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Real-time wireless respiratory monitoring and biomarker analysis provide an attractive vision for noninvasive telemedicine such as
the timely prevention of respiratory arrest or for early diagnoses of chronic diseases. Lightweight, wearable respiratory sensors are
in high demand as they meet the requirement of portability in digital healthcare management. Meanwhile, high-performance
sensing material plays a crucial role for the precise sensing of specific markers in exhaled air, which represents a complex and
rather humid environment. Here, we present a liquid metal-based flexible electrode coupled with SnS2 nanomaterials as a
wearable gas-sensing device, with added Bluetooth capabilities for remote respiratory monitoring and diagnoses. The flexible
epidermal device exhibits superior skin compatibility and high responsiveness (1092%/ppm), ultralow detection limits (1.32
ppb), and a good selectivity of NO gas at ppb-level concentrations. Taking advantage of the fast recovery kinetics of SnS2
responding to H2O molecules, it is possible to accurately distinguish between different respiratory patterns based on the amount
of water vapor in the exhaled air. Furthermore, based on the different redox types of H2O and NO molecules, the electric signal
is reversed once the exhaled NO concentration exceeds a certain threshold that may indicate the onset of conditions like
asthma, thus providing an early warning system for potential lung diseases. Finally, by integrating the wearable device into a
wireless cloud-based multichannel interface, we provide a proof-of-concept that our device could be used for the simultaneous
remote monitoring of several patients with respiratory diseases, a crucial field in future digital healthcare management.

1. Introduction

Uninterrupted respiratory monitoring is critical in a clinical
setting to improve the survival rate of patients with potential
respiratory diseases. For instance, the widespread pandemic
caused by the SARS-CoV-2 virus (COVID-19) has emerged

as a major cause of respiratory failure [1–3]. Respiratory
arrest is one of the main symptoms of epilepsy (SUDEP),
brain injury, congestive heart, and failure and accounts for
a high mortality [4–6]. Considering the paroxysm, real-time
breath monitoring can greatly improve the survival of these
diseases. Besides, real-time breath composition analysis is
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an effective method for chronic disease detection. For exam-
ple, asthma is a chronic disease, and the symptoms of which
are similar to respiratory tract infection or inflammation.
The early treatment of asthma is often not timely or even
misdiagnosed without proper early diagnosis or disease
warning. The breath exhaled by humans is a complex mix-
ture of more than 3000 compounds, and the exhaled NO is
regarded as the main biomarker of asthma [7]. The early
warning of these gas biomarkers is of particular importance
for an early diagnosis of chronic diseases and can even be
used to establish a personalized therapy schedule and/or
guide daily healthcare management.

At present, respiratory monitoring sensors mainly rely on
detecting changes in the physical signal of the exhaled gas
flow, e.g., humidity, temperature, or pressure in the nose
and mouth. For example, WS2 film, which has an electro-
chemical affinity for humidity, has been integrated with
graphene electrodes and polydimethylsiloxane (PDMS) sub-
strate to form an electronic skin (e-skin) that is capable of
detecting respiration rates [8]. Furthermore, skin-like hybrid
integrated circuits have been built to capture temperature
changes in the inhaled and exhaled air [9]. A different study
developed a pressure sensor consisting of composite films
based on polyaniline hollow nanospheres integrated into face
masks where they could be used for respiration monitoring
[10]. Nanogenerators, such as pyroelectric nanogenerators
(PyNGs), alveolus-inspired membrane sensors (AIMSs), or
nanofiber-based triboelectric sensors (SNTSs), have been
developed to serve as self-powered breath analyzers
[11–15]. While these sensors typically focus on monitoring
the frequency and amplitude of respiration, they cannot
simultaneously analyze the exhaled air for biomarkers. The
detection of gas biomarkers depends on specific techniques
or instrumentation such as electrochemistry, surface-
enhanced Raman scattering (SERS), chemiluminescence, col-
orimetric sensor, and infrared sensor [16–19]. For example,
Il-Doo Kim group fabricated colorimetric dye-loaded nanofi-
ber yarn which is sensitive to ppm-level H2S and NH3 bio-
markers [15]. Zhou et al. utilized a mid-infrared hollow
waveguide gas sensor to realize real-time measuring of CO2
isotopes [20]. Chen et al. developed a breath analysis
approach based on SERS sensor to detect fourteen volatile
organic compound (VOC) biomarkers [16]. In this context,
the aforementioned physical factors of humidity, tempera-
ture, and pressure changes in the exhaled gas are regarded
as mere interference factors which must be controlled or even
eliminated to ensure an accurate analysis of the exhaled
biomarkers. A device capable of real-time respiratory moni-
toring and simultaneous biomarker analysis would be highly
desirable although its implementation faces some consider-
able challenges.

