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Mechanical vibrations can alter static and dynamic
distributions of fluids in porous matrices. A popular
theory that explains non-destructive changes in fluids
percolation induced by vibrations involves elasticity
of a solid matrix and compressibility of fluids. Owing
to strong damping, elastic and acoustic deformations
always remain bounded to narrow zones (a few
centimeters) near the source of vibrations. However,
field trials prove the existence of the effects that
are induced by vibrations in geological reservoirs
on a longer scale (hundred meters). In this work,
we develop a non-elastic theory, assessing the time-
averaged effects induced by small-amplitude high-
frequency vibrations. We examine the immiscible
liquid/liquid displacement flows in a capillary (which
is a building element of a porous matrix) subjected to
translational vibrations. We find that strong-enough
vibrations alter the shapes of menisci and change the
rates of displacement flows. We find that vibrations
slow down or even stop the displacement flows
(which is contrary to a common expectation that
vibrations help to release fluids from a porous matrix).

1. Introduction
Dynamics of a liquid/liquid displacement in a porous
medium is strongly determined by capillary forces.
Owing to capillary action, displacement of a wetting
phase is only possible when the pressure difference
imposed between the ends of a porous sample overpowers
the capillary pressure. The same physics underlies the
effect of capillary trapping, when for example a sponge
immersed in water and then taken out remains water-
saturated (water, despite being heavier than air, remains
entrapped in a porous matrix).
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The effect of capillary trapping is widely exploited by nature and industry for storage of
liquids in porous media. For instance, oil production rates from mature oil fields are lower due to
dispersion of oil phase into smaller blobs that are also immobilised by capillary forces. Obviously,
there is a strong need for control and management of capillary forces. Heating and chemical
additives are already widely employed for easier redistribution of liquids in a porous matrix.
In this work, we aim to investigate if mechanical vibrations of a matrix can be an additional tool
for effective (predictable) control of liquid/liquid displacements.

The action of capillary forces in a porous medium can be modelled by representing a porous
medium by a network of capillaries (the so-called network approach). The capillary pressure in a
porous matrix is then reduced to a multitude of capillary pressures associated with numerous
interfaces that exist within elements of a matrix. In this work, we study the liquid/liquid
displacement (movement of a liquid/liquid meniscus) in a single element of a porous matrix
that is subjected to translational mechanical vibrations.

The application of oscillatory forcings for handling of multiphase fluid systems that saturate a
porous medium is not a novel idea. Seismic stimulation of oil production from mature reservoirs
was previously attempted in the Soviet Union in a series of field trials [1]. The idea was motivated
by observations of the changes in water levels in wells and the changes in oil production noticed
after passing trains or after remote earthquakes, i.e. that were induced by relatively weak seismic
forcings. The idea was attractive for oil-producing industry due to low-cost, absence of harmful
ecological consequences, and due to possible combination of the new technique with conventional
methods of enhanced oil recovery. However, the results of the trials were not always positive, only
40− 50% of the trials brought improvements in oil productions.

The inconsistency in the results was explained by insufficient understanding of the underlying
physical mechanisms that explain the effect of vibrations on oil production. Through the further
work, researchers identified more than a dozen physical mechanisms that are potentially capable
of altering the flows in a porous medium. In particular, it was found that mechanical vibrations
of very high intensity (high amplitude and high frequency) rupture solid matrices producing
mechanical destruction, improving local permeability in this way [2]. Ultrasonic vibrations (with
wavelengths comparable with sizes of pores) may engage the effects of compressibility in either
solid matrix or in fluids; these are peristaltic transport, when ultrasound deforms pore walls in
the shape of travelling transversal waves [3], and the sonocapillary effect that is related to the
acoustic cavitation [4]. Owing to high attenuation, ultrasonic vibrations work only locally, with
maximum penetration lengths less than 10 cm. Ultrasound vibrations, in particular, are widely
employed for facilitation of fluid flows in membranes and in other cleaning applications, which
are also frequently modelled as a porous medium.

Despite identification of a multitude of physical phenomena, a reliable, predictive and
universal description of the action of vibrational forcing on fluids in porous medium is still
unavailable. Currently, the most popular theoretical explanation of the effect of vibrations on
percolation of fluids is based on Biot’s theory that relates the acoustic force that pushes fluids
through pores with elastic deformations of a solid matrix and fluids [5]. Again, as stated above,
this theory is only applicable to the narrow zones near the vibration sources due to rapid decay of
elastic deformations, so the effect is virtually non-existent at distances of few centimeters. In field
studies [1,6], however, there are observations that vibrations of lower frequencies (when effects of
elasticity and compressibility do not play any role) are still capable of enhancing fluid flows, and
such vibrations are capable of enhancing the flows on a larger spatial scale.

In this work, we aim to examine the effects of vibrations of lower frequencies. We develop a
non-elastic theory that neglects elastic deformations of a solid matrix and fluids on a pore-scale.
We assume that the whole matrix oscillates with a small constant amplitude.

The period of vibrations that we examine is assumed to be much lower than any hydrodynamic
time scale. An efficient description of such vibrations is achieved by the averaging approach,
when the full governing equations are split into the two sets for separate descriptions of the
pulsation and averaged flow fields. The primary focus of our study is on the averaged dynamics.
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(a) (b) 

Figure 1. (a) A capillary joining two pores. The whole matrix is subjected to translational vibrations. (b) A capillary of a

complex shape.

In particular, in heterogeneous fluid systems high-frequency vibrations tend to induce
steady (independent of short vibration time scale) deformation of interfaces, turning interfaces
perpendicular to the direction of the vibrational forcing [7,8]. Application of this effect for altering
the shapes of menisci and, potentially, for altering the dynamics of the liquid/liquid displacement
has not been studied yet. This effect cannot be explained by Biot’s theory. A novel theory is
needed, that we aim to develop in this work.

2. Physical model

(a) Physical assumptions
We examine the dynamics of two immiscible and incompressible fluids that saturate a single
capillary (a building element of a porous matrix) that is subjected to translational vibrations. We
develop a new model [9] that describes the time-averaged effects of high-frequency vibrations
on the behaviour of multiphase fluid systems. The model is based on the phase-field approach
for description of a heterogeneous binary mixture, and it can be equally used for description of
miscible and immiscible mixtures, by selection of the governing parameters. In this particular
work, we focus on the immiscible interfaces, choosing the parameters that make the diffusive
smearing of interfaces insignificant for the considered displacement runs. The model was
previously validated by simulation of frozen waves induced by vibrations on an immiscible
liquid/liquid interface [10].

