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LIQUID METAL FLOW IN A LARGE-RADIUS ELBOW
WITH A UNIFORM MAGNETIC FIELD

T. J. Moon and J. S. Walker

ABSTRACT

This paper treats the liquid-metal flow in an elbow between two straight, rectangular

ducts. There is a uniform magnetic field in the plane of the elbow. The duct has thin,

electrically conducting walls. The Hartmann number and the interaction parameter are

assumed to be large, while the magnetic Reynolds number is assumed to be small.

Solutions for the velocity at each cross section of the elbow and for the pressure drop

due to three-dimensional effects are presented.
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1. INTRODUCTION

Since 1967, a series of papers have presented asymptotic solutions for
three-dimensional liquid-metal duct flows in strong magnetic fields. Many of the
pre-1984 papers are discussed by Walker ' '. The present paper represents an extension
of this literature in two ways: (1) elimination of the assumption of symmetry about a
plane perpendicular to the magnetic field and (2) a more physically realistic asymptotic
analysis for flows in ducts with thin metal walls.

Here we treat the flow in an elbow lying in the plane of a uniform magnetic field,
B y where y is a unit vector. The rectangular duct has one pair of plane, parallel walls
(sides) at z = ± 1, whsre (x,y,z) are the cartesian coordinates normalized by L, which is
half the distance between the sides. The other pair of walls (top and bottom) are: (1)
plane and perpendicular to the magnetic field at y = 0, and y = a, for x < 0, (2) arcs of
concentric cylinders with centers at x = 0, y = RQ| and with dimensionless radii = RQ and
RQ -a, for 0 < x < RQ sin 6g, and (3) plane and at an angle (90° - ee) to the magnetic field
for x > R sin eg. The flow in this duct is not symmetric about any y = constant plane.
Walker ' ' presents an asymptotic analysis for the corresponding symmetric problem, i.e.,
for the same uniform magnetic field and for the same plane, parallel sides, but for
symmetrically diverging or converging top and bottom at y = ± f (x). The present analysis
assumes a symmetry about the z = 0 plane for computational convenience. Walker *• ' *

has eliminated the assumption of symmetry about a plane parallel to the magnetic field
for circular pipes and rectangular ducts, respectively.

In addition to the elimination of the symmetry assumption, the result for the
present elbow have practical implications for the design of liquid-lithium-cooled
"blankets" for magnetic confinement fusion reactors. Several proposed designs *• '

involve elbows from straight ducts which are nearly perpendicular to the local magnetic
field to straight ducts which are nearly parallel to it. For a toroidal fusion reactor
(tokamak), a poloidal-toroidal elbow corresponds approximately to 8. = 85°, since the
strength of the poloidal magnetic field is roughly one-tenth that of the toroidal field.

For liquid metal MHD duct flows, an important parameter is the wall conductance
ratio, c = owt/aL, where t is the thickness of the duct walls, and aw and o are the
electrical conductivities of the walls and liquid metal, respectively. The value of c is
small for many practical applications. For liquid lithium fusion blankets with thin
stainless steel walls, the range of c is 0.01 to 0.1. Until recently, asymptotic solutions



for small c were considered appropriate for these applications. These solutions involve
asymptotic expansions in powers of c and predict certain characteristic surfaces
which are parallel to the magnetic field lines ' \ They also predict that v = O(c ' v.. )

1 /2

and j = O(c j . . ) , where v and j are the velocity and electric current density, and the
subscripts and ,. denote the components perpendicular and parallel to the characteristic
surfaces. To leading order, the flow and electric current must follow the characteristic
surfaces. For the present elbow for O< x < RQ sin eg, the asymptotic solution for small c
predicts that the total flow is carried by high-velocity sheet jets in the thin viscous
layers adjacent to the sides and that the rest of the fluid in the elbow is essentially

1/2

stagnant. The dimensionless velocity in the side layers is O(M ' ), and the side layer
thickness is O(M~1//2), where M = BoL(o/pv)l/ is the Hartmann number, while p and v are
the liquid metal's density and kinematic viscosity. For a typical fusion blanket,
M = 10** - 10 . The velocity outside the side layers is O(c ), which is considered
negligible in this small c asymptotic solution.