Real-time respiratory monitoring requires suitable gas
sensing devices that should be lightweight and thus wearable
to minimize any adverse effect on daily life activities [21, 22].
While the biomarker sensing material should be immune to
interference from other gases and high levels of humidity
(typically, exhaled air has >80% relative humidity), it should
be highly sensitive to the target biomarker gas [23]. In this
article, we report the fabrication of a wireless healthcare

device based on a liquid metal (LM) electrode that is
integrated with SnS2 gas sensing material to facilitate the
uninterrupted remote monitoring of respiration while simul-
taneously providing the highly sensitive detection of certain
breath biomarkers. An eutectic GaIn alloy-based LM with a
low melting point delivers liquidus fluidity and metallic
conductivity at room temperature, allowing for more flexible
and reconfigurable electronics [16]. It is recognized as low
toxicity, biosafety material both in vitro and in vivo, and its
environmental friendliness is reported with high recycle
efficiency [24–27]. By integrating the LM-based conductive
pattern with ultrathin PET film, we fabricate an epidermal
device that can be easily attached to the philtrum. Here,
“epidermal” means that the sensor can be attached to the
skin, but not detecting the gas emitted by the skin. The
obtained device is skin compatible and compressible, while
maintaining excellent conductivity. For the first time, rather
than using metal oxide, we employed SnS2 two-dimensional
(2D) nanosheets as NO sensing material, with NO being a
noninvasive biomarker for many diseases such as anaphylac-
tic purpura (AP), asthma, and myocarditis [28, 29]. Our
device exhibits a superior response (197% at 200 ppb) and
ultralow detection limit (1.32 ppb) for NO gas at room
temperature. Moreover, the sensor exhibits an impressive
selectivity against various exhaled biomarkers such as NH3,
CH4, H2, ethanol, and acetone, while showing a remarkable
resistance to interference by other gases. First-principle cal-
culations based on density functional theory (DFT) suggest
that the outstanding sensing performance can be attributed
to the high adsorption energy, charge transfer, and the varia-
tion of the 2D SnS2 lamellar molecular structure. In addition,
SnS2 nanomaterial interacts with the water vapor in the
exhaled gas, which in turn allows for more accurate identifi-
cations of the respiratory state. Due to the different redox
types of the H2O and NO molecules, the resistance stops
from decreasing and starts to increase once the NO concen-
tration exceeds around 58 ppb. This feature provides the
device with the additional capacity to provide an early
warning for lung disease. By equipping our device with Blue-
tooth functionality and cloud-based signal analysis, we
provide a proof-of-concept for the multichannel real-time
telemonitoring of the respiratory state, which holds great
potential both in clinical applications and for remote health-
care management.

2. Results and Discussion

2.1. Fabrication of Epidermal LM Electrodes. The flexible
epidermal electrode is fabricated by integrating an LM
nanoink-based conductive pattern onto a flexible PET film
(Figure 1(a)). Firstly, the eutectic gallium-indium (EGaIn)
alloy (melting point at 15°C) is dispersed into nanoparticles
(average size 636:9 ± 6:4nm) (Figure 1(b) and Figure S1) by
probe sonication assisted by polyvinyl pyrrolidone (PVP) as
surfactant. After filtrating the EGaIn nanoparticles onto
filter paper where they form a uniform film, they are
mechanically sintered to restore their electric conductivity
[30]. This destroys the oxide shell of the LM nanoparticle,
and the conductive LM cores are fused together forming a
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flat film (Figure 1(c)). The sintering reduced the resistivity by
nine orders of magnitude to 2:74 × 10−5Ωm, a value that is
comparable to common alloys and carbon materials
(Figure 1(d)) [31–33]. The conductive film is finally laser
patterned into electrodes as required and transferred onto
transparent ultrathin polyethylene terephthalate (PET) film
(0.02mm) to yield a flexible LM-based electrode for
integration into the gas sensor (Figure 1(e)).