The model presumes that vibrations are characterised by small amplitudes, ϕa≪ h, and higher
frequencies, ω≫ ν/h2. Here, a and ω are the amplitude and circular frequency of vibrations,
ϕ=∆ρ/ρ is the density contrast, ν is the kinematic viscosity, and h is the typical length (the
diameter of a capillary). All flow variables are represented by a series using a small parameter
(the ratio of the period of vibrations over the hydrodynamic time scale), and the analysis focuses
on the leading orders of the governing equations. It is also assumed that all flow fields can be
represented by small-amplitude pulsations induced by vibrations that develop on the slowly
varying background. For instance, the fluid velocity is split into the pulsation and average
components that are denoted by w⃗ and u⃗, respectively. Furthermore, in the equations written
below, there are two orders of the pulsation velocities, w⃗0 and w⃗, which are the zeroth and first
orders of this variable. The model presumes that the fluid mixture saturates a closed container, so
that in the zeroth order, the fluid moves together with the container, as a solid body, and hence
w⃗0 is a constant vector. Inhomogeneities in the pulsational velocity induced by inhomogeneities
in the field of concentration appear in the next order. These inhomogeneities are defined by w⃗.

On the basis of the averaging approach the system of equations can be split into separate
descriptions of pulsation and average flows. The equations for the pulsation field are linear and
inviscid. The equations for the average fields resemble the Boussinesq approximation of the Cahn-
Hilliard-Navier-Stokes equations [11] with an added vibrational force.

We assume that the capillary is initially saturated with one liquid, and the other liquid is
injected into the capillary from an inlet end; this injection results in displacement of the first liquid
from the other (outlet) end. The capillary is subjected to translational vibrations. In this work, we
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consider two cases when the vector of vibrations is parallel and perpendicular to the capillary’s
axis.

It is important to discuss the settings of the problem in more details. For the transversal
vibrations (when the axis of vibrations and the axis of a capillary are perpendicular), the
vibrations of the capillary will make an incompressible fluid move like a solid body together
with the capillary. For the longitudinal vibrations, however, when the vibrations occur along
the capillary’s centreline, the action of vibrations on the fluid that saturate a capillary could be
different. Since the pulsation motion is essentially inviscid, in a straight capillary with two open
ends, the fluid would simply slip along the walls, and neither the pulsation nor average motion
could be induced in the bulk region, at least to first order in the expansion of the governing
equations. We do not consider this case.

In our work, we assume that the capillary is a part of a larger matrix (the capillary joins two
pores of a porous matrix like shown in figure 1a, or the capillary may have a complex shape, as
shown in figure 1b). We do not consider the other elements of the matrix (and we only consider
the straight part of a complex capillary), but we assume that the whole matrix is subjected to
vibrations, and that the fluids that saturate the matrix fulfill oscillatory movements together with
the solid matrix (to leading order the fluid that saturates a matrix moves like a solid body together
with the solid matrix). In this work, we will focus on the effect of vibrations induced in a single
capillary, far from any boundaries that are perpendicular to the capillary’s centreline, but we
assume that such boundaries do exist. These boundaries will make the fluid to vibrate together
with the walls. The consideration of the pulsation field near these boundaries is outside the scope
of the current work. 1

(b) Governing equations
The governing equations for the averaged flow fields read,

∂u⃗

∂t
+ (u⃗ · ∇)u⃗=−∇Π

ρ
+

η

ρ
∇2u⃗− C∇µ− ϕ

2
(w⃗ · w⃗0)∇C, (2.1)

∂C

∂t
+ (u⃗ · ∇)C =

α

ρ
∇2µ, (2.2)

∇ · u⃗= 0, (2.3)

µ=−ϕ(g⃗ · r⃗) + 2aTC + 4bC3 − ϵ∇2C, (2.4)

Π = p+ ρ

(
w⃗2

4
+ ϵ

(∇C)2

2
− µC + aTC

2 + bC4 − ϕ(g⃗ · r⃗)C
)
. (2.5)

Here, C is the concentration, defined as the mass fraction of one of the liquids in a mixture, µ is the
chemical potential (in the phase-field approach, the diffusion flux is proportional to the gradient
of the chemical potential, and intensity of diffusion is controlled by the mobility coefficient α,
which is proportional to the standard coefficient of diffusion), the coefficients aT and b are the
two parameters that define the thermodynamic model of the binary mixture, p is the pressure,
and Π is the modified pressure (that includes all gradient terms in the Navier-Stokes equation).
The Navier-Stokes equation includes the Korteweg force that determines the morphology of the
liquid/liquid boundary, and the vibrational force. The gravity term enters the definition of the
chemical potential (this term will also enter the Navier-Stokes equation if the chemical potential
is substituted into the Korteweg force). The gravity effect is determined by the gravitational
acceleration g⃗ and by the density contrast ϕ.

1Another option of inducing oscillatory motion in a porous medium is adding periodic modulation to the pressure difference
that is imposed between the ends of the capillary. This would be a different problem statement, as the pressure pulsations
will make the fluid to slip along the matrix; we do not consider this effect.
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The vector w⃗ determines the spatial variations in the pulsational velocity, and it is defined by
equations,

∇× w⃗= ϕw⃗0 ×∇C; ∇ · w⃗= 0. (2.6)

To non-dimensionalise equations (2.1)-(2.6) we use the following scales for the length, time,
average velocity, pulsational velocity, pressure, and chemical potential,

h,
h

V∗
, V∗ =

∆p

L

h2

8η∗
, ϕaω, ρV 2

∗ , µ∗ = b. (2.7)

Here h and L are the diameter and length of a capillary. The typical velocity, V∗, is defined as
the maximum velocity of the Poiseuille’s flow (that would exist in a capillary subjected to the
pressure difference ∆p= p1 − p2 between the ends if the surface tension effects are ignored).

