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ABSTRACT

The exploitation of flow instabilities that can occur in rotating flows is investi-

gated as a new approach to liquid-liquid extraction. Two immiscible liquids are

radially stratified by centrifugal force in the annulus between corotating coaxial

cylinders. When the inner cylinder is then rotated above a critical speed, Taylor

vortices form in one or both of the fluids. Although the flow pattern yields a

relatively small amount of interfacial surface area, the surface is highly active

for interphase mass transfer due to the local vortex motion. With the addition
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of countercurrent axial flow, efficient continuous processing is also possible. It is

proposed that this two-fluid Taylor-Couette flow yields a viable extraction pro-

cess, particularly for fluid pairs that are easily emulsifiable and therefore have

limited processing options with the current commercially available equipment.

With this goal, the present study of two-fluid Taylor-Couette flow with coun-

tercurrent axial flow includes:

• A review of aqueous-aqueous and reversed micelle extraction techniques,

the commercially available centrifugal extractors, and one fluid Taylor-

Couette flow and its variations.

• A theoretical analysis to predict the onset of the two-fluid Taylor-Couette

instability in the presence of countercurrent axial flow.

• Theoretical predictions for interphase mass transfer using a combination

of penetration theory and computational fluid dynamics.

• The demonstration of two-fluid Taylor-Couette flow with countercurrent

axial flow in the laboratory, including: (1) fluid mechanics studies to de-

termine the onset of two-fluid Taylor-Couette flow, and (2) mass transfer

studies to determine intraphase and interphase mass transfer characteris-

tics.

The agreement between the theoretical analyses and the experimental results

is good for both the fluid mechanics and the mass transfer. Furthermore, the
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extraction performance of two-fluid Taylor-Couette flow with countercurrent

axial flow is very promising with the mass transfer coefficient proportional to the

strength of Taylor vortices. This suggests that very high extraction efficiencies

can be obtained with even larger relative rotation rates or cylinder modification

to promote vortex formation.

Besides two-fluid Taylor-Couette flow, other instabilities can occur that de-

grade the extraction performance and should be avoided in the design and op-

eration of an extractor. With low viscosity fluids at low rotation rates, two-

fluid Taylor-Couette flow is not observed experimentally, but rather the barber

pole pattern, which is believed to be a lingering gravitational effect. At high

countercurrent axial flowrates, the linear stability analysis predicts a Kelvin-

Helmholtz instability related to the countercurrent flow profile. When axial

flow is not present, two computational fluid dynamics packages calculate that

vortices paired across the interface can corotate, rather than counterrotate, with

each other.
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Chapter 1

Introduction

Taylor-Couette flow is a centrifugally induced hydrodynamic instability that oc-

curs in the flow between coaxial cylinders when the inner cylinder is rotated

above a critical speed. Ever since G.I. Taylor’s pioneering paper in 1923 [106],

one fluid Taylor-Couette flow has continued to attract researchers with its struc-

tured cell patterns and its simple geometry both as an experimental device and

as a mathematical model. However, in spite of the thorough analysis of one

fluid Taylor-Couette flow, the extension to a two fluid analogue has received

little attention. Two-fluid Taylor-Couette flow could be achieved by centrifu-

gally stratifying two immisicible fluids and then increasing the inner cylinder

rotation rate to produce two sets of counterrotating Taylor vortices; one set for

each phase.

From a purely fluid dynamics standpoint, two-fluid Taylor-Couette flow is an
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interesting variation of the one fluid problem that explores how the interface af-

fects the vortex flow. The range of potential flow patterns is increased, especially

when gravitational forces are important, and raises a number of questions. If the

vortices do form, do they have the same behavior as one fluid Taylor-Couette

flow? Can the two fluid system be treated as two independent one fluid problems

with a “pseudo” cylinder rotation rate and radius at the interface? Do the same

transitions occur from axisymmetric time independent, to singly periodic, to

doubly periodic, and to time dependent? Is there an asymptote at high rotation

rates that is similar to the Rayleigh criterion for the one fluid problem?

On a more applied level, the flow behavior at the interface suggests that

two-fluid Taylor-Couette flow could find a practical application in liquid-liquid

extraction. The two phases retain their individual integrity and contact each

other only at a single well-defined interface. The vortex motion indicates a highly

active interface surface for mass transfer, a characteristic that is attractive in

liquid-liquid extraction. Furthermore, the efficient method of countercurrent

contacting could be accomplished by adding a weir system at the inlet and

outlet ports. A two-fluid Taylor-Couette extractor is depicted in Figure 1.1.

The precedent has been set for chemical processes to exploit hydrodynamic

instabilities. One fluid Taylor-Couette flow has found applications that utilize

the vortex motion to increase the performance of mass transfer operations. Al-

though a several-fold increase in filtration and reactor performance has been
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demonstrated, the commercial success has been limited. For large production

scales, the expense of constructing and operating a Taylor-Couette device sig-

nificantly reduces its cost-effectiveness. For smaller scale operations, less so-

phisticated methods prevail. Therefore, for a Taylor-Couette device to be com-

mercially appealing, the process stream must be relatively high valued and of

moderate flowrate. Liquid-liquid extraction of biological products could be such

a niche.

Bioproducts are typically sensitive to their environment. Small changes in

conditions can cause the bioproduct to deactivate and become worthless. For

this reason, the many standard chemical engineering separation techniques have

not been acceptable in bioprocessing. Two chemical systems for liquid-liquid

extraction (aqueous-aqueous and reversed micelles) that do perform well have

been developed, but in both methods the liquid pairs are easily emulsifiable.

As the current commercial processes rely on dispersing one phase in the other

followed by phase separation, they are inadequate for such systems. As a re-

sult, the expensive processes of electrophoresis and chromatography and the low

resolution process of filtration still prevail in bioseparations.

Liquid-liquid extraction utilizing two-fluid Taylor-Couette flow addresses the

limitations of the existing process equipment and offers the following potential

advantages:

• Continuously stratified fluids. The elimination of dispersing one phase
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in the other accommodates liquid-liquid extraction fluid pairs that are

easily emulsifiable. Such systems typically have low density differences,

low interfacial tension, or large viscosity differences.

• Small interfacial area. Although the interfacial area is small, it is highly

active due the vortex motion. Bioproducts can denature at interfaces.

• Decoupling of radial and axial transport. The radial mass transport and

axial throughput can be separately controlled and optimized.

• Scale-up. The predictable flow patterns facilitate easy and reliable scale-

up. The scale-up of other centrifugal extractors is based on empirical

correlations.

• Axial stages. Stages sequential in the axial direction allow more flexible

operation, simpler scale-up, and improved temperature control. A combi-

nation of axial and radial stages is also possible.

• Flooding. A two-fluid Taylor-Couette extractor could operate with more

extreme volume ratios of the two phases without the flooding that occurs

in other extractors.

• Volume efficient. Low hold-up volumes and short residence times are ad-

vantageous for hazardous, reactive, or expensive products.
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• Simple mechanical design. With few moving parts and a simple geome-

try, the extractor would be straightforward to build, maintain, startup,

operate, shutdown, and clean. Furthermore, a two-fluid Taylor-Couette

extractor would be cost competitive with other centrifugal extractors.

• Solids handling. The elimination of mixing plates and diffusers provides

improved solids handling without erosion or plugging to damage or unbal-

ance the equipment.

The disadvantages of two-fluid Taylor-Couette liquid-liquid extraction in-

clude some of the standard constraints with centrifugal extractors:

• Flooding can result from unbalanced flow rates.

• The scale-up capacity is limited by practical design and operational con-

siderations.

• Sampling along the extraction train appears impossible.

• The strong centrifugal forces introduce the possibility of debris collecting

on the interface and inhibiting the mass transfer.

• The countercurrent flowrates and vortex strength must be balanced to

prevent severe backflow and dispersion in extreme operating conditions,

such as large viscosity ratios.
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With the objective of developing two-fluid Taylor-Couette into a liquid-liquid

extraction process, the following sections present (1) an introduction to the

liquid-liquid extraction of biologicals and the commercial centrifugal extractors

available, (2) a review of the fluid mechanics and mass transfer characteris-

tics of one fluid Taylor-Couette flow, and (3) the theoretical and experimental

results for two-fluid Taylor-Couette flow. These include the fluid mechanics,

axial dispersion characteristics, and liquid extraction performance. The two-

fluid Taylor-Couette extractor is compared with the commercial equipment and

recommendations are provided to develop further this new extraction process.
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Chapter 2

Background

2.1 Bioseparation Techniques

Bioproducts are typically manufactured in large, dilute, multiphase fermentation

broths which can require a significant number of downstream separation trains

to obtain a marketable concentration. In general, these separations may be

divided into the three categories of volume reduction, fractionation, and polish-

ing. Volume reduction is a rough cut to reduce the volume of material processed

to a reasonable level. Fractionation is a more selective process to increase the

concentration of the desired product. Polishing is a very selective technique to

eliminate the remaining trace contaminants.

Bioseparations also differ from the standard chemical engineering operations

since bioproducts are unusually sensitive to their environment. Proteins, for
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example, may denature if placed in an environment outside narrow limits of pH,

salt concentration, temperature, and contaminating species. Denatured mate-

rials are often useless for their intended application. Therefore, the standard

separation techniques of distillation, organic-aqueous liquid-liquid extraction,

adsorption, precipitation, and mechanical methods are often not acceptable.

The alternative techniques of chromatography and electrophoresis are often the

only choices [41]. These methods can be very expensive in capital equipment

required, the difficulty in scale-up, and the long residence times required. Fil-

tration is another alternative, but has limited resolution, and membrane fouling

can restrict its useful lifetime.

To address the limitations of existing fractionation techniques, two promising

methods have been developed that successfully separate bioproducts by liquid-

liquid extraction: aqueous-aqueous liquid extraction and reversed micelle liquid

extraction. Either technique could effectively handle the volumes required for

commercialization. Furthermore, the efficiency of such liquid-liquid extraction

may be fine-tuned though polymer or surfactant selection to specifically target

individual bioproducts for separation. This achievement alone could significantly

reduce the subsequent separation steps required. However, the commercial appli-

cation of liquid-liquid extraction for bioproducts has been severely limited since

adequate process equipment does not exist. The current commercial equipment

cannot satisfy the exacting conditions required for aqueous-aqueous or reversed
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micelle liquid-liquid extraction. This equipment is reviewed in section 2.2.

Aqueous-Aqueous Liquid Extraction. When two incompatible polymers

are dissolved in water, the result can be two immiscible water phases: one phase

that is rich in one polymer, and the other phase rich in the other polymer

[3, 50]. A similar two-phase system may also be achieved with polymer - salt

solutions. Multiple phases are a general response in systems containing large

molecules where the energy of self-interaction is greater than the entropy of

mixing. Figure 2.1 is the phase diagram for several dextran-polyethylene glycol

(PEG) aqueous-aqueous systems.

These two-phase aqueous systems may be used in liquid-liquid extraction

to concentrate a material of interest into a product phase. The product phase

is then fractionated or polished by salt extraction, ultrafiltration, diafiltration,

precipitation, or adsorption [41, 113]. Table 2.1 summarizes the partition co-

efficients for several proteins in PEG-dextran systems. The separation may be

further enhanced by manipulating the volume ratios of the two phases.

However, the physical properties of the PEG-dextran aqueous phases are of-

ten very similar (Table 2.2) and the standard extraction processes, which rely on

high density differences or high interfacial tension, are not feasible. The PEG-

salt systems have higher density differences (Table 2.3) than the PEG-dextran

systems, but still significantly less than the standard hydrocarbon-water two
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Figure 2.1: Phase diagrams of PEG-Dextran aqueous-aqueous systems [3]. PEG
(Mw = 6,000); Dextran: 1. D5 (Mn = 2,300; Mw = 3,400) 2. D17 (Mn = 23,000;
Mw = 30,000) 3. D24 (Mn = 40,500) 4. D37 (Mn = 83,000; Mw = 179,000) 5.
D48 (Mn = 180,000; Mw = 460,000) 6. D68 (Mn = 280,000; Mw = 2,200,000)

Molecular Dextran-40 Dextran-500
Protein Weight K K

Cytochrome c 12 0.18 0.17
Ovalbumin 45 0.58 0.78

Bovine serum albumin 69 0.18 0.34
Lactate dehydrogenase 140 0.06 0.16

Catalase 250 0.11 0.79
Phycoerythrin 290 1.90 12.
β-galactosidase 540 0.24 1.59

Phosphofruktokinase 800 0.004 0.02
Ribulose diphosphate carboxylase 800 0.05 0.28

Table 2.1: Partition coefficients of proteins in Dextran-PEG 8000 (6 wt%:6 wt%)
aqueous-aqueous systems K = C∗1/C

∗
2 = C

∗
PEG/C

∗
Dex [50].
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wt% wt% wt% Viscosity Relative to Water Viscosity
Dex. PEG PEG PEG-rich Phase Dex.-Rich Phase Ratio
500 35000 6000 µ1 µ2 µ21
3.9 1.8 5.6 12.8 2.3
4.0 2.0 5.7 16.2 2.8
5.0 2.5 6.9 26.7 3.9
6.0 3.5 9.9 51.1 5.2
7.0 4.5 14.6 89.2 6.1
5.0 3.5 4.9 15.7 3.2
5.2 3.8 3.7 27.9 7.5
6.2 4.4 4.0 50.6 12.7
7.0 5.0 4.4 95.7 21.8

Density at 20C
wt% wt% PEG-rich Dex-rich Density

Dextran PEG Phase Phase Ratio
ρ1 ρ2 ρ21

8 6 1.0127 1.0779 1.0644
7 4.4 1.0116 1.0594 1.0473
5 4 1.0114 1.0416 1.0299
5 3.5 1.0114 1.0326 1.0210

Interfacial Tension
wt% Dextran 500 wt% PEG 6000 (dyne/cm)

5 3.5 0.00046
5 4 0.0031
5.2 3.8 0.0021
6 4 0.007
7 4.4 0.020
8 6 0.066

Table 2.2: Physical property data for Dextran-PEG aqueous systems [3].
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phase systems. Additional complications also arise with a large volume change

or viscosity change of one of the phases during the extraction, as can happen

with cell debris extraction [113]. Nonetheless, some of the standard techniques

(Graesser contactor [29], mixer settler trains [52, 87], hollow fibers [20], packed

columns [89], spray columns [95], York-Scheibel columns [59], centrifugal extrac-

tors [51, 52]) have been evaluated; the results have not been successful enough

to justify standard commercial use.

Reversed Micelle Liquid Extraction. Reversed micelle liquid-liquid ex-

traction is based on a water phase and a hydrocarbon phase. The hydrocarbon

phase contains a concentration of surfactant above the Critical Micelle Con-

centration (CMC) in order to form micelles. The typical surfactants used in

reversed micelle systems include:

• AOT - sodium di-2-ethylhexylsulfosuccinate

• DDAB - didodecyldimethylammonium bromide

• TOMAC - trioctyl methyl ammonium chloride

The hydrocarbon phase is a solvent such as iso-octane. Figure 2.2 is a schematic

of the AOT/iso-octane/water phase diagram.

A reverse micelle is a group of individual surfactant molecules arranged with

the hydrophilic ends concentrated together and surrounded by the hydrophobic
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Viscosity Viscosity Density
wt% wt% wt% (mPa-s) (mPa-s) (g/ml)
PEG K2PO4 KPO4 PEG-Rich Salt-Rich Visc. Salt-Rich Dens.
4000 Phase Phase Ratio Phase Ratio

µ1 µ2 µ21 ρ2 ρ21
9.55 7.36 3.68 9.49 1.21 0.13 1.116 1.053
9.42 7.58 3.79 11.66 1.22 0.10 1.129 1.056
9.19 7.98 3.99 11.89 1.60 0.13 1.136 1.060
12.00 8.26 4.13 14.39 1.60 0.11 1.147 1.069
8.67 8.91 4.45 15.33 1.22 0.08 1.140 1.066
7.93 10.2 5.1 20.29 1.27 0.06 1.149 1.079

Table 2.3: Physical property data for PEG-salt aqueous systems [59].

Figure 2.2: Ternary phase diagram for the AOT/iso-octane/water reverse micelle
system [96].
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ends. In this way small hydrophilic environments are created within the organic

phase. When a reverse micelle hydrocarbon phase is contacted with an aqueous

phase containing a bioproduct, the bioproduct may be captured into the micelle.

Figure 2.3 depicts the reversed micelle separation technique.

The aqueous and hydrocarbon phases are then separated, and the process

reversed to release the bioproduct into the desired product stream. Several

parameters can be optimized to control the forward and back extraction of the

bioproduct with the micellar phase. These include pH and ionic strength of the

aqueous contacting solution, the salt and buffer type, the surfactant type and

concentration, the solvent type, and the volume ratio of the aqueous contacting

phase to organic reversed micelle phase [96]. The effect of pH is to control the

charge distribution over the protein surface and the protein formations. The

ionic strength has two effects: (1) modification of the electrostatic interactions

through the electrical double layer between the micelle and the protein, and

(2) the possibility to salt out the protein from the micellar phase. The salt

type and buffer facilitate the transfer of the protein across a hydrocarbon layer

between two different aqueous phases. The surfactant concentration controls the

number of reversed micelles, and hence the capacity to contain protein. Figure

2.4 illustrates the influence of surfactant concentration and pH on the partition

coefficients of ribonuclease A and concanavalin A [96].
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The physical properties of the reversed micelle-aqueous two phase system

(Table 2.4) are similar to the fluids used in traditional liquid-liquid extraction.

Therefore, the application of existing liquid-liquid technology to the reversed mi-

celles system should be straightforward. However, as with the aqueous-aqueous

system, processes to commercialize reversed micelles separation with existing

liquid-liquid extraction technologies have been investigated, but with limited

success [23, 60, 92, 96]. Mixer-settlers, agitated countercurrent column contac-

tors, and centrifugal extractors (Podbielniak and Westfalia) have been evaluated

[96]. Both the centrifugal and column type contactors have performed with low

stage efficiencies due to channeling, incomplete mixing, or tendency to flood.

Furthermore, the high surfactant concentration can result in strong emulsions

that are difficult to break [96]. Membrane contactors, which rely on the two-

phase contact controlled by a semi-permeable membrane, are being investigated

as a possible alternative [20].



17

Figure 2.3: Schematic of liquid-liquid extraction using reverse micelles [96].

Density Viscosity
Phase g/ml cp
Octane ρ1 = 0.821 µ1 = 0.542
Water ρ2 = 0.998 µ2 = 1.002

Ratio ρ21 = 1.216 µ21 = 1.849

Interfacial Tension = 50.8 dyne/cm

Table 2.4: Physical property data for reverse micelle systems
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Figure 2.4: Partition coefficients in reverse micelle systems as a function of
pH and surfactant concentration for (A) ribonuclease a, (B) concanavalin a.
K = C∗1/C

∗
2 = C

∗
mic./C

∗
aq.. [96]
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2.2 Current Equipment for Liquid Extraction

of Bioproducts

The standard liquid-liquid extraction process is to disperse one phase as small

droplets in the other phase. The result is a large interfacial surface area for mass

transfer, but one that is relatively inactive. After mass transfer occurs, the two

phases are coalesced back into two continuous phases and the phases separated

to recover the product. However, the coalescence step can be difficult, if not

impossible, for systems with low density differences or low interfacial tension.

Furthermore, additional complications arise in bioseparations since bioproducts

can be denatured at interfaces. For such systems, the ideal separator would

have a minimal interfacial surface, but one that is highly active. The ideal

separation device does not yet exist and centrifugal extractors are currently the

best alternative.

Centrifugal extractors offer the advantages of centrifugally accelerated set-

tling, short residence times, low holdup volumes, flexible phase ratios, and

a small footprint. These characteristics are desirable in applications where

throughput (petroleum industry [40]), safety (nuclear fuel reprocessing [108]),

or facilitated settling (bioseparations [113]) are required. However, as centrifu-

gal extractors are finely machined, they tend to be the most expensive type of

extractor in capital investment terms.
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Centrifugal extractors may be divided into the three categories: differential,

multistage, or single stage contactors as in Table 2.5. The differential contactors

provide continuous extraction; whereas the multistage or single stage units pro-

vide discrete steps for extraction. All of the current centrifugal extractors rely

on some sort of mixing and settling process. Only in the α-Laval do the phases

remain primarily stratified. The mixing disperses one phase as small droplets

in the other phase to maximize the mass transfer area. Perforated plates, dis-

tributors, or mixing arms are used for this dispersion. Settling is achieved by

centrifugal force to coalesce the mixture into the two continuous phases. In

most cases, the fluids are pumped through the extractor and pressure control is

required on the outlet streams to prevent flooding of the extractor.

The performance of centrifugal extractors are characterized by five parame-

ters: pressure, holdup, flooding, backmixing, and efficiency. The inlet and outlet

pressures determine the position of the interface between the two fluids. The

interface must be located such that the extractor operates as designed, espe-

cially in the settling and weir regions. Holdup is defined as the volume fraction

of the dispersed phase in the mixing zone [75] and is a coarse indication of the

contact surface area. Flooding occurs when the two fluids are not effectively

separated or a phase inversion occurs in the mixing zone. Flooding is a measure

of the extractor capacity and can be caused by extreme heavy to light phase
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ratios or unbalanced outlet pressures. Backmixing is less important with cen-

trifugal extractors than with other extractors as the centrifugal force strongly

promotes unidirectional flow. Efficiency is the final and most important measure

for centrifugal extractors and is highly dependent on the operating parameters

involved. Centrifugal extractors typically use the efficient method of counter-

current contacting which minimizes the use of solvents and maximizes the final

concentration of the solute in the extracting phase. In general, the overall effi-

ciency of centrifugal extractors equals and exceeds that of other extractors.

Table 2.6 summarizes the typical uses for centrifugal extractors [75]. Exam-

ples of the operating and performance characteristics of centrifugal extractors

are in Tables 2.7 and 2.8 [75]. The primary weakness of these extractors for

bioseparations is that the mass transfer is based on dispersion of one phase in

the other.

Podbielniak Extractor. The Podbielniak is the original centrifugal extractor

and was designed for the large scale extraction of penicillin. The Podbielniak is

divided into three zones: a mixing zone in between two settling zones. The heavy

(light) fluid enters the Podbielniak from the inside (outside) radial end. Due

to the centrifugal force, the light (heavy) fluid travels to the inside (outside)

radius. The two fluids mix countercurrently as they pass through a series of

perforated plates. Figure 2.5 is a cutaway of the Podbielniak separator. The
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Horizontal Extractors Differential Podbielniak
Quadronic

Coil Planet Centrifuge
Two-Fluid Taylor-Couette

Multistage Centrifugal Mixer Settler

Vertical Extractors Differential α-Laval
UPV

Coil Planet Centrifuge

Multistage Luwesta
Robatel SGN

Single-stage Robatel BXP
Westfalia TA
SRL, ANL

Table 2.5: Classification of centrifugal extractors [75].

