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Abstract 
It is demonstrated that estimation of the pair-interaction function from polymer-blend cloud 
points cannot yield meaningful values if data are restricted to a single blend. Additional 
information is required, such as cloud points in another blend made up of samples of the 
same two polymers differing in molar mass or, alternatively, scattering data on the original 
blend. Information obtained from melting points of a crystallizable constituent in the blend 
is insignificant in this respect. Molar-mass distributions in the constituents of the blend 
complicate the analysis, and must be known in considerable detail. 

Introduction 
The molecular heterogeneity occurring in virtually all synthetic polymers 
poses problems when mixtures of such materials are subjected to a 
thermodynamic analysis by means of the pair-interaction parameter. This 
parameter, usually denoted by x, depends at least on temperature and . 
concentration, and knowledge of this dependence permits predictions of 
equilibrium liquid-liquid phase behaviour of the blend. It is practically 
impossible to extract meaningful values for the interaction function from a 
single measured cloud-point curve (temperature of incipient turbidity against 
blend composition) and additional data cannot be dispensed with, even when 
the molecular heterogeneity is negligibly small. The analysis is further 
complicated by the presence of molar-mass distributions (mmd) which cause 
the two cloud-point concentrations at a given temperature not to represent 
coexisting phases, as they do in the strictly-binary case1

-
3

). 

The present paper demonstrates that the extraction of useful values for the 
interaction function from a measured cloud-point curve ( cpc) not only requires 
quite accurate knowledge of the mmd' s involved but still needs additional 

*Part XXVI: ref. 33. 



information. Such extra data may either be cloud points in a blend of samples 
with different mmd's, or spinodal scattering data on the original blend. We 
illustrate this statement with examples of partial-miscibility behaviour and of 
measurements of melting-point depression, discussing 

(a) experimental cloud points in the system polyisoprene/polystyrene, in 
which both constituents have a very narrow mmd. The mmd' s can be ignored 
for the present practical purpose, and such systems have therefore been 
termed practically-binary4

). The analysis reveals some of the subtleties 
adherent to polymer/polymer miscibility, and their incorporation into 
suitable models5·6); 

(b) the effect of mmd's on the extraction of significant X values which is 
investigated with the aid of calculated cpc's for well-defined mmd's. We 
employ Flory-Huggins-Staverman (FHS) thermodynamics7

-l3) in which x 
depends solely on temperature, and show in passing that a possible 
concentration dependence of X does not alter the problem essentially. 
Having fixed the two mmd's and the temperature dependence of X we have a 
priori knowledge on each of the two features that determine the cpc, i.e., the 
mmd's and X(T); 

( c) the insensitivity of melting points in partially crystallizable blends to es-
sential details of the interaction function. 

Practically-binary blends 
Assuming the residual polydispersity in narrow-distribution polymer samples to 
be negligible, we may apply the strictly-binary version of the FHS expression 
for the free enthalpy (Gibbs free energy) of mixing, ilG, 

ilG/NRT = n1 + n2 + g(T,cp2)<p1<p2 (1) 

where cpk is the volume fraction of component k, the last term on the r.h. s. is the 
familiar Van-Laar interaction function, and Qk = (cpk/mk)lncpk (k = 1,2). The 
system is thought to be built up of N identical basic volume units (BVU), and 
mk is the number of BVU' s occupied by a molecule of component k. The 
symbols R and T have their usual meaning. 

The temperature and concentration dependence of the interaction function g 
may assume various forms, depending on the molecular model used for its 
definition6'14). For instance, the incorporation of Huggins' orientational entropy 
contributions to ilG15) represents one particular example, application of which 
to polymer blends has been discussed by Koningsveld and Stepto16). We here 
represent all those different expressions in the form of a quadratic polynomial 
in cp2, the coefficients of which will have different meanings for the different 
models. Thus, 

g(T, <?2) = ~ + g1 <?2 + g2cpl (2) 



Spinodal condition and liquid-liquid critical state are defined byi7-i9
): 

Spinodal: 

Li+ L1 - 2go + 2gi(l - 3cp2) + 6gicp2(l - 2cp2) = 0 

Consolute state: 

Qi - Q1 - 6g1 - 6g2(l - 4cp2) = 0 

where Lk= 1/(mk<?k) and Qk= 1/(mk<?k2
). 