Also, we redefine the zeroth order of the pulsational velocity as w⃗0 → aωw⃗0, with w⃗0 becoming
a dimensionless unit vector that defines the direction of vibrations. Similarly, the vector of gravity
acceleration is redefined as g⃗→−gγ⃗, where g is the magnitude of the gravity acceleration and γ⃗

is the unit vector that is directed upwards.
The dimensionless form of equations (2.1)-(2.6) reads,

∂u⃗

∂t
+ (u⃗ · ∇)u⃗=−∇Π +

1

Re
∇2u⃗− 1

M
C∇µ− V (w⃗ · w⃗0)∇C, (2.8)

∂C

∂t
+ (u⃗ · ∇)C =

1

Pe
∇2µ, (2.9)

∇ · u⃗= 0. (2.10)

∇× w⃗= w⃗0 ×∇C; ∇ · w⃗= 0, (2.11)

µ=
Gr

M
(γ⃗ · r⃗) + 2AC + 4C3 − Cn∇2C. (2.12)

Π = p+ V
w⃗2

2
+

Cn

M

(∇C)2

2
− 1

M
(µC −AC2 − C4)−Gr(γ⃗ · r⃗)C, (2.13)

Equations (2.8)-(2.13) include the following non-dimensional parameters,

Re=
ρ∗hV∗
η∗

, P e=
ρ∗hV∗
αµ∗

. (2.14)

These are the Reynolds and Peclet numbers that determine the roles of the viscous and diffusive
effects. In the phase-field approach, the diffusivity can be defined as D∗ =

αµ∗
ρ∗

. Next two non-
dimensional parameters are

Gr=
ϕgh

V 2∗
, V =

(ϕaω)2

2V 2∗
. (2.15)

The Grashof number determines the role of the gravity effect. The vibrational parameter V , that is
proportional to the square of the vibrational velocity, defines the strength of the vibrational force.
The two other non-dimensional parameters are

M =
V 2
∗

µ∗
, Cn=

ϵ

µ∗h2∗
. (2.16)

The Mach number (that should not be confused with the classical Mach number) determines
the strength of the Korteweg force, and hence determines the strength of the surface tension
forces. The Cahn number controls the thickness of the interface (that is proportional to

√
−Cn/A).

Finally, the parameter
A=

aT
b

(2.17)

determines the thermodynamic behavior of a binary mixture.
In this work we focus on immiscible interfaces, which we achieve by considering relatively

short capillaries and relatively high Peclet numbers, and also by taking A=−1/2 (i.e. taking the
temperature of a binary mixture below the critical point).
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The liquid/liquid displacement is strongly determined by the capillary effects. The strength
of the capillary effects is traditionally determined by the surface tension coefficient. Within
the phase-field approach, the surface tension forces are determined by a number of alternative
parameters, while the surface tension coefficient can be calculated from the equation,

σ=
ReCa

M

Ei

S
=

ReCaCn

M

1

S

∫
V
(∇C)2dV . (2.18)

Here, Ei is the interfacial energy that is scaled by ρµ∗h
3
∗, σ is the coefficient of surface tension that

is scaled by σ∗ (the dimensional value of the surface tension coefficient), and S is the area of the
interface scaled by h2∗. The latest equation also introduces one more non-dimensional parameter,
the capillary number,

Ca=
η∗V∗
σ∗

. (2.19)

(c) Values of non-dimensional parameters
To estimate the values of the non-dimensional parameters, we assume that we examine the
evolution of an oil/water mixture (with typical density ρ∗ ∼ 103 kg/m3, density contrast ϕ∼ 0.1,
viscosity η∗ ∼ 10−3Pa · s, diffusivity D∗ ∼ 10−9m2/s, and surface tension σ∗ ∼ 0.01N/m) that
saturates a capillary (with radius h∼ 10−4m and length L∼ 10−3m). The flow in a capillary is
driven by the pressure difference, ∆p∼ 1Pa (this could be derived from the assumption that the
overall pressure gradient is 104Pa/m), with the typical velocity V∗ ∼ 10−3m/s.

These assumptions allow us to conclude that Ca∼ 10−4, Re∼ 0.1, Pe= 100, Gr∼ 100. Here
we assume that the gravity is directed perpendicular to the capillary axis. For a vertical capillary,
the value of the Grashof number would be greater.

The capillary is subjected to the vibrations. We assume that elastic deformations of a solid
matrix and fluids are negligible. Indeed, deformation of a porous matrix may be only important
on a length scale that is comparable with the wavelength of the waves induced by vibrations,
λ∼ c/ω, where c is the speed of sound (c∼ 103m/s) and ω is the frequency of vibrations. For low
frequency vibrations, the wavelength can be as high as 1km, and even for ultrasonic vibrations,
λ is greater than 1cm. Our focus is on the capillary effects that are determined by the shape of a
liquid/liquid meniscus in a single pore, and hence the deformation of a porous matrix remains
always unimportant for our study. We also assume that vibrations are non-acoustical, again,
in the sense, that the wavelength of induced waves is considerably greater than the capillary’s
diameter, ω≪ c/h. For non-acoustical vibrations, compressibility effects may be neglected even
for pulsation motion.

At the same time, the period of vibrations is assumed to be considerably smaller than the
typical convective and diffusive time scales (that are calculated for the size of a single pore),
namely

1

ω

η∗
ρ∗h2

<< 1,
1

ω

D∗
h2

<< 1, (2.20)

or, in terms of non-dimensional parameters,

1

V 1/2Re

ϕa

h
<< 1,

1

V 1/2Pe

ϕa

h
<< 1. (2.21)

Let us assume that the amplitude and frequency of vibrations are a∼ 10−4m and ω∼ 103s−1,
which makes V ∼ 100. These parameters, however, especially frequency, can be easily changed
that can be reflected by the change of the vibrational parameter V . For the considered level of
vibrations, the typical value of the pulsation velocity is 0.1m/s.

The value of the Mach number determines the strength of the capillary force. The definition of
this parameter involves non-standard phenomenological parameters, which makes its estimation
difficult. In our previous works, we noted that the value of the Mach number affects a few
different effects, including the shape of the interface and the sliding speed of the contact line [12].
In this work, we fulfill calculations for different Mach numbers, examining the cases of lower
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capillary forces (the fingering displacement) and higher capillary forces (when the meniscus is
compact, symmetrical, and is moving like a piston).

