cdots
ORIGNBL PIGE IS
OF POOR QUALITY

VIII. FINITE PLATE/($\left.R_{0} / L\right)=3 / 4$

6
Ix. COMPUTER LISTING/SURFACE TENSION MODEL

,

14
!

CRTMLAL PAGE IS
UF i-UR QUAIETY

 cenoo lacks

$』$
志

E

THITE RATE

 \mid

$$
\ddagger
$$

$$
\underset{!}{!}
$$

ORTWN PNETS
OF POUR QUALIX

$$
001075
$$

$$
\underset{a}{a}
$$

2

Nalmpotatron

$$
\begin{aligned}
& 4 \\
& 3 \\
& i
\end{aligned}
$$

origival ping ts

origene pay

ORIGTAL zage IS
OF PMR GU.LiTY

DRIGNNAL PAGE IS OE POOR QUALITY

XII. BIBLJOGRAPHY

1. Allen, D. N. G.: Relaxation Methods. McGraw-Hill. 1954.
2. Amsden, A. A., and Harlow, F. H.: The Smac Method: A Numerical Techniqu. for Calculating Incompressible Fluid Flows. Los Alamos Scientific Laboratory Rep. LA-4370, May, 1970.
3. Arbhabhirama, A.: Free Streamline Analysis of Two-Dimensional. Jet. Jour. of the Hydraulics Division. July, 1969, pp. 1139-1148.
4. Batchelor, G. K.: An Introduction to Fluid Mechanics. Cambridge University Press. 1967.
5. Brennan, C.: A Numerical Solution of Axisymmetric Cavity Flows. Jour, Fluid Mech., vol. 37, part 4, 1969, pp. 671-688.
o. Brunaucr, E. A.: Axially Symmetric Free Streamline Flow About Candem Discs. M.S. Thesis, Illinois Inst. of Tech., 1951.
6. Chan, S. T. K.: Finite Element Analysis of Irrotational Flows of an Ideal Fluid. Ph.D. Thesis, Univ, of California, Davis. 1971.
7. Chan, S. T. K., and Larock, B. E.: Fluid Flows from Axisymmetric Orifices and Valves. Journ, of the Hydraulics Division, Jan. 1973, pp. 81-97.
8. Chang, H. Y., and Conly, J. F.: Potential Flow of Segmental Jet Deflectors. Jour. Fluid Mech., Vol. 46, Part 3, 1971, pp. 465475.
9. Davis, A. L., and Jeppson, R. W.: Solving Three-Dimensional Potential Flow Problems by Means of an Inverse Formulation and Finite Differences. Utah State Univ., Mar. 1973.
10. Donnelly, R. J., and Glaberson, W.: Experiments on the Caplllary Instability of a Liquid Jet. pp. 547-556, 1965.
11. Feng, G. C., and Robertson, S. J.: Study of Propellant Dynamics During Docking. NASA CR-124055, 1972.
12. Fox. L.: A Short Account of Relaxatfon Methods, 1947.
13. Gurevich, M. J.: Theory of Jets in tdeal Fluids. Academic Press, 1965.
14. Hirt, C. W., Cook, J. I.., and Butler, T. D.: A LaGrangian Method for Calculating the Dynamics of an Incompressible Fluid with Free Surface. Jour. of Comp. Physics, vol. 5, 1970, pp. 103-124.
15. Hirt. C. W., and Shannon, J. P.: Free-Surface Stress Conditions for Incompressible-Flow Calculations. Jour. of Com. Physics, vol. 2, 1968, pp. 403-411.
16. Huang, Y. C., Hammit, F. G., and Yang, W-J.: Hydrodynamics Phenomena During High-Speed Collision Between Liquid Droplet and Rigid Plane. Jour. of Fluids Engineering. June, 1973. pp. 276294.
17. Huang, Y. C., Hammit, F. G., and Yang, W-J.: Normal Impact of a Finite Cylindrical Liquid Jet on a Flat Rigid Plane. Rep. No. U Mich 03371-9-T, The Univ. of Michigan, Aug, 1971.
18. Jeppson, R. W.: Techniques for Solving Free-Streamine, Cavity, Jet and Seepage Problems by Finite Differences. Tech. Rep. 68. Stanford Univ., Sept. 1966.
19. Jeppson, R. W.: Inverse Formulation and Finite Difference Solution for Flow From a Circular Orifice. Jour. Fluid Mech., vol. 40, part 1, 1970, pp. 215-223.
20. Kochin, N. E., Kibel, I. A., ard Roze, N. V.: Theoretical Hydromechanics. Interscience Pubilishers, 1964.
21. Koloseus, H. J., and Ahmari, D.: Circular Hydraulic Jump. Jour. of the Hydraulics Division. Jan. 1969, pp. 409-422.