Results of recent experiments at Argonne National Laboratory for a different
three-dimensional flow in a rectangular duct with M - 6 x 10 and c = 0.07 differ
radically from the predictions of the asymptotic analysis for small c. In the
three-dimensional flow region of these experiments, the velocity near the sides increases
and that near the centerline decreases, but the flow is far from the predicted stagnant
core with all the flow in high-velocity side-layer jets. In retrospect, the fault of the
small c asymptotic analyses and their characteristic surfaces is evident. The ratios
j . / j i , and v /v.| are actually proportional to x,c , where x, is the first eigenvalue for
a set of equations which depend on the duct geometry. Typical vaiues for X, are 10.64
for a circular duct' ' and 2.25 for a square duct, (for a square duct with the same wall
conductance ratio, c << 1, on all four walls, transcendental equation is tan (2 An) = 2 xn

and first eigenvalue is Aj = 2.24671 {Abramowitz & Stegun, p. 224}), so that x, c is
comparable to one, even for c = 0.01. Therefore j.and v are always comparable to j . . and
v.. , respectively, so that the flow and electric current are not constrained to follow the
characteristic surfaces predicted by the small asymptotic analyses.

There are two ways to obtain more realistic predictions for three-dimensional MHD
duct flows with strong magnetic fields and with c = 0.01-0.1. The first way is to discard
the asymptotic analysis for small c entirely and to treat c as an O(l) parameter. This
approach leads to coupled partial differential equations which generally require
numerical analysis' . This arbitrary c approach is necessary for small radius elbows,



e.g., Ro = a, and a future paper will present numerical results for sharp, right-angle

elbows.

The second way to obtain more realistic predictions involves an improved small c
asymptotic analysis for flows with relatively weak three-dimensional effects. In many
important applications, the transition in geometry and/or magnetic field strength which
is responsible for the three-dimensional disturbance occurs over a duct length LOQ which
is much larger than L. For such gradual transitions,

is an important parameter. In an asymptotic solution for small c, with the constraint
1/2

that y = 0(1), i.e., that L^p = Y c ' L >> L, there are no characteristic surfaces guiding
the flow and current, and there are no large stagnant regions. The error in this improved
asymptotic treatment of weak three-dimensional effects is comparable to XjC ' L/LgD,
which is small if L^^/L is large.

This improved small c approach has been applied to a straight duct with a
non-uniform transverse magnetic field whose strength changes from BQ to aBQ over a
duct length of L^Q • In recent experiments at Argonne National Laboratory, velocities,
pressures and electric potentials were measured in a straight, rectangular duct with c =
0.07 near the end of a magnet, i.e., for a = 0. Taking L3D to be the axial duct length for
the magnetic field strength to change from 0.9BQ to 0.1BQ, L3D = 6.2L and y = 1.64 for
these experiments. For this end-of-magnet problem, we could expect an error in the

1 /2

improved small c approach equal to X̂ c L/L^Q = 9.5%. The experimental results and
the predictions from both the arbitrary c numerical analysis and the improved small c
asymptotic analysis will be presented in a future paper.

The present paper applies the improved small c approach with O(l) Y to elbows with
1 /2

large radii. In particular, L^Q = R0L, so that y - RQc is considered to be a fixed
parameter as c * 0. In §2, the problem is formulated and the core solution for a general
geometry is presented- In S3, the sides and adjacent side layers are treated for the
general geometry. In if 4, results are presented for an elbow whose top and bottom are
concentric circular arcs. Some conclusions are presented in §5.



2. PROBLEM FORMULATION

The applied magnetic field is produced by an external magnet white the induced

magnetic field is produced by the electric currents in the liquid metal and duct walls.
1/2

The ratio of the induced to applied magnetic fields is R e , where

is the magnetic Reynolds number. Here M is the liquid metal's magnetic permeability and

Uo is the characteristic liquid-metal velocity. For a typical fusion reactor blanket,

Rm = 10" and c = 10" '% so that the induced magnetic field can be neglected. For the

present problem the applied magnetic field is uniform, i.e., B = BQy, where y is a unit

vector.