(3) 

(4) 

Experimental cloud points in practically-binary mixtures of polyisoprene and 
polystyrene are collected in Fig. 1. The samples are of relatively low molar 
mass, in the range of which the chain lengths play an obviously dominant role, 
determining not only the widely varying location of critical temperatures, but 
also influencing the shape of the cpc. The bimodality of the miscibility gap in 
the 2. 7 /2.1 system changes into a shoulder in the 2. 7 /2. 7 mixture, and has 
vanished altogether in the 0. 82/2.1 blend. The 2. 0/2. 7 data by other workers do 
not seem to be consistent at all with the other three sets. 

It has been shown previously that the cpc' s of Fig. 1 cannot be described with 
the FHS expression in its original form with g independent of concentration 
(then g = X), and that the unusual, bimodal shape can be reproduced 
qualitatively if Eq. 2 is employed21 ). Here we extend the analysis somewhat 
further, assuming gi and gi to be independent of T, and the temperature 
dependence of go to be given by the usual form 

go= &ls+ goh/T (5) 

where &is and goh are constants. The enthalpic term &lh should be of the order of 
102 K in order to be acceptable within the model (nonpolar or weakly polar 
Van der Waals interactions). 

Within the present scope we may identify the extrema of the cpc' s with critical 
points, and use those of the 2. 7/2.1 system to determine gi and g2 with Eq. 4. 
The BVU may be treated as a mass unit, arbitrarily set at 1 OOg/mol, so that the 
relative chain lengths mk are obtained by dividing molar mass by 100, and the 
cp's represent mass fractions. Critical points are located on the spinodal, hence 
Eq. 3 can be used to calculate go and its temperature dependence. The &lh value 
found on this basis with the measured coordinates of the two maxima is 5131 
K, too large a value to be acceptable. Keeping the two concentrations fixed at 
the measured values, one would have to shift the critical temperatures to 120°C 
and 150°C, respectively, to bring &lh down to 292 K. Obviously, such a 
manoeuvre is not justified by the data, and we might look for an better g(T,cp2) 
function. Alternatively, however, we may not strive for a fully quantitative 
reproduction of the data, and check whether Eqs 1, 2 and 5 are capable of 
covering the sensitivity of location and shape of the cpc toward chain length in 
a general sense. 

Some trial and error analysis of the data from ref. 20 yields a set of parameters 
producing Fig. 2 which is in qualitative accordance with the data. In view of 



the latters' large T-range, Eq. (5) was found not to be quite adequate and had to 
be replaced by the better approximation22

•
23

) 

g = &>s + goh/T + &>kT (5a) 

where &>k is a constant. The analysis shows that the extended FHS expression 
(Eqs 1, 2 and 5a) correctly predicts bimodality to appear at a given set of chain 
lengths, to vanish or change into a shoulder when chain length is varied. 
Miscibility gaps in blends showing shoulders and, occasionally, a bimodal 
shape, have not infrequently been reported. The present analysis indicates that 
such phenomena should not too readily be discarded or attributed to 
experimental errors, and may point to a marked dependence of X on 
concentration .. 

The obtained description contains the above mentioned subtle features at the 
cost of the concentrations of the extrema that are too low, except for the right
hand maximum in system 2.7/2.1 and the shoulder in 2.7/2.7. The intersection 
of the two cpc branches in 2.7/2.1 indicates the occurrence of a (binary) 
nonvariant equilibrium between the three phases a, p and y, in the experiment 
at about 126.5 OC, in the calculation at 127.3°C. The connection of the 
extensions of the binodals beyond the three-phase line apy are illustrated in 
detail in Fig. 2a, and.have been discussed extensively in a previous paper5

>. 

The cpc of the 2. 0/2. 7 system, reported by other workers20
), can now be 

predicted which results in a cpc that is located about 100°C higher than the 
experimental data. This discrepancy illustrates an important hazard of studies in 
polymer blend thermodynamics. In the first place, the extreme sensitivity of the 
location to relatively small differences in chain length might suggest errors in 
the determination of molar masses to be behind the discrepancy. However, at 
the level of a few thousand g/mol such errors cannot reasonably be expected to 
have been all that large. 

Other experimental problems suggest more obvious reasons For instance, the 
polyisoprene samples may have differed in cis/trans configuration, and steric 
configurations have been found to markedly influence the temperature location 
of blend miscibility gaps 24

). This may well be the reason why, for instance, 
miscibility data of various authors on the system poly(vinyl methyl 
ether)/polystyrene cannot possibly be reconciled25

). It is further known that in 
research of this nature the purity of the constituents is critical26

•
27>, traces of 

admixtures already being potentially detremental for a meaningful comparison 
of data. 