Figure 2.5: The Podbielniak extractor [75].
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Process Characteristics Extractor Feature
Pharmaceuticals Systems easily Podbielniak, Sealed, fast
Antibiotic extraction degrade Westfalia,
Vitamins refining α-Laval,

Quadronic

Atomic energy Hazardous Robatel BXP, Small volume,
Uranium extraction SRL, ANL shielding, small
and stripping solvent inventory

Lube processing Easy emulsifiable, Podbielniak, Emulsion handling,
Aromatic removal small density α-Laval fast settling

difference

Hydrometallurgical Easy emulsifiable, Podbielniak, Emulsion handling,
Metal extraction corrosive α-Laval compact
Ion exchange

Solid-liquid processes Solid-liquid Robatel SGN, Solid handling
Perfume extraction systems Westfalia

Miscellaneous Corrosive Podbielniak, Compact
Acid treatment Westfalia

Ether extraction Toxic Podbielniak Compact, small
solvent inventory

Waste water Dilute Podbielniak, Efficient
Quadronic

Soap manufacture Solids, viscous Quadronic Solids handling,
easy cleaning

Table 2.6: Applications of centrifugal extractors [75].
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mechanical design is complicated involving four rotary seals and the number

of theoretical stages in these separators is low. The radial arrangement of the

stages limits the number of stages, and can also require each perforated plate

to be specifically designed for the variation of conditions in the radial direction

[40]. The perforated plates also introduce the potential for plugging and erosion,

which in the extreme could unbalance the machine.

Quadronic. The Quadronic extractor is very similar to the Podbielniak, but

with a wider selection of internal mixing designs: orificed disk column, per-

forated strips, and sectional concentric orificed bands [75]. In addition, the

Quadronic is designed to better handle solids and offers multiple inlet and exit

ports.

α-Laval Extractor. The α-Laval extractor is a vertical extractor with the two

phases entering at the bottom of the extractor; the light (heavy) fluid introduced

at the outer (inner) radial position. As fluids are pumped through the extractor

they the move countercurrently through a series of concentric cylinders. The

two fluids remain stratified except at the small crossover zone to direct the

fluids from one annulus to the next. The mass transfer surface area is less

than that in the dispersed phase systems, however for easily emulsifiable phases

this is an acceptable compromise. The lack of perforated plates is also more

amenable to solids handling. When operated at rigid rotation, the two-fluid



25

Vol. Capacity t̄ Diam.
Extractor Model (m3) (m3/hr) min rpm Axis (m)
Podbielniak E 48 0.925 113.5 0.5 1,600 Hor. 1.2
Quadronic H 4848 0.9 72 0.75 1,500 Hor. 1.2
α-Laval ABE 216 0.07 21 0.2 6,000 Ver. -
UPV - - 6 - 1,400 Ver. -
Luwesta EG 10006 - 5 - 4,500 Ver. -
Robatel SGN LX6 70NL 0.072 3.5 1.2 1,600 Ver. 1.3
Robatel BXP BXP 800 0.220 50 0.3 1,000 Ver. 0.8
Westfalia TA 15007 0.028 30 0.06 3,500 Ver. 0.7
SRL/ANL - 0.003 0.05 3.6 3,500 Ver. 0.1
Coil Planet - 0.0003 0.00012 150 1,600 H/V. 0.05
Centr. Mix-Set - 0.0023 0.64 0.22 4,800 Hor. 0.094

TFTC - 0.0008 0.0024 20 450/750 Hor. 0.1
- 0.0008 0.0066 7.3 450/750 Hor. 0.1

Table 2.7: Typical operating conditions for centrifugal extractors [75].

Figure 2.6: The α-Laval extractor [75].
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Qf No. Th.
Extractor System ρhvy/ρlgt rpm Qh/Ql (m3/hr) Stages
Pod.
B-10 Kerosene-

NBA- 1.25 3000 0.5 5.1 6-6.5
Water

D-18 Kerosene-
NBA- 1.25 2000 0.5 11.1 5-5.5
Water

A-1 Oil-
aromatics- 1.15 5000 3.5 0.01-0.02 5-7.7
phenol

9000 Broth-
penicillin B - 2900 4.4 7.5 1.8
pentacetate 2900 2.4 7.5 2.21

9500 Oil-
aromatics- 2000 4.0 12.0 3-6
furfural

A-1 Isoamyl alc -
boric acid - 1.23 5000 1-03 0.01-0.03 3.5-7.7
water 3000 1.0 0.01 2.3

4600 1.0 0.01 2.96
UPV Oil-

aromatics- 1.11 1400 0.8-1.2 6 2-5.8
phenols

Rob. SGN
LX-168N Uranyl nitrate-

30% TBP 1500 1-0.2 2.1-4.5 7
LX-324 Some system 3100 1.6 24-63 3.4-3.9
SRL 1 stg Uranyl nitrate-

ultrasene 1790 0.5-1.5 6.4-12 0.92-0.99
ANL 1 stg Uranyl nitrate-

TBP/dodecane 3500 0.3-4 0.8-1.6 0.97-1
Centr. Toluene-
Mix-Set. acetone-water 1.15 4800 1 0.64 3.5

TFTC D35/IsoParL-
glyc./water- 1.36-1.5 450/750 1 0.0024 4.5
various 1.36-1.5 450/750 1 0.0066 1.5

Table 2.8: Performance of centrifugal extractors with model systems [75].
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Taylor-Couette extractor is very similar to the α-Laval. Figure 2.6 illustrates

the α-Laval extractor.

The Unpressurized Vertical Extractor. The Unpressurized Vertical (UPV)

Extractor is similar to the Podbielniak Extractor except the device is vertical

and the phases enter from the top and move downward through the extractor

under gravity. Again, the light fluid is introduced near the periphery and the

heavy fluid near the shaft. As the fluids move downward, they are mixed while

radially convected through the perforated plates by the centrifugal force.

Luwesta Extractor. The multistage Luwesta Extractor operates with several

distinct mixing and settling chambers. The fluids enter the top of the extractor

under pressure. The fluids are forced to flow countercurrently with the heavy

(light) fluid beginning its cycle at the bottom (top) of the extractor. The fluids

are simultaneous pumped and centrifuged by angled baffles. In each chamber the

two phase are (1) mixed as they passed through a distributor ring, (2) stratified

in the chamber by centrifugal force, and (3) separated by a weir system and

directed to the next chamber. The Luwesta is essentially a discrete staged

version of the Podbielniak. Figure 2.7 diagrams the Luwesta operation. The

Westfalia TA is a single stage version of the Luwesta and may also be operated

in series.
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Figure 2.7: The Luwesta extractor [75].

Figure 2.8: The Robatel SGN extractor [75].
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Robatel Extractor. The Robatel SGN Extractor consists of several chambers

stacked vertically and configured for countercurrent extraction. Each chamber

is physically divided into three sections. In the central section a mixing disk

extending off the stationary shaft into the rotating drum mixes the two fluids.

The disk also sends the mixture to the settling section where the two phases

are separated. A weir system directs the fluids to the next chamber. The

lack of perforated plates makes this design attractive to solids handling. The

Robatel has a particularly compact construction with the motor protected and

is therefore preferred in hazardous services. Figure 2.8 diagrams the Robatel

operation.

The Robatel BXP extractor is a single stage extractor very similar in concept

to the Robatel SGN system and consists of a stirred mixing chamber followed

by stratification and separation zones. These single stages may be operated in

series to achieve the multiple stages required for a specific application.

Argonne National and Savannah River Laboratory Extractors. The

Argonne National Laboratories (ANL) extractor is very similar to the extrac-

tors investigated for dispersed two-fluid Taylor-Couette flow but the flow is often

cocurrent [72, 109]. Two fluids enter tangentially the bottom of an annular re-

gion. The rotating shaft emulsifies the two phases as they move cocurrently

up the annulus. At the top the phases are separated by centrifugal force and
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collected by weir system. The bottom of the shaft is not supported to minimize

corrosion problems but also limits the maximum rotation rate possible. The

Savannah River Laboratories (SRL) Extractor operates almost identically, but

with the added features of radial mixing vanes to facilitate mixing and a ra-

dial weir system. These types of extractors are constructed specifically for the

requirements of the nuclear industry, where safety, corrosion, and containment

are the major concerns. Vortex motion is probably present in the emulsion and

resembles one-fluid Taylor-Couette flow. As a result, the efficiency of the extrac-

tors may be improved by a decrease in axial dispersion. Figure 2.9 illustrates

the principles of the SRL reactor.

The Centrifugal Mixer Settler. A novel separation device that has not been

pursued past the initial paper is the centrifugal mixer-settler [38]. Similar to the

other centrifugal extractors, especially the SRL extractor, the centrifugal mixer

settler relies on a series of mixing steps followed by stratification by centrifugal

force. The mixers in this case are a series of paddles attached to an inner

cylinder of a horizontal Couette device. The settlers are zones between the

paddles, where the centrifugal force segregates the fluids. Countercurrent axial

flow is accomplished by a slight tilt to the apparatus and a series of weirs to

distribute the inlet and outlet flows. Rotary seals are eliminated by an effective

air seal. Figure 2.10 is a schematic of the centrifugal mixer settler design.
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Figure 2.9: The Savannah River Laboratory extractor [75].

Figure 2.10: Schematic of the Centrifugal Mixer Settler [38].
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The Coil Planet Centrifuge. The most recent promising new biosepara-

tion process is high speed countercurrent chromatography using the coil planet

centrifuge. The planet centrifuge system is based on the “Archimedean screw”

principle and consists of a helical coil rotating about both its own axis and an

external axis as depicted in Figure 2.11. When the coil is filled with one phase

(the stationary phase), and another phase (the mobile phase) is introduced at

one end of the rotating coil, the two phases will compete for forward movement.

Eventually, hydrodynamic equilibrium is reached with both phases distributed

throughout the coil and the mobile phase emerging from the other end at a rate

equal to the feed rate. With the introduction of a solute, this operation is a

form of chromatography with the elution of the solute based on its partition

coefficient between the two phases. Countercurrent flow is also possible when

both phases are mobile as in liquid-liquid extraction.

The external centrifugal force is used to create alternating regions of favor-

able and unfavorable density stratification which, in effect, act as a series of

mixer-settlers. The mixing occurs where the centrifugal force mixes the two

phases due to the unfavorable density distribution. The settling occurs where

the centrifugal force successfully stratifies the two fluids. Figure 2.12 illustrates

the fluid motion [54]. Separations on this prototype require a few hours [18].

Larger and smaller versions have been successfully operated, but the scale-up
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Figure 2.11: Schematic of the Coil Planet Centrifuge [54].

Figure 2.12: The mixing zone of a Coil Planet Centrifuge [54].
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potential is limited by practical considerations. The strong mixing and subse-

quent settling stages can require small throughput rates or limit the phases to

systems with higher interfacial tensions and density differences. In addition,

high viscosity fluids are difficult to clean out and require high pressure drops

for flow through the small tubing. Plugging can result from cell debris or other

material stuck to the tubing wall by the large centrifugal forces.



35

2.3 One Fluid Taylor-Couette Flow

To develop a two-fluid Taylor-Couette flow system into a viable extractor, the

hydrodynamics, mass transport, and other characteristics of the flow must be

quantified. Since one fluid Taylor-Couette flow is the basis for two-fluid Taylor-

Couette flow and has been very well researched, it is the logical starting point

for the two fluid case.

Brief History of Taylor-Couette Flow. One fluid Taylor-Couette flow has

been extensively studied ever since G.I. Taylor published a complete theoretical

and experimental analysis [106] on what was to become known as Taylor-Couette

flow. The first recorded reference to Couette flow is in Newton’s 1687 work,

Principia, where he noted its symmetry and hypothesized concentric streamlines

[27]. Much later, in 1848 Stokes predicted that eddies would form in Couette

flow when the inner cylinder is rotated faster than the outer cylinder. He also

proposed that the use of motes (dust particles) would provide flow visualiza-

tion to confirm his hypothesis. In 1881, Margules recognized that Couette flow

could be used to measure viscosity, and around 1888 Mallock constructed such a

viscometer. Mallock made the following observations: (1) The flow was always

unstable when the inner cylinder rotated faster than the outer cylinder, and (2)

When the inner cylinder was held fixed, the flow was stable up to the critical

value of the outer cylinder rotation rate where turbulence sets in. Around the
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same time, Couette constructed a similar viscometer but with only outer cylin-

der rotation possible. Consistent with the results of Mallock, Couette reported

the onset of turbulence at a critical outer cylinder rotation rate. Since the work

of both Mallock and Couette was primarily focused on viscosity measurement,

experiments in hydrodynamic instability were not pursued. Later researchers

did show, however, that with his inner cylinder rotation experiments, Mallock

was always above the critical rotation rate for hydrodynamic instability. In ad-

dition, the early onset of turbulence with outer cylinder rotation was due to

eccentricity in the cylinder alignment.

Rayleigh’s Criterion. The first major attention given to the possibility of

hydrodynamic instability in Couette flow was by Rayleigh in 1920. Rayleigh’s

interest was stimulated by a meteorological study of cyclones. He was also aware

of the results of Couette and Mallock and argued for the centrifugal instability of

an inviscid fluid based on the following energy analysis. For purely azimuthal,

axisymmetric, inviscid flow, the equation for the conservation of angular mo-

mentum, neglecting gravity, reduces to

D(ruθ)

Dt
= 0.

This equation requires the angular momentum per unit mass to be constant,

ruθ = Ωr2 = C and the kinetic energy may be expressed in terms of this

constant, K = ρ
2
C2

r2
. When the flow is considered to be a series of equal volume
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coaxial rings, the total energy of two rings is then K = ρ
2
(
C2
1

r2
1

+
C2
2

r2
2

). The first

ring is at r1 with angular momentum C1, the second at r2 with C2, and r2 > r1.

When the two rings are interchanged such that ring 1 is at r2 and vice versa,

the exchange of kinetic energy is ∆K = ρ
2
(C22 − C21)( 1r2

1

− 1
r2
2

). If C1 > C2

the second configuration is preferred as kinetic energy would be released. This

implies that the flow would be unstable when the square of the angular mo-

mentum decreases with increasing radial position anywhere in the domain. For

Couette flow, this Rayleigh criterion can be written, in terms of experimentally

controllable parameters, as

Ω2/Ω1 > (R1/R2)
2. (2.1)

The Rayleigh criterion may also be proved rigorously for an inviscid fluid [30].

For a viscous fluid, there is damping and the Rayleigh criterion is an outer limit.

At high outer cylinder rotation rates, the viscous forces become less important

compared to the dynamic forces and the Rayleigh criterion is approached as an

asymptote. These effects are observed experimentally.

One Fluid Taylor-Couette Flow. Taylor extended the theoretical predic-

tions of Rayleigh and the experimental observations of Mallock to include the

centrifugal instability of a viscous fluid. He solved the equations of motion and

continuity for Couette flow and then added a small disturbance flow. Based on

his prior experimental observations, Taylor assumed axisymmetry, a gap narrow
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compared to the cylinder radii, negligible gravitational effects, and an axially

periodic disturbance flow. He then solved the linearized characteristic equation

for the eigenvalue corresponding to the growth rate of the disturbance. The

Taylor-Couette analysis is summarized below.

The base flow for Taylor-Couette flow is Couette flow. The inner cylinder

has radius R1 and rotates at an angular velocity Ω1. The outer cylinder is

similarly described but with subscripts 2. The kinematic viscosity of the fluid

is ν. When the equations of motion and continuity are solved with no slip

boundary conditions at the cylinder walls, the Couette solution has only an

angular velocity component:

V = Ar +
B

r
= Ωr, (2.2)

where

A =
Ω1(R

2
12 −Ω21)

R212 − 1
,

B =
Ω1R

2
1(Ω21 − 1)

R212 − 1
,

R12 =
R1
R2
,

and

Ω21 =
Ω2
Ω1
.
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The Taylor-Couette disturbance velocity is assumed to be periodic

v =





















vr

vθ

vz





















eiα(z−ct+nθ), (2.3)

where the gap width is d = R2 − R1, t = t∗ν/d2, r = r∗/d, and z = z∗/d. The

variables t∗, r∗, z∗ are dimensional. The azimuthal wavenumber, n, is zero for

axisymmetric flows. The scaled axial wavenumber is α and c is the wave speed of

an imposed disturbance. When the imaginary part of c is negative (Im(c) < 0)

the flow is linearly stable to external disturbances; when the imaginary part of

c is positive (Im(c) > 0) the disturbance will grow to represent a hydrodynamic

instability. The point where the imaginary part of c is zero (Im(c) = 0) is

the neutral point where a disturbance will neither grow nor decay and indicates

a transition point between linearly stable and unstable flow. The total flow

pattern is then

V = V eθ + v

and is inserted into the equations of motion and continuity. The resulting equa-

tions are linearized by neglecting the terms containing disturbance velocity prod-

ucts. As the disturbance velocity is considered small compared to the base flow,

the products between two disturbance velocities is very small. The linearized
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system may be simplified to two equations:

[DD∗ − α2 + iαc](DD∗ − α2)vr =
2Ωα2d2

ν
vθ,

[DD∗ − α2 + iαc]vθ =
2Ad2

ν
vr

with the no slip boundary conditions vr = vθ = vz = 0 at y = 0, 1. Here

y = r − 1−ǫ
ǫ

(0 ≤ y ≤ 1), ǫ = d/R2, D = ∂/∂y, and D∗ = D + 1
y+(1−ǫ)/ǫ

. In the

narrow gap limit (ǫ = d/R2 → 0, so D∗ → D and Ω→ [1− (1−Ω21)y]) and the

two equations simplify to

[D2 − α2 + iαc](D2 − α2)vr = [1− (1− Ω21)y]vθ, (2.4)

[D2 − α2 + iαc]vθ = −Tα2vr (2.5)

where vr has been rescaled to

vr =
2Ω1d

2

ν
vr

and

T =
−4AΩ1d4

ν2
= −4Ω

2
1d
4(R212 − Ω21)

ν2(R212 − 1)
= ǫRe2θ +O(ǫ

2)

where

Re =
(Ω1 − Ω2)dR1

ν
.

The Taylor number, T , is a meaure of centrifugal to viscous forces. As the

subsequent analysis will show, when the Taylor number exceeds a critical value,
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the flow becomes unstable and Taylor vortices form. Equations 2.4 and 2.5 can

be combined into one sixth order differential equation

[D2 − α2 + iαc]2(D2 − α2)vθ = −Tα2[1− (1− Ω21)y]vθ (2.6)

with the no slip boundary conditions

y = 0, 1 vθ = 0

y = 0, 1 vr = 0 = (D2 − α2)vθ

y = 0, 1 vz = 0 = D(D2 − α2)vθ = Dvr

At the critical point (c = 0) and near rigid rotation ( Ω21 ≈ 1), Equation 2.6

simplifies, at leading order, to an analytically solvable differential equation

[D2 − α2]3vθ = −Tα2vθ.

The solution has the form

vθ = C1 cosh q0x+C2 sinh q0x+C3 cosh qx+C4 sinh qx+C5 cosh q
∗x+C6 sinh q

∗x

where, iq0, q, q
∗ are roots to the equation (q2−α2)3 = −Tα2 and x = y−1/2. The

symmetry of the boundary conditions further require the solution to be either

even or odd relative to the gap centerline (x = 0). Therefore, the six no slip

boundary conditions reduce to a system of three equations of the form AC = 0.

This system of equations is identical to the Bénard convection problem for the

thermal instability of a fluid contained between two rigid plates of different
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temperatures [14]. For the even solution





















vθ|x=1/2

vr|x=1/2

vz|x=1/2





















=





















cos q0
2

cosh q
2

cosh q∗
2

−q0 sin q0
2

q sinh q
2

q∗ sinh q∗
2

cos q0
2

(i
√
3−1)
2

cosh q
2
− (i

√
3+1)
2

cosh q∗
2









































C1

C3

C5





















= 0

For a nontrivial solution to exist the determinant of A must equal zero. This

determines a characteristic equation in terms of the unknowns, α and T . For

a given value of α, the critical Taylor number, Tc, can thus be determined by

numerical methods.

The above solution is valid at rigid rotation. A perturbation solution expands

the rigid rotation solution for small deviations from rigid rotation. When the

small parameter, δ, is defined as δ = −2(1−Ω21)/(1+Ω21) and the disturbance

velocities are expanded as v = v0 + δv1 + δv2 + ..., the next term in this

perturbation solution is of order δ2, not δ. This result demonstrates why the

leading order rigid rotation solution is actually very accurate for small deviations

from rigid rotation [14].

The neutral curves (α vs. Tc) for the first even and odd solutions are in

Figure 2.13. The even solution corresponds to axisymmetric pairs of counter-

rotating vortices and occurs at a lower Taylor number than the odd solution.

The minimum wavenumber, α, for the even solution occurs at 3.114 (α = π/l

where l is the vortex length scaled with the gap width d), which indicates the

vortices should be approximately square, with length approximately equal to
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the gap width. Figure 2.14 includes a schematic of the streamfunction for the

even solution of one fluid Taylor-Couette flow.

The odd solution has two rows of vortices with a minimum wavenumber, α,

of 5.365. Each vortex is approximately square, with length equal to half the gap

width. The odd solution is also the solution for two-fluid Taylor-Couette flow

with two identical fluids. Figure 2.14 includes a schematic of the odd solution

for one fluid Taylor-Couette flow.

For the case of counterrotating cylinders, the Taylor vortex does not extend

the full gap between the cylinders, but rather only from the inner cylinder to a

nodal surface at r = Rn, where the effective rotation rate Ωn is zero.

Taylor’s subsequent experiments showed remarkable agreement with his pre-

dictions for the even solution [106]. His experimental apparatus was a vertical

assembly 90 centimeters long bolted to the laboratory walls and floor to min-

imize vibrations. Both cylinders could rotate in either direction. The outer

cylinder, R2 = 4.035± 0.01 cm, included at 20 centimeter long glass section for

visual observation. The inner cylinder consisted of a turned paraffin wax cylin-

der mounted on a 3
4
inch steel shaft. The inner cylinder radii investigated ranged

from 2.93 ≤ R1 ≤ 3.80 cm. To reduce end effects, the cylinders were supported

on steel balls to retain alignment without runout. Both cylinders were driven

by an electric motor with a governor and heavy plane bearings provided smooth

cylinder rotation. The ratio of angular velocities could be varied continuously
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Figure 2.13: The neutral curve for the even and odd solutions of one fluid
Taylor-Couette flow.
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Figure 2.14: Schematic of the even and odd solution flow patterns in one fluid
Taylor-Couette flow.
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with a variable speed gear. The rotation rates were controlled to ±0.5%. Boiled

water was the experimental fluid with the temperature controlled to ±0.2◦C.

Dye injections through ports in the inner cylinder provided flow visualization.

Below the critical Taylor number, the dye remained near the inner cylinder. At

the critical Taylor number, the dye was swept towards the outer cylinder at

intervals equal to the axial spacing of the vortex outflow boundaries [106].

Variations on One Fluid Taylor-Couette Flow. Since Taylor’s paper

[106], subsequent work has focused on variations of the base case studied by

Taylor and on its potential applications. These have included the onset of non-

axisymmetric and time dependent flow patterns [4, 30, 69], end effects [65],

hysteresis [4, 65], cylinders with axes parallel but offset [65], imposed axial flow

[14, 49], axial dispersion [32, 83], mass transport characteristics [62, 63, 71], and

centrifugal stratification [103]. The one fluid results applicable to the develop-

ment of a two-fluid Taylor-Couette extractor are outlined below.