The value of the Cahn number determines the interface thickness. The real interface thickness
is very small, a few molecular layers, which is zero for the macroscopic theory that is developed in
this work. For the sake of numerical calculations, however, the interface is smeared, represented
by a boundary of a finite thickness. To reproduce the physically relevant behaviour, the Cahn
number needs to be taken very small, which makes the numerical simulations challenging due
to the necessity to resolve a small interface thickness. We take the Cahn number so small that the
interface thickness becomes the smallest size that characterises the problem, much smaller than
any other size, which is equivalent to considering the limit of zero Cahn number.

3. Problem statement
In this work, we consider a 2D geometry, representing the capillary by a rectangular domain.
The coordinates along and across the capillary are denoted by x and y, respectfully. We examine
the action of the translational vibrations that are directed either parallel or perpendicular to
the capillary’s axis, naming them the longitudinal (w⃗0 = (1, 0)) and transversal (w⃗0 = (0, 1))
vibrations, respectively. Also, we consider the different orientations of the capillary in a gravity
field, the horizontal (γ⃗ = (1, 0)) and vertical (γ⃗ = (0, 1)) capillaries.

To avoid difficulties in the formulation of the boundary conditions at the inlet and outlet ends,
at t= 0 we place the meniscus inside the capillary, at the position x= 0.5. The meniscus separates
two liquids with concentration levels C =−1/2 (displacing liquid) and C = 1/2 (displaced
liquid). The pressure difference that induces the flow is switched on at time t= 0.

Our analysis is restricted to the moments when a meniscus stays sufficiently far away from the
capillary’s inlet and outlet ends. We fulfilled the calculations for capillaries of different lengths,
from Lx = 10 to Lx = 50, however, the results reported below are obtained for Lx = 10, when we
already obtain a sufficiently long dynamics unaffected by the capillary’s ends.

The governing equations are supplemented with the boundary conditions. The motion on a
long time scale (the average motion) is primarily set by the pressure difference that is imposed
between the ends of the capillary. The reference point for the pressure field is set at the right
(outlet) end (p2 = 0). The pressure level at the left (inlet) end of a capillary is always set as
p1 = 8L/Re. In a single-phase flow, this pressure difference, (p1 − p2) = 8L/Re, will generate the
Poiseuille’s flow with the flow rate Q= 2/3. The actual flow rate will in fact be lower due to the
action of capillary forces.

At the walls, for the average velocity we set the no-slip boundary condition (u⃗= 0), the
absence of the diffusion flux through the wall (∂µ/(∂y) = 0) for the chemical potential, and the
condition for the concentration field that defines the condition of neutral wetting (the contact line
is orthogonal to the wall, the molecules of both liquids interact equally with the molecules of the
wall), which is defined by ∂C/(∂y) = 0.2

We need a separate discussion of the boundary conditions for the pulsation velocity w⃗. It is
easy to note that the differential equations for the pulsation velocity (2.11) are of lower order
(compared with the equations for the average flow), and hence these equations require fewer
boundary conditions. For instance, at the walls, we may impose the no-penetration condition, but
we cannot impose the no-slip condition (as the pulsation flow is inviscid).

To solve the pulsational problem, it is convenient to introduce the potential of the pulsational
velocity, Φ,

w⃗=−Cw⃗0 +∇Φ. (3.1)

2We would like to note that for displacement flows the choice of the static contact angle is of small significance. The static
contact angle defines the shape of a static meniscus. A displacement flow is, however, determined by the dynamic contact
angle, whose value is independent of the static contact angle, and it is instead defined by the flow rate [13,14]. Thus, an
accurate setting of the wetting properties would be a secondary issue for the current problem that is left for another study.
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Then, in terms of the velocity potential, the problem for the pulsational flow reads,

∇2Φ=∇C · w⃗0. (3.2)

Recall that we describe the action of vibrations by using a non-inertial reference frame that is
attached to the vibrating capillary, and hence in terms of velocity, the no-penetration boundary
condition at the walls is wy = 0. In terms of the velocity potential, the no-penetration condition is
∂Φ
∂y = 0 for the longitudinal vibrations and ∂Φ

∂y =C for the transverse vibrations.
At the inlet/outlet ends of the capillary the boundary conditions for the pulsational flow are

chosen so as to minimise the influence of the ends on the flow fields. The analysis of equation
(3.2) shows that the velocity potential must be either constant or be a linear function of the
coordinates far from interfaces (where the concentration field is homogeneous). In addition, the
velocity potential is defined with the accuracy of an arbitrary constant. Taking into account these
constraints, at the inlet end of the capillary (at x= 0) for the longitudinal vibrations we simply
set Φ= 0, and for the transversal vibrations we set Φ= y/2. At the outlet end, at x=Lx, we set a
‘soft’ condition, ∂2Φ

∂x2 = 0 (we presume that the pulsational flow is fully established at this end, or,
in other words, the x-component of the pulsation velocity does not change along the capillary).

The governing equations are solved numerically using the formulation of the primitive
variables, pressure-velocity, and using the fractional-step (or projection) method that is
implemented on the basis of the finite difference approach [12]. The Poisson equations for the
pressure and for the potential of the pulsation velocity are solved by using the iterative Gauss-
Seidel method. We developed a novel algorithm for effective solution of the equations with the
use of graphical processing units. The necessity to trace the interface between two liquids enforces
higher requirements on the numerical resolution. We conduct the calculations using a uniform
mesh with the size of 1/400 across and along the capillary. In our earlier works [12,13,15] we found
that this resolution is sufficient for the accurate reproduction of the dynamics of a two-phase fluid
mixture in a capillary (still, we reproduced some of our calculations using the resolutions 1/300

and 1/500, and found minor, almost non-existent, differences in the results).
It is also important to note what happens if a longer capillary is taken for calculations. In this

case, the pressure boundary condition makes the pressure gradient along the capillary stronger,
but the value of the capillary pressure remains unchanged. By keeping all parameters unchanged,
and by simply varying the capillary’s length one would alter the role of capillary forces and thus
change the flow rate. To keep the dynamics unaltered, changes in the capillary’s length should
be correlated with the changes of the Mach number. Similarly, changes in the Cahn and Mach
numbers should be also coordinated, etc. [12,13].