The ratio of the electromagnetic (EM) body force to the inertial "force" is the

interaction parameter,
2

oB L
u 9

pUo

For a typical fusion reactor blanket, N = 10 -10" ' A Therefore, inertial effects can be

neglected except possibly in the boundary layers adjacent to the sides, which are parallel

to the magnetic field. There are large velocities inside these side layers, and the inertial

"force" may be locally comparable to the EM body force.

The square root of the ratio of the EM body force to the viscous force is the

Hartmann number,

M = BoL(o/p«) I / 2

For a typical blanket, M = 10 - 10 , so that viscous effects are confined to boundary

layers adjacent to the walls. The subregions of the flow are shown in Figure 1. The

inviscid, inertialess core region (c) is separated from the top and bottom by the viscous

Hartmann layers (h) with O(M~ ) thickness and from the sides by the side layers (S). The

thickness 6 and structure of the side layers depend on the relationship between the large

parameters N and M.



Side.

FIGURE 1. CROSS SECTION OF THE DUCT
SHOWING THE SUBREGIONS OF THE FLOW FOR M » 1.



The dimensionless governing equations for steady, incompressible flow in a uniform

magnetic field are

N"J (y* • V) v* = - V p* + j * x y + M~%2 y*, (la)

j * = -v 4,* + y* x y*, y~» y * = 0, y • j * = 0 (lb-d)

Here y*, p*, 3* and 41* are the velocity, pressure, electric current density and electric

potential function, which are normalized by UQ, oVQBo L, a\JQB0, and UQB0L,

respectively. The boundary conditions at the inside surface of each wall are that y* = 0

and that $* and j * n are continuous between the wall and liquid metal. Here j * n = j * • n,

where n is a unit normal to the wall surface, into the liquid. If the outside surfaces of

the top and bottom are electrically insulated and if t << L, then the electric potential is

continuous through the thickness of the top or bottom and the liquid-metal variables

must satisfy the thin conducting wall condition

j * n = 0 1 ^ + - ^ j J . a t Y = f<*>> or at y = f(x) + d (x) (2)
as az

This condition neglects terms which are O (t /L ) compared to those retained l J. Here s

is the tangential distance along the top or bottom in the z = 0 plane, as shown in

Figure 2. The same assumptions for the sides lead to the condition

z , V V a t z = ± l , (3)
3x 3y

where cs = ow ta/aL is the wall conductance ratio for each side with thickness t s << L.

The flow is symmetric about the z = 0 plane, so that u*, v*, ]*z and p* are even

functions of z, while w*, j * x , j * and <|>* are odd functions of z. Here u*, y*, and w* are

the x, y and z components of y*. We need only treat the flow for 0 < z f 1. Upstream,

the top and bottom become perpendicular to the magnetic field and are separated by a

distance aL. We choose the average axial velocity at an upstream cross section as U , so

that the dimensionless velocity satisfies a volume flux condition

/ Jo u*<x.y»z> dz dy = a (4)

at (. ach x = constant section.



FIGURE 2. LONGITUDINAL SECTION OF THE DUCT AT z = 0, SHOWING s,
THE TANGENTIAL DISTANCE ALONG THE INSIDE SURFACE OF THE TOP OR BOTTOM.



The Hartmann layers satisfy the no-slip condition at the top and bottom and match

the core or side-layer velocity, provided the latter satisfies

v*n = 0, at y = f(x), or at y = f(x) + d(x), (5)

neglecting O(M ) terms. The jump in j * n or a* across a Hartmann layer is at most

O(M~ ), so that the condition (2) can be applied to the core or side-layer variables if c >>