Subsequent Bifurcations and Hysteresis. As the Taylor number is in-

creased past its critical value, the stationary, axisymmetric vortices become

non-axisymmetric and eventually doubly periodic. Further increases lead to

turbulent vortices and eventually featureless turbulence. The odd solution is

never observed experimentally. The ramp rate used to reach the critical point

influences the axial wavenumber achieved. High ramp rates lead to a higher
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wavenumber and thinner vortices [4, 65]. Once the vortices are formed, further

changes to the cylinder rotation rates do not affect the wavenumber.

Eccentricity. Cylinder alignment can be measured by eccentricity which is

defined as the ratio of the distance between the two parallel cylinder axes to the

mean gap width (ecc. = e/d). Eccentricity stabilizes Taylor-Couette flow and

decreases the critical wavenumber; a higher Taylor number is required for the

onset of instability and wider vortices are formed. Figure 2.15 illustrates the

influence of eccentricity on the critical Taylor number and wavenumber[66].

End Effects. The number of vortices filling the gap must be an integer. As a

result, when the aspect ratio (length of cylinders/gap width) of the cylinders is

sufficiently small, the aspect ratio and not the hydrodynamics determines axial

wavenumber. Therefore, large aspect ratios are used to minimize these geometry

effects, but they never completely eliminate end effects. Taylor vortices form

prematurely at the ends and propagate down the annulus as the Taylor number

increased [65] as illustrated in Figure 2.16. When the end plates rotate with the

outer cylinder, the end vortices are slightly larger than the vortices further from

the endplates and their size is independent of further increases in the Taylor

number. The radial component of the flow next to the end plate is inward. In

contrast, when the end plate rotates with the inner cylinder, the size of the

end vortex is proportional to
√

T/Tc. As the Taylor number increases, the end
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Figure 2.15: The effect of eccentricity on the critical Taylor number and
wavenumber in one fluid Taylor-Couette flow. Eccentricity is defined as the
offset distance of the cylinder axes to the average gap width. Tc is the critical
Taylor number with eccentric cylinders; Tco is the critical Taylor number with
concentric cylinders (ecc = 0). [66]
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Figure 2.16: Schematic of the premature formation and propagation of vortices
at the cylinder ends in one fluid Taylor-Couette flow. The outer cylinder is
stationary and the endplates are rotating with the inner cylinder. Therefore, the
radial flow is directed outwards at the ends. Length/gap width = 10,R12 = 0.933
and R = Ω1R

2
2/ν. [65]
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vortex expands and the internal vortices are compressed. The radial component

of the flow near the end plate is outward. The preferred configuration is typically

endplate rotation with the outer cylinder [65].

One Fluid Taylor-Couette Flow with Axial Flow. The approach to the

one fluid Taylor problem with a small superimposed axial flow is similar to the

one fluid problem without axial flow [14]. The flow is described by (1) Couette

flow, V (r), (2) a constant axial pressure-driven flow, W (r), and (3) the distur-

bance flow, v. The equations of motion and continuity are solved for the base

flow with no slip boundary conditions to determine V and W . The disturbance

velocities are again assumed to have the form (vr, vθ, vz)e
iα(z−ct). At low flow

rates, experimental results and full numerical analyses support that the flow

pattern is axisymmetric [14, 85, 104]. The total flow pattern is substituted into

the equations of motion and continuity. The resulting equations are linearized

and combined into two differential equations. To solve these equations with the

no-slip boundary conditions, the following simplifications are made: (1) the gap

width is assumed small compared to the cylinder radii, (2) the base flows (V,W )

are approximated by their radially averaged values (V̄ , W̄ ), (3) the rotation rates

are assumed to be nearly rigid (Ω21 ≈ 1), and (4) the axial flow rate is assumed

small. The simplified equations are:

{[D2 − α2 + i(αc−Reaxα)](D2 − α2)− 12iReaxα}vr = vθ, (2.7)
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[D2 − α2 + i(αc−Reaxα)]vθ = −T̄α2vr, (2.8)

where T̄ is the Taylor number,

T̄ = −1
2
(1 + µ)

4AΩ1
ν2

d4,

Reax is the axial Reynolds number,

Reax =
W̄d

ν
,

and W̄ is the mean axial velocity,

W̄ = − d2

12ρν

(

∂p

∂z

)

0

.

As in the case without axial flow, for a given wavenumber, α, the charac-

teristic equation determines the critical Taylor number, T̄c. Chandrasekhar [14]

finds that the imposition of axial flow stabilizes the Taylor-Couette flow, or for

a given geometry and fluid properties, higher Taylor numbers are required to

obtain the Taylor-Couette instability in the presence of axial flow. In addition,

the axial wavenumber increases with increasing axial flow which indicates that

the vortices become thinner and more rectangular.

Ng and Turner computationally observe similar effects; increasing the axial

flowrate is stabilizing and increases the axial wavenumber [85]. In the axisym-

metric case, at very high axial Reynolds numbers, they find that a second bifur-

cation dominates and is reported to be a Tollmien-Schlichting shear instability

in the boundary layer and not Taylor-Couette flow.



51

Howes and Rudman show numerically that for axisymmetric flows, some

streamlines (in a reference frame traveling with the wavespeed) “bypass” the

vortices [48] and flow counter to the prevailing axial flow direction; the center of

the vortex travels faster than the mean axial flow velocity. The stream function

for Taylor-Couette flow with axial flow is in Figure 2.17.

At sufficiently high axial flowrates (Reax > 20), the flow patterns observed

experimentally and predicted theoretically are non-axisymmetric [85, 104]. In

a non-axisymmetric analysis, Ng and Turner still find that axial flow is stabi-

lizing and the axial wavenumber increases, but both effects are less than in the

axisymmetric case. Also, the Tollmien-Schlichting instability is not observed.

Figures 2.18 and 2.19 compare the axisymmetric and non-axisymmetric predic-

tions by Ng and Turner with the theoretical predictions of Chandrasekhar and

experimental observations.

Radial Mass Transport in One Fluid Taylor-Couette Flow. Radial

mass transport in Taylor-Couette flow has found commmercial applications in

filtration and rotating electrodes. As a result, many researchers have experimen-

tally and theoretically investigated the radial mass transfer in Taylor-Couette

flow [16, 17, 34, 46, 77, 102]. The experimental results with a stationary outer

cylinder approximately satisfy the relation

Nuavg = A(geometry)Ta
cScb, (2.9)
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Figure 2.17: The stream function for Taylor-Couette flow with axial flow.
Ta = 55.9, R12 = 0.952, Reax = 2.61. A. In a reference frame moving with
the wavespeed. The dotted lines indicate regions where the flow bypasses the
vortices and is counter to the prevailing flow direction. B. In a stationary ref-
erence frame. [48].
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where Nu = 2kd/D, Ta = Ω1R1d
ν

( d
R1
)1/2, and Sc = ν/D. The empirically

determined constants A, a, and b are summarized in Table 2.9. The majority of

the experiments conclude that A = 0.4 − 0.9, a = 1
2
, and b = 1

3
. The Schmidt

number dependence immediately suggests that the mass transfer is controlled by

a boundary layer. Experiments have also shown that the mass transfer increases

with increasing surface roughness [61, 43], also consistent with boundary layer

theory where accelerated break-up of the boundary layer could increase the

mass transfer. An axial Reynolds number, Reax, dependence can also appear in

the Nusselt number relation, but this effect is observed only at high Reynolds

numbers (Reax > 300) where the axial flow also significantly affects the critical

Taylor number [16, 98].

Almost all of the theoretical studies have relied on approximations or em-

pirical parameters. A weakly nonlinear stability analysis of Taylor-Couette flow

predicts that the axial velocity gradient is proportional to the above defined

Taylor number [21]. From boundary layer theory, the Nusselt number is then

proportional to the Taylor number to the two-thirds power. This agrees surpris-

ingly well with the experimental observations of one-half, considering that the

weakly nonlinear analysis is valid only near the onset of the instability, which

is not typically the region of experimental interest. Gu and Fahidy [44] also

apply boundary layer theory to the mass transfer in Taylor-Couette flow, but
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used a parameter to fit the boundary layer equations with the empirical re-

sults. Kawase et al. [64] provide insight into the mass transfer characteristics

of Taylor-Couette flow by comparing the numerical solution of mass transfer

in a helical tube with published experimental results for Taylor-Couette flow.

Flower and Macleod [35] propose a basis for a “Large Vortex Model”, claim-

ing the mass and momentum transport analogy is not valid for Taylor-Couette

flow due to the dissimilar boundary conditions. Similarly, Eisenberg et al. [31]

cautiously compare their experimental results with the Chilton-Colburn relation

and Simmers and Coney [98] evaluate an analogy between heat and momentum

transport.

Baier et. al (see also sections 4 and 5) demonstrated that the experimental

results may be accurately predicted without empiricism by using a combination

of computational fluid dynamics (CFD) and boundary layer theory [6]. They

calculate that Nu ∝ Ta0.46, which agrees well with the experimental exponents

of 1/2 for Taylor-Couette flow as well as experiments in other systems with

laminar boundary layers. The predicted amplitude also agrees with the high-

est predicted Nusselt numbers and is within a factor of three of most of the

experimental results, which include a wide range of geometries, systems, and

measuring techniques. Figure 2.20 and Table 2.9 compare the CFD/boundary

layer theory predictions with the experimental observations.
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Axial Dispersion in One Fluid Taylor-Couette Flow. Many researchers

have also investigated the axial mass transport (or axial dispersion) in Taylor-

Couette flow. The experimental observations for one fluid Taylor-Couette flow

indicate that axial dispersion decreases to a minimum near the onset of Taylor

vortices and increases as the Taylor number increases [90]. When axial flow is

absent, the dispersion is proportional to the square root of the diffusion coeffi-

cient [25], but when axial flow is present, the dispersion is independent of the

diffusion coefficient [39, 83] and increases with increasing axial flow rates [32, 83].

These experimental results are modeled as one dimensional convection-diffusion

plug flow [32, 83, 105] or as a mixing-tanks-in-series system [63, 71]. One re-

search group has combined the plug flow and mixing tank models into a single

overall model correlating the axial mass transfer to the position in the vortex

[24]. Convection dominates near the vortex boundaries and diffusion dominates

near the vortex center [24]. The results from the previous experimental studies

are summarized in Table 2.11.

The corresponding theoretical work for predicting axial dispersion in one

fluid Taylor Couette flow has included asymptotic and full numerical analyses.

Rosenbluth et. al present results for axisymmetric Taylor-Couette flow without

axial flow in an infinite annulus in both the high and low Peclet number lim-

its [94]. The Peclet number is a measure of convective transport to diffusive
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transport and is defined as Pe = ud/D = ReθSc, where u is the character-

istic flow velocity in a convective cell. When Pe ≪ 1, the vortex has nearly

uniform composition. In this case, Rosenbluth et. al find that D∗ ∝ DPe2

or that axial dispersion increases as the flow velocity of the cell increases, but

decreases as the diffusion coefficient increases. This is the same form as for

Taylor-Aris convective dispersion [5, 107]. When Pe ≫ 1, the effect of diffu-

sion is small and boundary layers form along the vortex boundaries with little

diffusion into the interior of the cell. This is the limit that is typically ob-

served experimentally. Rosenbluth et. al find that D∗ = cDPe1/2 = c(Dud)1/2

or that axial dispersion increases as either the diffusion coefficient increases or

the flow velocity of the cell (i.e. aziumthal Reynolds number) increases. The

constant, c, depends on the system geometry and the flow velocity at the cell

boundary. The dependence of the dispersion coefficient on the square root of

the Peclet number reflects the existence of mass transfer boundary layers at the

cell boundaries. Boundary layer theory is further discussed in section 5. From

a weakly non-linear stability analysis [21], u ∝ Reθ, which leads to the bound-

ary layer theory relation D∗ ∝ Reθ(Sc)1/2. This equation compares favorably

with the experimental observations D∗ ∝ Reaθ where typically 0.69 < a < 1.05.

The agreement between the experiment and theory is somewhat surprising since

the weakly non-linear analysis is strictly valid only near the onset of the vortex

flow, whereas the experiments were generally in the turbulent vortex regime. At
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these higher Reynolds numbers, a numerical solution for the interface velocity

should be used in the boundary layer equations instead of the weakly non-linear

analysis result. The computational fluid dynamics package FLUENT was used

to calculate the flow field to be used in combination with boundary layer the-

ory to calculate the dispersion coefficient for Reθ/Reθ,c ≤ 10. The boundary

layer/FLUENT results are summarized in Table 2.10. The calculated axial dis-

persion coefficient is described by the relation D∗ ∝ Re0.69θ , again agreeing with

the experimental observations. However, the actual values of the predicted dis-

persion coefficient are an order of magnitude lower than observed values. Moore

and Cooney also observed a large discrepancy when comparing their experimen-

tal results with Rosenbluth’s prediction [83]. The experiments included axial

flow, while the boundary layer/CFD theory and Rosenbluth’s analysis did not

and this discrepancy indicates the importance of convective transport.

Reθ/Reθ,c D∗, cm2/s
1.4 0.0008
2.8 0.0015
5.6 0.0024
8.3 0.003
11.5 0.0036

Table 2.10: Axial dispersion in Taylor-Couette flow as calculated by CFD (FLU-

ENT)/boundary layer theory. R1 = 4 cm, d = 1 cm, ν = 0.01 cm2/s, Sc = 1000.
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Axial flow complicates the theoretical analysis of axial dispersion in Taylor-

Couette flow. In Taylor-Couette flow with axial flow, some streamlines (in a ref-

erence frame moving with the wavespeed) bypass the vortices and the wavespeed

is higher than the mean axial flow velocity, W̄ (Chandrasekhar, 1961, Howes

and Rudman, 1998). To calculate the long-time dispersion coefficient, Howes

and Rudman use the method of moments developed by Brenner (1980). They

assume that the dispersion can be described by two terms: (1) the vortex bound-

ary transport where D∗ ∝ D1/2, and (2) the axial transport due to axial flow

where D∗ ∝ W̄ 2d2/D. Experimentally, increasing the axial flow rate does aug-

ment the axial dispersion, but with a weaker dependence than predicted here.

This discrepancy may be a result of the assumptions of long-time and axisym-

metry in the theoretical analysis of Howes and Rudman (1998). They did not

study the effect of azimuthal Reynolds number on the axial dispersion.

In summary, although the qualitative trends are consistently observed and

predicted, the quantitative dependence of dispersion on the azimuthal Reynolds

number and axial Reynolds number varies widely. Several factors may contribute

to these discrepancies:

• Do the results depend on the method of tracer introduction, such as direct

injection into the annulus versus into the feed stream?
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• Does tracer injection into the annulus affect the flow pattern or preferen-

tially select the vortex center where more diffusion time may be required

to reach the vortex boundary?

• Does the number of vortices in the annulus vary? Does this affect fixed

measurement points that should always measure the same part of the

vortex?

• How much do end effects contribute?

• and, How important is the long time assumption?

Applications of Taylor-Couette Flow. Taylor-Couette flow has found sev-

eral applications which include a filtration device that uses the vortices to reduce

concentration polarization [46, 82, 84], a reactor with one cylinder supporting

the catalyst [17, 45, 53], a reactor exploiting the plug flow properties of Taylor-

Couette flow [17, 55], a rotating cylinder electrode [70], and countercurrent

liquid-liquid extraction with the two phases emulsified [22, 75].

By far the most commercialized application has been the filtration unit,

developed by MBR-Sulzer as a Dynamic Bio Pressure Filter and by Membrex

as the Benchmark Vortex Flow Filtration System [83]. The MBR-Sulzer device

is shown in Figure 2.21. The filter is based on one fluid Taylor-Couette flow

with a small imposed axial flow. The inner cylinder is porous allowing a small
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radial flow of filtrate to pass. The advantages of Taylor-Couette flow in filtration

are (1) The vortex motion of the Taylor vortices is continuously “sweeping” the

filter surface to prevent the buildup of materials that may clog or foul the filter

surface and (2) The axial and transmembrane pressure drops are decoupled.

Increased filter performance of up to three times over crossflow filtration has

been achieved [67, 68, 116]; however, the capital equipment and operation can

be costly.

Min and Lueptow investigated the fluid mechanics of Taylor-Couette filtra-

tion and found that in addition to the axial flow effects, strong outward or inward

radial flow stabilizes the flow; whereas weak radial outflow destabilizes the flow.

In addition, the vortex positions are shifted in the direction of the radial flow.

In all cases, the transition to higher modes of instability are stabilized and some

helical waveforms are prevented altogether [82].

Taylor-Couette flow has also been evaluated as a means to improve reac-

tor performance. Model systems investigated include partial oxidation of iso-

propanol [17], acetone to ketene conversion [17], and culturing of bioproducts

[55]. With a reactant or catalyst on or supplied through one of the cylinder

walls, the concentration, temperature, and residence time of the various species

may be better controlled. When used as an axial reactor, nearly ideal plug

flow may be achieved with the reacting and flowing directions decoupled. This
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Figure 2.21: The MBR-Sulzer Taylor-Couette filtration system.
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provides the potential for the conversion rate through the reactor to be inde-

pendent of the production rate. The increase in reactor performance may be

as high as 100% in the Taylor-Couette region over the Couette flow region [17].

For bioreactors, Taylor-Couette flow may be especially beneficial as lower oxygen

sparge rates are required than with other types of reactors. High sparge rates

are damaging since they reduce culture growth and form disruptive crust layers

[55]. The preliminary studies for a bioreactor were promising, but apparently

not pursued.

Countercurrent liquid-liquid extraction using Taylor-Couette flow has also

been evaluated and has reportedly been used as a laboratory separation device

for over 50 years [75]. The principle is for a heavy liquid to flow cocurrently or

countercurrently with a light fluid in an annulus. The inner cylinder rotation

rate is high enough to emulsify the two fluids and to form Taylor vortices of

the emulsion. The emulsion produces a high mass transfer surface area between

the two phases. The axial flow provides continuous contacting and the Taylor

vortices reduce axial dispersion. Again the extraction efficiency and the total

flow rate through the reactor can be decoupled and separately controlled by

the cylinder rotation rate and the axial flow rate. This type of liquid-liquid

extraction is particularly effective for two fluid phases that easily de-emulsify

at the exit ports and for sensitive or hazardous materials that require high

efficiencies. The control parameters to optimize the extraction efficiency include
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the volume ratio of the two phases, the rotation rate, the axial flow rate, the

feed nozzle design to facilitate droplet formation, and the extractor geometry [22,

100, 109]. This type of extractor is similar to the Argonne National Laboratories

(ANL) and Savannah River Laboratories (SRL) extractors discussed in section

2.2.

Other Centrifugal Instabilities. Other types of centrifugal instabilities,

similar in origin to Taylor-Couette flow, result from flow through a curved

channel (Dean flow) or flow in a concave wall boundary layer (Görtler flow).

Similar vortices develop and have also been advanced as less expensive alter-

natives to the Taylor-Couette applications, particularly in filtration. Dean vor-

tices continuously “sweep” the membrane surface and thereby reduce foulant

buildup. Belfort and coworkers designed a filtration system utilizing curved

channel Poiseuille flow with a flow rate above the critical one required for the

Dean instability [11]. For a given wall flux through the filter, they optimize

the filter system curvature to continuously balance the stabilizing effect of the

wall flux against the destabilizing effect of increasing curvature. The channel

curvature increases with distance down the filter and the system is not limited

to narrow gap designs. Belfort reports increased filtration performance, up to

30-500%, in the presence of Dean vortices [15, 116]. Figure 2.22 is a schematic

of filtration utilizing Dean vortices [116].
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Figure 2.22: Schematic of filtration utilizing Dean vortices [116]
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2.4 Two-Fluid Taylor-Couette Flow

To achieve two-fluid Taylor-Couette flow, the odd solution (previously illustrated

in Figure 2.14) of the one fluid Taylor-Couette flow can be exploited. The

odd solution has two identical layers of Taylor vortices filling the annular gap.

Although the odd solution is never observed experimentally, it suggests that

two-fluid Taylor-Couette flow is possible. The liquid interface introduces six

additional boundary conditions: matching velocities and shear stresses at the

interface and the normal stress balanced by surface tension. In addition, the

interface position is unknown. These interfacial boundary conditions require

that vortex motion in one phase be balanced by vortex motion in the other phase.

High rotation rates are required to first centrifugally stratify the two fluids, and

then a subsequent increase in the inner cylinder rotation rate produces vortices.

Alternatively, a very viscous fluid or fluids physically attracted to their respective

cylinder wall may eliminate the requirement for stratification by centrifugal force

[57]. The experimental apparatus is horizontal, unlike the vast majority of one

fluid vertical systems, to prevent the axial separation of the two fluids. The

dimensionless groups to describe two-fluid Taylor-Couette flow are: a Taylor

(or Reynolds) number for each phase, a Froude number for gravitational effects

in each phase, Joseph’s J factor for interface stability (discussed below), and

viscosity, density, and radii ratios to describe the fluid layers.
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The work that has been done on two fluid Couette flow, the base flow for two-

fluid Taylor-Couette flow, is very limited and most consider only inner cylinder

rotation where emulsion is a likely outcome. Motivated by gaseous core nuclear

rockets, Schneyer reports a linear stability analysis of two incompressible, im-

miscible stratified fluids [97]. Schneyer limits his analysis to stably stratified

fluids (heavy fluid at the periphery), a stationary outer cylinder, and negligible

surface tension and gravitational effects. He finds two eigenvalues, one a result of

the Taylor instability and another of the Kelvin-Helmholtz viscous stratification

instability [97].

Based on an energy analysis neglecting gravity, Joseph predicts a linearly

stable rigid interface between the two fluids at rigid rotation when J > 1 and a

globally stable rigid interface when J > 4 [57]. The dimensionless group J is a

measure of centrifugal to surface tension forces: J = (ρ2 − ρ1)Ω2R3i /S, where S

is the interfacial tension, ρ1 is the density of the inner fluid, Ω is the rigid body

rotation rate, and Ri is the interface position [57]. For the conditions required

in a Taylor-Couette liquid extractor, J ≫ 4.

Renardy and Joseph theoretically explored the stability of two fluid Cou-

ette flow with only inner cylinder rotation [93]. They expand the disturbance

velocities and pressure in Chebyshev polynomials and numerically solve the lin-

ear eigenvalue problem for the growth rate of Taylor vortices. Their results are

primarily for the one fluid Taylor-Couette axial wavenumber, which is probably
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not the critical wavenumber. They find: (1) A thin layer of less viscous fluid

near either cylinder is linearly stable. This does not agree with the theory that

viscous dissipation should be minimized. (2) Two-fluid Taylor-Couette flow may

be stabilized (destabilized) by the less (more) viscous fluid in a lubrication layer

near the inner cylinder. (3) The denser fluid may be located at the inner cylinder

when stabilized by surface tension and a favorable viscosity difference.

In their corresponding experimental work, Joseph and coworkers report sev-

eral modes for two fluid Couette flow [56, 58]. The experimental apparatus is

horizontal with sealed ends and only inner cylinder rotation. The fluids inves-

tigated are viscous oils (silicone, STP, SAE40, vegetable) and water, or two

viscous oils. With only inner cylinder rotation, they measure the torque as a

function of rotation rate and identify changes in the fluid flow modes. The fluid

regimes observed include (1) an emulsion undergoing one fluid Taylor-Couette

flow, (2) rollers of oil and vortex motion of the water phase, and (3) an emulsion

in bands separated by pure fluid. Rollers are defined as axisymmetric blobs at-

tached to the inner cylinder. Banded flow is the large amplitude limit of rollers,

where the interface breaks through to touch both cylinders. Campero and Vigil

observed similar patterns in their experiments [12].