Quasi-binary blends 

The above example illustrates some of the difficulties encountered in the study 
of practically-binary systems. Non-negligible molar-mass distributions in the 
polymers cause additional problems. We may use a hypothetical system to 
analyse the situation, thus having precise a priori knowledge of the two mmd' s 
as well as the interaction function, and so investigate the significance of 



conceivable evaluation methods for the latter. We use FHS systems without 
concentration dependence of the interaction parameter, giving the latter some 
attention in passing. There is no loss of generality involved since, if 
determination of the temperature dependence of X already calls for extensive 
efforts, the usual concentration dependence can only be expected to further 
complicate the issue. 

The appropriate LiG function is identical in form to Eq 1, except for the 
definitions of nk and Cj>Ic which now read12·17

-I
9

) 

Qk = I:( Cj>Ic;/mki)ln<pki; Cj>Ic = L(j)Ju (6) 

where i is the running index for the components within constituent k. The 
definitions of Lk and Qk also change and become 

Lk = 1/(mwk<pk); Qk = Swk/(mwk<j>Ic2
) (6a) 

where Swk = mzi/mwk. and mwk and mzk are the weight- and z- average BVU
numbers of polymer constituent k, respectively. 

We define each of the mmd' s of the polymers as the sum of two Schulz-Zimm 
(SZ) distributions, constructed so as to conform to chosen mu, mw and mz values 
(mnk is the number-average number of BVU's occupied by polymer molecules 
k; Snk = mwJmnk). Setting mw1 = 100, Sul = 2, Swl =1.75, and mw2 = 500, Sn2 = 
3, Swi = 2, the construction procedure30

) leads to the distribution parameter sets 
given in Table 1. The weight fractions of the two SZ functions a and b for 
polymer k are Wak and Wbk. their mw values mwak and mwbk· The Sn and Sw of the 
part distributions have each been taken identical in the two polymers. The 
continuous curve in Fig. 3 represents the so-constructed distribution curve for 
polymer 1. Other possible representations, all at the same mw, Sn and Sw, are 
shown in Fig. 3 and Table 1. They refer to binary, arbitrary quaternary, and 
'bell-shaped' quaternary distributions. The concentrations of the two added 
components to form the six-component 'bell-shaped' set in Table 1 do not 
show up on the scale of drawing. The other distributions discussed below 
exhibit quite analogous patterns. 

Letting gos= 0.05, &>h = - 15 K, g1 = 0, g2 = 0, we define the system to exhibit 
lower-critical-solution behaviour, and g to be independent of concentration. 
Procedures described elsewhere21 '28-36)(also those used for Fig. 2) allow 
calculation of cloud points in terms of T against <p2, the volume fraction of the 
second polydisperse polymer. The result is shown in Fig. 4 (set I, filled circles) 
for two SZ distribitions in each of the two polymers. 

We now consider these calculated cloud points as experimental data and 
proceed to test the significance of various procedures for extracting interaction
parameter values from them. The simplest analysis involves complete neglect 
of the mmd' s. The system is thus treated as if it were strictly-binary and the 
extremum of the cpc (now regarded as a binodal) is identified with the critical 
point. Setting m1 = 100 and mi = 500, we find go0 = 0.01047 and <p20 = 0.309 



with Eqs 3 and 4, the latter value clearly not being in agreement with the 
location of the minimum in set I, which occurs at cp2 = 0.25. Ignoring this 
deviation we estimate the critical temperature at 105.8°C and use it as one 
calibration point for go(T) (Eq. 5). The other piece of information we might 
draw, for instance, from the two concentrations at 112.5°C (0.005 and 0.545) 

d . al ul . d fi . . h . . 21 28-36) an , usmg c c anon proce ures or coextst1ng-p ase compos1t1ons · , 
find them not to coexist and, hence, to yield two different values for go. Using 
the average of these two values to be representative for 112.5°C, we obtain gos 
= 0.098038, goh = - 33.183 K with Eqs 3 and 4, and calculate the lower drawn 
curve in Fig. 4. The deviations between the curve and the simulated data points 
(set I) are relatively large (4°C at cp2 = 0.6, at a total temperature range of the 
cloud points of about 7°C for 0.05 ::; cp2 ::; 0.6), and so is the difference between 
the chosen and recovered values of gos and goh. 