To examine how the conductivity of the LM-based elec-
trode varies when exposed to simulated human movement,
we bent the electrode from 0° to 180° which resulted in only
small changes in electrical resistance of less than 0.5%
(Figure 1(f)). We then attached the wire onto the skin of an
arm. When attached to human skin, the electrode main-
tained good conductivity even when bent of compressed
(Figure 1(g)). We further measured the resistance change of
the liquid metal electrode accurately. The relative change of
resistance is only 0.17% (Figure S2). The stable conductivity
gives the credit to the high fluidity of liquid metal, which
avoid cracks when the circuit deforms. Besides, there is no
obvious change for the conductivity of the LM electrode in
15 days (Figure S3), owing to the protection of the dense

gallium oxide “skin” on the surface. To further explore its
utility in wearable applications for respiratory gas sensing,
the as-prepared epidermal electrode was attached to human
skin where it showed good resilience to physical straining
and maintained good adhesion (Figure 1(h)) which is
promising for possible future applications as a wearable gas
sensor.

2.2. Synthesis of SnS2 and Gas Sensing Performance. SnS2 is a
relatively abundant and environmentally friendly semicon-
ductor material with a wide bandgap of 2.1 eV [33–35]. It
has been reported to be a highly sensitive gas sensing material
capable of detecting NO2 and NH3 at ppb-level concentra-
tions [36–38]. Here, for the first time, we explore the capabil-
ities of SnS2 for sensing NO molecules. The SnS2 gas sensing
material was synthesized using a slightly modified version of
a previously reported hydrothermal method (Figure 2(a))
[39]. SnO3

2- and L-cysteine were chosen as source mate-
rials for Sn and S, respectively. The microstructure of the
obtained SnS2 nanomaterials was drop-cast onto a sub-
strate (Figure 2(b)) resulting in randomly overlapping hex-
agonal layers (Figure 2(c)). We measured the lattice fringe
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Figure 1: Fabrication of an LM-based epidermal electrode and characterization of its electrical properties. (a) Schematic of the
fabrication process. (b) PVP stabilized LM nanoparticles suspended in ethanol. (c) SEM image of LM before and after mechanical
sintering. (d) Electrical conductivity before and after mechanical sintering. (e) Photograph of the ultrathin electrode. (f) Change in
conductivity during two consecutive bending processes from 0° to 180°. (g) If compressed by human skin, the LM wire maintains
good conductivity and skin compatibility. (h) Flexibility and adaptability of the LM electrode to the human skin.
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spacing as 0.315 nm on both the (100) and (010) lattice
planes of hexagonal SnS2. Interaxial angles were consis-
tently 120° (Figure 2(c), inset) [40]. The fast Fourier trans-
form pattern of this region can be indexed to 2H-SnS2
along the (100) and (110) zone axes (Figure 2(d)) [41].
The crystal phase was identified using X-ray diffraction
(XRD) (Figure 2(e)). The observed diffraction peaks are
in agreement with the hexagonal 2H SnS2 structure (ICDD
23-0677). This structure belongs to the P3m1 space group
where three atoms extend over only one monolayer in a
unit cell [37]. These characterizations prove the successful
fabrication of the SnS2 2D nanomaterials.

The 2D nanomaterials of the as-prepared SnS2 were
drop-cast onto the LM electrodes. Figure 3(a) illustrates the
I–V curves of the integrated gas sensing device. Due to the
higher work function, a commercially available Ag/Pd
electrode-based device displayed rectifying characteristics,
forming Schottky junctions between metallic electrodes and
the sensing material [35]. This potential barrier could hinder
the flow of charge carriers and thereby affect sensing perfor-
mance [42]. In contrast, our epidermal LM-based device
exhibited linear characteristics, indicating ohmic contact
between the sensing material and the electrode. The band
energy diagram is shown in Figure S4. The work function
of SnS2 and EGIA is reported to be 5.1 eV and 4.1-4.2 eV,
respectively [40, 43]. Since the work function of EGIA is
higher than that of SnS2, ohmic contact is forming. As a
result, our LM electrode would not affect the sensing
behavior of SnS2.