— 2 - 3 —5

Since c = 10 and M = N = 10 - 10 , (1) we neglect the viscous and inertial

terms in the momentum equation (la) except in the side layers, (2) we seek asymptotic

solutions of the boundary value problem (1-5) in powers of the small parameter c, where

c s = 6c and 6 is an O(l) parameter, and (3) we keep

as an O(l) parameter, where RQ is the characteristic dimensionless radius of curvature of
1 /2

the bottom, normalized with L. If the elbow has an O(c ) radius of curvature and
1 /2

reaches an CHI) slope, then f(x) becomes large, namely O(c ), but d(x) remains O(l) as

long as the duct's axis does not become parallel to the magnetic field. With the large

radius of curvature, the values of the variables at a given position in the x = constant

cross sections of duct vary gradually with x. Two steps are needed to represent this

gradual variation between cross sections. The first step is to introduce

Y = y - f(x)

as a local y coordinate which varies from 0 at the bottom to d(x) at the top. The x
1/2

derivative of any variable as a function of (x, Y, z) is small, namely O(c ). Therefore,

the second step is to compress the axial coordinate by introducing

X = c 1 / 2 x, f = c"1/2F(X), d = D(X)

The variables have 0(1) relative changes with O(J.) variations of X; i.e., the derivatives

with respect to X, Y and z are independent of the small parameter c. The top and

bottom both reach 0(1) slopes, but the difference between their slopes at a given x =



constant cross section is O(c ), so that they are almost parallel at each x = constant

section.

In the in viscid, inertialess core, u*, v* and 4>* are 0(1); w*, j * , j * and p* are

O(e ); j * is Ojf«!) ' . Therefore we introduce the following asymptotic expansions for

T the core variables:

u* = u + e ' / 2 U + O(e),

v* = v + c ' / 2 V + O(c),

w* = cx' w + 0(c),

• + 0(c),

j * y = c ' ] y + cJy + O(c

Here, lower case and capita] letters denote the coefficient functions in the first and

second terms in the asymptotic expansions for the starred variables. We are only

interested in the first term in each expansion. When the equations (1) and the boundary

conditions (2,5) are applied to the leading order terms, they give the solutions

v = F u , w s . 2 ! - a ! L (6e,f)
3X 3Z

Here p(X,z) and 4>(X,z) are completely arbitrary functions. In order to determine these

functions, we must determine some of the second terms in the asymptotic expansions,



namely those denoted by capital letters above. When we apply some of the equations (1)

and the boundary conditons (2,5) to the second terms, we obtain the solutions for the

second terms involving two new unknown functions of X and z. We also obtain two

coupled ordinary differential equations with respect to z which govern p(X,z) and 4>(X,z)

with the following solutions:

p = P + A [ cosh (r z) - cosh (r)], (6g)

4,= ( D / 2 ) I / 2 G V < < A s i n h ( r Z ) , <6h>

where

G = 1 + (F1)2 , r = D' (2 D ) - 1 / 2 G " 3 / \ (6i,j)

and a pr ime denotes differentiation of F(X) or D(X). The integrat ion functions A(X) and

P(X) a r e determined when the side-layer and side-wall problems a re t r ea t ed in the next

section. The core perturbations, denoted by capital letters, are not presented here

because their only role is to determine the ordinary differential equations governing

4>(X,z) and p(X,z).

The 0(1) tangential velocity which is parallel to the top and bottom is

v_ (X,z) = G~1/2 (u + F1 v) = - D' A cosh (rz), (7)
s 2

for all Y, while the velocity parallel to the normal to the bottom is Ofc1 '2) throughout.

Plots of the core velocity and pressure for a circular elbow are presented in § 4.

3. SIDE-LAYER AND SIDE-WALL PROBLEMS

At z = 1 in the core, the 0(c) j z = -P'(X) > 0. For an O(l) hX, this represents an

O(c ' ) total electric current equal to - (AX) D P1. This current leaves the core, flows

across the side layer and enters the side at z = 1. Half of this current flows up or down

in the side and enters the top at Y = D, z = 1 or the bottom at Y = 0, z = 1. The O(l)

transverse electric current density in the top or bottom is

10



\zi - - - [ — ) D'G"' / 2 A cosh(rz) <8)

2 o

The total axial electric currents in the side layer and in the side are O(6 c / ) and

O(c ), respectively, and these are too small to divert any of the O(c ) total current
1 /2

leaving the core at z = 1. All of this O(c ) current must enter the top and bottom in

the same AX and become ]z. at z = 1. Therefore, conservation of electric current gives

P1 = - D ' D " ' A cosh(r) (9)

for the pressure gradient in the core at z = 1.