Whether or not one would accept such a data description, it has no value unless 
it allows correct prediction of data not used in obtaining the description, or data 
yet unknown. Therefore, we simulate another set of cloud points in the same 
manner as set I, but for mw2= 100, the other characteristics being kept the same 
(set II). A binary prediction on the basis of the gos and goh values obtained 
above, yields the upper drawn curve in Fig. 4 which is very far from the truth. 

In a practical situation the thermodynamics of the system are not known a 
priori, and one might be inclined to blame the discrepancy on a possible 
concentration-dependence of g. Setting g = go +g1 cp2, with both coefficients 
depending on T, and using an appropiately adapted calculation procedure21

•
28

-

36\ we find the parameter values given in Table 2. The description of set I has 
improved greatly, at least at cp2 < 0.6, and would probably be considered 
satisfactory if no other data were available (lower dashed curve in Fig. 4 ). 
However, if they are (set II), we note that the prediction has hardly improved 
(upper dashed curve). Evidently, neglect of the mmd's cannot lead to 
meaningful values of the interaction parameters, a conclusion that could not be 
drawn on the basis of set I alone. Neither can be concluded too easily that a 
concentration dependence of X prevails. 

If the mmd' s are included there are two cloud-point concentrations at a given T 
that do not represent conjugate phases1

-
3>, but the go values so obtained can still 

be calibrated against T, for instance with the cloud points of set I. If the mmd's 
of the simulation itself were used, one obviously would then recover gos= 0.05, 
goh = - 15 K, the values chosen originally. However, we usually do not know 
the mmd' s all that accurately and might tend to use binary approximations 
( wk1 ,mk1; wk2,mk2; wki being the weight fraction of component i in polymer k, i 
= 1,2)) that have at least the virtue of being unambiguously determined by mw, 
~n, and ~w30>. A quite acceptable description of set I is obtained (Fig. 5, lower 
dashed curve) but gos and goh still deviate greatly from the chosen values and, 
accordingly, the prediction of set II is poor (Fig. 5, curve 1 ). 



Knowing the 'correct' gos and goh values, we realize that the reason for the 
discrepancy must be sought in the approximation of the mmd' s. Sets of four 
components in each of the polymers yield a description of set I that can hardly 
be distinguished from that obtained with the binary mmd's (Fig. 5, lower 
dashed curve). The prediction of set II, however, is about 45°C too low and 
demonstrates that the go(T) function is still too far off (Fig. 5, curve 2; Table 2). 

In the above example the four weight :fractions of the individual components 
within a constituent polymer were calculated quite arbitrarily, and do not 
reflect the bell shape of the continuous distributions used for the simlulation of 
cloud points (see Table 1 and Fig. 3). We may adapt the sets of four 
components so that they come a little closer to the bell shape (at the chosen mw, 
~n and ~w values, Fig.3) The effect is surprising, the gap between simulated and 
predicted set II being reduced by about 50% (Fig. 5, curve 3). Also the 
interaction function derived from the cloud points of set I comes considerably 
closer to the chosen one (Table 2). Adding minute amounts (not enough to 
show up in Fig. 3) of two more components at both ends of the mmd's, 
retaining the rough resemblance of the bell shape, we obtain considerable 
further improvement, the average difference between set II and its prediction 
being only about 3°C (Fig. 5, curve 4). The gos and goh values are now very 
close to those set in the example (Table 2) and the description of set I is 
excellent (lower drawn curve). 

This numerical exercise indicates that the extraction of significant interaction 
parameter values from cloud points is no trivial matter and calls for quite 
accurate information about the mmd' s involved, probably more accurate than is 
usually available. Moreover, the inclusion of additional data, like set II in the 
example, appears to be essential for a reliable anchoring of the go(T) function. 
To decide whether all this is sufficient we would need still one more additional 
set of data which we obtain as before, simulating set III for mw1 = mw2 = 500 
and retaining the other distribution characteristics. The constants gos and goh 
found by fitting of the combined sets I and II are listed in Table 2 for binary 
and six-component (bell shaped) mmd' s. Figure 6 shows that, again, the binary 
mmd representation does not suffice (dashed curves), and that the six
component bell-shaped mmd's yield the required result, both in description of 
sets I and II, and prediction of set III (drawn curves). 