To examine the ability of the LM electrode to sense NO,
we fabricated a gas-testing platform using a homemade
chamber (Scheme S1). To mimic the actual human

respiratory environment, we chose air as background vapor
and performed all experiments at room temperature. The
target gas concentration was controlled by injecting certain
volumes of NO gas into the chamber using high-precision
syringes. The sensors ability to detect any change in NO
concentration was estimated by measuring changes in the
resistance of the sensing material prior (R0) and after (Rg)
having injected the target gas. We defined the sensitivity as
ðRg − R0Þ/R0 and the response time as the time required
to reach 90% of the full sensitivity. As an n-type
semiconductor, SnS2 could potentially adsorb NO gas and
electrons could then transfer from SnS2 layers to NO
molecules (forming NO-) based on the charge transfer
mechanism [44]. Thus the charge concentration of SnS2
would decrease while the resistance dramatically increases.
Figure 3(b) shows the dynamic performance of the device
responding to ppb-level concentrations of NO gas that
increased from 15ppb to 200 ppb, thus covering the typical
range of human-exhaled NO concentrations. The device
exhibited a 197% sensitivity to 200 ppb with a response
time of 223 s and easily recovered its initial resistance once
we had stopped injecting NO. In contrast to most other NO
sensors, our LM-based electrode performed rather well at
low concentrations and could detect NO levels as low as
15 ppb with a sensitivity of 8.7% [45–54]. The sensitivity
of our sensor exhibits a strong linear correlation with the
gas concentration (Figure 3(c), R2 = 0:95). The limit of
detection (LOD) is usually defined as the target gas
concentration at which the sensor is still capable to produce
a signal that is three time higher than the sensor’s noise
level. The LOD of our device was determined as 1.32 ppb.
When comparing the sensitivity, experimental LOD, and
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Figure 2: Synthesis and characterization of SnS2 2D nanomaterial in gas sensing applications. (a) Schematic illustration of the hydrothermal
synthesis of SnS2 and subsequent fabrication of the gas sensor using the drop-casting method. (b) SEM image of stacked SnS2 2D nanolayers.
(c) TEM image and HRTEM image (inset) of the hexagonal structure of an SnS2 single nanolayer. (d) Fast Fourier transform (FFT) pattern of
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operating temperature of our epidermal device to other NO
sensors that had been reported in the literature (Table S1),
we found that our sensor outperforms other NO sensors
in terms of sensitivity, i.e., detecting lower ppb-level
concentrations with higher sensitivity, a lower detection
limit, and—more importantly—its good performance at
room temperature which is a crucial requirement for NO
gas detection in most respiratory applications.

Selectivity is crucial for avoiding false alarms that can be
caused by other interfering gases, especially in the monitor-
ing of human exhaled breath which is composed of a variety
of gas mixtures. Five other commonly exhaled gas molecules
are selected to test the selectivity of the device: H2 (biomarker
of pancreatic diseases), CH4 (biomarker of gut diseases), NH3
(biomarker of oral, renal, and liver diseases), and volatile
organic compounds (VOCs) such as ethanol (main compo-
nent of wine which can be exhaled after drinking) and
acetone (biomarker of diabetes mellitus) [7]. The concentra-
tion of H2, CH4, NH3, and NO is controlled at their clinically
relevant concentrations: 20 ppm, 11.4 ppm, 820 ppb, and
25 ppb, respectively [7, 55, 56]. And the concentration of
VOC is 100 ppm (much higher than exhaled concentration

of healthy people) [57]. Compared with the response to
NO, each of these tested interfering gases yielded a negligible
sensing response (Figure 3(d)). In order to better simulate the
situation of multiple exhaled gases detection, another exper-
iment was carried out by injecting one of these five interfer-
ing gases along with NO, but at higher concentrations.
While NO was maintained at 50 ppb, each of H2, CH4, and
NH3 was injected to yield 500 ppb, while VOC was injected
to yield 100 ppm. Thus, although the interfering gas concen-
tration was between one and ten orders of magnitude higher
than that of NO, the response to NO remained relatively con-
stant at around 70% with only minor variations (Figure 3(e)).
This indicates that our sensor is capable to accurately identify
and measure the concentration of NO gas and is relatively
immune to the presence of other interfering gas biomarkers.

Water vapor (H2O) is one of the main components of
human exhalation, and the relative humidity in exhaled gas
is around 85% [7], i.e., the concentration of water vapor is
much higher than the concentration of common gas bio-
markers (generally of the order of ppm). Unlike N2 which
is present at high concentrations in exhaled breath and that
possess a stable electronic structure, H2O molecules easily
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Figure 3: NO gas sensing performance of the LM@SnS2-based sensor. (a) Comparing the voltammetric curves of our SnS2@LM electrode and
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become ionized to H2O
+. If the electrons from the ionization