Since c s is comparable to c, the electric currents flowing up and dow.i in the side

imply that the O(l) electric potential function in the side, * (X,Y), must vary with Y.

However, the O(l) core potential (6h) is independent of Y, so that there is a jump in the

O(l) electric potential across the side layer. Since K is small in the side layer, the y and

z components of Ohm's law (lb) become

h s - ' ~ ' " s ^ - 1 ^ ' < = * - ' < * - i > <1Oa-c)

y° 3y ° 3 5

where the subscript S denotes a side-layer variable and t is the stretched side-layer

coordinate. The result (10a) and the conservation of current equation (Id) imply that

j z = - c P' (X) + 6 j z S (11)

When we introduce the large velocity (10b) and the small electric current density (11)

into the x component of the momentum equation (la), this equation determines the side-

layer thickness 6. If the inertial or viscous terms balance the EM body force associated

with j z S , then

fi^N/V/ or 5 v = M / ,

respectively. The c enters 6j because (y»v )y = 6 e / , due to the gradual variations

between cross sections. If 6y >> 6̂ , i.e., if N >> M ' c1 , then the side layer is a

purely viscous layer with an O(M~ ' ) thickness and an O(M ' ) tangential velocity

11



parallel to the top and bottom. If 6j >> &y, i.e., if N << M c ' , then there is an

inertial layer with a thickness &j and an O(6f ) tangential velocity. This inertial side
1/2

layer is separated from the side by a thinner viscous layer with an O(M~ ) thickness and

an O(6j~ ) tangential velocity. This viscous inner layer is needed to satisfy the no-slip

condition at z = 1.

We can determine (a) the remaining integration function A(X) in the core solution

(6), (b) the side electric potential • (X,Y) and (c) the total 0(1) volume flux through a AY

of the side layer in any X = constant cross section from the equation (10b), namely

q s (X,Y) = 6 / ° u s dc = • (X,Y) - * (X,l), (12)

without treating the side-layer problem, provided two conditions are satisfied. The thin

conducting wall condition (3) and the transverse side-layer current (11) give

B G - U = P' (X) - - \zS (X, Y,0) U 3>
aY c

The first condition is that 6 << c, so that the last term in the equation (13) can be

ignored. The O(c) transverse current density from the core flows unchanged across the

side layer. This condition requires that

c>> M 1 / 2 , andc>> N"2 / 5 (14a,b)

The second condition is obtained by introducing the core solution (6d) and the side-layer

volume flux (12) into the total volume flux condition (4) to get

t ( x , Y ) d Y = a (15)

If ft satisfies this condition, then we are guaranteed (a) that the equations (1) have a

solution for either the purely viscous side layer or for the inertial outer layer and viscous

inner layer, (b) that this solution can match the side potential <t, can match the core

solution (6) and can satisfy the relevant boundary conditions at the side and at the top

and bottom, and (c) that the total volume flux in the side layer and core equals a.

While the 0(1) electric potential has a jump across the side layer, it is continuous in

the walls at the corners. Therefore the solution of equation (13) is

12



The electric current flowing from the side to the top and bottom is conserved at the
corners if P1 is given by the solution (9). The volume flux condition (15) and the solutions
(6h 9,16) give

2

= a[D(D/2) l / 2G1 /"sinh(r)+ ^j~^

The side layer is a high-velocity sheet jet adjacent to the wall which is parallel to the
magnetic field. The volume flux inside this layer has a parabolic distribution with zero
flux at the top and bottom where the electric potential is continuous and with a
maximum flux at Y = D/2. The relationship between the fractions of the total volume
flux carried by the 0(1) velocity in the core and the O(6~ ) velocity in the side layer
corresponds to the relationship between the two terms in the expression (17), where the
first and second terms represent the core and side layer, respectively. The volume flux
in the side layer relative to that in the core varies as 6~ and D' coth (r). As 6 = cs /c
increases, the side-layer volume flux decreases. For large values of D1, r is large and the
side layer flux increases linearly as D' increases. For small values of D', r is small and
the side layer volume flux is nearly independent of D\ These statements are true for a
viscous side layer with 6 = &y, for an inertial side layer with 6 = 6p or for an
inertiai-viscous layer when &y and 6f are comparable.