The extra data do not need to be cloud points. Measurements could be limited 
to a single blend, if the cloud points are then supplemented by spinodal points 
obtained with scattering methods. Spinodal points can be simulated easily with 
Eq. 3, some are shown in Fig. 6 for set I. Fitting go(T) to cloud points and 
spinodal points for set I alone yields quite acceptable predictions for sets II and 
III, in spite of the considerable temperature extrapolations involved (Fig. 6, 
dash-dot curves). The inclusion of spinodal data being so obviously beneficial 
may be due to the fact that scattering methods 'measure' the second derivative 
of L'.lG with respect to concentration whereas cloud points are determined by 
chemical potentials, i.e., the first derivative. Also, within the FHS framework, 



the spinodal does not depend on details of the mmd's, as cloud points do, but 
merely on the two mw's (Eq. 6a). 

Melting-point depression 

Melting-point depressions in a partially-crystalline polymer blend might be 
expected to supply an alternative extra source of information. If the second 
polymer is the crystallizable constituent we may write for a binary FHS 
blend)13) 

(Mlf,JR)(l/Tm2° - 1/T) = (lncp2)fm2 + (llm2 - llm1)<p1 +(gos+ goh/T)<p12 (7) 

where Mlf,u is the molar heat of fusion per mol of crystallizable repeat units in 
polymer 2; Tm2° and T are the equilibrium melting points of polymer 2 in its 
pure state and in the blend, respectively. Figure 7 shows some solubility curves 
for polymer 2 (melting point against volume fraction), calculated with Eq. 7 for 
m1 = 100, m2 = 100, Mlf,u,= 1000 cal/mol, Tm2° = 400 K. Three possible two
phase states of the liquid mixture are considered and described as in the 
preceding section with three sets (gosfgoh) representing lower-critical miscibility 
above 425 K, and upper-critical miscibility below 375 K and below 405 K 
(Table 3). 

If the liquid/liquid critical point is close to Tm2° (system 2) the melting-point 
depressions are very small in the full composition range and, since miscibility 
gap and solubility curve interfere, there is a nonvariant three-phase equilibrium 
( a/~/y) 1 >. The solubility curve must assume a sigmoid shape in order to pass 
through points a and ~ that represent the two liquid phases on the three-phase 
line a~y at 3 99. 6 K. The spinodal passes through maximum and minimum of 
the very shallow metastable solubility curve37>. 

The experimental determination of equilibrium melting points in polymers is 
extremely difficult and a reduction of the probable error to ± 1 K would call for 
exceptionally good work indeed. Even then, the error bar on the solubility 
curves is too large to allow distinction between the three types of demixing, 
and reliable determination of parameters like gos and goh is out of the question. 
Even complete miscibility in the liquid state (gos = 0, goh = 0) cannot be 
distinguished reliably. The only type of blends in which the melting-point 
depression might give an indication of the. magnitude of the interaction 
parameter are those in which very strong specific interactions are operative (see 
solubility curve for gos = 0, goh = - 50 K). The average X value is - 0.13 at 3 70 < 

T < 400 whereas it amounts to only+ 0.02 for critical miscibility 

It is remarkable that experimental melting points cannot distinguish at all 
between such widely varying cases of demixing like 1 and 3, the latter referring 
to metastable demixing of the liquid state. Within the present examples a rough 
distinction can only be made between complete miscibility (4) and border-case 
2 at cp2 < 0.5, but this is useless in the present context. 



These results do not depend on the parameter values chosen here and must be 
regarded to have general validity. 

Discussion 

The present analysis demonstrates that 
(a) cloud-point data on a single blend cannot produce significant 

information on the interaction parameter and its dependence on temperature 
and concentration; 

(b) two, or better three sets of cloud points for different molar-mass 
distributions are needed to obtain X(T,cp2) with confidence; 

( c) a single blend may still supply useful information provided the cloud 
points are supported by additional data of a different nature, for example, 
spinodal points; 

(d) neglect of the two molar-mass distributions leads to meaningless data on 
X(T,cp2); 

(e) melting-point depressions do not supply significant information on the 
interaction parameter. 