of water vapor are passed on to SnS2, the resistance of SnS2
would change. In order to assess the impact of this process
on the resistance of our electrode, we exposed our proto-
types to high relative humidities of 70% to 90%
(Figure S5). The resistance of electron-doped SnS2 was
indeed reduced, showing an opposite electronic signal
response compared to NO. Since the sensor response is
correlated to H2O concentration, water vapor can act as
a marker of respiration state. We also tested whether the
sensor response to NO differed for different relative
humidities (Figure 3(f)). We found that even when the
relative humidity was increased to 90%, there was only a
minor decrease in sensor sensitivity (<10%) for NO
concentrations of 200 ppb. Higher relative humidities also
decreased the response time by 19.2%, which may be due to
the fact that the ionized form of SnS2 is more abundant at
higher humidities and can therefore provide its additional
electron to the adsorbed NO molecules. Thus, while the
detection of NO by our gas sensor would not be affected by
the amount of exhaled water vapor, the amount of vapor
can be used to identify the respiratory state, which endows
the devices with an additional functionality in respiratory
monitoring.

O2 and CO2 are the two main gases which are inhaled or
exhaled by the human body, respectively. As shown in
Figures S6 and S7, we investigate the influence of the
concentration change of the two gases on the sensing
response. The response to 5% concentration of O2 is lower
than 7.5% (Figure S6), much lower than the response to
25 ppb of NO (21.6%). Therefore, the change of oxygen
concentration has little effect on the sensing performance.
The response to 4% concentration of CO2 is about 62%
(Figure S7). Since both NO and CO2 are oxidizing gases,
the contribution from CO2 would decrease the threshold
for the alarm function of NO sensing (details are discussed
in cloud-based remote breath monitoring and diagnosis
section). We also calculated the adsorption parameters of
SnS2 layer to CO molecule to evaluate the sensing response
to CO biomarker. The adsorption energy and charge
transfer are far less than that to NO and H2O; thus, we can
infer that the sensor is not sensitive to CO (Figures S8
and S9).

Considering the temperature difference of ambient
environment and body temperature, we further tested the
temperature effect on the sensing signal (Figure S10). The
relative resistance variation of the sensor is only 1.997%
when changing temperature from 24.5°C to 34.3°C,
indicating that the temperature change caused by
respiration has negligible effect on the performance of the
sensor. Besides, like all wearable devices, epidermal sensors
often need to operate under conditions of physical strain
(e.g., being bent when adapting to the deformation of the
skin as the person moves). As mechanical deformations
can potentially increase the contact area between SnS2
nanosheets and NO molecules, the sensor sensitivity can
increase by up to 10% when being bent (Figure 3(h)).
Furthermore, while mechanical strain can decrease the
amount of overlap between the different SnS2 layers and

thereby increase the sensor noise (manifested as increasing
jitter in Figure 3(h)) as the bending angle is increased, the
sensor still maintains a high signal-to-noise ratio for all
tested angles.

Considering the photosensitivity of the SnS2 nanomater-
ial, we investigated the capacity of the epidermal sensor for
photoelectric sensing [58, 59]. The band gas of the SnS2 layer
was confirmed to be 2.4 eV by UV-vis spectra (Figure S11).
Detailed results and a discussion can be found in the
supplementary information (Figures S5-S8). In short, our
device produced a significant photocurrent (Ip) in response
to blue (450 nm), green (532 nm), and red (650 nm) light
with blue light triggering the largest response (Figure S12).
The photocurrent was highly correlated to the power
density, P, as Ip = 143:55 × P0:51 (R2 = 0:9906) (Figures S13
and S14). Previous studies have found that photocurrents
can affect the gas sensing performance [40, 60]. We
therefore examined the effect of photo-generated currents
on the gas sensing behavior of our sensor to 200 ppb of NO
gas under different illumination conditions. Red light with
an intensity of 3mW/cm2 boosted the sensitivity by a factor
2.14 compared to dark conditions (Figure S15). We expect
that future designs of the sensor could include a remote
light control mechanism to achieve on-demand regulation
of the sensor’s performance.

2.3. Theoretical Models of Gas Sensing Behavior. To elucidate
the underlying mechanisms behind the good gas sensing
performance of our LM-SnS2 sensor, we performed some
numerical simulations of the molecule-surface binding
energy, charge transfer, and adsorption distance employing
density functional theory (DFT). The adsorption energy
was calculated from Eads ½SnS2 + gas� = E½compound� −
E½SnS2� − E½gas�, where E½compound� is the total energy of
the sensor supercell and the target gas molecule after adsorp-
tion, E½SnS2� is the total energy of the SnS2 layer, and E½gas� is
the energy of the adsorbed target gas molecule.