Toya and Nakamura studied Taylor-Couette flow of two fluids in a vertical

annulus; the fluids are axially stratified. They observe that at the interface, the

bottom vortex in the less dense phase can co-rotate with the top vortex in the
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denser phase; the flow is countercurrent at the boundary between the two fluids

[110].

In addition to the Taylor-Couette instability in two fluid Couette flow, several

studies have investigated the shear instabilibity due to fluid layers with different

viscosities. Gallagher et. al observed azimuthal waves in a vertical Couette cell

filled with two radially stratified fluids of matched density, but different viscosity

[36]. Only the outer cylinder was rotated to avoid the Taylor-Couette instability.

The experimentally observed wavelength and onset of the instability agree well

with the linearized theory as represented by the Orr-Sommerfield equation for

viscous shear flows of two fluids.
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Chapter 3

Stability of Two-Layer Couette
Flow: Theory

3.1 Formulation

As in the standard one fluid problem, a linear stability analysis for two-fluid

Taylor-Couette flow explains the experimental observations. The equations of

motion and continuity are first solved for the base flows: Couette flow, which has

only an azimuthal velocity component and countercurrent axial flow, which has

only an axial component. A form for the disturbance flow is then assumed and

the equations of motion and continuity are solved for the total flow pattern. In

general, an analytical solution is impossible, so either simplifying assumptions

or a full numerical analysis is required. A simple inviscid analysis without

countercurrent axial flow is first presented, followed by more detailed viscous

linear stability analyses which can include countercurrent flow.
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3.1.1 Base Velocities

The geometry for two-fluid Taylor-Couette flow is a pair of coaxial cylinders

of infinite length. The outer cylinder with radius R2 rotates with an angular

velocity of Ω2. The outer (denser) fluid contacts only the outer cylinder and has

density ρ2, kinematic viscosity ν2, and dynamic viscosity µ2 = ν2ρ2. The flow

field for the outer fluid is represented by V2 for the base state Couette flow and

W2 for the base state axial flow. The total base flow is then described by V2 =

V2(r)eθ +W2(r)ez. The inner fluid is described similarly, but with subscripts 2

replaced with 1. The interfacial tension between the two fluids is represented

by S. The undisturbed flat interface between the two fluids is located at Ri

and rotates with an angular velocity of Ωi. As high rotation rates are required

for two-fluid Taylor-Couette flow, gravity is neglected in the following analyses.

The velocities are scaled with Ω1R1, time with d
2/ν1, pressure with 2Ω21R

2
1ρ1/ǫ,

and spatial variables with d = R2 − R1. The narrow gap parameter is ǫ =

d/R2. The importance of interfacial tension is measured by the quantity J2 =

(ρ2 − ρ1)Ω22R32/S, which is slightly modified from Joseph’s J since his is for

rigid rotation [58]. The radial direction, r, is transformed into a new variable,

y = (r − R1)/d, which has a value of zero at the inner cylinder and one at the

outer cylinder.
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Since the axial counterflow is driven by the axial pressure drop for the re-

spective phase, the interface is slightly tapered rather than cylindrical. A per-

turbation analysis of the normal stress boundary condition, neglected surface

tension, reveals that at rigid rotation the taper is approximately determined by,

∆P =

(

(ρ2 − ρ1)geffδ
L

+ (
∂P2
∂z
− ∂P1
∂z

)

)

= 0,

where geff = Ω22R2 and δ + Ri is the maximum radius of the tapered interface.

The maximum taper is then

δ

d
=

4ΓR12Reax,2Ek
2
2

(1− ρ12)

(

µ212
ρ12

Reax,1
Reax,2

+ 1

)

,

where Γ = Z/R1 is the aspect ratio, Z is the extractor length, R12 = R1/R2,

Reax,j = W̄jd/νj, Ekj =
µj

2ρjΩ2d2
is the Ekman number, µ12 = µ1/µ2 and ρ12 =

ρ1/ρ2. The taper increases with increasing axial flow or an increasing difference

in the flow rates, but decreases with increasing centrifugal force or increasing

density difference. When δ is small, the solutions below that assume a cylindrical

interface at yi are good approximations. For the results presented here, δ/d <

0.03 with Γ = 6.

The azimuthal component of the base flow is two-fluid Couette flow with the

standard boundary conditions of no-slip at the cylinder walls, and continuity of
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the velocity and shear stress at the interface:

y = 1 V2 = Ω21R21

y = 0 V1 = 1

y = yi V2 = V1

τrθ,2 = τrθ,1.

The resulting solution has only an azimuthal velocity component for each phase

(j = 1, 2):

Vj = Aj(y +
R12
ǫ
) +

Bj
(y + R12

ǫ
)
, (3.1)

where

A1 =
ǫ

R12
− µ21(Ω21 − 1)ǫ/R12
R212 − µ21 +R21i(µ21 − 1)

=
(R21i −Ωi1)ǫ/R12

R21i − 1
,

B1 =
µ21(Ω21 − 1)R12/ǫ

R212 − µ21 + (µ21 − 1)R21i
=

(Ωi1 − 1)R12/ǫ

R1i − 1
,

A2 = Ω21
ǫ

R12
− (Ω21 − 1)ǫ/R12

1− µ21R221 +R22i(µ21 − 1)
=

Ωi1(R
2
i2 −Ω2i)ǫ/R12
Ri2 − 1

,

B2 =
1

µ21
B1 =

Ωi1R
2
i1(Ω2i − 1)R12/ǫ

Ri2 − 1
,

and Ωi is determined by the first form of the Couette solution (equation 3.1).

Here, R1i = R1/Ri, Ω21 = Ω2/Ω1, etc.
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The countercurrent axial base flow is also determined by the usual boundary

conditions of no-slip at the cylinder walls and continuity of velocity and shear

stress at the interface:

y = 1 W2 = 0

y = 0 W1 = 0

y = yi W2 =W1

τrz,2 = τrz,1.

The resulting solution has only an axial velocity component for each phase

(j = 1, 2):

Wj = Fj(y +
R12
ǫ
)2 +Gj ln(y +

R12
ǫ
) +Hj, (3.2)

where

F1 =
∆Pz,1

4ΓΩ21Ek1ǫ

F2 =
∆Pz,2

4ΓΩ21Ek2ǫµ21

G1 = −2(
R12
ǫ

+ yi)
2(F1 − µ21F2) + µ21G2

H1 = −F1
(

R12
ǫ

)2

−G1 ln(
R12
ǫ
)
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G2 = − [(F1−F2)(
R12
ǫ
+yi)2−F1(

R12
ǫ
)2+F2(1+

R12
ǫ
)2−2(F1−µ21F2)(

R12
ǫ
+yi)2[ln(

R12
ǫ
+yi)−ln(

R12
ǫ
)]]

ln(1+
R12
ǫ
)+(µ21−1) ln(

R12
ǫ
+yi)−µ21 ln(

R12
ǫ
)

H2 = −F2(1 +
R12
ǫ
)2 −G2 ln(1 +

R12
ǫ
).

The axial pressure drops, ∆Pz,1 and ∆Pz,2 are determined by the volumetric

flowrates.

A typical velocity profile for countercurrent axial flow is shown in Figure

3.1. The axial velocity at the interface is generally non-zero and backflow in

one of the fluid phases results. Furthermore, Rayleigh’s theorem for inviscid

flow profiles with inflection points suggests that the flow could be unstable at

sufficiently high axial Reynolds numbers [30].
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R2

R1

Ri

Heavy fluid

    µ2, ρ2

Light fluid

    µ1, ρ1

Backflow

Figure 3.1: Velocity profile for the countercurrent axial base flow. Here R12 =
0.826, R2 = 5.05, ǫ = 0.174, Q1 = Q2, µ21 = 0.22, and yi = 0.5.
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3.1.2 Linear Stability Analysis

In the linear stability analysis, small disturbance velocities are added to the base

flow solution. These velocities are solved for using the equations of motion and

continuity with the corresponding boundary conditions. The total flow is then

described by Vj =





















v̂r,j

v̂θ,j + Vj

v̂z,j +Wj





















. The boundary conditions require no-slip at

the cylinder walls, mathcing velocity components and shear stresses in the two

phases at the interface, and the normal stress to be balanced by surface tension

at the interface. The disturbance flow is assumed to have the following normal

mode form:

v̂j =





















vr,j(y)

vθ,j(y)

vz,j(y)





















eiα(z−ct)+inθ + c.c. (3.3)

The interface deforms from yi as ĥ = heiα(z−ct)+inθ+ its complex conjugate.

Pressure also has the form p̂ = p(y)eiα(z−ct)+inθ+c.c. In addition to the boundary

conditions, the kinematic condition requires that particles on the interface move

with the interface D
Dt
(y − ĥ − yi) = 0, where ĥ + yi is the perturbed interface

and the substantial derivative operator D
Dt

= ∂
∂t
+V · ∇.

The resulting equations from the boundary conditions and the equations of

continuity and momentum are linearized by eliminating terms containing the
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products of the disturbance quantities. Domain perturbation is used to apply

the interfacial boundary conditions at the unperturbed interface position, yi,

rather than at the actual unknown interface position.

The linearized governing equations are for:

Radial momentum:

[−iαc− µj1ρ1j( ∂
2

∂y2
+ 1
(y+R12/ǫ)

∂
∂y
− (1+n2)
(y+R12/ǫ)2

− α2) + in R12
2Ek1Ω21ǫ

Vj
(y+R12/ǫ)

+

iα R12
2Ek1Ω21ǫ

Wj]vr,j + [−2 R12
2Ek1Ω21ǫ

Vj
(y+R12/ǫ)

+ µj1ρ1j
2in

(y+R12/ǫ)2
]vθ,j

+ρ1j
2
ǫ

R12
2Ek1Ω21ǫ

∂pj
∂y

= 0

Azimuthal momentum:

[−iαc− µj1ρ1j( ∂
2

∂y2
+ 1
(y+R12/ǫ)

∂
∂y
− (1+n2)
(y+R12/ǫ)2

− α2) + in R12
2Ek1Ω21ǫ

Vj
(y+R12/ǫ)

+

iα R12
2Ek1Ω21ǫ

Wj ]vθ,j + [2Aj
R12

2Ek1Ω21ǫ
− µj1ρ1j 2in

(y+R12/ǫ)2
]vr,j

+inρ1j
2

ǫ(y+R12/ǫ)
R12

2Ek1Ω21ǫ
pj = 0

Axial momentum:

[−iαc− µj1ρ1j( ∂
2

∂y2
+ 1
(y+R12/ǫ)

∂
∂y
− n2

(y+R12/ǫ)2
− α2) + in R12

2Ek1Ω21ǫ

Vj
(y+R12/ǫ)

+

iα R12
2Ek1Ω21ǫ

Wj ]vz,j +
R12

2Ek1Ω21ǫ

∂Wj
∂y
vr,j

+iαρ1j
2
ǫ

R12
2Ek1Ω21ǫ

pj = 0

Continuity:

vr,j
(y +R12/ǫ)

+
∂vr,j
∂y

+
in

(y +R12/ǫ)
vθ,j + iαvz,j = 0.
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The linearized interfacial boundary conditions require that at y = yi:

vr,1 = vr,2

vθ,1 − vθ,2 − h[2(B1−B2)
(y+

R12
ǫ
)2
] = 0

vz,1 − vz,2 + h[2(y + R12
ǫ
)(F1 − F2) + (G1−G2)

(y+
R12
ǫ
)
] = 0

∂vz,1
∂y
− µ21 ∂vz,1∂y

+ iα(1− µ21)vr,2 + h[2(F1 − µ21F2)− (G1−µ21G2)

(y+
R12
ǫ
)2

] = 0

∂vθ,1
∂y
− vθ,1

(y+
R12
ǫ
)
− µ21 ∂vθ,2∂y

+ µ21
vθ,2

(y+
R12
ǫ
)
+ in(1−µ21)

(y+
R12
ǫ
)
vr,2 = 0

1
1−ρ21

[(p1 − p2)(1− ǫ)− 2Ω21Ek1ǫ
2(∂vr,1

∂y
− µ21 ∂vr,2∂y

)]

+h[ d
2Ri

(1− ǫ)ǫV 22 − Ω21
4Ek1J2ǫ

(α2 −
(

d
Ri

)2
(1− n2))] = 0

with the linearized kinematic condition h(−iαc
Re1

+ d
Ri
inV2 + iαW2) = vr,2.

3.2 Results.

3.2.1 Inviscid Analysis.

In the inviscid analysis for two-fluid Taylor-Couette flow without countercur-

rent flow, each fluid layer is considered inviscid but with the base Couette flow

velocity profile. So although this is an inviscid analysis, the viscosity ratio

remains important because it determines the velocity profile. Each phase is

subject to a Rayleigh criterion similar to the one fluid problem; the inner fluid

is unstable when Ωi1 < R21i and the outer fluid is unstable when Ω2i < R2i2.

Since the rotation rate of the interface is known from the base flow solution,

Ωi = V1/Ri = V2/Ri, these Rayleigh criteria can be expressed in experimentally



84

controllable quantities. The instability occurs in the inner fluid when

Ω21 < Ω21,c,1 =
R212 + (µ21 − 1)R21i

µ21

and in the outer fluid when

Ω21 < Ω21,c,2 =
R212

µ21 − (µ21 − 1)R21i
.

As µ21 → ∞, fluid 2 is stable and fluid 1 obeys a single fluid criterion based

on R1i. As µ21 → 0, fluid 1 is stable and fluid 2 obeys the criterion based on

Ri2. When µ21 = 1 both expressions reduce to the expression for a single fluid.

This is the only point where the Ω21,c,j vs. µ21 curves cross; thus a necessary

but not sufficient criterion for both phases to be “Rayleigh unstable” is for the

single fluid problem in the same geometry to be Rayleigh unstable. For a given

interface position, increasing µ21 stabilizes the outer fluid (in the sense that Ω21

for instability decreases) and destabilizes the inner fluid. Additionally, since

for µ21 > 1,Ω21c,2 < Ω21c,1 and vice versa when µ21 < 1, the less viscous fluid

is always more susceptible to instability. As shown in Figure 3.2 the Rayleigh

curves always cross at µ21 = 1, but moving the interface away from equal fluid

depths, shifts and expands the region where both fluids are unstable.
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Figure 3.2: The Rayleigh criteria for two-fluid Taylor-Couette flow for R12 =
0.826 and R2 = 5.05 cm. The Rayleigh criterion for one fluid Taylor-Couette
flow is represented by the line without symbols. The lines with hollow (filled)
symbols represent the Rayleigh criterion for the outer (inner) fluid. The circles
(©) correspond to the interface near the inner cylinder (yi = 0.03); the triangles
(▽) correspond to the interface in the center (yi = 0.5); and the squares (2)
correspond to the interface near the outer cylinder (yi = 0.94).
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3.2.2 Viscous Analysis without Counterflow.

When countercurrent axial flow is absent, two-fluid Taylor-Couette flow can be

approached with the same method as in the one fluid problem. The equations

and boundary conditions are simplified by assuming that the flow is axisym-

metric at onset (n = 0), the gap is narrow compared to the cylinder radii

(d/R2 → 0), and the bifurcation occurs near rigid rotation (Ω2/Ω1 → 1).

These assumptions are consistent with the experimental observations for two-

fluid Taylor-Couette flow (Figure 6.13). When the equations of momentum

and continuity are combined to eliminate explicitly the radial and axial velocity

components and the pressure, the resulting differential equations are:

(D2 − α2 + iαc)2(D2 − α2)vθ,1 = −α2T1vθ,1, 0 < y < yi

(D2 − α2 + iαµ12ρ21c)2(D2 − α2)vθ,2 = −α2T2vθ,2, yi < y < 1

where

D = ∂/∂y,

T1 =
−4A1Ω1d4

ν21
= −4Ω

2
1d
4[R21i − Ωi1]

ν21(R
2
1i − 1)

=
[R21i −Ωi1]

1−R21i
Ω212
Ek21

and

T2 =
−4A2Ωid4

ν22
= −4Ω

2
i d
4[R2i2 − Ω2i]

ν22(R
2
i2 − 1)

=
[R2i2 −Ω2i]

1−R2i2
Ω2i2
Ek22

.

The terms in the square brackets in these definitions of Taylor numbers are the

Rayleigh criteria that determine the stability for the inviscid case, as discussed
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above. The other velocity components can be found from the relations

vr,j = Ekj(D
2 − α2 + iαµ1iρj1c)vθ,j

vz,j = −
1

iα
Dvr,j.

After using the linearized kinematic boundary condition

iαch+Re1vr = 0,

the boundary conditions become:

y = 0 vr,1 = vθ,1 = vz,1 = 0

y = 1 vr,2 = vθ,2 = vz,2 = 0

y = yi vr,1 = vr,2

vθ,1 = vθ,2

vz,1 = vz,2

Dvz,1 + iαvr,1 = µ21(Dvz,2 + iαvr,2)

Dvθ,1 = µ21Dvθ,2

−iαc[p1 − p2 − 2
Re1

(2Dvr,1 − µ21Dvr,2)] + [ǫRe1(1− ρ21 − Sα2]vr,2 = 0

where Re1 = Ω1R1d/ν1 = O(1/ǫ). The viscous analysis is then restricted to sta-

tionary bifurcations (pitchforks due to the problem symmetry) where c = 0 at

the bifurcation point. This simplification is justified because in the single fluid

problem, axisymmetric modes always appear through pitchfork bifurcations. As

a result, at the bifurcation point, the radial velocity, vr, and the interface defor-

mation amplitude, h, are identically zero. In effect, this analysis predicts a flat



88

interface at the onset of the vortex motion, which is again consistent with the

experimental observations (Figure 6.14). The general solution to the governing

equations at c = 0 is

vθ,1 = a1 cosh q0y + b1 sinh q0y+ c1 cosh qy+ d1 sinh qy+ e1 cosh q
∗y+ f1 sinh q

∗y

vθ,2 = a2 cosh p0y+ b2 sinh p0y+ c2 cosh py+ d2 sinh py+ e2 cosh p
∗y+ f2 sinh p

∗y

where q0, q, q
∗ are roots to (q2 − α2)3 = −T1α2. Similarly, p0, p, p

∗ are roots

to (p2 − α2)3 = −T2α2. With these simple equations for vθ1 and vθ2, the

homogenous boundary conditions reduce to twelve equations and twelve un-

knowns of the form, Ax = 0, where A is the matrix of equation components

for the disturbance velocities and x is the vector of undetermined coefficients

(a1, b1, c1, d1, e1, f1, a2, b2, c2, d2, e2, f2). This analysis will not give information

about the Rayleigh-Taylor instability that occurs when ρ1 > ρ2, because in this

case c is never zero. Also, this analysis will not predict viscous shear instabilities

since they would be non-axisymmetric. For a given wavenumber, α, the criti-

cal Taylor numbers are those Taylor numbers for which a non-trivial solution to

Ax = 0 exists. Numerical determination of the nullspace of A is straightforward.

The inviscid analysis predicts the basic features of the two-fluid Taylor-

Couette instability, and the viscous linear stability analysis provides more de-

tailed predictions. Since the Taylor numbers are awkwardly large for two-fluid

Taylor-Couette flow, the simpler bifurcation parameter of the inviscid analysis,
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Ω21, is also used. Figure 3.3 shows the linear stability predictions for several Ek-

man numbers. The wavenumber is fixed at α = 5.365 for all these calculations;

Ω21c is rather insensitive to the value used. The flow is stabilized as the Ekman

number increases, which occurs when the viscosity increases, the rotation rate

(Ω2) decreases or the gap width decreases (R12 → 1). When Ek2 is small, the

linear stability results lie just below the uppermost inviscid curve. As Ek2 in-

creases, the most significant deviation from the inviscid curves is when µ21 < 1.

This is because when µ21 < 1, the inviscid analysis predicts that instability

occurs first in the outer phase, so this is the phase that determines stability.

Any increase in the relative importance of viscosity of that phase will suppress

instability. The effect of Ek2 on stability when µ21 ≫ 1 should be small because

here instability occurs in the inner phase, whose properties are unaffected by

Ek2. Several contour plots of the stream function for various viscosity ratios are

in Figure 3.4. From these figures it is apparent that although motion occurs in

both phases, the motion appears to be driven by the Rayleigh unstable phase.

The asymmetry between phases at µ21 = 1 is due to the finite gap width, whose

effect remains in the Taylor numbers.

Figure 3.5 shows the effect of density ratio on the viscous linear stability

predictions. There is no effect in the inviscid limit and the effect remains small

in the presence of viscosity. One interesting observation, however, is that the

minimum in Ω21c vs. µ21 (when α = 5.365) evidently always occurs at T1 = T2 =
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Figure 3.3: The inviscid and viscous theoretical predictions for various viscosity
ratios. The two curves are the Rayleigh criterion for the outer fluid and the
inner fluids. The shaded area indicates when vortices occur in both phases.
The points represent the viscous analysis predictions for various outer phase
viscosities. Here ρ21 = 1.11, ρ2 = 1.15 g/ml, R12 = 0.826, R2 = 5.05 cm,
ǫ = 0.174, Ω2 = 7 rev/s, Q1 = Q2 = 0, n = 0, α = 5.365, and yi = 0.5.
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Figure 3.4: Stream functions for two-fluid Taylor-Couette flow with various
viscosity ratios. Here ρ21 = 1.36, ρ2 = 1.15 g/ml, R12 = 0.826, R2 = 5.05
cm, ǫ = 0.174, Ω2 = 8 rev/s, Ek2 = 8.48 · 10−4, yi = 0.5, Q1 = Q2 = 0,
n = 0, and α = 5.365. The vortices represented by the solid lines rotate in
the opposite direction to those represented by the dashed lines. A. µ21 = 0.2,
Ω21 = Ω21c = 0.7955, B. µ21 = 1.0, Ω21 = Ω21c = 0.6794, C. µ21 = 5.0,
Ω21 = Ω21c = 0.7908.
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Figure 3.5: The effect of density ratio on the onset of two-fluid Taylor-Couette
flow with R12 = 0.826, R2 = 5.05 cm, ǫ = 0.174, Ω2 = 7 rev/s, Ek2 = 1.47 ·10−3,
yi = 0.5, Q1 = Q2 = 0, n = 0 and α = 5.365.
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17, 610 the critical Taylor number of the odd solution in the one fluid problem.

When the fluids are of equal depth, the viscous analysis predicts no qualita-

tive differences from the inviscid anlysis. However, when the less viscous fluid

layer is sufficiently thin (i.e., where yi or 1− yi is small), viscous effects become

more important and can cause the more viscous, thicker layer to be the least sta-

ble. Figure 3.6 shows the effect of interface position for µ21 = 0.69 and various

Ekman numbers. The Rayleigh criteria for the inner and outer fluids and the

critical axial wavenumber, αc, are also shown. From this figure, it is observed

that (1) increasing the Ekman number is stabilizing, and (2) the less viscous

phase is unstable until a critical layer thinness, at which point the more viscous,

thicker phase becomes the unstable phase. The vortices remain approximately

square and the axial wavenumber indicates which phase is unstable. The abrupt

change in wavenumber identifies the critical thinness where the unstable phase

switches to the other. After the switch, the stability is given, to a good ap-

proximation, by the Rayleigh criterion for the thicker, more viscous layer. As

the effective viscosity (Ekman number) increases, the critical thinness required

approaches equal fluid depths. Figure 3.7 plots the stream functions for several

interface positions at the corresponding critical wavenumbers.