22. Krantz, W. B.: Scaling, Initial and Boundary Value Protlems. Chem. Engr. Education. Summer 1970. pp. 145-151.
23. Labus, T. L., and Symons, E. P.: Experimental Investigation of an Axisymmetric Frei Jet with an Initially Uniform Vei._ity Pruille. NASA TN D-6783, May, 1972.
24. LeClerc, A.: Deflection of a Liquid Jet by a Perpendicular Boundary. M.S. Thesis, Univ. of Iowa, 1948.
25. Lieberstein, H. M.: Overrelaxation for Non-Linear Elliptic Partial Di'ferential Problems. MRC Technical Summary Report, No. 87, March, 1959.
26. McNown, J. S., Usu, E., and Yih, c.: Applications of the Relaxation Technique in Fluid Mechantes. Trans. Amer. Soc. of Civil Engs. Paper No. 2758, 1953.
27. Mchelson, I.: F1uid Jet Impingement-Analytical Solution and Novel Physical Characteristic. Nature, Vo1. 223, Aug. 9, 1969, pp. 1,10-611.
28. Michelson, I.: A Solution to the Three-Dimensional obliqueIncidence liquid Jet Problem. Rev. Roum. Math. Pures et App1. Tome, XV, no 2, pp. 279-284. Bucarest, 1970.
29. Milne-'Thomson, L. M.: Theoretical Hydrodynamics. The Macmillan Co., 1968.
30. Moayeri, M. S., and Strelkoff, T. S.: Potential Flow at a Two-Dimensional Conduit Outlet. Jour. of the Hydraulies Division. 1973, pp. 653-671.
31. Moss, W. D.: Flow Separation at the Upstream Edge of a Square.Edged Broad-Cresped Weir. Jour. Fluid Mech., vol. 52, part 2, 1972, pp. 307-320.
32. Nirapathdongporn, S.: Circular Hydraulic Jump. M.S. Thesis, Asian Inst. of Tech., Bangkok (Tinailand), 1968.
33. Powell, M. J. D.: A Fortran Subroutine For Solving Systems of Non-Linear Algebraic Equations. United Kingdom Atomic Energy Authority Research Group Report, 1968.
34. Roache, P. J.: Computational Fluid Dynamics. Hermosa Publishers, 1972, pp. 18-23.
35. Rouse, H., and Abel-Fetouh, A.: Characteristics of Irrotational Flow through Axially Symmetric Orifices. Jour. of Appl. Mech., Dec. 1950, pp. 421-4?6.
36. Rupe, J. H.: On the Dynamic Characteristics of Free-Liquid Jets and a Partial Correlation with Orifice Geometry. Tech. Rep. 32-207. Jet Propulsion Laboratory. Jan. 1962.
37. Schach, Von W.: Umlenkung eines freten Flussigkeitsstrahles an einer evenen Platte. (Deflection of a Free Fluid Jet at a Flat Pane1). Ingenidue-Archiv, vol. 5, 1934, pp. 245-265.
38. Schach, Von W.: Umlenkung eines Kreisformigen Flussigkeitsstrahles an einer cbenen Platte Senkrecht Zur Stromungstrichtung. (Deflection of a Circular Liquid Jet on a Plane Plate Normal to the Stream.) Ingenieur Archiv, vol. VI, 1935, pp. 51-59.
39. Southwel1, R. V., and Vaisey, G.: Relaxatioa Methods Applied to Engineering Problems. Phil. Trans. Roy. Soc. of London A(240), 1946, pp. 117-16. .
40. Stephens, D. G.: Experimental Investigation of Liquid Impact in a Mode1 Prope11ant Tank. NASA TN D-2913, 1965.
41. Thom, A., and Apelt, C. J.: Field Computations in Engineering, and Physics. D. Van Nostrand Co., 1961.
42. Watson, E. J.: The RadLal Spread of a Liquid Jet over a Mori\%ontal Plane. J. Fluid Mech. (1968), vo1. 20, part 3, pp. 481-499.
43. Yih. C.: Dynamics of Nonhomogencous Fluids. The Macmillan Co., 1965.
4.. Young, D. M., Gates, L. D., Arms, R. J., and Eliezer, D. F.: The Computation of an Axially Symmetric Free Boundary Problem on NORC. NPG Rep. 1413, Dec. 1955.
44. Zhukovskii, N. Ye.: Opred' Leniye Dvizheniya Zhidkosti Pri Kakom'-Nibud' Uslovii, Dannom' Na Linii Toka. (Determining the Movement of a Liquid for a Condition Specified on a Streamline.) Zhurnal Obshchei Khimii, Number 2, vol. XXIII, pp. 89-100, 1891.