4. Numerical results

(a) Basic flow. No vibrations
First, we would like to review the basic features of the liquid/liquid displacement in a capillary
that is not subjected to vibrational forcing. A brief summary of this basic case is still needed
for interpretation of the effects of vibrations. Further results on the displacement flow with no
vibrations can be also found in our recent publications [12,13,15].

In this study we focus on immiscible interfaces. A key parameters that defines the shape and
propagation of menisci is the surface tension. For the case of lower surface tensions, the meniscus
is continuously stretched, so the liquid that originally saturates the capillary is getting displaced
only from the middle section (the fingering displacement). For the case of stronger surface tension
forces, the interface remains compact, and the full (piston-like) displacement is observed. In the
phase-field simulations, the surface tension is controlled by the Mach number, and the results
for different Mach numbers are shown in figure 2. One can see that at higher Mach numbers
the role of the surface tension is negligible, so the fingering displacement occurs. At lower Mach
numbers, however, the displacement front has a piston-like shape. For all Mach numbers, the flow
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Figure 2. The fields of concentration and velocity (a,c,e) and the fields of pressure (b,d,f) at t= 6. The snapshots are

shown for a horizontal capillary with no vibrations applied. The calculations are fulfilled for the following parameters:

A=−0.5, Cn= 10−4, Re= 0.1, Pe= 100, Gr= 100, and for three different Mach numbers, M = 10−3 (a,b),

M = 10−4 (c,d) and M = 10−5 (e,f).

has a parabolic velocity profile far from the meniscus. In case of lower Mach numbers, there is a
narrow zone near the meniscus’ tip where the flow profile is different from its classical parabolic
shape. In the pressure fields, one can also see a pressure jump across the meniscus (the capillary
pressure). Also, inclination of the pressure isolines reflects the influence of the gravity force.

Figure 3. The pressure profiles along the capillary are shown for the three different positions: (green line) at the lower wall,

y= 0, (red line) at the centreline, y= 1/2, and (blue line) at the upper wall, y= 1. The profiles are shown for a horizontal

capillary with no vibrations applied, at t= 6. The calculations are fulfilled for the following parameters: A=−0.5, Cn=

10−4, Re= 0.1, Pe= 100, Gr= 100, and three different Mach numbers, M = 10−3 (a), M = 10−4 (b), and M =

10−5 (c). In (c), the dashed lines depict the curves defined by the equations, (p2 − p1)− (p2 − p1 − pc)x/Lx and

(p2 − p1 − pc)− (p2 − p1 − pc)x/Lx, where p1 = 800, p2 = 0, pc = 183, and Lx = 10.

All above conclusions are also supported by the pressure profiles that are shown in figure 3.
In particular, in figures 3, one understands that the value of the pressure drop along the capillary
is imposed by the pressure boundary conditions, the pressure levels along the lower and upper
walls are slightly different due to the effect of gravity, and the pressure experiences a jump across
the meniscus, which value is associated with the capillary pressure.

We also show a few integral characteristics that define the liquid/liquid displacement.
Particularly, figure 4a depicts the volumetric flow rate. At higher Mach numbers, the capillary
pressure is low, so the flow rate in the capillary is very close to 2/3, which is the value for the
classical Poisseuile flow for a single-phase fluid. An increase in the capillary forces slows down
the displacement flow. Figure 4b depicts the length of the meniscus: again, one can see that at
higher Mach numbers menisci are constantly stretched, and at lower Mach numbers the length of
the meniscus remains constant, close to 1, which is the value of the capillary’s diameter. Finally,
figure 4c shows the values of the surface tension (that are divided by the capillary number), which
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Figure 4. (a) The volumetric flow rate through the capillary vs. time. (b) The length of a meniscus vs. time. (c) The

surface tension coefficient divided by the capillary number vs. time. The results are shown for a horizontal capillary

with no vibrations applied. The calculations are fulfilled for the following parameters: A=−0.5, Cn= 10−4, Re= 0.1,

Pe= 100, Gr= 100, and four different Mach numbers, M = 10−3 (blue line), M = 10−4 (green line), M = 10−5

(red line), and M = 10−6 (black line).

are 2.38 · 10−4 for M = 10−3, 2.37 · 10−3 for M = 10−4, 2.34 · 10−2 for M = 10−5, and 0.234 for
M = 10−6 (these values are given for the capillary number Ca= 10−4).

We should also note that there is a simple relationship between the capillary pressure and the
flow rate, Q [12],

pc
(p1 − p2)

=

(
1− Q

Q1

)
. (4.1)

Here Q1 = 2/3 is the volumetric flow rate for the single-phase flow. This relationship gives an
easy way to calculate the capillary pressure, which is 6.8 for M = 10−3, 58.4 for M = 10−4, 183
for M = 10−5, and 234 for M = 10−6. In figure 3c, we also show that these values of the capillary
pressure match the pressure profiles, correctly predicting the pressure jumps across the menisci.

Figure 5. The fields of concentration and velocity (a) and the fields of pressure (b) at t= 10 for a vertical capillary with

no vibrations applied. (c-e) The pressure profiles along the capillary for the three different positions: (green line) at the

lower wall, y= 0, (red line) at the centreline, y= 1/2, and (blue line) at the upper wall, y= 1. The profiles are shown for

t= 5 (c), t= 10 (d), and t= 15 (e). The calculations are fulfilled for the following parameters: A=−0.5, Cn= 10−4,

Re= 0.1, Pe= 100, Gr= 100, and M = 10−5.

Finally, we review the results for a vertical capillary. The corresponding flow fields are depicted
in figure 5a,b. One can see that the flow has the parabolic velocity profile, the pressure isolines
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Figure 6. (a) The volumetric flow rate through the capillary vs. time. (b) The volumetric flow rate through the capillary vs.

position of the tip of the meniscus. (c) The length of a meniscus vs. time. The results are shown for the horizontal (red

lines) and vertical (green lines) capillaries with no vibrations. The calculations are fulfilled for the following parameters:

A=−0.5, Cn= 10−4, Re= 0.1, Pe= 100, Gr= 100, and M = 10−5. In (b), the dashed line is defined by equation

(4.2).

are symmetric in respect with the capillary’s centreline. However, the distribution of the pressure
along the capillary becomes more complex. The pressure distribution becomes a function of the
position of a meniscus, see figure 5c-e, which is explained by the addition of the hydrostatic
pressure, which value can be approximated by 1/2GrLx(1− 2xt/Lx), where xt is the position
of the meniscus’ tip. These observations are also confirmed by figure 6.