Figure 4(a) shows the model of SnS2 adsorbing NO and
the aforementioned interfering gases. The distance between
the target gas molecules and the SnS2 surface ranges from
2.14 to 3.01Å which is within the typical range for physi-
sorption (Figure S16) [37]. The sensitivity of this process
depends on the total charge transfer from the target gas
to SnS2 that leads to the change in resistance. A key
factor is the binding strength that determines the number
of adsorbed molecules. The two highest binding energies
were calculated for NO and H2O, which demonstrates their
strong binding strength to the SnS2 surface relative to the
other interfering gases (Figure 4(b)). The charge transfer
between individual molecules is another key factor to
explain the high sensitivity of the sensor. A Mulliken
population analysis demonstrates how NO has a much
higher charge density (0.103 e-) compared to the interfering
gases (Figure 4(c)). This may be due to a more favorable
Fermi energy of the SnS2 layers and the only partially
occupied molecular orbitals of NO [37]. Furthermore, for
respiratory monitoring applications, the sensors need to be
able to complete the response and recovery during a single
breathing cycle, i.e., the adsorption speed of the target gas
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at room temperature is a critical parameter. Our sensor was
capable of much faster recovery kinetics for NO and H2O
compared to reported values for other physisorption-based

sensors (e.g., graphene, MoS2) [61, 62]. An adsorption
distance greater than 2Å facilitates desorption during
thermal vibrations or gas flow disturbance. This effect
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together with the strong physical affinity of NO gas to SnS2
ensures the fast reaction and recovery kinetics of SnS2
layers for NO sensing even at room temperature.

Although the charge transfer for individual H2O mole-
cule is low, the fact that the concentration of H2O in human
breath is several orders of magnitude higher than the concen-
tration of other biomarker gases means that H2O vapor can
significantly affect the resistance of SnS2. Figure 4(d) shows
the difference in charge density between NO and H2O
adsorption on SnS2. As the charge transfer occurs in
opposite directions, this produces opposite electrical sig-
nals in SnS2 (Figure 3(b)). These differing responses of
SnS2 to the presence of H2O and NO enable the sensor
to perform respiratory monitoring and disease warning
simultaneously. That is, the resistance of SnS2 is reduced
when in contact with water vapor and increased with
increasing NO concentration.

The strong affinity of SnS2 for NO gas is also shown by
the distortion of the molecular structure of SnS2 after gas
adsorption. NO adsorption induced a deformation of the
sandwiched structure of SnS2 layers. The Raman peaks have
shifted after exposure to NO gas (Figure 4(e)). The A1g
(located at 312 cm-1) and Eg peaks (located at 232 cm-1) cor-
respond to the vertical and horizontal plane vibrational
modes of the Sn-S bonds, respectively [37]. As there was no
other peak present after gas adsorption, this confirms the
physisorption process. NO adsorption led to a significant
increase in the intensity of the A1gmode and a slight decrease
in the Eg mode, which in turn led to an increase in the inten-
sity ratio IðA1g/EgÞ from 9.04 to 17.72 (Figure 4(f)). This
behavior corresponds to the SnS2 layers elongating in the
vertical and compressing in the horizontal direction, with
the vertical elongation being greater than the horizontal
compression. This behavior is confirmed by our calculations
regarding the deformations along the X- and Z-axes
(Figure 4(g)). We also calculated the changes in position of
sulfur atoms at seven different sites, with NO adsorption
occurring at the site labeled 3 (Figure 4(h)). As a result of
NO adsorption, this third sulfur atom exhibited the greatest
displacement in both X- and Z-directions, proving the struc-
tural change of the SnS2 layers (Figures 4(i) and 4(j)).

2.4. Cloud-Based Remote Breath Monitoring and Diagnosis.
To test the ability of our epidermal sensor to monitor the
human respiratory activity, we recorded several breath pat-
terns (Figure 5(a)). In healthy people, the resistance of the
SnS2 on the electrode is reduced due to the humidity in the
exhaled air. Clearly, the different periodicities and ampli-
tudes in the electrical signal mirror the person’s respiratory
patterns for different levels of activity, and we could distin-
guish between normal, rapid, and deep breathing and even
identify when a person was holding their breath. These
respiratory patterns cover nearly all breathing situations
occurring in everyday life like resting, exercising, and even
emergency situations like respiratory arrest. In addition, as
out sensor simultaneously responds to the level of relative
humidity and the concentration of NO gas, the device can
be used for asthma patients. To simulate this, we simulta-
neously injected water vapor and NO gas into the test cham-