45. - SUMMARY OF PARAMETERS - ZERO GPAVITY

TABLE 2. - Concluded.

Test 1iquid	```Nozzle radius, Ro, cm```	```Disk radius, L, cm```	$\begin{gathered} \text { Ratio, } \\ R_{0} / L \end{gathered}$	Velocity of jet, cm/sec	Reyno1ds number, $\rho V R_{0} / v$	Weber number, $\rho V^{2} R_{o} / \sigma$	Flow category
	0.75	1.5	0.50	15.4	760	6.2	S
Ethanol	0.75 .75	1.5		19.1	942	9.6	S
Ethanol	.75 .75	1.5		19.9	986	10.5	S
Ethanol	. 50	1.0		26.4	368	12.2	S
Ethanel	. 50	1.0		1.7 .7	1996	13.2	S
Frer . TF	. 75	1.5		28.2	1891	21.0	S
Et's: $n 01$. 75	1.0		34.9	1148	21.3	T
Ett. nol	. 50	1.0 1.0		23.3	2628	23.0	T
Freon TF	. 50	1.0 1.5		34.4	1697	31.2	T
Ethanol	. 75	1.5 1.0		46.1	1516	37.4	T
Ethanol	. 50	1.0		31.9	3490	43.2	T
Freon TF	. 50	1.0		41.2	2036	44.7	[
Ethanol	. 75	1.5		52.3	1720	48.2	T
Ethanol	. 50	1.0 1.0		37.5	4230	59.5	I
Freon TF	.50 .75	1.0 1.5		47.5	2347	50.6	I
Ethanol	.75 .50	1.5 1.0	1	85.7	2820	129.0	I
Etharsol	. 75	1.0	. 75	12.7	63C	4.2	S
Ethanol	. 75	1.0	. 75	22.5	$111($	13.3	S
Ethanol				24.8	122%	16.2	S
Ethanol.				27.3	1350	19.7	T
Ethanol				29.4	1454	22.9	T
Ethanol				32.0	1580	27.0	T
Ethanol				35.0	1730	32.3	T
Ethanol	1	\dagger	1	39.1	1930	40.2	I