In figure 6a, it is easy to notice that the rate of the displacement flow is affected by the
gravity force. The gravity force is proportional to the average concentration of the mixture
that saturates a capillary (as density is proportional to concentration). At the initial moment, at
t= 0, the average concentration is 1/2, and at the later moments the average concentration gets
smaller. Consequently, the effect of the gravity is stronger at the first instances (when gravity
assists the displacement), decreasing on progression of the second liquid into the capillary. When
the meniscus moves through the middle of the capillary, the average concentration changes its
sign, so the gravity force changes its sign as well, starting to slow down the displacement.3

Approximately, the effect of gravity in a vertical capillary can be defined by the following
modified equation (4.1),

Q=Q1

(
1− 1

p1 − p2

(
pc −

1

2
GrLx

(
1− 2

xt
Lx

)))
. (4.2)

Interpretation of the results for vertical capillaries, due to the position-dependent gravity
effect, becomes confusing, and that is the reason why we present most of the results below for
horizontal capillaries.

(b) Transversal vibrations
Let us first examine the case when the capillary is vibrated in the direction perpendicular to the
capillary’s axis. In figure 7, one can see the typical shapes of menisci in horizontal capillaries
subjected to vibrations of different intensities. Only very strong vibrations, with the values of
the vibrational parameter V > 103, induce any noticeable (visible) effects on the displacement
flow. Vibrations are stretching the meniscus, reshaping it, so the greater area of an interface
becomes perpendicular to the direction of vibrations. In particular, at higher levels of vibrations
the meniscus becomes stretched along the capillary, taking the shape of a very sharp cone. For
3It is helpful to understand that the capillary joins two semi-infinite liquid domains. If there is no imposed pressure difference,
then the state of equilibrium would correspond to the state when the boundary between the liquids is placed in the middle
of the capillary. The initial position of the boundary is however different, and gravity tends to bring the boundary to its
equilibrium position. This tendency explains our observations.
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Figure 7. The fields of concentration and velocity (a,c,e,g,i,k) and the fields of pressure and pulsation velocity (b,d,f,h,j,l)

at t= 10. The snapshots are shown for the horizontal capillary that is subjected to transversal vibrations. The calculations

are fulfilled for the following parameters: A=−0.5, Cn= 10−4, Re= 0.1, Pe= 100, Gr= 100, M = 10−5 and for

five levels of vibrations, V = 0 (a,b), V = 8000 (c,d), V = 16000 (e,f), V = 32000 (g,h), V = 64000 (i,j), and V =

128000 (k,l).

the average flow, the parabolic velocity profile can still be observed in the capillary (again, except
for the narrow region near the meniscus). The pressure profile becomes different in front of the
meniscus, where the low-pressure region can be observed. The pulsational flow is generated near
the meniscus, and it has the shape of a clockwise vortex. In figures 7d,f,h, one may notice a weak
pulsational flow at some considerable distances from the meniscus. We found that these smaller
values of the pulsational velocity are eliminated by fulfilling calculations for longer capillaries.

More details on the pressure profiles are shown in figure 8, where one notices that an increase
in the level of vibrations is correlated with an increase of the capillary pressure (the pressure
jump across an interface). Further, the change in the capillary pressure is associated with the
change of the flow rate through the capillary, which can be seen in figure 9a. In figure 9a, one can
see that stretching of a meniscus by vibrations (see also figure 9b) results in a rapid displacement
(squeezing) of a liquid from the capillary. However, later, when the shape of a meniscus is already
stabilised, the movement of the meniscus is slowed down by the capillary forces. The coefficient of
the surface tension (figure 9c) remains almost independent of the level of vibrations (there is only
a slight increase at the first instances, when stretching of a meniscus makes the interface thinner,
which increases the surface tension coefficient [16]). The capillary pressure that is determined
from equation (4.1) is depicted in figure 9d. Finally, figures 9e,f depict the speeds of the tip (in the
centre) and of the ends (at the walls) of the menisci.

In figure 10, we summarise the effect of the transversal vibrations. Such vibrations deform
the meniscus, stretching it along the capillary (figure 10b). The capillary pressure associated with
the interface is also increased (figure 10c), which results in slowing down of the displacement
flow (figure 10a). The effect of vibrations depends on the Mach number (surface tension), so for
deformation of an interface with higher surface tension coefficient, a stronger level of vibrational
forcing is needed.

We would like to note that the capillary pressure in a capillary is determined by the shape
of the interface, apparent contact angle, and surface tension (see [13,15]). In this work, we show
that vibrations are not able to change the surface tension coefficient (in other words, vibrations
do not change the distributions of fluids within a thin interface), but vibrations can alter shapes
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Figure 8. The pressure profiles along the capillary are shown for the three different positions: (green line) at the lower

wall, y= 0, (red line) at the centreline, y= 1/2, and (blue line) at the upper wall, y= 1. The profiles are shown for the

horizontal capillary subjected to transversal vibrations at t= 10. The calculations are fulfilled for the following parameters:

A=−0.5, Cn= 10−4, Re= 0.1, Pe= 100, Gr= 100, M = 10−5, and for different levels of vibration forcing (as

indicated in the figure). The dashed lines are defined by the equations (p1 − p2)− (p1 − p2 − pc)x/L and (p1 −
p2 − pc)− (p1 − p2 − pc)x/L, where p1 = 800, p2 = 0, L= 10, and pc = 183 for V = 0, pc = 200 for V = 8000,

pc = 250 for V = 16000, pc = 300 for V = 32000, pc = 360 for V = 64000, and pc = 420 for V = 128000.

of interfaces thus altering the capillary pressures associated with interfaces, and altering the rates
of displacement flows.