These conclusions refer to model data, not affected by experimental errors. In 
an actual experimental situation such unavoidable errors will further detract 
from the significance of blend X parameter values. Moreover, a comparison 
with the aid of the thermodynamic model obeyed by the system, as available 
here, is not possible in experimental practice. Finally, the attainment of 
equilibrium is usually much retarded in polymer blends, which introduces 
another source of inaccuracy. Interaction parameter values on blends, as 
reported in the literature, should therefore be carefully scrutinized as to the way 
in which they have been obtained 
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Captions to figures 

Fig.1. Cloud points in practically-binary mixtures of anionic polyisoprene (PI) 

and anionic polystyrene (PS) for indicated values of the number-aver

age molar mass in kg/mol. Data taken from two sources: ref 20, 212. 7; 

ref 21, 2. 7/2. 7, 2. 7/2.1 and 0.82/2.1. Weight faction of PS: w2. 

Fig.2. Phase diagram calculated with Eqs 1, 2 and Sa for indicated sets of 

m1/m2 values. Heavy curves: binodals, light curves: spinodals; critical 

points: o; three-liquid-phase equilibrium: A A A. Interaction-param

eter values: gos= - 0.42757, goh = 162.32 K, g1 = - 0.1, gz = 0.091.. 

Fig. 2a. Details of the equilibrium curves around three-phase equilibrium a~y in 

Fig 2 (m1 = 27, m2 = 21 ). Heavy drawn curves: stable equilibrium, 

dashed curves: metastable and unstable equilibrium. Light drawn curve: 

spinodal; critical points: o. 

Fig. 3. Possible molar-mass distributions for polymer 1 (mw = 100, ~n = 2, ~w 

= 1.75). Curve: sum of two SZ distributions; heavy drawn lines: binary 

polymer distribution; heavy dashed lines: arbitrary quaternary distrib

ution; light drawn lines: 'bell-shaped' quaternary distribution (Table 1) 



Fig. 4. Cloud points ( •) for two hypothetical polymer blends (sets I and II), 

calculated with Eqs 1 and 5 for &is=+ 0.05, &>h = - 15 K, g1 = 0, g2 = 0. 

Polymer mmds represented by a sum of two SZ functions. Critical 

points: o. Curves: strictly-binary reproductions of cloud points with 

estimated values of &is and &>h· Lower drawn curve: g1 = 0, gi = O; 

lower dashed curve: g1 * 0, g2 = O; upper drawn and dashed curves: 

corresponding predictions of set II (see text) 

Fig. 5. Cloud-point data of Fig. 4. Lower dashed curve: representation of set I 

by two binary polymers and by two quaternary polymers. Lower drawn 

curve: two six-component polymers. Curves 1-4: predictions of set II 

with increasingly accurate approximations of the polymers' mmd's. 

Critical points: o. 

Fig.6. Cloud points(•) and spinodal points (.i) for three polymer blends (sets 

I, II and III). Interaction paramerters obtained from cloud-point sets I 

and II. Dashed curves: description of sets I and II, and prediction of set 

III on the basis of binary polymer distributions; drawn curves: ditto with 

six-component mmd' s. Dash-dot curves: parameters obtained from 

cloud-point and spinodal data on set I: description of set I and predict

ion of sets II and III. Critical points: o. 

Fig. 7. Solubility curves and miscibility gaps (heavy curves) calculated with 

Eqs 1, 3-5, 7 for Afif,u = 1000 cal/mol, Tm2° = 400 K., m1 =100, m1 = 

100, and various interaction-parameter values (Table 3). Three-phase

equilibrium: j, .l A.; light curves: spinodals; dashed curves: metastable 

equilibria; error bar for± 1 K:I; critical points: o. 



Table 1 

Molar-mass distribution characteristics for set I 

Polymer 1 Polymer 2 

mw= 100 mw=500 

~n=2 ~n=3 

~w= 1.75 ~w=2 

Sum of 2 Schulz-Zimm distributions (~na = ~nb = 1.5; ~wa = ~~ = 4/3) 

Wal= 0.3909; mwal = 55.22 

Wbl,,,,; 0.6091; m~1 = 169.8 

Binary polymers 

wu = 0.6387; mu= 34.86 

W21 = 0.3613; m21 = 215.1 

Wa2 = 0.5; mwa2 = 146.4 

Wb2 = 0.5; m~2 = 853.6 

W12 = 0.6213; m12 = 109.6 

W22 = 0.3787; m22 = 1140 

Four-component polymers 

Arbitrary 

Wu= 0.3046; mu= 23.34 

W21=0.3046; m21 = 87.10 

W31=0.1954; m31=71.76 

W41 = 0.1954; ffi41 = 267.8 

'Bell-shaped' 