As the radius ratio approaches unity, the Rayleigh criterion predicts that the

rotation rate ratio also approaches unity. However, the viscous analysis again

finds that viscous effects become important as the layers become thinner. Figure
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Figure 3.6: The effect of interface position on the critical rotation rate ratio.
Here µ21 = 0.69, Ek2 = 8.48 · 10−4, ρ21 = 1.35, ρ2 = 1.15 g/ml, R12 = 0.826,
R2 = 5.05 cm, ǫ = 0.174, and Ω2 = 8 rev/s. The numbers represent the
critical axial wavenumber (to the nearest integer), αc. These results are from
the numerical analysis of section 3.2.3 with J2 = 1939 and Q1 = Q2 = 0.
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Figure 3.7: Stream functions for several different interface positions. Here µ21 =
0.69, ρ21 = 1.35, ρ2 = 1.15 g/ml, R12 = 0.826, R2 = 5.05 cm, ǫ = 0.174, Ω2 = 8
rev/s, Ek2 = 8.4 · 10−3, and n = 0. These results are from the numerical
analysis of section 3.2.3 with J2 = 1939 and Q1 = Q2 = 0. The vortices
represented by the solid lines rotate in the opposite direction to those represented
by the dashed lines. A. yi = 0.3, Ω21 = Ω21c = 0.7070, α = 3, B. yi = 0.5,
Ω21 = Ω21c = 0.7206, α = 5, C. yi = 0.7, Ω21 = Ω21c = 0.7183 , α = 9. D.
yi = 0.8, Ω21 = Ω21c = 0.6572 , α = 4.
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3.8 shows this stabilizing effect for several Ekman numbers.

In addition to the stabilizing effects of the Ekman number, increasing surface

tension slightly stabilizes the system. Surface tension has a greater effect at

higher Ekman numbers, although the effect remains small. This is because the

dimensionless group measuring the surface tension term in the normal stress

boundary condition is small for the conditions studied here ( Ω21
4J2Ek1ǫ(1−ρ21)

< 1).
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Figure 3.8: The effect of radius ratio on the critical rotation rate ratio. Here
µ21 = 0.69, ρ21 = 1.35, ρ2 = 1.15 g/ml, R2 = 5.05 cm, Ω2 = 8 rev/s, and
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3.2.3 Viscous Analysis with Counterflow

For the theoretical analysis of two-fluid Taylor-Couette with countercurrent ax-

ial flow, a full numerical analysis is used. The governing equations and bound-

ary conditions were discretized using Chebyshev collocation: Chebyshev-Gauss-

Lobatto integration points were used for the velocities and Chebyshev-Gauss

points for pressure [13]. In each phase, 16 collocation points were used for the

velocities and 15 for pressure; the results reported here are independent of the

number of points. The resulting algebraic generalized eigenvalue problem is

solved with a public-domain subroutine that uses QZ factorization [37]. Insta-

bility occurs when Im(c) ≥ 0.

With this numerical analysis, no simplifying assumptions were used, as they

were in the initial analysis without counterflow (section 3.2.2). In the limit of no

axial counterflow, the results from this numerical analysis agree well with both

the analysis above and the analysis of Renardy and Joseph [93]. Therefore,

the assumptions of narrow gap (d/R2 → 0), near rigid rotation (Ω21 ≈ 1), and

axisymmetry (n = 0) are in fact very good for the conditions reported in section

3.2.2.

The effects of countercurrent axial flow are summarized in Figures 3.9 and

3.10. From these graphs the following observations may be made: (1) At low

flow rates there is no effect on the onset of the vortex flow or on the structure
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Figure 3.9: The critical Taylor number for one fluid Taylor-Couette flow with
axial flow and two-fluid Taylor-Couette flow with countercurrent axial flow. For
the two fluid case µ21 = 1.0, ρ21 = 1.35, ρ2 = 1.15 g/ml, R12 = 0.826, R2 = 5.05
cm, ǫ = 0.174, Ω2 = 8 rev/s, Ek2 = 8.48 · 10−4, yi = 0.5, Q1 = Q2, and
J2 = 1939. For the non-axisymmetric cases, the numbers represent the critical
azimuthal wavenumber, nc. Both Chandrasekhar’s and Ng and Turner’s one
fluid results are for R12 = 0.95, Ω2 = 0.
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R2 = 5.05 cm, ǫ = 0.174, Ω2 = 8 rev/sec, Ek2 = 8.48 · 10−4, yi = 0.5, Q1 = Q2,
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of the vortices as described by the axial and azimuthal wavenumbers. (2) At

moderate flowrates the flow is slightly stabilized and both wavenumbers increase;

the vortices become thinner and form helices. (3) At very high flowrates, the

flow is strongly destabilized indicating the appearance of another instability. (4)

Axisymmetric modes are less destabilizing than non-axisymmetric modes. These

results all agree qualitatively with similar observations for one fluid Taylor-

Coeutte flow, which are included in Figures 3.9 and 3.10. For both the one

and two fluid cases the relation T ∝ Reax holds for the axisymmetric case at

moderate flowrates. The second instability that appears in the one fluid problem

at high axial flowrates is believed to be the Tollmien-Schlichting instability in

the boundary layer [85]; for the two-fluid case the second instability is a Kelvin-

Helmholtz mode (discussed further below). When the flow is not forced to be

axisymmetric, the one and two fluid flows show less agreement with each other.

For two-fluid Taylor-Couette flow, countercurrent axial flow weakly stabilizes

when Reax,2 < 50. In contrast, axial flow is quite stabilizing for single fluid

Taylor-Couette flow for Reax < 7000. The difference between the one and

two fluid problems is the appearance of the Kelvin-Helmholtz instability in the

two fluid case at relatively low axial Reynolds numbers. The Kelvin-Helmholtz

instability continues to dominate at even higher axial Reynolds numbers and

at sufficiently high axial flow occurs at rigid rotation. The Tollmien-Schlichting

instability was not observed in either the axisymmetric or non-axisymmetric two
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fluid problem.

Several stream functions for the axisymmetric flow with Q12 = 1 and µ21 =

0.69 are shown in Figure 3.11. With the linear stability analysis, the ampli-

tude of the disturbance velocities is determined only within a multiplicative

factor. Therefore, the stream functions (which are a sum of the base and dis-

turbance flows) are representative only and not exact. The wavespeed direc-

tion generally corresponds to the fluid flow direction where the vortices are

stronger. The vortices in both phases travel in that same direction, although

the flow overall is countercurrent. As seen in the figures, some streamlines “by-

pass” the vortex structure, and a characteristic pattern of stagnation points

develops. With increasing axial Reynolds numbers, the vortices become thin-

ner and one vortex appears to be drawn under its neighbor. At the very high

Reynolds numbers, a completely different pattern appears. Particularly, the

stagnation pattern shifts to that characteristic of the Kelvin’s “cat’s eye” pat-

tern that arises in the Kelvin-Helmholtz instability. For the viscosity ratios

explored (µ21 = 0.69, 1.0, 1.46), when the axial flow rate is higher in the inner

phase (Q21 < 1), this Kelvin-Helmholtz mode is strongly destabilized and the

flow pattern very non-axisymmetric. Figure 3.12 shows this effect for matched

viscosity fluids. The most stable flow occurs as the viscosity ratio approaches

unity; the flow is noticeably stabilized in the moderate Reynolds number re-

gion and is nearly axisymmetric as shown in Figure 3.13 for Q21 = 1. As µ21
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Figure 3.11: Stream functions, in a reference frame traveling with the wavespeed
Re(c), for two-fluid Taylor-Couette flow with countercurrent axial flow. Here
µ21 = 0.69, ρ21 = 1.35, ρ2 = 1.15 g/ml, R12 = 0.826, R2 = 5.05 cm, ǫ = 0.174,
Ω2 = 8 rev/s, Ek2 = 8.48 · 10−4, n = 0, Q1 = Q2, and J2 = 1939. The darker
lines indicate the interface. A. Reax,2 = 0.33, α = 4.5, Ω21 = Ω21c = 0.6793,
B. Reax,2 = 33, α = 5.5, Ω21 = Ω21c = 0.6776, C. Reax,2 = 100, α = 7.5,
Ω21 = Ω21c = 0.6689, and D. Reax,2 = 232, α = 8, Ω21 = Ω21c = 0.6866.
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increases the Kelvin-Helmholtz mode is destabilized and the flow again very

non-axisymmetric. In general, the first derivative of base axial flow is discon-

tinuous at the interface and the flow profile does not have an inflection point

elsewhere. However, the change in concavity may be measured by the jump in

the second derivative (d2W1/dy
2− d2W2/dy2)|y=yi. As either Q21 decreases (for

µ21 = 0.69, 1.0, 1.46) or µ21 increases (for Q21 = 1), this jump increases and the

flow is destabilized, consistent with Rayleigh’s inflection point theorem.

Figure 3.14 shows that surface tension stabilizes the Kelvin-Helmholtz insta-

bility as expected from other studies [14, 30]. Also apparent, from the values

of Ω21Reax,2=0 in the legend, is the slight stabilizing effect of surface tension on

two-fluid Taylor-Couette flow.

The effect of Ekman number is shown in Figures 3.15 and 3.16. With increas-

ing viscosity, the second instability occurs at a higher average axial velocity, but

at a lower axial Reynolds number (the average axial velocity scaled by viscosity).

The flow is also less asymmetric with higher viscosity fluids.

For all of the cases studied, there was no evidence of the interfacial insta-

bility due to the azimuthal shear of fluid layers with different viscosities [36].

Furthermore, the Taylor-Couette instability always appeared with vortices coun-

terrotating across the interface; i.e., points just across the interface from one

another have very similar velocities. Both of the computational fluid dynamics

packages, FLUENT and FIDAP (sections 4.1 and 4.2), predict that above the
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Figure 3.14: The effect of surface tension on the onset of the Kelvin-Helmholtz
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critical point the vortex pattern can change from counterrotation of vortex pairs

across the interface to a stable corotation state. Since the linear stability analy-

sis is valid only at the onset of two-fluid Taylor-Couette flow, it cannot directly

determine supercritical flow behavior. However, the second mode to go unstable

in the linear stability analysis can give an indication of other important flow

patterns. When the two fluids are identically matched, with equal fluid depths,

negligible curvature, and no countercurrent axial flow, the linear stability analy-

sis predicts counterrotating vortices (the odd solution) as the primary unstable

mode. A corotating vortex state is the second mode to be unstable. However,

this corotating mode is significantly affected by counterflow, as shown in Figure

3.17. Once Reax > 3, the first mode resembles the second, the difference being

which phase has stronger vortices. This suggests that countercurrent axial flow

can sufficiently affect the problem symmetry to eliminate corotating vortices.
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Figure 3.17: Stream functions, in a reference frame traveling with the wavespeed,
Re(c), for the first and second unstable modes with increasing countercurrent
axial flow. Here µ21 = 1, ρ21 = 1.0145, ρ2 = 1.14 g/ml, R2 = 5.05 cm, ǫ = 0.174,
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Chapter 4

Computational Fluid Dynamics
Studies

The linear stability analyses of sections 3.2.2 and 3.2.3 are useful in understand-

ing the onset of the vortex flow, but do not predict either the magnitude of the

vortex velocities or the behavior beyond the critical point. For this, compu-

tational fluid dynamics (CFD) may be used. These CFD results may also be

combined with boundary layer theory to predict the mass transfer characteristics

of the flow. Boundary layer theory (see section 5) is useful when the majority

of the mass transfer occurs in a boundary layer region. For these situations, a

full numerical analysis would require very high resolution in the boundary layer

region and therefore would be computationally intensive.

Several commercial computational fluid dynamics software packages were

used to simulate one and two-fluid Taylor-Couette flow: FLUENT and FIDAP,

both products of Fluent, Inc (Lebanon, NH). Both packages solve the Navier-

Stokes equations, but differ in their discretization schemes. FLUENT uses a
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control volume method with first order polynomials. As a result, FLUENT is a

more general software package designed to handle laminar, turbulent, and mildly

compressible flows. Each cell communicates with only its nearest neighbors and

therefore fine grids are often required. For convergence, the error decreases as

K−1, where K is the number of grid elements. FIDAP is a finite element method

which uses first or second order polynomials to discretize the flow problem. The

second order polynomials allow more distant cells in the grid to communicate

with each other and is preferred for laminar and free surface problems. The error

decreases as K−N relative to changes in the grid sizing and as e−αN relative to

changes in the order, N , of the interpolating polynomial. The number of grid

elements isK and α is characteristic of the specific problem. In the FIDAP runs,

second order polynomials were used. As with all computational fluid dynamics

packages, the results should be independent of the grid and polynomial order.

Data was collected at specified points to track the development of the flow and

confirm that the asymptotic solution was reached and transient behavior had

ceased.

With both FLUENT and FIDAP, all simulations were modeled as axisym-

metric with swirl velocity and periodic boundary conditions in the axial direc-

tion, which is consistent with the fluid mechanics studies with low axial flowrates.

The one fluid problem was reproduced, and then extended to the two fluid case.

FLUENT was used for calculating the velocity field for one fluid Taylor-Couette
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flow which was then used with boundary layer theory to calculate the radial

mass transfer coefficients. FIDAP was used for two-fluid Taylor-Couette flow

and the calculated velocity field used with penetration theory to calculate inter-

phase mass transfer. FIDAP was chosen for two-fluid Taylor-Couette flow since

it can calculate the interface position rigorously; FLUENT uses a less accurate

Volume of Fluid (VOF) method. Although both FLUENT and FIDAP were

successful, the iterations required were time consuming even with good initial

conditions. Therefore, CFD would be most effective in exploring only selected

areas of the parameter space, such as equipment dimensions to design future

prototypes.

4.1 FLUENT

4.1.1 One Fluid Taylor-Couette Flow

FLUENT correctly reproduced the one fluid Taylor problem at low rotation

rates with the steady solver. The velocity fields from similar FLUENT runs

agree qualitatively with the numerical analysis of Fasel and Booz [33] and with

experimental results of Sobolik et. al [99] and Parker and Merati [88].

FLUENT was also able to correctly simulate the one fluid problem with a

high outer cylinder rotation rate using the time dependent solver. In general,

computational fluid dynamics packages do not easily solve flow problems with

strong centrifugal components. When the azimuthal velocity was initialized to
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Figure 4.1: FLUENT results for one fluid Taylor-Couette flow with a high outer
cylinder rotation rate. T = 29930, Ω21 = 0.576, Ω21,c = 0.676, α = π, Ω2 = 6
rev/s, R2 = 5.35 cm, d/R2 = 0.18 , ρ = 1 g/ml, µ = 10 cp.
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the analytical solution at rigid rotation and with slow continuous increases in

the inner cylinder rotation rate, FLUENT maintained a solution. The FLUENT

results for one fluid Taylor-Couette flow near the critical point with a high

outer cylinder rotation rate are summarized in Figure 4.1. The velocities scale

approximately linearly with the outer cylinder rotation rate. This FLUENT run

corresponds to the point marked F on Figure 6.8 of the experimental results in

section 6.3.1.

FLUENT was primarily used to calculate the velocity field for one fluid

Taylor-Couette flow, which was then used in boundary layer theory to calculate

the mass transfer from the inner cylinder wall to the bulk. Boundary layer

theory is discussed in section 5.1 and a comparison of these calculated mass

transfer rates rates with the reported experimental values are in section 2.3.

For comparison with experimental data, the conditions for the CFD runs were

chosen to match the experiments of Coeuret and Legrand [16, 70]: R1 = 1.75 cm,

d = 0.25 cm, 0.5 cm, or 0.75 cm, ν = 1.0 cm2/s, ρ = 1.0 g/ml. Axial flow was

not included in the CFD calculations, since low axial flow rates hardly affect

either the onset of Taylor-Couette flow or the axial wavenumber, α ≈ 3.117.

However, axial flow is expected to increase axial dispersion and therefore add

to discrepancies with the experiments. These effects are further discussed in

section 2.3. In the FLUENT runs, the axial wavenumber is controlled by the

aspect ratio. Here length/gap width = 2, so α = π. As in the corresponding
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one fluid experiments, the outer cylinder remained stationary and only the inner

cylinder rotated. In the boundary layer regions near the cylinder walls a fine

grid was used with a gradual coarsening towards the center of the flow region.

Typical CFD results for the stream function and the axial velocity component

are included in Figure 4.2. As in Figure 4.2b, the axial velocity gradient is more

uniform along the inner cylinder than along the outer cylinder and therefore the

inner cylinder should provide a more uniform mass transfer surface.

At the critical Taylor number the velocity gradient at the wall is purely sinu-

soidal in the axial direction. At higher Taylor numbers, higher order harmonics

become important as seen in Figures 4.2b and 4.3. Figure 4.3 is a graph of

the axial velocity gradient for the inner cylinder versus axial position as calcu-

lated within FLUENT. A positive axial velocity gradient corresponds to coun-

terclockwise rotation. Since the velocity gradient is identical in magnitude for

clockwise and counterclockwise vortices, the average Nusselt number calculated

for the counterclockwise vortices applies for all vortices. As the Taylor number

is increased, the average axial velocity gradient increases, and the maximum

velocity gradient shifts towards the vortex boundary where the flow is towards

the inner cylinder. At sufficiently high Taylor numbers, the flow becomes non-

axisymmetric and these axisymmetric CFD simulations are less representative

of the experiments.
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4.1.2 Two-Fluid Taylor-Couette Flow.

FLUENT solved the two fluid Taylor problem using the Volume of Fluid (VOF)

method. With VOF the local physical properties are based on volume averaging

the pure component properties in the area surrounding the calculation points.

The time dependent solver is required with the VOF method. The grid fineness

was increased in the interface region for better detail on the interface behavior.

As with the one fluid problem at high rotation rates, the initial condition was

rigid rotation and the inner cylinder rotation rate was slowly and continuously

increased. Droplet formation would occur at the interface with sudden changes

in the cylinder rotation rates or at high shear rates. The surface tension option

in VOF is not required, but the interface droplet formation seemed more con-

trollable when it is activated. Therefore, the surface tension option was used

in the subsequent runs. The FLUENT results for two-fluid Taylor-Couette flow

are included in Figure 4.4. The vortices are weaker in the inner phase due to

its higher viscosity. This FLUENT run corresponds approximately to the point

marked F on Figure 6.16 of the experimental results. At Taylor numbers above

the critical point, FLUENT predicts that a vortex in one phase would corotate

with its counterpart in the other phase; the velocity at the interface would be

countercurrent. This was surprising. Since FLUENT does not calculate the

interface rigorously, further CFD runs were completed with FIDAP to support
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this finding.

The CFD runs with low viscosity fluids were inconclusive. Either an ex-

tremely fine grid may be required to observe Taylor vortices at high rotation

rates, or another form of instability may occur which violates the axisymmetric

assumption of these FLUENT runs. The absence of simple Taylor vortices in

low viscosity fluids agrees with the laboratory experiments where Taylor vortices

were not observed, but rather non-axisymmetric time dependent patterns (the

barber pole pattern) or the rippled interface (section 6.3.1).

To use FLUENT to simulate liquid-liquid extraction, VOF cannot be used.

Instead the two fluids and single diffusing species must be modeled as three

interdiffusing species. In this case, the surface tension option is unavailable. In

addition, a very fine grid will be required for the diffusion length scale.
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Figure 4.4: FLUENT results for two-fluid Taylor-Couette flow. µ2 = 10 cp,
ρ2 = 1 g/ml, µ21 = 0.5, ρ21 = 1.23, yi = 0.5, R2 = 5.35 cm, d/R2 = 0.18, Ω2 = 6
rev/s, Ω21 = 0.706, Ω21,c = 0.745, J2 = 1001.
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4.2 FIDAP

4.2.1 Two-Fluid Taylor-Couette Flow

Since FLUENT does not calculate the interface position rigorously, FIDAP was

used to confirm the presence of corotating vortices at sufficiently high Taylor

numbers. In addition, the results from FIDAP were used with penetration theory

to calculate the interphase mass transfer rates in two-fluid Taylor-Couette flow.

Penetration theory is discussed in section 5.2 and a comparison of the predictions

and the experimental results are in 6.3.3.

FIDAP uses an adaptive finite element mesh to solve for the velocity fields

and interface position. Finite elements are more flexible than finite volume

schemes for complex or irregular geometries and boundary conditions. This

includes problems with an interface, where the interface is a free surface whose

position is an unknown that needs to be determined in addition to the velocity

field. As a result, the nodes on the interface as well as nodes near the interface

are allowed to move and deform the mesh. To solve for the interface position,

FIDAP enforces at the interface the kinematic condition, the continuity of shear

stress at the interface, the balance of normal stress and surface tension, and

continuity of velocity. To speed convergence, initially the interface can be held

fixed and the velocity field determined. The interface is then released and the

total solution determined.
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For comparision with experimental data, the conditions for the CFD runs

were chosen to match the experiments of section 6: R2 = 5.05 cm, d/R2 = 0.174,

Ω1 = 12.5 rev/s, S = 50 dynes/cm, and the remaining physical properties from

Table 6.1 to match the specific experimental run. Axial flow could be included

in the CFD calculations by requiring the ends to have the countercurrent axial

profile calculated analytically in the absence of vortices. In the FIDAP runs, the

axial wavenumber is controlled by the aspect ratio. Here length/gap width = 1,

so α = 2π, consistent with the linear stability analysis (section 3.2.3. As in the

experiments, the FIDAP run was started at rigid rotation (12.5 rev/s) with the

analytic solutions for the base flows as the initial conditions. The outer cylinder

rotation rate was then continuously decreased to its final value. Typical CFD

results for the stream function overlaid on the mesh and the velocity components

are included in Figure 4.5. In the boundary layer regions near the cylinder walls

and near the interface a fine grid was used with a gradual coarsening towards

the center of the flow region. At the onset of the vortex flow, FIDAP predicts

a flat interface, which deforms upon further increases past the critical point.

This agrees with the experimental observations of section 6.3.1. The point of

maximum interface deformation occurs where the flow is directed radially toward

the interface in the Rayleigh unstable phase; the layer depth of that unstable

phase is greatest at this point. This is visible in figures 4.5 and 4.6. These FIDAP

runs are noted as F1 and F2 on Figures 6.16 and 6.17 in the experimental results
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section. For a given outer phase viscosity, the interface deformation increases

with increasing viscosity difference between the two phases. These effects are

illustrated in Figure 4.7 where the interfacial deformation is measured by the

interfacial area per unit volume:

a =
2

(R22 −R21)
∫ b

a
ri(z)

√

1 + (dri/dz)2)dz.

At the interface, the velocity component tangential to the interface was calcu-

lated from the FIDAP results and used in the penetration theory analysis; the

normal component was confirmed to be zero.