Finally, figures 11 and 12 depict the flow fields and the integral characteristics for the
displacement flow in a vertical capillary that is subjected to transversal vibrations. One can
see that the effect of vibrations is very similar to the case of horizontal capillary. For a vertical
capillary, there is an additional complexity due to the influence of the gravity force that makes the
flow time(position)-dependent (as shown in figure 12a,c). Nevertheless, one can easily see that
vibrations deform the meniscus, stretching it along the capillary’s centerline. The vibrations slow
down the flow, increasing the capillary pressure associated with the meniscus.

(c) Longitudinal vibrations
Next, let us consider the case when the capillary is vibrated in the direction of the capillary’s axis.
Figures 13 depict the typical shapes of the meniscus in a horizontal capillary that is subjected
to the longitudinal vibrations. Figures 14 depict the profiles of pressure and the profiles of
x-component of the pulsational velocity at different moments. Figures 15a,b depict the time-
variations of the flow rate and the time variations of the meniscus length. Figure 15c depicts
the values of the flow rate as a function of the meniscus’ position in a capillary.

The figures indicate that the effect of longitudinal vibrations is stronger (if compared with the
similar effects induced by transversal vibrations), namely, vibrations that are characterised by
the vibrational parameter V > 100 are already capable of visibly altering the displacement flow.
Vibrations flatten menisci and alter the capillary pressure.
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Figure 9. (a) The volumetric flow rate through the capillary vs. time. (b) The length of a meniscus vs. time. (c) The surface

tension coefficient divided by the capillary number vs. time. (d) The capillary pressure vs. time. (e,f) The positions of the

meniscus’ tip and of the contact line vs. time. The results are shown for a horizontal capillary subjected to transversal

vibrations. The calculations are fulfilled for the following parameters: A=−0.5, Cn= 10−4, Re= 0.1, Pe= 100,

Gr= 100, M = 10−5, and for different values of the vibrational parameter V : V = 0 (dashed line), V = 8000 (red

line), V = 16000 (green line), V = 32000 (blue line), V = 64000 (black line), and V = 128000 (orange line).

Figure 10. (a) The volumetric flow rate (at long times) through the capillary (a), the length of the meniscus (b), and

the capillary pressure (c) vs. the vibrational parameter V . The results are shown for the horizontal capillary subjected

to transversal vibrations. The calculations are fulfilled for the following parameters: A=−0.5, Cn= 10−4, Re= 0.1,

Pe= 100, Gr= 100, M = 10−5 and M = 10−6.

The principal action of the longitudinal vibrations is easy to explain. Indeed, if one considers
two semi-infinite liquids separated by a flat boundary (the concentration field is the function
of the coordinate that is perpendicular to the interface), and subjected to the vibrational forcing
that is perpendicular to the interface, then one should say that for this configuration in the state
of quasi-equilibrium (when there is no average flow) there is no pulsational velocity, and hence
the vibrational force (and the effect of vibrations) are non-existent. In the case of longitudinal
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Figure 11. The fields of concentration and velocity (a,c,e,g,i) and the fields of pressure and pulsation velocity (b,d,f,h,j) at

t= 10. The snapshots are shown for a vertical capillary that is subjected to transversal vibrations. The calculations are

fulfilled for the following parameters: A=−0.5, Cn= 10−4, Re= 0.1, Pe= 100, Gr= 100, M = 10−5 and for five

levels of vibrations, V = 0 (a,b), V = 8000 (c,d), V = 16000 (e,f), V = 32000 (g,h), and V = 64000 (i,j).

Figure 12. (a) The volumetric flow rate through the capillary vs. time. (b) The position of the meniscus’ tip vs. time. (c) The

volumetric flow rate through the capillary vs. the positions of the meniscus’ tip. The results are shown for a vertical capillary

subjected to transversal vibrations. The calculations are fulfilled for the following parameters: A=−0.5, Cn= 10−4,

Re= 0.1, Pe= 100, Gr= 100, M = 10−5, and different values of the vibrational parameter V : V = 0 (dashed line),

V = 8000 (red line), V = 16000 (green line), V = 32000 (blue line), V = 64000 (black line), and V = 128000 (orange

line).

vibrations, vibrations are perpendicular to the meniscus, and hence the action of vibrations does
not exist when the meniscus is flat. Vibrations tend to flatten the meniscus (see figure 15b).
However, in the displacement flow, the meniscus remains stretched by the imposed pressure
difference. For a curved (stretched) meniscus the concentration field is complex (the function
of two coordinates), which results in generation of the non-zero vibrational force, that affects the
displacement dynamics.

In addition, we observe that the effect of vibrations depends on the position of the meniscus
in a capillary. Vibrations assist the flow, until the meniscus reaches the middle point. When the
meniscus is at the middle, the vibrations have no net effect on the average flow fields. When the
meniscus passes the middle point, vibrations start to slow down the flow. Stronger vibrations can
even counter-balance the action of an externally imposed pressure gradient, locking the fluids in
a capillary.
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Figure 13. The field of concentration and velocity (a,c,e) and the fields of pressure and pulsation velocity (b,d,f) at t= 10.

The snapshots are shown for the horizontal capillary that is subjected to the longitudinal vibrations. The calculations are

fulfilled for the following parameters: A=−0.5, Cn= 10−4, Re= 0.1, Pe= 100, Gr= 100, M = 10−5 and three

levels of vibrations, V = 0 (a), V = 1000 (b) and V = 2000 (c).

Figure 14. The profiles of pressure (a,b,c) and x-component of the vibrational velocity (d,e,f) along the capillary are shown

for the three different positions: (green line) at the lower wall, y= 0, (red line) at the centreline, y= 1/2, and (blue line)

at the upper wall, y= 1. The profiles are shown for the horizontal capillary subjected to longitudinal vibrations at t= 5

(a,d), t= 10 (b,e), and t= 15 (c,f). The calculations are fulfilled for the following parameters: A=−0.5, Cn= 10−4,

Re= 0.1, Pe= 100, Gr= 100, M = 10−5, and V = 1000.