ber, raising the relative humidity of the chamber from 60%
(ambient level) to 85% (level in exhaled air) while varying
the concentration of NO gas from 0ppb to 200 ppb, to
represent different severity levels of asthma. For NO concen-
trations <50 ppb, the sensitivity of the sensor is negative
(Figure 5(b)) and the simulated waveform is consistent with
the measured waveform from Figure 5(a). Once the NO
concentration reached 75 ppb, the sensitivity changed from
negative to positive, indicating the shift of SnS2 from an
electron-doped to a hole-doped state. This change in sensitiv-
ity allows potential separation into healthy and unhealthy
regions, which may be useful in a telediagnostic setting
(Figure 5(c)). The reversal from negative to positive sensitiv-
ity occurs at an NO concentration of 58 ppb. In addition, the
exhaled CO2 may also influence dope state of the SnS2. Since
both CO2 and NO are oxidizing gases which would change
the SnS2 from electron-doped to a hole-doped state. Thus,
in practical uses, considering the effect of CO2, the reversal
concentration of NO will be lower than 58ppb which is
closer to the clinical warning level. However, in the real
breath monitoring process (Figure 5(a)), we did not observe
the reverse of the signal with the presence of exhaled H2O
and CO2, which further shows that the NO sensing function
would not be affected by the presence of these two gases. In
future clinical test with healthy people and typical patients,
careful calibration should be carried out in order to eliminate
the interference from these gases and fully satisfy the clinical
use. The fractional exhaled nitric oxide (FeNO) concentra-
tion in healthy people typically ranges from 6.7 to 51.1 ppb
and can increase to several hundred ppb in patients suffering
from asthma [28, 63]. The upper limit of the healthy range
(51.1 ppb) is close to the concentration at which the sensitiv-
ity changes sign (58 ppb). For practical applications, this
means when the sensor is exposed to exhaled gas from people
with a lung disease like asthma, the signal is reversed which
allows the device to function as an early warning system for
certain types of lung disease.

As a long-term and real-time monitoring device, it is
important to minimize any adverse effects on a person’s nor-
mal daily activities. Wireless capabilities can expand the
activity range of people subject to health monitoring using
wearable devices. As a proof-of-concept, we developed a
graphical user interface for the communication between our
device and a laptop or phone, allowing data transmission
in real-time for continuous breath monitoring and poten-
tial diagnostic and treatment decisions by a clinician
(Figure 5(d)). This is illustrated with a block diagram in
Figure 5(e) (for the detailed design, see Figure S17). The
Microcontroller Unit (MCU) was 32-bit 8-pin packaged,
used to design the prototype of the data processing
system. The output voltage of the SnS2-based gas sensor
was processed (analog filter) and amplified by an Op amp
before being transmitted to a PC/phone via Bluetooth (HJ-
131MH) at a rate of 460,800 Baud. The electronic device is
powered by lithium batteries mounted on the back of the
chip which greatly minimizes the size of the device (shown
in Figure S18). The lithium battery is 1.5V, and the model
is CR1220.The real-time data is acquired via a custom-built
application at the frequency of 250Hz. The device weighs
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less than 11 g and is easy to wear. The epidermal sensing part
can be directly attached to the philtrum while the processing
unit can be worn around the neck (Figure 5(f)). The
complete concept of the wireless communication and
cloud-based processing is shown in Figures 5(g) and 5(h).
We tested the device on a volunteer (Movie S1) and is
showing an example output of eight complete breath cycles
in Figure 5(g).

Hospitals with outpatients are one potential scenario for
a possible application of the device. The multichannel moni-
toring interface is convenient for doctors to quickly obtain
access to the respiratory status of all their patients. Asthma
and respiratory arrest could trigger an automated alert. The
patients’ respiratory rate and amplitude can be analyzed in
real time from the dynamic waveform. The cloud-based
design facilitates applications in modern medical Internet
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of Things (IoT) systems providing high degrees of accessibil-
ity, immediacy, and accuracy.