As with FLUENT, FIDAP also predicts that at sufficiently high Taylor num-

bers, vortex pairs across the interface corotate with each other when axial coun-

terflow is absent. This corotation is not an effect of interface deformation, but

results from a secondary branch that bifurcates from the Couette flow solu-

tion and becomes stable only at higher relative rotation rates. The velocity

field for corotating vortices is shown in Figure 4.6. For corotating vortices,

the mass transfer would be better described by boundary layer theory with the

linear velocity profile assumption rather than penetration theory. As a result,

poorer mass transfer performance would be expected (Nu ∝ (Pe)1/3 instead

of Nu ∝ (Pe)1/2). Corotation of vortices paired across the interface of axially

stratified two-fluid Taylor-Couette flow was also observed by Toya and Naka-

mura [110]. When countercurrent axial flow is present, FIDAP does not predict
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corotating vortices, consistent with the fluid mechanics analysis in section 3.2.3.
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Outer Cylinder

Inner Cylinder

     Stream function:    45.9 cm  /s (red) 

                                    −46.0 cm  /s (blue)

2

2

     Angular Velocity:     323.3 cm /s (red) 

                                         248.5 cm /s (blue)

     Radial Velocity:     15.4 cm /s (red) 

                                    −12.2 cm /s (blue)

     Axial Velocity:    13.2 cm /s (red) 

                                 −13.3 cm /s (blue)

Interface

Figure 4.5: FIDAP results for the stream function and velocity components of
two-fluid Taylor-Couette flow. The conditions are d/R2 = 0.174, Ω21 = 0.62,
Ω21,c = 0.73, Re2,ax = 0.33, R2 = 5.05 cm, µ21 = 0.63, Fluid pair 8-IL.
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Inner Cylinder

     Stream function:    37.5 cm  /s (red) 

                                    −35.8 cm  /s (blue)

2

2

     Angular Velocity:     323.3 cm /s (red) 

                                         248.5 cm /s (blue)

     Radial Velocity:     11.8 cm /s (red) 

                                    −11.0 cm /s (blue)

     Axial Velocity:     9.7 cm /s (red) 

                                 −9.4 cm /s (blue)

Interface

Figure 4.6: FIDAP results for the stream function and velocity components of
two-fluid Taylor-Couette flow with corotating vortices. d/R2 = 0.174, Ω21 =
0.62, Ω21,c = 0.73, Re2,ax = 0, R2 = 5.05 cm, µ21 = 0.63, Fluid pair 8-IL.
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Figure 4.7: FIDAP predictions for the interface deformation with various vis-
cosity ratios.
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Chapter 5

Boundary Layer Theory

In general it can be quite difficult to accurately calculate mass transfer coeffi-

cients. Real systems are often complex and include physical property gradients,

convective dispersion, and complicated geometries. Fortunately, in many sit-

uations the majority of mass transfer is limited to a thin boundary layer. In

this case, boundary layer theory provides analytical solutions that can be ac-

curate and are much less cumbersome than a full numerical analysis, which

requires very high numerical resolution in the boundary layer region. Typically,

boundary layer theory is useful under the following conditions: (1) the Schmidt

number is sufficiently large that the concentration boundary layer thickness is

small compared to both the velocity boundary layer and the local radius of cur-

vature of the boundary, (2) the velocity in the concentration boundary layer is

nearly parallel to the surface, (3) diffusion in the direction of the flow is neg-

ligible (∂2C/∂z2 ≪ ∂2C/∂y2) where, y and z represent the directions normal

and tangent to the wall, respectively, (4) the concentration gradient is primarily
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confined to the concentration boundary layer, and (5) the physical properties

are constant.

When the concentration boundary layer is thin compared to the velocity

boundary layer, the velocity profile within the concentration boundary layer

may be approximated either as (1) a linear profile, to approximate mass trans-

fer from a solid surface such as flow past a flat plate, or as (2) a flat profile,

to approximate the mass transfer across a fluid-fluid interface such as a falling

film. The analysis with this flat velocity profile approximation is often also

referred to as penetration theory. To use boundary layer theory, only the veloc-

ity gradient or the velocity at the mass transfer surface is required, depending

on the specific approximation. In only a few cases is this velocity information

obtainable analytically and in general numerical methods are required to deter-

mine the velocity field. A number of commercial computational fluid dynamics

(CFD) packages are available for these calculations. In particular, FLUENT

and FIDAP was used in combination with boundary layer theory to predict the

mass transfer in one fluid and two-fluid Taylor-Couette flow, respectively. Sec-

tion 4 further discusses these CFD packages. The flat profile approximation was

used in the analysis for counterrotating vortices (cocurrent flow at the interface)

and the linear velocity profile for corotating vortices (countercurrent flow at the

interface).

The general two dimensional boundary layer solution (for dilute solutions in
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laminar flow) was developed by Acrivos [1] and extended to three dimensions

by Stewart [101]. Here the development follows the discussion by Lightfoot [74].

For a two dimensional, Cartesian system the equation of continuity is

∂vz
∂z

+
∂vy
∂y

= 0 (5.1)

and the mass conservation equation of species A, neglecting diffusion in the z

direction, is

ReSc

(

vz
∂Π

∂z
+ vy

∂Π

∂y

)

=
∂2Π

∂y2
(5.2)

where the scaled concentration is Π = (CA − CA,y=0)/(CA − CA,y=∞). The

boundary layer starts to form at z0, which in Taylor-Couette flow is the vortex

boundary with flow towards the cylinder wall. The mass transfer surface is

located at y = 0.

5.1 Linear Velocity Profile

When the velocity profile is approximated as linear within the concentration

boundary layer

vz = γ̇y

the equation of continuity may be integrated to

vy = −
1

2

∂γ̇

∂z
y2.

With this substitution, equation 5.2 then becomes

ReSc

(

γ̇y
∂Π

∂z
− 1

2

∂γ̇

∂z

∂Π

∂y

)

=
∂2Π

∂y2
. (5.3)
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The standard boundary conditions require that at

Π = 0 y = 0 z > z0

Π→ 1 y →∞ z > z0

Π = 1 y > 0 z < z0.

To solve this differential equation and boundary conditions, the concentration

is assumed to be a function of the distance from the mass transfer surface and

the boundary layer thickness

Π = Π(ξ)

where

ξ = y/δ(z).

Equation 5.3 can then be rewritten as

ReSc

(

−δ
3

2

∂γ̇

∂z
− γ̇δ2 ∂δ

∂z

)

ξ2
∂Π

∂ξ
=
∂2Π

∂ξ2
. (5.4)

If

ReSc

(

−δ
3

2

∂γ̇

∂z
− γ̇δ2 ∂δ

∂z

)

= −3, (5.5)

equation 5.4 reduces to

−3ξ2∂Π
∂ξ

=
∂2Π

∂ξ2
(5.6)

with δ = 0 at z = z0 and the boundary conditions reduce to

Π = 0 ξ = 0

Π = 1 ξ =∞.
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The solution to equation 5.5 is

δ =
1

√

γ̇(z)

(

9

ReSc

∫ z

z0

√

γ̇(z)dz∗
)1/3

and the solution to equation 5.6 is

Π =
1

Γ(4/3)

∫ ξ

0
e−ν

3

dν. (5.7)

The local Nusselt number is defined as

Nuloc(z) =
dΠ

dy
|y=0 (5.8)

and equals

Nuloc =
(ReSc)1/3

91/3Γ(4/3)

√

γ̇(z)
[

∫ z
0

√

γ̇(s)ds
]1/3

(5.9)

where Re is the Reynolds number. The empirical generalization of Equation 5.9

is

Nuloc = g(geometry, Re)Re
cSc1/3.

The function g is typically only a weak function of the Reynolds number and is

often taken to be independent of it. The Reynolds number exponent, c, depends

on the flow conditions and is 1/3 for creeping flows (Re ≈ 0) and 1/2 for most

laminar boundary layer flow systems (Re ≫ 1). The average Nusselt number,

Nuavg, is found by integrating the local Nusselt number over the desired length

and dividing by that length.
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5.2 Flat Velocity Profile (Penetration Theory)

When the velocity is approximately constant across the boundary layer, at the

boundary

vz = u0(z)

so equation 5.1 reduces to

vy = −
∂u0
∂z
y.

Equation 5.2 then becomes

−ReSc
(

u0δ
∂δ

∂z
+ δ2

∂u0
∂z

)

ξ
∂Π

∂ξ
=
∂2Π

∂ξ2
(5.10)

where again ξ = y/δ(z). The boundary conditions require that at

Π = 0 ξ = 0

Π = 1 ξ →∞

Π = 0 z = z0.

When

ReSc

(

u0δ
∂δ

∂z
+ δ2

∂u0
∂z

)

= 2

then

δ =
2√
ReSc

√

∫ z
z0
u0dz∗

u0
.

and the solution to equation 5.10 is

Π = erf(ξ) =
2√
π

∫ ξ

0
e−ν

2

dν
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so that the local Nusselt number is

Nuloc =
(

ReSc

π

)1/2 u0
(
∫ z
z0
u0(s)ds)1/2

(5.11)

which is often generalized to the empirical equation

Nuloc = h(geometry, Re)Re
cSc1/2.

The function h is again typically only a weak function of the Reynolds number

and is often taken to be independent of it.

The average Nusselt number, Nuavg, is found by integrating the local Nusselt

number over the desired length and dividing by that length. Since Taylor-

Couette flow is periodic, the desired length here is the width of one vortex, which

is approximately the gap width since the vortices are approximately square.

Furthermore, since the flow is symmetric, the average Nusselt number for a

vortex with clockwise rotation equals that of its axial neighbor with counter-

clockwise rotation. The Peclet number is consistent with the scaling in the linear

stability analysis Pe = ReSc = Ω1R1d/D2.
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Chapter 6

Experimental Design

6.1 Equipment Design

The experimental apparatus, illustrated in Figures 6.1 and Figures 6.2, consists

of a pair of horizontal coaxial cylinders with a weir system for countercurrent

flow. The fluids must be added or removed from cylinder annulus while the

cylinders rotate at a speed sufficient for centrifugal stratification, thus in effect

creating an air seal. The sealless design offers the advantages of mechanical

simplicity and easy access to the fluid filled annulus. The disadvantage is that

experiments with very slowly rotating cylinders are not possible. This type of

operation, however, is not of interest here.

The inner and outer cylinder rotation rates are independently controlled by

two Compumotor stepper motors and drivers (Triphase Automation, Waukesha,

WI). The larger motor (OEM-83-62) is directly coupled to the inner cylinder and

the smaller motor (OEM-57-83) belt drives the outer cylinder. The motors are

powered in series and controlled through two Compumotor OEM650X-M2-RC
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drivers with position controllers (25,000 steps/rev). The drivers are controlled

from a PowerMac through a Zterm interface.

The outer cylinder is cast Plexiglas with inner diameter 10.098 ± 0.008 cm.

The choice of the inner cylinder depends on the experiment: (1) a polished

aluminum cylinder (diameter 8.349 ± 0.003 cm) is used for experiments without

axial flow (2) a polished stainless steel cylinder (diameter 8.349 ± 0.003 cm)

with a weir system is used for experiments with axial flow. The weir system is

discussed in more detail below. The coaxial alignment of the two cylinders was

measured and optimized through small removable, liquid-tight windows in the

endplates attached to the outer cylinder. A telescoping gauge and micrometer

were used to measure the gap thickness at three locations on each end. The

alignment of the two cylinders is such that the gap on either end is 0.882 ±

0.017 cm (± 2%). This variation in the gap width is not expected to have a

significant effect on the flow field [66, 112]. Measuring the alignment is possible

only without the weirs and is assumed to be representative with the weirs. The

annulus length is Z = 29.5 cm for an aspect ratio of Z/d = 33.5.

Without the weir system, three types of end spacers were investigated to

minimize end effects: single spacers, double spacers, double-holed double spac-

ers. The first pair of end spacers (single spacers) fit inside the outer cylinder

with one spacer per end and were held in place by Viton O-Rings as illustrated

in Figure 6.3. Each spacer reached within approximately a millimeter of the



141

inner cylinder. This gap was required for filling, emptying, and removing air

bubbles.

The second set of end spacers was a pair of spacers; one pair for each end.

Of each pair, one spacer fit on the inner cylinder and one in the outer cylinder.

Both were held in place by Viton O-ring segments. The gap between the pair of

spacers was approximately half a millimeter and was located near the interface

position. Four half-moons (1
2
cm in diameter) were cut in the inner spacer next

to the inner cylinder for filling, emptying, and removing air bubbles. These

double spacers provide a first approximation to a continuous transition between

the inner and outer cylinder rotation rates. The double-holed double spacers

closely resemble the double spacers, but with an additional four half-moons cut

in the outer cylinder spacer next to the outer cylinder as depicted in Figure

6.4. This allowed aqueous injections during the cylinder operation and created

symmetric end conditions for the two phases. The double-holed double spacers

best minimized end effects.

For experiments with axial counterflow, the end spacers could not be installed

effectively due to the weirs and therefore were not used. As a result, a wide

variety of weir configurations were evaluated to reduce end effects. When the

cylinders rotate at different speeds, structures that are attached to the inner

cylinder (1) are coated with a film of light fluid and (2) provide strong outward

radial pumping action of the light fluid that can strongly affect the interface
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position. In contrast, structures that are attached to the outer cylinder introduce

an opposite effect and heavy fluid can be drawn radially inward. Ultimately, the

weir configuration illustrated in Figure 6.2 was chosen.

The light fluid inlet/heavy fluid outlet weir consists of:

1. a heavy fluid overflow weir attached to the outer cylinder. When this weir

is attached to the inner cylinder, the above mentioned pumping action

causes light fluid carryover into the heavy fluid outlet stream.

2. a small plate attached to the inner cylinder that has a slightly larger

diameter than the inner cylinder. The plate diameter controls the interface

position at this end and light fluid feed is introduced against this plate.

The heavy fluid inlet/light fluid outlet weir consists of:

1. a plate attached to the outer cylinder that has a slightly smaller diameter

than the outer cylinder. Heavy fluid is introduced against this plate. When

this plate is attached to the inner cylinder the resulting pumping action

can cause light fluid carryover into the heavy inlet reservoir and severe

mixing.

2. an underflow weir attached to the inner cylinder. This weir is a modified

N-buna flared piston cup which also acts as a crude rotary seal against

the heavy inlet plate to prevent heavy fluid that is drawn radially inward

from entering the light fluid outlet reservoir.
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The apparatus remains horizontal and the axial counterflow is driven by the

axial pressure drop for the respective phase. As a result, the interface is slightly

tapered rather than cylindrical. A perturbation analysis from section 3.1 reveals

that at rigid rotation the maximum taper is approximately

δ

d
=

4ΓR12Reax,2Ek
2
2

(1− ρ12)

(

µ212ρ21
Reax,1
Reax,2

+ 1

)

.

For the results presented here, δ/d < 0.03 with Γ = 6.

In addition to the weir system, a bulk reservior and pumping accessories were

required for countercurrent axial flow. To maintain a steady-state interface

position in the annulus, the inlet flowrate has to precisely match the outlet

flowrate for each phase. For the aqueous phase this was accomplished by using

a liquid full reservior system consisting of a collection bag contained in a large

flask. As the aqueous outlet flow was collected in the bag, the bag expanded,

and caused fresh fluid surrounding the bag out of the flask, thus providing an

inlet flow matched to the outlet flowrate. For the organic phase, however, the

collection bag system was abandoned because the organic phase would leach

plasticizer from the bag, interfering with the UV measurements. Instead a two

flask system was used with an aqueous seal fluid. For the same reason, the

organic fluids were stored in glass or coated metal containers and special Tygon

(F-4040-A) or Viton tubing was used for all of the light fluid lines.

The pumping system was further simplified by only considering equal flow
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rates of the heavy and light fluids. Therefore only one Masterflex peristaltic

pump was required with two coupled pump heads (one pump head for each

phase). The flow rates were calibrated and controlled by the rotation rate of the

pump head.

6.2 Experimental Techniques

6.2.1 Fluids Used in the Experiments

The physical properties of the fluids investigated are summarized in Table 6.1.

The aqueous phase was glycerine in water and the organic phase was white min-

eral oil (Drakeol-35, Superior Lubricants, Tonawonda, NY) in kerosene (Mid-

dleton Farmer’s Market, Middleton, WI). For the extraction and dispersion ex-

periments a hydrotreated petroleum distillate (Isopar-L, Famous Lubricants,

Chicago, IL) was used in place of kerosene (noted by -IL in Table 6.1) to pro-

vide an organic phase background with less UV absorbance. The kinematic

viscosities were measured at 25◦C on a Schott Geräte capillary viscometer cali-

brated with sucrose solutions. The densities were measured at room temperature

on an Aton Parr DMA40 digital density meter calibrated with water and air.

The dynamic viscosity was calculated from the measured values for density and

kinematic viscosity.
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Nominal Nominal Barber
Pair wt. % wt. % µ2 (cp) ρ2 (g/ml) µ21 ρ21 Pole

glycerine Drakeol-35 Obs
1 0 0 1.00 1.00 0.63 1.24 BP
2 15 23 1.42 1.03 0.44 1.26 BP
3 30 80 2.07 1.06 0.06 1.23
4 30 60 2.05 1.07 0.18 1.25 BP
5 30 42 2.08 1.06 0.37 1.27 BP
6 30 0 2.08 1.07 1.33 1.32 BP

7-IL 60 80 7.52 1.15 0.22 1.36
8-IL 60 60 7.52 1.15 0.63 1.40
8 60 60 7.52 1.15 0.69 1.35

9-IL 60 50 7.52 1.15 0.96 1.40
9 60 50 7.52 1.15 1.01 1.36

10-IL 60 40 7.52 1.15 1.46 1.43
11-IL 60 0 7.52 1.15 4.85 1.50
12 60 42 7.52 1.15 1.39 1.37
13 70 42 13.57 1.17 2.43 1.40
14 70 0 13.57 1.17 7.98 1.44 BP
15 70 60 14.00 1.18 1.22 1.39
16 85 0 47.37 1.21 28.48 1.49

Table 6.1: Physical properties of the fluids used in the experiments. IsoPar-L

was used for the pairs identified as “-IL”; otherwise kerosene was used. The

interfacial tension is approximately S = 50 dyne/cm. The barber pole pattern

is observed with the fluid pairs identified “BP”.
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6.2.2 Optics and Flow Visualization

Flow visualization was the primary technique in the fluid mechanics experiments

to determine the onset of two-fluid Taylor-Couette flow. In addition, flow visu-

alization was a powerful tool for optimizing the weir system. Several methods

are available and include: anisotropic flakes, Laser Induced Fluorescence (LIF),

and dye tracer experiments.

Small reflective anisotropic particles (such as Kalliroscope, titanium dioxide

coated mica flakes, and stearic acid treated aluminum powder) align with flow,

and light reflectance off the particles makes the flow field visible. The particles

preferentially disperse in one phase: Kalliroscope and mica prefer the water

phase; whereas aluminum and hydrophobic mica prefer the organic phase. At

high concentrations the particles create an opaque and highly light scattering

solution.

Kalliroscope. The small size (6x30x0.07 microns) and density (1.620 g/ml)

of Kalliroscope (Kalliroscope Corporation, Groton, MA) [80] allows it to remain

suspended in the glycerine solution, even under a strong centrifugal force, for

several hours or the duration of an experiment. The gravitational settling time

is estimated at 0.1 cm/h in water. In vertical Taylor-Couette experiments this

rate of settling can effect the wavelength of the vortices over long times; the

wavelength at the top of the cylinders increases relative to that at the bottom.
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There is no effect in horizontal Taylor-Couette experiments [26]. As a biolog-

ical product derived from guanine, Kalliroscope requires a biocide additive for

extended use in solution. The effect of this additive on the fluid dynamics ex-

periments is unclear. Kalliroscope also tends to form a film on the cylinders

and physically sticks to the cylinders at the Taylor vortex boundaries after some

time. Nonetheless, Kalliroscope is the preferred anisotropic flake for water phase

flow visualization.

Titanium Dioxide Coated Mica Flakes. Coated mica flakes (Kalliroscope

Corporation, Groton, MA) are approximately the same dimensions of Kalliro-

scope (4x32 microns), but have significantly higher density (3.1 g/ml). This high

density is undesirable in the water/glycerine solutions under strong centrifugal

forces. Similarly, if the mica flakes are treated to be hydrophobic, their high

density causes them to collect on the hydrocarbon side of the interface.

Hydrophobic Aluminum Flakes. Stearic acid treated aluminum flakes (Al-

can ATA 7300 Leafing Flake, Alcan-Toyo America, Inc., Lockport, IL) consis-

tently prefers the hydrocarbon phase. The particle size (5x30x0.2 microns) is

similar to Kalliroscope, but again with a higher density (2.62 g/ml). At rigid

rotation, the treated aluminum flakes collect at the hydrocarbon side of the

interface. As the relative rotation rate is increased, they are slowly drawn to
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the vortex boundaries and, once vortices form, are swept off the interface. Alu-

minum flake is preferred for hydrocarbon phase flow visualization.

Bulk dying of one phase allows any waviness in the interface to be visually

observed as the color intensity of the fluid is related to the fluid depth. Pulsed

injections of dye reveal information about the diffusion, convection, and end

effects of the flow field. For interface visualization, the bulk dye may be chosen

to be a Laser Induced Fluorescent (LIF) dye selective to one phase. With

exposure to laser light, the LIF dye will fluoresce at a wavelength higher than the

wavelength of the laser. By wavelength filtering or by visual observation, the LIF

dyed phase appears as a solid color corresponding the fluorescing wavelength;

the undyed phase remains clear. Excimer Oxazine 720 Chloride (Exciton, Inc.,

Dayton, OH) is a suitable LIF dye for HeNe lasers and is also selectively soluble

in the water phase for short times (on the order of a day).

The 8mW HeNe laser light (Melles Griot) is formed into a laser sheet by a

simple 60 degree line generating rod shaped cylindrical lens (Edmund Scientific).

This lens expands the laser beam in one direction only, while the other direc-

tion retains the divergence characteristics of the laser. When the laser sheet is

aligned with the axis of the cylinders, the interface is clearly visible. Without

calculation of the actual optical path, the interface amplitude is only quali-

tatively determined. The interface wavelength, however, can be quantitatively
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Figure 6.5: The optics for characterization of the interface using Laser Induced
Fluorescence.
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determined. With the addition of anisotropic flakes, qualitative detail about the

fluid motion is also obtainable. Figure 6.5 illustrates the optics configuration

for the interface characterization.

For a permanent record of the interface behavior, the interface highlighted

by the laser sheet was videotaped with a betacam recorder. Specific still shots

could then be frame grabbed and processed. The Silicon Graphics software

Image Works was used to enhance the still frames.

6.2.3 Axial Dispersion and Extraction Experimental De-
sign

For the mass transfer experiments a tracer was injected into an inlet stream

and the outlet streams monitored. The properties of the various tracers are

summarized in Table 6.2. For the dispersion experiments, the tracer is soluble

only one phase. For the extraction experiments, the tracer is soluble in both

phases as defined by the partition coefficient

m =
C∗2
C∗1

where C∗1 and C∗2 are the equilibrium concentrations of the tracer in the light

and heavy phases, respectively. The partition coefficient was measured spec-

troscopically and determined to be independent of the composition of the or-

ganic and aqueous phases for the ranges investigated. The outlet streams were

both monitored with a Beckman DU65 UV-VIS Spectrophotometer using quartz
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flow-through cells (Fisher Scientific) and a multisample scanning system. Up-

stream of the light fluid UV cell was a small knock-out pot to prevent any small

amount of heavy fluid carryover from collecting in the light fluid UV cell. The

spectrophotometer was calibrated with standard samples of each tracer at the

typical concentrations and flowrates of the experiments. The readings from the

spectrophotometer were recorded to a PowerMac through a Kermit interface.