TABI.E 3. - SUMMARY OF PARAMETERS - NORMAI. GRAVITY

Test liquid	$\begin{gathered} \text { Nozzle } \\ \text { radius, } \\ R_{o}, \\ c m \end{gathered}$	```Disk radius. L, cm```	$\begin{gathered} \text { Ratio, } \\ a_{0} / f . \end{gathered}$	Ratio, H / R	$\begin{aligned} & \text { Webor } \\ & \text { number, } \\ & \qquad V^{2} R_{o} / \dot{s} \end{aligned}$	Reyuolils number. $i \cdot V k_{o} / i$	$\begin{gathered} \text { Bors } \\ \text { number, } \\ 0 \text { Rr }^{2} / 10 \end{gathered}$	Katfu, k_{F} / k_{i}
Distilled water	(${ }_{\text {\% }}$	0.50	0.50	4	121	4775	0.852	19.96
		. 50	. 50	20		5261		19.96
		. 75	. 33	4		4775		2?.88
		. 75	. 33	20		5261		24.68
		1.0	. 25	4		4775		23. ${ }^{4}$
		1.0	. 25	20		5261		25.0
		1.5	. 167	4		4775		20.0.0
		1.5	. 167	20		5261		22.78
		2.0	. 125	4	1	4775		18.4?
		2.0	. 125	20	\dagger	5261	\dagger	19.14
		. 75	. 667	2	26	3775	3.42	5.76
		. 75	. 667	10		5815		9.26
		1.0	. 50	2		3775		4.86
		1.0	. 50	10		5815		4. 3:
		1.5	. 33	2		3775		6.13
		1.5	. 33	10		5815		9.4?
		2.0	. 25	2	1	3775		5.013
		2.0	. 25	10	1	5815	1	8.80
		. 75	. 667	2	44	4550	3.39	7.0;
		. 75	. 667	5		5300		9.61%
		. 75	. 667	10		6350		10.411
		1.0	. 90	2		4550		8. 14
		1.0	. 50	10		6330		10, 411
		1.5	. 333	2		4550		8.31
		1.5	. 333	10		6330		11.6.'
		2.0	. 25	2	1	4590	1	1.88
		2.0	. 25	10	7	6.310	7	10.6:
		. 75	. 66.7	$?$	10%	6170	3.40	10.4.4
		. 75	. 6,67	10		$\because 350$	+	14.8
		1.0	. 50	:		1,670		16. 11
		1.0	. 30	10		7s,a		い. 1
		1.5	. 133	\cdots	,	6:10	,	11. ${ }^{\text {a }}$:
		1.5	. 313	10	,	785		'斤..'
		$\therefore 0$	\cdots	\cdots	1	6,471	1	16.1:
		$\because 0$	$\therefore 50$	10		7501	I	11.1:

TABSF：1．－Concluded．

Test liquid		```Dink ridius, l., cm```	Ration， $R_{0} / 1$ ．	$\begin{gathered} \text { Ratitu, } \\ H / R_{0} \end{gathered}$	Weber number． －$V^{2} R_{0} / \cdot$	$\begin{aligned} & \text { Kevnolds } \\ & \text { number } \\ & \text { UR }_{6} / \end{aligned}$	$\begin{aligned} & \text { loond } \\ & \text { number, } \\ & \text { PhRen }_{6} / \text {, } \end{aligned}$	Ritio， R_{p} / R_{0}
	0.25	0.50	0.50	4	235	6573	0.857	35．1：
	0.25	． 50	． 50	20		6922		34.411
		． 75	． 33	4		6573		38．0．0）
		． 75	． 33	20		69：2\％		$4 \div .84$
		1.0	． 25	4		6573		3．，${ }^{\text {a }}$
		1.0	． 25	20		6922		41.
		1.5	167	4		6573		3．．．
		1.5	． 167	20	，	$69 \% 2$		36．\because
		2.0	． 125	4		6573		13．＇i
		． 50	． 50	4	62．5	1598	$\therefore 16$	13.6
		． 50	． 50	20		2128		15． 16
		． 75	． 33	20	1	15\％8		11.16.
				4	157	2307		\therefore 4． 11
				20		$\therefore 7.5$		31． k 11
		1.0	． 25	20		$\therefore 75$		H．il
		1.0	． 25	4		， 307		$\therefore 3.2$
		． 50	． 50	$?$	200	$25: 0$		3／4．${ }^{1}$
				4		？ 371		\therefore A．${ }^{\prime}$
				10		$\therefore 720$		＇7．1．
	1			20		2953		＇9．r．＇
	． 125		． 25	2	294	1857	． 54	3．＊${ }^{\text {a }}$
				4		1 1866		
				10		i 1892		$\because \prime$
				30	1	i 1436		3.611
		\dagger		：	177	16，5i		厄．$!$
		． 30				14，h；		－1．
		． 50		10		16，46		\cdots
	\checkmark			20		174	$\therefore 11$	\cdots
	． 5		.30	4	－13	－：if！	$\therefore 11$.	\cdots
		1		$\square \quad \therefore 1$		111\％		11 ！ 1.
		． 75		？		3114		3，
		． 75	－ 31	4		$\square 61$ 361		\because
	1		\ldots	－		111\％		1．．${ }^{\prime}$

Figure 1. - Schematic of liquid jet impinging on a flat plate.

(a)

(b)

Figure 2. - Flow pattern as a finction of nozzle height.

Figure 3. - Flow pattern as a function of jet radius.

Figure 4. - Results of order of magnitude analysis.

Figure 6. - Flow system schematic.

Figure 7(a). - Top view of jet reservoir.

Figure 8. - Schematic diagram of sharp-edged disk.