4. RESULTS FOR A CIRCULAR ARC ELBOW

Here we treat two straight, constant-area, rectangular ducts which are connected

by an elbow whose top and bottom are concentric circular arcs, as shown in Figure 3.
1/2

After the c rescaling presented in S 2,

F = Y - ( Y 2 - X 2 ) 1 / 2 , D = Ya(Y 2 -X 2 )" 1 / 2 , (18a,b)

for 0 < X <_ Xg = y sin 8e, where the expression (18b) neglects terms which are O(c'// ).

13



Straight
Duct

FIGURE 3. LONGITUDINAL SECTION OF A CIRCULAR ARC ELBOW
BETWEEN TWO STRAIGHT DUCTS
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The solutions (6,7,9,16,17) are local solutions for each X = constant cross section

because the assumption that y = Ro c =0(1) leads to the neglect of axial derivatives.

We consider an elbow from 8 = 0 to e = 9e = 85°. The solution in any elbow with 6e < 85°

is given by the flow in the appropriate part of the 85° elbow. The core velocity vs

parallel to the top and bottom is given by the solution (7) and is plotted in Figure 4 for

a = 6 = 1 and for various values of y and e. At X = 6 = 0, the core velocity is uniform. As

X = Y sin 6 increases, the core velocity near z = 0 decreases, while that near z = ± 1

increases. The migration of the flow toward the sides and the increase in the fraction of

the flow carried by the side layers continue to the exit at Xg because D' increases from 0

at X = 0 to a Y~ tan eg sec eg at X = Xg. As x -> », the flow becomes the fully

developed flow in a straight rectangular duct with a transverse magnetic field equal to

BQ cos 8 e . The axial component of the magnetic field BQ sin 9g has no effect on the fully

developed flow. There is a transition region with O(l) axial derivatives near the junction

at 6g. To treat this region we introduce

x* = x - Rn sin e_.

Derivatives with respect to x*, y and z are all O(l) in the transition region. The

transition region consists of three subregions: (a) for - °° < x* < -a sin 9g, both the top and

bottom are circular arcs with large radii; (b) for - sin e e < x* < 0, the top is straight, but

the bottom is still a circular arc; (c) for 0 < x* < <*> , both the top and bottom are
1/2

straight. In each subregion, the three basic variables are the O(c ) core pressure

p (x*,z), the O(l) core potential 4> (x*,z) and the O(l) side potential * (x*,y). These three

variables are governed by three coupled, second-order, elliptic partial differential

equations. The equations are different for each subregion, and the three subregions are

linked by the conditions that each variable and its axial derivative are continuous at

x* = -a sin eg and at x* = 0. Velocity and pressure profiles for a similar transition region

are presented by Walker' \ while the analysis for this similar transition region is

presented in an Argonne National Laboratory Technical Memo^ •". For the present

transition region: (a) as x* -> - <*>, the solution approaches the solution (6, 7, 9, 16, 17) at

X = Xe, and (b) as x* -> °°, the solution approaches the appropriate fully developed flow

solution. In fact, the deviation from the fully developed flow decays exponentially as x*

increases from 0, so that the flow becomes fully developed in a distance comparable to L

after the end of the elbow.

15



There is no transition region at X = 0 because D' = 0 here and the solution

(6,7,9,16,17) for O' = 0 is the locally fully developed flow solution with a uniform core

velocity and no axial electric currents. If we replace the upstream straight duct with

one which has a -5° slope and which joins the circular-arc elbow at 6 = -5°, then we have

a 90° elbow from a duct at e = -5° to a duct at 8 = 85°. This coincides with a

poloidal-to-toroidal elbow in a tokamak blanket because there is a toroidal magnetic

field By and a poloidal magnetic field Bp r O.I Bj. For this modified duct, there is a

weak transition region at 8 = -5° and the solution for -5° < 8 < 0 is given by the present

solution for 0 < 8 < 5°.