Wu= 0.0766; mu = 10 

W21 = 0.4405; m21 = 50 

W31 = 0.4216; m31 = 125 

W41 = 0.0613; ffi41 = 400 

W12 = 0.25; m12 = 61.90 

W22 = 0.25; m22 = 231.0 

W32 = 0.25; mn = 360.8 

W42 = 0.25; ffi42 = 1346 

W12 = 0.3043; m12 = 75 

W22 = 0.3135; m22 = 200 

W32 = 0.2816; m.32 = 900 

W42 = 0.1006; ffi42 = 1600 

Six-component polymers 

Wu= 0.01; mu= 5 

W21 = 0.0553; m21 = 10 

W31 = 0.4408; m31 = 50 

W41 = 0.4407; ffi41 = 125 

Ws1 = 0.0482; ms1 = 400 

W61 = 0.005: ffi61 = 600 

W12 = 0.01; m12 = 50 

W22 = 0.2864; m22 = 75 

W32 = 0.3208; mn = 200 

W42 = 0.2868; ffi42 = 900 

Ws2 = 0.0911; ms2 = 1600 

W62 = 0.005: ffi62 = 2000 



Table 2 

Values of interaction parameters g0• and goh from cloud points 

for various distributions 

Set I: 

2 SZ functions (model system) 

Binary polymers 

Quaternary polymers (arbitrary) 

Quaternary polymers ('bell-shaped') 

Six-component polymers 

Sets I and II: 

Binary polymers 

Six-component polymers 

Set I and Spinodal: 

Binary polymers 

Six-component polymers 

Set I: 

single-component polymers 

single-component polymers (g1 -::;:. 0) 

g1 = -0.04193 + 14.993ff 

Sos 

0.05 

0.079091 

0.066503 

0.056757 

0.048979 

0.050833 

0.050050 

0.079557 

0.049188 

0.098038 

0.11132 

Table 3 

Interaction-parameter values for Fig. 7 

TJK Sos 

System 1 425 0.15506 

System 2 405 - 0.22839 

System 3 375 - 0.09333 

System 4 - 0 

System 5 - 0 

goi/K 

- 15 

- 26.033 

- 21.260 

- 17.555 

- 14.595 

- 15.043 

- 15.011 

- 26.238 

- 14.683 

-33.183 

- 38.372 

goi/K 

- 57.402 

100.60 

42.498 

0 

- 50 



__________________ U'.) 

~ 

u 
~ 
~ 

"<·· 

0 
00 -

0 
00 - 0 

"""'" -

0 
0 -

0 
0 -

-~ 
N 
00 
0 

0 
\0 

0 
\0 

o-s:; 

r- tr) 

N d -N 

0 

_____ "" ...... _..,_' 

\~ 

-~ 



140 

130 

120 

8 

6 

4 

2 

,.;· ... ·.· 
.·· 

Tl°C 

0 

w(m)x103 

1 10 

27/21 

fq-
W2 

~ : " . 

0.5 1 

W; 1 .8 

.6 

.4 

.2 

100 mormi 



N 

9-

tr) . 
0 

u 
~ 
~ 

0 

0 0 0 0 
tr) 0 tr) 0 
N N ~ -

~ 

~ 
!"I • - e-

• -........ 

• ........ 

' • ' "' '\ • \ 

........ \ tr) 
~ • \ . 

I 0 

• ? l-o-4 

• 
• 7 

u • / • / I 

~ 
_..,... - f' ~ 

0 
0 0 0 
tr) 0 tr) 0 
N N - 0 -



TJ°C 

~50 

~00 

50 

\ 

100 
----- ,,,,,. '----0--

0 

I 

/ 
/ 

/ 

0.5 1 

17r~-

420 

400 

380 

T/K 
1i;f 

400 

__\ ,7 t"'. y 
(399,;K) 

-~~-~ / ' ..... ;'/ 3 ,, 
/ I \ ' 

' I \ ' 

<p2 

0 0.5 1 


	University of Massachusetts Amherst
	From the SelectedWorks of William MacKnight
	1997

	Liquid-Liquid Phase Separation in Multicomponent Polymer Systems
	tmpPoex5A.pdf