Data analysis was done in Mathematica.

For all of the mass transfer experiments the volumes of the two phases were

matched (V1 = V2 = 400 ml). After each series of runs, the fluid volumes

collected from the annulus were measured and determined to be withing 10% of

the initially loaded volume for each phase. Likewise, the volumetric flow rates

were matched and were typically Q1 = Q2 = 20 ml/min for twenty minute

average residence time with Reax,2 = 0.33. The inner cylinder rotation rate, Ω1,

was constant at 12.5 rev/s, and the outer cylinder rotation rate, Ω2, was varied

from 7.5 to 12.5 rev/s. Lower values of Ω2 would result in emulsion formation

at the ends, and therefore were not pursued.

Axial Dispersion Experiments. Axial dispersion is characterized by the

change in the tracer concentration curve from the inlet injection to the out-

let response. When the injection of tracer is assumed to be an instantaneous
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pulse, as the experiments tried to achieve, the extent of axial dispersion is de-

termined only by the shape of the outlet response curve, C(t). This curve can

be characterized by its moments:

M0 =
∫

C(t)dt

M1 =
1

M0

∫

tC(t)dt

M2 =
1

M0

∫

(t−M1)2C(t)dt.

The zeroth moment, M0, is used for a mass balance on the tracer. The first

moment, M1, reflects the average residence time and with the second central

moment, M2, determines the dispersion.

Several models are available to describe axial dispersion. The simplest con-

tinuous model is simply

∂ < C >

∂t
+ W̄

∂ < C >

∂z
= D∗

∂2 < C >

∂z2

where D∗ is an empirical dispersion coefficient and the angle brackets denote

averages across the fluid layer [73]. This dispersion model is preferred when the

outlet curves are Gaussian since its impulse response is Gaussian. Alternatively,

the dispersion can be represented by a series-of-mixing-tanks model with the

extent of dispersion corresponding to the number of mixing tanks. In this case

the outlet concentration is

C(t) =
N(NΘ)N−1

(N − 1)!
e−NΘ
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where Θ = t/M1. The number of mixing tanks can be calculated by

N =
M2
1

M2
.

In this case, fewer mixing tanks indicate higher dispersion. The mixing tank

model better represents situations where the output curve is not Gaussian [73].

For this study, the dispersion is better described by the mixing tank model and

Figure 6.6 shows typical outlet response curves for pulse input. The number

of mixing tanks was determined by first fitting the outlet response data with a

Fourier series to reduce the contribution of noise. This curve was then integrated

to find the moments and to characterize the dispersion. The mass balance and

the average residence time were typically within 10% of the expected values.

Extraction Experiments. The extraction experiments consisted of injecting

a pulse of tracer into the inlet stream of one phase and measuring its concentra-

tion in the outlet streams of both phases. Typically the tracer was introduced

into the light stream and was therefore premixed with light fluid to provide a

more homogeneous injection. Figure 6.7 shows a pair of typical outlet response

curves for a pulse input. The extraction performance was determined by first

fitting the outlet response data with a Fourier series to reduce the contribution

of noise. The two outlet curves were then integrated to find the zeroth moment

for each phase. A total mass balance and the percent of tracer extracted were

then calculated. The mass balance was typically satisfied within 10%.
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The overall mass transfer coefficient is defined by the one dimensional dif-

ferential mass balance equation along the length of the extractor

uz,1dC1(z) = (aK1)[C
∗
1(z)− C1(z)]dz (6.1)

where uz,1 is the linear velocity of the the light phase, C1 is the concentration

in the light phase, C∗1 is the concentration in the light phase that would be in

equilibrium with the concentration in the heavy phase, a is the mass transfer

surface area per unit volume, and K1 is the overall mass transfer coefficient

based on the light phase. The mass transfer area is usually unknown in systems

that disperse one phase in the other. Here, however, the interfacial area per unit

volume can be accurately calculated from the FIDAP runs. Since the interface

deformation is small, the interfacial area may also be well estimated by assuming

a cylindrical interface with radius Ri, so a = 2Ri/(R
2
2 −R21). This overall mass

transfer coefficient is a sum of the individual mass transfer coefficients, which

typically cannot be measured directly;

1

K1
=

1

k1
+

1

mk2

where k1 and k2 are the individual mass transfer coefficients for the light and

heavy phases, respectively. This definition of the mass transfer coefficient also

includes the effects of dispersion; higher rates of dispersion result in lower mass

transfer coefficients. Equation 6.1 can be integrated to find the mass transfer
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coefficient

aK1 =
uz,1m

(1−m)Z ln
(1− f)

(1− f/m) (6.2)

where m is the partition coefficient, Z is the axial length of the extractor, and

f is the fraction extracted as determined experimentally. The Nusselt number,

Nu, is the dimensionless mass transfer coefficient Nu = K1d/D2.

The number of theoretical stages, n, is the number of equilibrium batch

separations that would be required to obtain a given separation and is calculated

from the equation

n =
ln E−f
E(1−f)

lnE
(6.3)

where E = mQ2/Q1 and Q1 and Q2 are the volumetric flowrate of the light and

heavy phases, repectively [111]. The higher the number of theoretical stages,

the better the separation.
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Figure 6.6: Typical outlet response curves for the axial dispersion experiments.
The more symmetric (lower) curve corresponds to a higher number of mixing
tanks, and in this case, the light phase. The other curve is for the heavy phase.
Ω21 = 0.696, Ω21,c = 0.725, µ21 = 1.46, Reax,2 = 0.33, N1 = 8.8, N2 = 4.5
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Figure 6.7: Typical outlet response curves for the extraction experiments. The
upper curve corresponds to the extract (heavy) phase, the lower curve the raffi-
nate (light) phase. Ω21 = 0.6, Ω21,c = 0.687, µ21 = 0.96, Reax,2 = 0.33, m = 2.7,
f = 0.78, Nu = 440.
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Partition Monitoring
Tracer Coefficient, m Experiment Wavelength (nm)

Acetophenone 0.125 Extraction 255
sec-Phenethyl Alcohol 2.7 Extraction 255

Benzyl Alcohol 14.0 Extraction 258
Sudan-IV 0 Dispersion 520

Amarath Red ∞ Dispersion 520

Table 6.2: Properties of the tracers used in the axial dispersion and extraction

experiments.
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6.3 Experimental Results and Comparison with

Theory

6.3.1 Fluid Mechanics

One fluid Taylor-Couette Flow. One fluid Taylor-Couette flow at high

rotation rates was reproduced with the experimental apparatus. At high rotation

rates, the one fluid theory predicts an asymptote corresponding to the inviscid

Rayleigh solution Ω2 = Ω1R
2
12. The experimental results for a 60 wt.% glycerine

solution confirmed the Rayleigh asymptote is achieved as shown in Figure 6.8.

Figure 6.9 is a photograph of one fluid Taylor-Couette flow at high rotation

rates.
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Taylor-Couette flow and the Rayleigh asymptote. 60 wt% glycerine in water.
The point marked F correponds to the FLUENT calculation point of Figure 4.1.
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Figure 6.9: Photograph of one fluid Taylor-Couette flow at high rotation rates.
60 wt% glycerine in water.
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Two-Fluid Couette Flow - the Barber Pole Pattern. When the gap is

filled with two “low” viscosity fluids, a new flow pattern appears that is not

predicted by the two-fluid Taylor-Coeutte analysis or by Joseph’s prediction of

the interface behavior. At rigid rotation a wavy interface is observed at the

lower rotation rates. When the inner cylinder is rotated faster than the outer

cylinder two patterns can occur, either (1) at low outer cylinder rotation rates a

time-dependent non-axisymmetric pattern (the barber pole), or (2) at high outer

cylinder rotation rates a rippled interface that may correspond to very irregular

Taylor vortices. In all cases, the fluids continue to be stratified over the length

of the cylinders without breakthrough of the interface to touch either cylinder.

Since the wavelength of the rigid rotation wavy interface and the barber pole

pattern is significantly longer than that predicted for two-fluid Taylor-Couette

flow, it appears to be quite dissimilar from two-fluid Taylor-Couette flow. At

extreme inner cylinder rotation rates relative to the outer cylinder rotation rate,

a loose emulsion forms, beginning at the ends.

The front and interface views of the fully developed barber pole pattern

are shown in Figures 6.10 and 6.11. The fluid pairs for which the barber pole

pattern is observed are listed in Table 6.1 and the experimental observations

of the barber pole pattern and the wavy interface are summarized in Figure

6.12. As seen in Figure 6.12, the end conditions can influence the onset of the

barber pole; however, a wavy interface is still observed at rigid rotation where
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Figure 6.10: Photograph of the barber pole flow pattern. The fluids are equal
volumes of water and kerosene.

Kerosene phase

Inner cylinder

} Reflection

Dyed water phase

Outer cylinderWavelength ~ 4.5 cm

Figure 6.11: The barber pole pattern interface as highlighted by Laser Induced
Fluorescence. The red region is the dyed aqueous phase and the black region is
the undyed organic phase. The fluids are equal volumes of water and kerosene.
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end effects are not important. This suggests that the barber pole pattern is

influenced by, but not a result of, end conditions.

For these low viscosity pairs J2 > 100. By Joseph’s analysis when Ji > 4,

surface tension effects are unimportant in the absence of gravity and a rigid

interface is predicted, not the wavy interface that is observed. Therefore, the

effect of surface tension on the barber pole pattern was investigated with some

preliminary experiments. Two fluid pairs were prepared: (1) 15 wt.% glycerine

in water and 23 wt.% Drakeol-35 in kerosene (2) water and butanol. For these

pairs it was possible to match viscosities, while having significantly different

interfacial tensions. The physical properties of these pairs are recorded in Table

6.3. The barber pole pattern for these pairs had no qualitative differences,

although there were some quantitative differences. At rigid rotation at 300 rpm

or less, a steady, wavy interface was found for both fluid pairs. The interface

deformation was larger, however, for the high interfacial tension pair. This

discrepancy in deformation amplitude persisted as the inner cylinder rotation

rate was increased. The wavelength of the deformations was also consistently

slightly shorter for the low interfacial tension pair; for example, at Ω1 = 560 rpm

and Ω2 = 330 rpm, the low interfacial tension pair exhibited 11 wavelengths over

the 29.5 cm length of the cylinders, while the other pair exhibited 10. Finally,

the transition to time-dependence at a fixed outer cylinder rotation rate always

occurred at a lower inner cylinder rotation rate for the low tension pair than the
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high.

In summary, the experimental factors that most affect the barber pole are

viscosity, rotation rate, and to a smaller extent, interfacial tension. When com-

bined, these factors have been observed to lead to interesting behavior in a single

layer of liquid coating the inner surface of a rotating cylinder, sometimes called

“rimming flow”. Experimental observations have shown that at steady state,

the two-dimensional film can have significant azimuthal variations in thickness

and can become unstable to three-dimensional perturbations. Hosoi and Ma-

hadevan have derive an evolution equation for the dynamics of the interface in

an asymptotic limit where effect of inertia, capillarity, viscosity, and gravity are

all retained. Using this equation, they find the azimuthal film profile and show

that it can become unstable at sufficiently small rotation rate, and furthermore

that the axial wavelength at instability increases with increasing surface tension

[47]. Both of these trends are consistent with the above experimental results,

which suggest the barber pole pattern is an analogue to the instability of single

phase rimming flow.

Pair µ2 (cp) ρ2 (g/ml) µ21 ρ21 I.T. (dyne/cm)
kerosene-water 1.42 1.03 0.44 1.26 50
butanol-water 1.43 0.99 0.44 1.17 8

Table 6.3: Physical properties of the fluids used in the barber pole experiments

testing the effect of interfacial tension.
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Two-Fluid Taylor-Couette Flow. As either the outer cylinder rotation rate

or the viscosity of one of the fluids is increased, the barber pole pattern is

suppressed and two-fluid Taylor-Couette flow appears. In the transition region

a wide variety of flows patterns are possible, which include stratified two-fluid

Couette flow, the barber pole, two-fluid Taylor-Couette flow, a combination of

the barber pole and two-fluid Taylor-Couette flow. At the onset of two-fluid

Taylor-Couette flow, the interface is visually flat and the wavelength of the

vortices is very close the theoretically predicted value of twice the fluid depth.

Figure 6.13 is a photograph of two-fluid Taylor-Couette flow near the onset.

The approximately square vortices and a flat interface are visible in Figure 6.14.

As the inner cylinder rotation rate is further increased, the vortices become

stronger and the interface deforms with the wavelength of the vortex flow (Figure

6.15). At even higher Taylor numbers, the vortices become time dependent and

erratically translate back and forth in the axial direction. At extreme Taylor

numbers, an emulsion is formed, beginning at the ends, as a result of the very

strong interface deformation and the mixing created at the ends. The higher

modes of instability of the one fluid problem at low rotation rates (such as wavy

or feathery (turbulent) vortices) were not visually apparent in these two-fluid

experiments.

The experimentally observed onset of two-fluid Taylor-Couette flow and the
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Figure 6.13: Photograph of two-fluid Taylor-Couette flow. The fluids are equal
volumes of 60 wt% glycerine in water - 60 wt% Drakeol-35 in kerosene.

Outer cylinder

Dyed water phase

Kerosene phase

Inner cylinder

} Reflection

Wavelength ~ 1 cm

Figure 6.14: The Laser Induced Fluorescence view of two-fluid Taylor-Couette
flow just above the onset where the interface is flat. The red region is the dyed
aqueous phase and the black region is the undyed organic phase. The fluids are
equal volumes of 60 wt% glycerine in water - 60 wt% Drakeol-35 in kerosene.
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theoretical values predicted by both the inviscid and viscid analyses are com-

pared in Figures 6.16 and 6.17. Figure 6.17 also includes the experimentally

observed onset for the time dependent vortices. Countercurrent axial flow was

not included in these experiments, and therefore the aluminum inner cylinder

with the double-holed double spacers was used. The onset of Taylor vortices was

determined visually by laser highlighted flow visualization of particles swept into

vortex at the critical point. As expected from the inviscid and viscous theories,

Taylor vortices first appear in the less viscous phase and the interface remains

flat. Furthermore, the viscous theory and the experimental results agree very

well quantitatively. Only at low rotation rates is there a slight discrepancy.

This is an indication that gravity is still important at the lower outer cylinder

rotation rates. Since the experimental results also agree well with the inviscid

theory, the simple Rayleigh criterion may be used in preliminary calculations

for even these relatively viscous fluids.

Outer cylinder

Kerosene phase

Inner cylinder

} Reflection

Dyed water phase

Wavelength ~ 1 cm

Figure 6.15: LIF view of two-fluid Taylor-Couette flow with a wavy interface.
The fluids are equal volumes of 60 wt% glycerine in water - 60 wt% Drakeol-35
in kerosene.
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Figure 6.16: A comparison of the experimental results and invisid and viscid
theoretical predictions for the onset of two-fluid Taylor-Couette flow with various
viscosity ratios and equal fluid depths. The fluid pairs are identified by number
corresponding to the entries in Table 6.1. Ω2 = 7 rev/s. Point F correponds to
the FLUENT run (Fig.4.4 ), Ω2 = 6.0 rev/s. Point F1 corresponds to the FIDAP
run for counterrotating vortices (Fig. 4.5), Ω2 = 8.2 rev/s; point F2 corresponds
to the FIDAP run for corotating vortices (Fig. 4.6), Ω2 = 7.7 rev/s.
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Figure 6.17: A comparison of the experimental results and invisid and viscid
theoretical predictions for the onset of two-fluid Taylor-Couette flow in a typ-
ical fluid pair. The experimentally observed onset of time dependence is also
recorded. The fluids are equal volumes of 60 wt% glycerine in water - 60 wt%
Drakeol-35 in kerosene (µ21 = 0.69). The point marked F1 corresponds to the
FIDAP calculation for counterrotating vortices (Figure 4.5); the point marked
F2 corresponds to the FIDAP calculation for corotating vortices (Figure 4.6).
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6.3.2 Axial Dispersion

The effects of Taylor number and axial flow are expected to be similar in one and

two-fluid Taylor-Couette flow. However, in the two-fluid case, axial dispersion

must be considered for both phases. When only one phase is Rayleigh unstable,

the boundary conditions require weaker vortices in the other phase and, as a

result, the axial dispersion in both phases is expected to decrease.

With the addition of countercurrent axial flow, however, the effects on axial

dispersion is less predictable. Before the onset of vortices, the countercurrent

axial velocity profiles may be easily determined by the equations of motion and

continuity (section 3.1.2). For cases when the fluid viscosities, axial flowrates,

and the fluid depths of the two phases are not matched, backflow can occur in

one of the phases and as a result increase axial dispersion in that phase. Figure

3.1 illustrates a velocity profile for countercurrent axial flow and the resulting

backflow. However, this backflow effect may be mitigated by the presence of

Taylor vortices in that phase to reduce axial dispersion. For the countercurrent

flow rates accessible in the experiments, the effect of Taylor vortices seems to

dominate the effect of backflow and axial dispersion is minimized near the onset

of the vortex flow.

Figures 6.18 and 6.19 summarize the effect of Taylor vortices on dispersion

for the case of nearly matched viscosities. The minimum axial dispersion occurs
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in both phases very near the onset of instability. Further increases in the relative

rotation rate result in stronger vortices and higher dispersion. This is consistent

with similar experiments in the one fluid case (section 2.3).

The dispersion characteristics of two-fluid Taylor-Couette flow when the

phase viscosities are not matched are included in Figure 6.21. In this case,

the heavy phase is less viscous and therefore, it becomes Rayleigh unstable first.

Axial dispersion in the heavy fluid is at a minimum slightly after the heavy fluid

critical point. In contrast, the axial dispersion in the light phase reaches a min-

imum slightly before the light fluid critical point (as predicted by the Rayleigh

criterion). This occurs because the Rayleigh unstable heavy phase drives a

weaker vortex motion in the light phase. Figure 6.20 illustrates the opposite

case where the heavy phase is more viscous; similar behavior is observed.

The minimum in axial dispersion is consistently observed near the onset of

the vortex flow in the corresponding phase. However, the actual quantification

of the dispersion is less repeatable. Since dispersion is determined by the shape

of the outlet curve, it can be sensitive to small irregularities in the flow pattern

and operation. The quantification of axial dispersion in one fluid Taylor-Couette

flow also varies widely, although the trends are clear (section 2.3).
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Figure 6.18: Axial dispersion in the heavy phase with matched viscosity fluids.
The vertical line represents the onset of two-fluid Taylor-Couette flow. The
fluids are equal volumes of 60 wt.% glycerine in water and 50 wt.% Drakeol-35 in
IsoPar-L (µ21 = 0.96). The different symbols identify the individual experiment
series.
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Figure 6.19: Axial dispersion in the light phase with matched viscosity fluids
(µ21 = 0.96). The vertical line represents the onset of two-fluid Taylor-Couette
flow. The fluids are equal volumes of 60 wt.% glycerine in water and 50 wt.%
Drakeol-35 in IsoPar-L (µ21 = 0.96). The different symbols identify the individ-
ual experiment series.
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(µ21 = 0.63). The vertical lines represent the onset of two-fluid Taylor-Couette
flow. The fluids are equal volumes of 60 wt.% glycerine in water and 60 wt.%
Drakeol-35 in IsoPar-L (µ21 = 0.63).
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vertical lines represent the onset of two-fluid Taylor-Couette flow. The fluids are
equal volumes of 60 wt.% glycerine in water and 40 wt.% Drakeol-35 in IsoPar-L
(µ21 = 1.46).
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6.3.3 Liquid Extraction

The liquid extraction results are based on experiments with the several different

tracers and viscosity ratios. The tracers each have a different partition coeffi-

cient, m, as identified in Table 6.2. A comparison of the results for the different

tracers reveals which phase tends to be more “mass transfer limiting” for the

extraction conditions. The experiments with the different viscosity ratios reveal

the effect of vortex strength on extraction performance. Several viscosity ratios

were chosen:

1. the nearly matched viscosity case (µ21 = 0.96), with both phases Rayleigh

unstable and vortices in both phases;

2. the unmatched viscosity case, with only the less viscous phase Rayleigh

unstable. Vortices in that phase drive weaker secondary vortices in the

more viscous phase. Since the onset of the vortex flow occurs at nearly

the same rotation rate ratio for the experiments with µ21 = 0.63 and for

the experiments with µ21 = 1.46, the vortex velocities in both of these

experiments should also be approximately equal. The only difference be-

tween these two experiments is then which phase contains the vortices;

3. the unmatched viscosity case, with more extreme viscosity ratios: µ21 =

0.23 and µ21 = 4.91. Again, the vortices in both experiments should have

nearly equal veloctities.
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The results of these extraction experiments are illustrated in Figures 6.22,

6.23, and 6.24 and provide the basis for calculating mass transfer coefficients

and number of theoretical stages. The fraction of tracer extracted significantly

increases once Taylor vortices appear in one of the phases. In Figure 6.22, only

a maximum of 12% of the injection of acetophenone was extracted. This could

appear to be disappointing, but is actually quite good. Since the partition

coefficient is m = 0.125, the absolute maximum extraction possible is 12.5%

with infinite stages. For partition coefficients greater than unity, 100% of the

tracer may be extracted with infinite stages.

The experimental values for the overall mass transfer coefficients, K1, were

calculated by equation 6.2; the effects of axial velocity and dispersion are in-

cluded in the definition of the mass transfer coefficient. The theoretical predic-

tions for the overall mass transfer coefficient (neglecting dispersion) were calcu-

lated using penetration theory and either (1) the countercurrent axial velocity

profile when vortices were not present or (2) Computational Fluid Dynamics

(CFD) of two-fluid Taylor-Couette flow with countercurrent axial flow when

vortices were present. The onset of the vortex pattern was determined by the

viscous linear stability analysis of section 3.2.2. CFD and boundary layer theory

are discussed in sections 4.2 and 5.2, respectively. Boundary layer theory pre-

dicts the individual mass transfer coefficients, k1 and k2, and the only difference

between two is the diffusivity in that phase. The diffusivity in the heavy phase
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Figure 6.22: Fraction of acetophenone extracted from the light phase versus the
relative rotation rate of the cylinders. The vertical lines represent the onset of
two-fluid Taylor-Couette flow for various fluid pairs. (m = 0.125)
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Figure 6.23: Fraction of sec-phenethyl alcohol extracted from the light phase
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onset of two-fluid Taylor-Couette flow for various fluid pairs. (m = 2.7)
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was estimated by the Wilke-Chang equation to be D2 = 10−6 cm2/s and the

diffusivity in the light phase D1 = µ12D2 [19].

The experimental and theoretical results for acetophenone (m = 0.125)

are plotted in Figures 6.25 (the matched viscosity case), 6.26 and 6.27 (the

unmatched viscosity cases). Similarly, the results for sec-phenethyl alcohol

(m = 2.7) are plotted in Figures 6.28, and 6.29; the results for benzyl alco-

hol (m = 14.0) in Figures 6.30, 6.31 and 6.32. The onset of Taylor vortices

in the less viscous phase (as predicted by the inviscid and viscous analyses) is

indicated by the vertical lines.