Comparison of Figures 4a and b indicates that the non-uniformity of the core
— 1 / 2

velocity increases as the elbow radius Rfl = y c" decreases. For c = 0.01, Y = 0.25 and

1 corresponds to the radius of the bottom equal to 1.25 and 5 times the distance between

the sides, respectively. For a square duct (a = 2) and for c = 0.01, a sharp corner in the

top corresponds to Y = 0.2. However, for such a sharp elbow, axial derivatives are not

negligible as assumed here. In order to keep both RQ and Y as 0(1) parameters, c must be

treated as an 0(1) parameter whose value is specified in the problem. This leads to

boundary value problems which require numerical solutions' '. A future paper will

present numerical results for sharp elbows in the plane of a uniform magnetic field. At

the other extreme of elbows with very large radii, the flow remains nearly fully

developed throughout the elbow, as indicated by the results in Figure 4c for large values

of Y-

From the equations (6a,b,g) the axial core current parallel to the top and bottom is

' } s = G" l /2 (jx + F' jy) = G l / 2 A r sinh (rz)

This represents a current in the ± x direction for z * 0, and these axial currents produce a

transverse pressure variation so that p (X,0) < p (X, ± 1) = P(X). This is the case for flow

from a duct which is perpendicular to the magnetic field to a duct which is nearly

parallel to it. For flow from a nearly parallel duct to a perpendicular duct, i.e., for flow

in the -x direction in Figure 3, the transverse pressure variation is reversed and the

centerline pressure is greater than the side pressure. Since inertial effects play no role

in this problem, the flow in the -x direction is given by changing the sign of all

variables. The magnitudes of the axial currents and of the transverse pressure difference
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1.0

FIGURE 4a. THE CORE VELOCITY V PARALLEL TO THE TOP AND BOTTOM
FOR a = 6 = 1. (v = 0.25 and various e).
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0.0

FIGURE 4b. THE CORE VELOCITY Vs PARALLEL TO THE TOP AND BOTTOM
FOR a = 6 = 1. (Y = 1 and various 6).
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FIGURE 4c. THE CORE VELOCITY V PARALLEL TO THE TOP AND BOTTOM
FOR a = & = 1. (8 = 60° and various Y).
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increase from zero at X = 0 to maximum values at X = Xg. In the transition region near
1 /2

Xe, the circuit for the O(c ' ) axial electric currents is completed through the core and

the pressure throughout the core rises to equal P(Xg). The pressure drop along the sides

through the transition region is O(c) which is negligible because p and P represent the

O(c ' ) pressure.

From the design point of view, the most important result of the three-dimensional

electric current circulation in the elbow is the overall pressure drop. In particular, we

define the three-dimensional pressure drop as the difference between the total pressure

drop and the pressure drop that would occur for locally fully developed flow, i.e., without

any three-dimensional effects. For the general elbow treated in §§ 2 and 3, the X
1/2

derivative of the O(c ' ) pressure P*d for locally fully developed flow is

In terms of the dimensional pressure, the three-dimensional pressure drop is

where K = P*d (Xg) - P{Xg) and P*d(0) = P(0), because the flow is fully developed at

X = 0.

The values of K for 0 < 8 < 85°, for y = 0.25, 0.5 and 1.0, and for 3 = 1 and 5 are

presented in Figure 5. As the radius of curvature decreases for a given 8g, the value of K

increases. As e increases, the value of K increases. For a 90° elbow from 8 = 8 e - 90° to

8 = 9e, we simply add the two K values for 8g and 90° - Sg.