3. Conclusions

We have proposed a wireless wearable respiratory monitor-
ing and diagnosis device with a design based on a liquid
metal (LM) flexible electrode coupled to 2D SnS2 gas sensing
nanomaterial. The deformability of LM provides the
wearable sensor with excellent skin compatibility. The SnS2
sensing material exhibited a rapid response to changes in
NO concentration capable of detecting changes at the ppb
level. In addition, the material demonstrated a high selectiv-
ity and outstanding sensitivity, even when mechanically
strained (being bent to simulate movement by the wearer)
and in the presence of high levels of relative humidity (char-
acteristic of exhaled human breath). We propose that the
adsorption mechanism is governed by the combined effects
of high adsorption energy, charge transfer, and changes in
the two-dimensional SnS2 lamellar molecular structure. In
addition, we integrated a Bluetooth terminal with the wear-
able sensor, which allows the real-time transmission to the
wearer’s phone or PC and from there to the supervising clini-
cian. The device is lightweight (less than 11 g) and has a neg-
ligible impact on daily activities. Through the cloud-based
multichannel interface, the device can be used for real-time
remote respiration monitoring and direct disease warning
with great benefits to telemedicine applications allowing
clinicians to simultaneously monitor several patients. The
presented respiratory monitoring system holds much prom-
ise and can serve as a smart device for remote respiratory
monitoring and diagnosis.

4. Materials and Methods

4.1. LM Electrode Fabrication. EGaIn (300mg) and PVP
(100mg) were added into 10ml ethanol; then, the mixture
was sonicated by Ultrasonic Homogenizer (JY92-IIDN) with
the power output setting to 50% (300W) for 30min. The
temperature of the sample was controlled by using a cold-
water bath in case of overheated. The gray liquid metal
dispersion was then filtrated onto an organic filter mem-
brane, followed by a mechanical sintering process using a
metal roller. A laser of 355nm (power: 35W) was utilized
to cut the membrane into the electrode shape. And the elec-
trode was pasted to a PET film with thickness of 0.02mm.

4.2. SnS2-Based Gas Sensor Fabrication. L-Cysteine (0.500 g
and 4.0mmol) and K2SnO3·3H2O (0.300 g and 1.0mmol)
were dissolved in 40mL DI water. After stirring for 30min,
the mixture was transferred into a 50mL Teflon-lined stain-
less steel autoclave and was heated to 200°C for 24h. When
cooling down to room temperature, the product was centri-
fuged with DI water for several times then vacuum dried at
60°C for 24 h. Finally, the yellowish brown powder was col-
lected and dispersed in ethanol with the concentration of
20mg/ml by ultrasonicator for 10min. The sensing material
was then drop-casted onto the LM electrode for further use.

4.3. Material Characterization. The morphology of the SnS2
was observed by scanning electron microscopy (SEM;
HELIOS NanoLab 600i) and transmission electron micros-
copy (TEM; Tecnai G2 F30). The crystal structure was
confirmed by X-ray diffractometer (XRD; Philips X’pert).
The Raman spectrum was obtained by Via-Reflex under
room temperature with excitation wavelength of 532 nm.
UV-vis absorption spectrumwas measured using PE Lambda
950. The morphology of LM nanoparticle was observed by
SEM (Phenom Scientific).

4.4. Gas Sensing and Optoelectronic Performance. The
resistance of the sensor was recorded by a multimeter. The
homemade chamber for simulating the real breath environ-
ment was made with a transparent acrylic board, and the vol-
ume was 8 L (20 cm × 20 cm × 20 cm). The air was acted as
the background gas, and the concentration of target gas was
controlled by injection certain volume of high concentration
gas into the chamber by a high precision syringe. A ceramic
heater (3 cm × 3 cm) was placed in the chamber, and the
RH was controlled by evaporating a certain amount of water
by the heater. For the investigation of the optoelectronic and
light sensitivity performance, the lasers of different wave-
lengths and power densities, which were bought from
Yunxiang Co., Ltd., were vertically irradiated through trans-
parent acrylic plate right onto the sensing material. The tests
of the epidermal electrodes and wearable sensors on human
skin were approved by all participants and Ethics Board of
Shenzhen Institutes of Advanced Technology (approval
number: SIAT-IRB-170320-YGS-HJP-A0340).

4.5. Theoretical Calculations. All the calculation was per-
formed by the package DMol3 in the Material Studio
software. The Local Density Approximate (LDA) with
Perdew-Wang (PWC) function was chosen for structural
relaxations and total energy calculation. A 4 × 4 × 1 supercell
was built, and 2 × 2 × 1Γ centered Monkhorst–Pack grid for
the Brillouin zone sampling was operated, which gave the
converged results of all properties. A 15Å vacuum region
was added, which was large enough to weaken the effects of
the periodic images. The convergence threshold of the
maximum energy changes was 1:0 × 10−5Ha/per atom, the
maximum force was 0.002Ha/Å, and the maximum
displacement was 0.005Å.
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