There are several important features of these graphs:

• For all cases, the overall mass transfer coefficient, Nu = K1d
D2

, is small

and nearly constant until vortices appear and then increases dramatically

with increasing strength of the Taylor vortices. The mass transfer coeffi-

cient is approximately linearly proportional to the relative rotation rate as

expected by penetration theory and a weakly non-linear analysis for the

vortex velocity strength.

• The calculated mass transfer performance further increases once the vor-

tices in the more stable phase are sufficiently strong; the slope of the curve

(Nu vs. 1 − Ω21) increases. This is the point where corotating vortices

first appear when countercurrent axial flow is not present. This increase is
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most visible in Figures 6.27 and 6.31, but is also apparent in Figures 6.26,

6.29, and 6.32.

• The repeatability of the experiments is good.

• The theoretical predictions and the experimental observations agree within

a factor of three with the experimental results higher than the predictions.

End effects and axial dispersion were not included in the theoretical anal-

ysis.

• The increase in axial dispersion at the higher rotation rates does not seem

to degrade the mass transfer performance. This is not surprising, since the

majority of the mass transfer occurs quickly and primarily at the injection

end, before dispersion effects develop significantly.

• The maximum Nusselt numbers compare well with liquid-liquid extraction

in packed columns where correlation for individual mass transfer coeffi-

cients is

Nuind. = 0.0051Re2/3Sc1/2(ad)0.4(d(g/ν2)1/3).

Here d is the nominal packing size, g gravity, and the Reynolds number

is based on the superficial fluid velocity and the packing area per bed

volume [19]. For Re = 50, Sc = 1000, m = 2.7, and 1 inch Raschig rings,

the overall Nusselt number is approximately Nu = 2000.
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• When the tracer prefers the raffinate (light) phase (m ≪ 1), the extract

(heavy) phase is “mass transfer limiting”. Therefore, Taylor vortices with

their higher surface renewal would be expected to be more beneficial in

the heavy phase. This occurs when the heavy fluid is less viscous than

the light fluid (µ21 < 1). As observed in Figures 6.26 and 6.27, the mass

transfer coefficient is always higher when Taylor vortices are in the heavy

phase. The opposite effect is observed when the tracer prefers the extract

(heavy) phase as seen in Figures 6.31 and 6.32. This suggests the following

operating guidelines: when m ≫ 1, better performance is expected when

µ21 > 1 and vice versa.

• When the Schmidt numbers for the two phases are approximately equal

(as in the matched viscosity case), penetration theory predicts that the

individual mass transfer coefficients for the two phases are approximately

equal. In this case, the overall mass transfer coefficient is approximately

K1 =
mk1
m+ 1

. (6.4)

Table 6.4 shows that the normalized overall mass transfer coefficients based

on equation 6.4 agree well with the experimental values for this matched

viscosity case. The theoretical and experimental values where separately

normalized by K1/K1,acetophenone.
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• Without countercurrent axial flow, FIDAP predicts corotating vortices

and a corresponding decrease in mass transfer performance. Since the

experiments do not show a similar decrease, it suggests that corotating

vortices have not appeared. Both FIDAP and the linear stability analysis

predict that corotating vortices disappear with countercurrent flow [8].

Only a few experiments were completed at higher countercurrent axial flow

rates due to the primitive weir system. As seen in figure 6.33, increasing the axial

flowrate decreases the mass transfer performance. This would be expected since

in the both the one and two fluid cases, higher flowrates have been shown to (1)

stabilize the Taylor vortices so the vortex strength is decreased [14], (2) create

streamlines that bypass the vortices [48], (3) increase axial dispersion [32, 83],

and (4) decrease the residence time in the extractor. The adverse effects of

increased flowrate may be counteracted by increasing the relative rotation rate

of the cylinders.

The number of theoretical stages may be calculated from equation 6.3. The

results again are nearly independent of rotation rate below the critical Taylor

number and then increases above the critical Taylor number. A maximum of

1.5 theoretical stages are observed in the experiments. This compares favorably

with commercial extractors considering the two-fluid Taylor-Couette extractor

has not been optimized (see Table 2.8). Furthermore, the performance for the

commercial equipment reported in the literature is for fluid pairs with diffusion
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coefficients an order of magnitude higher than the estimated diffusion coefficients

in these experiments. When our results are adjusted using the pentration theory

relation for the diffusion coefficient, n ∝
√
D∗ ≈

√
10, this two-fluid Taylor-

Couette extractor prototype has approximately 4.5 theoretical stages which is

very competitive with the commercial equipment.

Partition K1,norm K1,norm
Tracer Coefficient, m Theory Experiment

Acetophenone 0.125 1 1
sec-Phenethyl Alcohol 2.7 6.6 6.3

Benzyl Alcohol 14.0 8.9 9.0

Table 6.4: Comparison of normalized overall mass transfer coefficients as theo-

retically predicted and experimentally observed. 60 wt.% glycerine-water / 50

wt.% Drakeol-35 in IsoPar-L (µ21 = 0.96).
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Figure 6.25: Mass transfer coefficients for the extraction of acetophenone (m =
0.125) from the light phase as a function of relative rotation rate - the matched
viscosity case. The fluids are equal volumes of 60 wt.% glycerine in water and
50 wt.% Drakeol-35 in IsoPar-L (µ21 = 0.96).



189

Relative rotation rate,  1-Ω
21

0.0 0.1 0.2 0.3 0.4

N
u
 =

 K
1
 d

 /
 D

2

0

200

400

600

800

1000

Nu
expt

; Re
ax2

 = 0.33

Onset of vortices

No Vortices      Vortices

Nu
calc

; Re
ax2

 = 0

co-rot.

Nu
calc

; Re
ax2

 = 0.33

m = 0.125

µ
21

 = 0.63

µ
21

 = 1.46

Nu
expt

; Re
ax2

 = 0.33

Onset of vortices

Nu
calc

; Re
ax2

 = 0

Nu
calc;

  Re
ax2

 = 0.33

Figure 6.26: Mass transfer coefficients for the extraction of acetophenone (m =
0.125) from the light phase as a function of relative rotation rate - the unmatched
viscosity case. The fluid pairs are equal volumes of 60 wt.% glycerine in water
with 60 wt.% Drakeol-35 in IsoPar-L (µ21 = 0.63) and 60 wt.% glycerine in
water with 40 wt.% Drakeol-35 in IsoPar-L (µ21 = 1.46).
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Figure 6.27: Mass transfer coefficients for the extraction of acetophenone (m =
0.125) from the light phase as a function of relative rotation rate - the unmatched
viscosity case. The fluid pairs are equal volumes of 60 wt.% glycerine in water
with 80 wt.% Drakeol-35 in IsoPar-L (µ21 = 0.23) and 60 wt.% glycerine in
water with 0 wt.% Drakeol-35 in IsoPar-L (µ21 = 4.91).
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Figure 6.28: Mass transfer coefficients for the extraction of sec-phenthyl alcohol
(m = 2.7) from the light phase as a function of relative rotation rate - the
matched viscosity case. The fluids are equal volumes of 60 wt.% glycerine in
water and 50 wt.% Drakeol-35 in IsoPar-L (µ21 = 0.96).
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Figure 6.29: Mass transfer coefficients for the extraction of sec-phenthyl alcohol
(m = 2.7) from the light phase as a function of relative rotation rate - the
unmatched viscosity case. The fluid pairs are equal volumes of 60 wt.% glycerine
in water with 60 wt.% Drakeol-35 in IsoPar-L (µ21 = 0.63) and 60 wt.% glycerine
in water with 40 wt.% Drakeol-35 in IsoPar-L (µ21 = 1.46).
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Figure 6.30: Mass transfer coefficients for the extraction of benzyl alcohol (m =
14.0) from the light phase as a function of relative rotation rate - the matched
viscosity case. The fluids are equal volumes of 60 wt.% glycerine in water and
50 wt.% Drakeol-35 in IsoPar-L (µ21 = 0.96).
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Figure 6.31: Mass transfer coefficients for the extraction of benzyl alcohol (m =
14.0) from the light phase as a function of relative rotation rate - the unmatched
viscosity case. The fluid pairs are equal volumes of 60 wt.% glycerine in water
with 60 wt.% Drakeol-35 in IsoPar-L (µ21 = 0.63) and 60 wt.% glycerine in
water with 40 wt.% Drakeol-35 in IsoPar-L (µ21 = 1.46).
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Figure 6.32: Mass transfer coefficients for the extraction of benzyl alcohol (m =
14.0) from the light phase as a function of relative rotation rate - the unmatched
viscosity case. The fluid pairs are equal volumes of 60 wt.% glycerine in water
with 80 wt.% Drakeol-35 in IsoPar-L (µ21 = 0.23) and 60 wt.% glycerine in
water with 0 wt.% Drakeol-35 in IsoPar-L (µ21 = 4.91).
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Figure 6.33: The effect of axial flowrate on the experimentally determined mass
transfer coefficient for the extraction of sec-phenethyl alcohol extraction from
the light phase in the matched viscosity case. The fluid pairs are equal volumes
of 60 wt.% glycerine in water and 50 wt.% Drakeol-35 in IsoPar-L (µ21 = 0.96).
Ω21 = 0.64, Ω21,c = 0.687.
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Chapter 7

Summary

The fluid mechanics and the mass transfer characteristics of radially stratified

two-fluid Taylor-Couette flow have been investigated in an effort to develop a

new device for liquid-liquid extraction. In a two-fluid Taylor-Couette extractor,

the two phases retain their individual integrity and contact each other only

at a single well-defined interface. Although the interfacial area is small, the

vortex motion provides an active surface for mass transfer. This differs from

standard liquid-liquid extraction processes, which maximize a relatively inactive

surface area by dispersing one phase as small droplets in the other phase. Such

dispersion based systems are often inadequate for liquid pairs that are easily

emulsifiable, such as in bioseparations that use aqueous two phase or reverse

micelle systems. Figure 1.1 is a schematic of a two-fluid Taylor-Couette liquid

extractor.

The present study has demonstrated that two-fluid Taylor-Couette flow with
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countercurrent axial flow is achievable in practice. When the vortices first ap-

pear, axial dispersion is minimized and the interphase mass transfer starts to

increase. In supercritical two-fluid Taylor-Couette flow, the extraction perfor-

mance continues to improve with the mass transfer coefficient proportional to

strength of Taylor vortices. A maximum of 4.5 theoretical stages is observed for

the conditions investigated. This is quite promising considering the prototype

design is far from optimized. Just halving the gap width alone would give twice

as many vortices and therefore better mass transfer coefficients. In addition,

modifying the end effects that result from the primitive weir system could also

significantly improve the extraction performance and permit operation at larger

rotation rate differences for even higher efficiencies.

These simple modifications would bring the Taylor-Couette extractor above

the level of available centrifugal extractors, which have benefited from a long

optimization process. The Taylor-Couette extractor would also then be compet-

itive with packed columns for separation efficiency, and with potentially better

flow control and decreased product residence times than in packed columns.

This suggests that further optimization studies and design improvements could

produce a highly competitive extractor for the relatively small production levels

typical of the biotechnology industry. The Taylor-Couette extractor would have

not only the separation efficiency of current commercially available equipment,

but also the desirable and uniquely inherent features of simple fluid mechanics
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and prevention of emulsion formation.

The theoretical analyses for both the fluid mechanics and the mass transfer

agree quite well with experimental results and provide a good basis for the

commercial design and development of a two-fluid Taylor-Couette extractor.

The linear stability analysis predicts the onset of the two-fluid Taylor-Couette

instability and the combination of boundary layer theory and computational

fluid dynamics predicts the interphase mass transfer without empiricism.

Although this study was primarily interested in two-fluid Taylor-Couette

flow, other instabilities can also occur. With low viscosity fluids at low rotation

rates, two-fluid Taylor-Couette flow is not observed experimentally, but rather

the barber pole pattern, which is believed to be a lingering gravitational effect.

At high countercurrent axial flowrates, the linear stability analysis predicts a

Kelvin-Helmholtz instability related to the countercurrent flow profile. If axial

flow is not present, the two computational fluid dynamics packages (FLUENT

and FIDAP) calculate that at sufficiently high relative rotation rates, vortices

paired across the interface corotate, instead of counterrotate, with each other.

Although these effects are all very interesting from a fluid mechanics point of

view, they would seriously degrade the extraction efficiency and must be under-

stood in order to be avoided in the design and operation of an extractor.
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Chapter 8

Future Designs and Development

8.1 Further Studies

To design and optimize a Taylor vortex extraction system, better understanding

is needed of the supercritical behavior of two-fluid Taylor-Couette flow especially

when countercurrent flow is present. For this computational fluid dynamics

would continue to be helpful. The important items to include in future studies

are:

• Enhanced vortices. What is the effectiveness of adding features to the

cylinders to enhance the vortex motion? How is the countercurrent axial

flow behavior affected?

• Corotating vortices. Under what conditions do corotating vortices appear?

• Interface deformation. How does the radius ratio, fluid depth, fluid prop-

erties, and outer cylinder rotation rate affect the interface deformation and

is this important?
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• Other instabilities. Is the barber pole pattern a lingering gravitational

effect? Is the Kelvin-Helmholtz instability a concern in practice? When

does the azimuthal viscous shear instability appear?

• Axial dispersion. A predictive model for axial dispersion must be de-

veloped and incorporated into the mass transfer model. Why does the

minimum in axial dispersion occur near the onset of the vortex flow? Can

this minimum be shifted, broadened, or removed?

In addition, further experiments are required to demonstrate that two-fluid

Taylor-Couette is a commercially viable process, especially for bioseparations.

Preliminary experiments suggest that two-fluid Taylor-Couette flow with coun-

tercurrent axial flow in aqueous-aqueous systems is achievable. However, a more

sophisticated equipment design is necessary to provide an adequate environment

for bioproducts. Since these low density difference systems are more prone to

emulsion formation and carry-over at the ends, a very careful weir design is

required. Some considerations for future equipment designs and experiments

include:

• Does the mass transfer performance continue to improve with more ex-

treme rotation rate differences? What is the limiting factor - emulsion

formation, denaturation, appearance of corotating vortices, dispersion?

• Are corotating vortices observed in practice?
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• How can the performance be improved by adding features to the cylinders?

• How do viscoelastic fluids behave?

8.2 Equipment Design

For a commercial extractor, several important equipment modifications are re-

quired: (1) a sealed design to maintain an internal sterile environment, (2) higher

countercurrent axial flow rates, and (3) higher mass transfer coefficients through

greater rotation rate differences or cylinder modifications. In addition, several

design changes could improve the overall ease of operation. The following list

summarizes the design criteria to be considered:

• Sealed system. The annulus should be sealed to allow startup and shut-

down while filled with fluids. In addition, an internal sterile environment

can then be maintained.

• Startup/shutdown. Provisions must be included to allow (1) removal of

air bubbles in the process of filling the device and (2) complete emptying

of system after extraction is finished.

• Maintenance access. The design should be as simple as possible to allow

for easy clean-up and sterilization of the extractor. Furthermore, access

to replace/repair the inlet and outlet ports, seals, and belts should be

straightforward.
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• Rotary seal design. Rotary seals are notorious trouble spots in rotat-

ing equipment and each should be carefully considered. In general, the

smaller the seal diameter, the better the sealing performance in addition

to reduced drag and power consumption. Two main options exist for the

rotary seals: lip seals and mechanical seals. Lip seals are a low preci-

sion design and therefore have a lower initial cost but higher maintenance

cost. In contrast mechanical seals require very careful machining and in-

stallation, and have a higher initial cost but lower maintenance. As a

comparison, the Podbielniak has four mechanical seals, which would be

the absolute minimum for a two-fluid Taylor-Couette extractor.

• Rotation rate difference. Better mass transfer performance is expected

with higher relative rotation rate differences. The rotation rate difference

can be limited by (1) emulsion formation due to cylinder misalignment or

end conditions or (2) undersized motors.

• Minimum annular gap to minimize hold-up volume and diffusional dis-

tances. The practical gap width is determined by machinability and align-

ment.

• Weir system. The weir system should be designed for volume ratios ranging

from 0.1 - 10, which are typical of other centrifugal extractors. Any seals or

contacting parts should be isolated as much as possible from the interface
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to reduce emulsion formation.

• Materials of construction. For biologicals, the system must be sterilizable

and for maximum compatibility the number of materials should be min-

imized. In addition, visualization of the annulus, particularly the ends,

aids in troubleshooting.

• Minimal stagnant or high shear Ekman zones.

• Features added to the inner and outer cylinders to promote stronger vortex

flows.

• Control system to control the flows rates and the interface position.

The several designs for the next generation extractor are included in Figures

8.1, 8.2, and Figure 8.3. The design in Figure 8.1 is the most similar to the

existing equipment and its features include:

• Rotary seals. This design has six rotary seals and two wipers. The two

wipers operate as weirs and for end effect reduction. Two large rotary

seals provide the connection between the inner and outer cylinder. An

alternative would be to have end plates that rotate with the outer cylinder.

In this case smaller seals would be required, but an Ekman shear zone

would be introduced for each end.
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• Hollow inner cylinder. The hollow inner cylinder provides transport of the

heavy and light fluids.
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Figure 8.1: Future equipment design option 1
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The design in Figure 8.2 is also quite similar to the existing equipment and

should not introduce unexpected behavior. The features include:

• Rotary seals. This design incorporates five rotary seals and two wiper

seals. Four of the rotary seals isolate the rotating equipment from the

inlet and outlet ports and are identical to the Podbielniak design. The

fifth rotary seal could be eliminated if the light fluid inlet wiper operates

as a seal. The two wipers are primarily to reduce end effects by providing a

transition from the inner cylinder rotation to the outer cylinder. However,

the sealing action of the wipers will also retard fluid from entering the

stagnant Ekman shear zones.

• Hollow cylinders. The inner and outer cylinders are hollow for the in-

troduction and withdrawal of fluids. One side is dedicated to light fluid

handling and the other for heavy fluid. The hollow outer cylinder is un-

usual, but has three purposes (1) to eliminate an Ekman shear zone, (2)

provide a balance for the inner cylinder, and (3) eliminate a rotary seal.
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Figure 8.2: Future equipment design option 2
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The design in Figure 8.3 is the least similar to the existing equipment and

could introduce some unexpected behavior. However, the design has several

attractive features and should be strongly considered. The design highlights

include:

• Stationary end plates. The end plates are stationary to provide very easy

access to the annulus. The wipers are weirs that also provide the transition

to the rotating cylinders to reduce end effects. This design is very easy

to construct. The major unknown with this design is how will the weirs

perform?

• Rotary seals. There are only four rotary seals in this design. Furthermore,

the wipers have little sealing responsibility. The rotary seals, however, are

relatively large in diameter.

• No stagnant zones. There are no stagnant zones and the only Ekman zones

are in the small inlet and outlet reserviors.
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Notation

a Mass transfer surface area per unit volume

A Base flow (two-fluid Couette flow) coefficient

B Base flow (two-fluid Couette flow) coefficient

c Growth rate of the disturbance velocities

C Concentration

d = R2 −R1 Cylinder gap width (cm)

D Diffusion coefficient (cm2/s)

D = ∂/∂r Derivative operator

D∗ = ∂/∂r + 1/r Derivative operator

D/Dt Substantial derivative operator

D∗ Dispersion coefficient (cm2/s)

Ekj =
µj

2ρjΩ2d2
Ekman number for phase j

f Fraction extracted
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F Coefficient in equation for countercurrent axial flow

Fr =
R2Ω22
g

Froude number

G Coefficient in equation for countercurrent axial flow

H Coefficient in equation for countercurrent axial flow

J2 =
(ρ2−ρ1)Ω22R

3

2

S
Dimensionless group measuring centifugal to

surface tension effects

k Radial mass transfer coefficient in one fluid

Taylor-Couette flow

Kj Overall mass transfer coefficient based on phase j

kj Individual mass transfer coefficient for phase j

L Characteristic length

m =
C∗
2

C∗
1

Partition coefficient

M0 Zeroth moment

M1 First moment

M2 Second central moment

n Number of theoretical stages

N Number of mixing tanks describing axial dispersion

Nu = 2kd
D

Nusselt number for radial mass transfer

in one fluid Taylor-Couette flow

Nu = D∗

D
Nusselt number for axial dispersion
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Nu = K1d
D2

Nusselt number for interphase mass transfer

in two-fluid Taylor-Couette flow

p Disturbance pressure for linear stability analysis

P Base state pressure profile

Pz Pressure due to countercurrent axial flow

Pe = ReSc Peclet number

Q Volumetric flowrate (ml/min)

r Radial coordinate

R Cylinder radius (cm)

R12 = R1/R2 Radius ratio

Re1 =
Ω1R1d
ν1

Azimuthal Reynolds number

Reθ =
(Ω1−Ω2)R1d

ν
Azimuthal Reynolds number

Reax =
W̄d
ν

Axial Reynolds number

S Interfacial tension (dyne/cm)

Sc = ν/D Schmidt number

t time

T = −4Ω
2

1
d4(R2

12
−Ω21)

ν2(R2
12
−1)

Taylor number for a single fluid

T̄ = −1
2
(1 + µ)4AΩ1d

4

ν2
Taylor number for a single fluid with axial flow
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Ta = Ω1R1d
ν

(

d
R1

)1/2
Modified Taylor number

T1 = −4Ω
2

1
d4(R2

1i
−Ωi1)

ν2
1
(R2
1i
−1)

Taylor number for inner fluid

T2 = −4Ω
2

i
d4(R2

i2
−Ω21)

ν2
2
(R2
i2
−1)

Taylor number for outer fluid

u Characteristic velocity

v Disturbance velocities for linear stability analysis

V Azimuthal base flow velocity profile (cm/sec)

W Axial velocity profile for counterflow (cm/sec)

W̄ Average axial velocity (cm/sec)

x = y − 1/2 Radial coordinate

y = r/d− (1− ǫ)/ǫ Radial coordinate

z Axial coordinate

Z Total axial length
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Greek characters:

α Axial wavenumber

γ̇ = ∂vz
∂y

Velocity gradient

Γ = Z/R1 the aspect ratio of the extractor

δ Small parameter describing deviations from rigid rotation,

the boundary layer thickness, or

the taper of interface due to counter flow

ǫ = d/R2 Narrow gap parameter

θ Azimuthal coordinate

µ Dynamic viscosity (g-cm/s)

µ21 = µ2/µ1 Dynamic viscosity ratio

ν Kinematic viscosity (cm2/s)

ν21 = ν2/ν1 Kinematic viscosity ratio

ρ Fluid density (g/ml)

ρ21 = ρ2/ρ1 Density ratio

τij Shear stress acting in the i direction due to

a velocity gradient in the j direction

Ω = V
r

Base flow rotation profile

Ωj Rotation rate of cylinder j (rad/s or rev/s)

Ω21 = Ω2/Ω1 Rotation rate ratio
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Subscripts/Superscripts:

1 Inner fluid or cylinder

2 Outer fluid or cylinder

c At the critical point

i Interface

r Radial direction

z Axial direction

θ Azimuthal direction

∗ At equilibrium or a dimensional quantity

ˆ Disturbance quantity
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