Figure 9. - Liquid jet impinging on flat solid plate.

Figure 10. - Zero gravity experimental results.

Figure 11. Physical plane model of lifuid jet impinament.

Figure 12 - Dimensionless governing equation and boundary conditions in physical plane employing Stokes'
stream function.

$$
\psi_{Z^{*} z^{*}}^{*}+\psi_{r^{*}+r^{*}}^{*}-\frac{1}{r^{*} \psi_{r^{*}}^{*}}=0
$$

$$
\begin{aligned}
& \text { where } W e=\frac{\rho V^{2} R_{0}}{\sigma} \\
& u^{*}=\frac{1}{r^{*}} \frac{\partial \psi^{*}}{\partial z^{*}} \\
& v^{*}=-\frac{1}{r^{*}} \frac{\partial \psi^{*}}{\partial r^{* *}}
\end{aligned}
$$

$$
\psi^{*}=\frac{1}{2}
$$

$$
\frac{1}{2 r^{* 2}}\left[\left(\frac{\partial \psi^{*}}{\partial z^{*}}\right)^{2}+\left(\frac{\partial \psi^{*}}{\partial r^{*}}\right)^{2}\right]
$$

$$
-\frac{1}{W e} \frac{1}{r^{*}} \frac{d}{d r^{*}}\left[\frac{r^{*}}{\sqrt{\left(\frac{\partial \psi^{*} / \partial z^{*}}{\partial \psi^{*} / \partial r^{*}}\right)^{2}+1}}\right]
$$

$$
=\frac{1}{2}-\frac{1}{W e}
$$

Figure 14. - Dimensionless governing equations and boundary conditions.

Figure 15(a). - Inverse formulation excluding surface tension (r solution) for
infinite plate.

Figure $15(b)$. - Inverse formulation excluding surface tension (z. solution)
for infinite plate.

Figure 16(a). - Inverse formulation excluding surface tension (r solution) for finite plate.

Figure 16(h) - Inverse formulation excludiny surface tension (a solution) for finite plate.

Figure 17. - Inverse formulation including surface tension (r solution) for finite plate.

Figure 18(a). - Surface tension model - inverse formulation (r solution).

Figure 18ibl. - Surface tension model - inverse formulation (1) solution).

Figure 19. - Nodal point representation for rectangular mesh.

Figure 20(a). - Finite difference representation for infinite plate (r solution).

Figure 0 o(b). - linite difference representation for infinite plate iz solution!.

Figure $21(a)$. - Finite difference representation for finite plate (r solution).

Figure 21(b). - Finite difference representation for finite plate (z solution).

Figure 22(a). - Finite difference representation for surface tension dominated model (r solution).

Figure 22(b). - Finite difference representation for surface tension dominated model (7. solution).

Figure 23. - Numerical solution of liquid jet impinging on infinite flat plate (coarse mesh).

Figure 24. - Print-plot of liquid jet impinging on infinite flat plate (fine mesh).

Figure 27. - Schematic diagram of velocity discontinuity occurring in surface tension model.

Figure 28. - Numerical solution of surface tension dominated model $\left(\mathrm{We}=4, \mathrm{R}_{0} / \mathrm{L}=1 / 2\right.$.

rigure 29. - Comparison of numerical results for infinite plate with
reference 39.

Figure 31. - Comparison of numerical results for finite plate - inertial flow with experiments $\left(R_{0} / L=3 / 4\right)$.

Figure 32(a). - Experimental test rig - froni view.

Figure 3em. - Experimental test rig - side view.

Figure 33. - Cross-section of settling chamber.

Figure 35. - Schematic of steady state normal gravity impingement.

C-75-2599
Figure 34. - Photograph of sharp edge disks.

betweea nozzle and disk, 1 cm .

(e) Disk radius, 1.5 cm .
Figure 36. - Continued.
()!eniniL PAGE IS
Gr PUOR QUALITY

(f) Disik radius, 1.5 cm .
Figure 36. - Concluded.
OPICNAT PGEIS

Figure B1. - 2.2-Second her0-gravity facility.

(b) Laboratory equipment.
Figure B2. - Concluded.

(b) During free fall.
gure B?. - Position of experiment package ind drag shield before, during, and after test drop.

[^0]: ORIGNAL PAGE L
 OF POOR QUALITY

[^1]: 上けッ
 \therefore