One can also see that for the longitudinal vibrations the values of the pulsational velocity
(namely, the values of the x-component of the pulsational velocity) differ from zero along the
entire length of the capillary: the fluid slips along the capillary with the fastest motion observed
near the menisci. Moreover, when the meniscus passes through the middle point of the capillary,
the x-component of the pulsational velocity changes its sign (see figure 14d,e,f), which results in
the change of the sign of the vibrational effect. Also, one can notice that the oscillations of the
meniscus’s tip and oscillations of the points of contact of the meniscus with the capillary walls
happen not in phase.
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Figure 15. The volumetric flow rate through the capillary vs. time (a), the length of the meniscus vs. time (b), and

the volumetric flow rate vs. the position of the meniscus’ tip (c). The results are shown for the horizontal capillary

subjected to transversal vibrations. The profiles are shown for the horizontal capillary subjected to longitudinal vibrations.

The calculations are fulfilled for the following parameters: A=−0.5, Cn= 10−4, Re= 0.1, Pe= 100, Gr= 100,

M = 10−5 and different levels of vibrations, V = 0 (black line), V = 1000 (red line), V = 2000 (blue line), V = 4000

(orange line), and V = 8000 (green line).

Figure 16. The field of concentration and velocity (a) and the fields of pressure and pulsation velocity (b) at t= 10. (c,d,e)

The pressure profiles along the capillary at three different time moments. The calculations are fulfilled for the horizontal

capillary that is subjected to the longitudinal vibrations for the following parameters: A=−0.5, Cn= 10−4, Re= 0.1,

Pe= 100, Gr= 0, M = 10−5, and V = 1000. For this calculation, there is no externally-applied pressure difference

between the ends of the capillary.

As noted above, for the longitudinal vibrations, the action of vibrations competes with the
action of the imposed pressure gradient. To elucidate the effect of vibrations, we also considered a
capillary that is subjected to vibrations, but no pressure difference between the ends of a capillary
is applied. Also, we assumed that there is no gravity. In this case, we still see that the meniscus is
driven towards the middle point of a capillary, and when the meniscus is in the middle, the fluid
system reaches the state of quasi-equilibrium, when no further (time-averaged) movements are
observed. These results are illustrated by figure 16.

In this section we do not show the results for the vertical capillaries that are subjected to
longitudinal vibrations, as these results do not bring any new observations: still, the vibrations
will flatten the meniscus and change the flow rates, and the action of vibrations will depend on
the position of the meniscus in respect with capillary’s middle point.
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5. Conclusion
In this work, we assessed the action of the small-amplitude high-frequency vibrations on an
immiscible liquid/liquid displacement flow though a capillary. We assumed that the capillary was
initially saturated with one liquid, and the other liquid was injected from one of the capillary’s
ends (and, respectively, the other liquid was displaced from the other end). The capillary was
subjected to translational vibrations. We analysed the action of the translational vibrations in
two directions, along and across the capillary’s axis (longitudinal and transversal vibrations,
respectively). Finally, we also assumed that the capillary was a part of a large porous matrix. The
whole matrix was subjected to vibrations, and the fluids that saturated the matrix moved together
with the solid parts of the matrix (in the first approximation). The time-averaged approach was
applied to assess the action of the vibrations.

We found that vibrations (with intensity is defined by the value of the vibrational parameter
V ) can alter the displacement flow. Vibrations alter the shape of a meniscus, turning the interface
perpendicular to vibrations, and thus reshaping a classical piston-like meniscus into a sharp cone
when the vibrations are directed across the capillary’s axis, and flattening a meniscus, when
vibrations are directed along the capillary. The effect of vibrations depends on the value of the
surface tension coefficient associated with interface: stronger vibrations are needed to alter the
displacement flows with higher surface tension forces, and interfaces with lower surface tensions
(miscible interfaces) could be controlled by a relatively weak vibration forcing.

Vibrations also alter the capillary pressures associated with interfaces. In the case of transversal
vibrations, the capillary pressure is increased, and consequently the flow is slowed down. In
the case of longitudinal vibrations, the action of the vibrations depends on the position of
the meniscus. Vibrations tend to bring the meniscus to the middle of the capillary, which is
counteracted by the pressure gradient that is imposed between the capillary’s ends. For smaller
levels of vibrations, vibrations assist the flow when a meniscus moves towards the middle point
(the capillary pressure is decreased), and vibrations slow down the movement of the fluids when
the meniscus passes the middle point (the capillary pressure is increased). For stronger vibrations,
the effect of imposed by vibrations can be so strong that fluids become locked inside the capillary
(the capillary pressure becomes greater than an externally imposed pressure difference).

We should note that the changes of the capillary pressure are solely explained by reshaping of
menisci by vibrations. Vibrations do not change the surface tension (distribution of fluids within
a thin interface).

Also, vibrations induce pulsational movements of the fluids (to leading order the fluids
oscillate together with the capillary, but at the next order of approximation, fluids will slip along
the capillary). For translational vibrations, these pulsational movements are bounded to the area
near a meniscus. For longitudinal vibrations, the pulsational movements extend to the entire
capillary. The parabolic profile of the average flow remains unaffected by vibrations.

We should say that we cannot fully explain the dependence of the effect of the longitudinal
vibrations on the position of the meniscus. The solution of the pulsational equations is determined
by the concentration field and by the boundary conditions. We produced the simulations for
different parameters, different gravity directions, and for capillaries of different lengths. We
always observe similar behaviour, which we need to attribute to the accepted geometry and
boundary conditions. We need also to recall that we assume that the capillary is a building
element of a larger porous matrix. The matrix will include vertical boundaries that will negate
the pulsational flow in the horizontal direction. These boundaries are, however, not included into
the geometry of our current work. Thus, to investigate this question further we need to consider
a more complex geometry that would to include the other elements of a porous matrix, which we
leave for future work.

In conclusion, we should also note that in this work we examined a multiphase system with a
single interface. The effect of vibrations could be obviously made stronger by taking a system with
multiple interfaces, e.g. a droplet in a capillary or even a more complex liquid/liquid interface in
a porous matrix. We would like also to note that there is a common expectation that shaking of
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a porous matrix facilitates the release of fluids that are entrapped in a matrix by capillary forces.
We found that the effect of high-frequency vibrations on the movements of multiphase fluids
in single capillaries (which are the building elements of matrices) is rather opposite: vibrations
(or shaking) tend to either slow down or completely stop the displacement flows. However, a
separate analysis fulfilled for the network of interconnected capillaries is needed to draw more
reliable conclusions for porous media. Such an analysis is the next aim of our research work.
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