5. CONCLUSIONS

For fully developed flows in ducts with thin metal walls, the electric field in the -z

direction, E2 = -d*/dz, nearly cancels the induced electric field in the +z direction,

z*(v x B) = uB . The small difference drives a small O(c) j 2 in the liquid metal and the

electric circuit for this current is completed through the walls. A transition from one

upstream fully developed flow to a different downstream fully developed flow generally

involves a change in uBy. In a non-uniform magnetic field By changes™'; in a symmetric

expansion or contraction, u changes because the cross sectional area changes ' '; in the

present elbow, u changes because the flow turns to become nearly parallel to B. If the
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FIGURE 5a. THREE DIMENSIONAL PRESSURE DROP COEFFICIENT FOR
AND VARIOUS y, 3 = 1.

• = 1
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0.3

FIGURE 5b. THREE DIMENSIONAL PRESSURE DROP COEFFICIENT FOR
AND VARIOUS y; 6 = 5.

= 1
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values of uB are different in the upstream and downstream fully developed flows, then
the values of d<t>/dz are different, while * = 0 at z = 0 in both, so that there are axial
potential differences for all z / 0. In the present elbow, the core potential changes from
z (1 + a/66)" upstream to z (1 + a/6fi)" coseg downstream. These axial potential
variations drive electric currents in the ± x direction for z 5 0, respectively. The walls
are part of the electric circuit for fully developed flow. Since the walls have a high
relative resistance, the electric current and the MHD pressure drop are relatively
small. Once two different fully developed flows are connected, there exists an electric
circuit entirely within the relatively low resistance liquid metal. The three-dimensional
electric current circulations in the liquid metal and the associated three-dimensional
pressures can be much larger than those in fully developed flow. The axial potential
differences depend only on the two different fully developed flows, i.e., on eg for the
present elbow. The resistance to axial currents increases as the duct length between the
two fully developed flows increases, i.e., as L^ /L or Ro increases. In Figure 5, as 6g

increases, the overall axial potential difference increases, so that K increases. As
Y = Roc increases, the duct length between the two fully developed flows increases, so
that K decreases. As 3 increases, the axial currents have an additional, parallel path
through the thicker metal sides, so K increases.

The relationship between the three-dimensional electric current circulation due to
the axial voltage differences and the three-dimensional flow disturbance is more subtle.
It is wrong to say that the transverse body force associated with the axial currents
pushes the flow away from the centerplane z = 0 and toward the sides at z = ± 1. This
error is immediately revealed by considering flow in the -x direction in the present
elbow. For this reversed flow, the transverse body forces all push away from z = ± 1 and
toward z = 0, but the flow still becomes concentrated near z = ± 1.

Electric current flows in a liquid metal with a strong magnetic field are quite
different from those in a solid conductor. In a solid conductor, the body force due to any
current is balanced by the stress field, up to the yield strength. In a liquid metal in a
strong magnetic field, the electromagnetic body force must be balanced by the pressure
gradient if inertial and viscous effects are negligible, i.e., if M and N are sufficiently
large. Therefore the current is constrained by the condition that v x (jx B) = 0. With j
constrained by the momentum equation (la), Ohm's law (lb) implies a constraint on the
velocity as well. If there is a flow y and a potential 4>, such that Ohm's law gives an
electric current j which produces a body force j x B that cannot be balanced by a
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pressure gradient vp, then the unbalanced, rotational part of j x B will produce

accelerations of the fluid 3y/3x, where T is dimensionless time. These accelerations

change y until Ohm's law gives a j whose body force can be balanced by vp and a steady

state is reached. The dimensionless time for this adjustment is very short, namely

O(N~ ). Of course all the variables are coupled and all would change during this

hypothetical transient in order to approach the steady-state solution (6) satisfying the

equations (1) without the inertial and viscous terms and satisfying the boundary

conditions (2,5).

For a uniform magnetic field, the constraint on j from the momentum equation is

that j must be independent of y. At a given X and z in the present elbow, there is a

specific axial current which is parallel to the top and bottom, as reflected in the

equation (6b), and is uniform in y. As this axial current progresses from X to X + AX,

the distance between the top and bottom increases because D' > 0. However the current

lines for the axial current in the core cannot be spread to accommodate this expansion

because j is independent of y. The currents needed in the additional parts of the cross

section must come from the top and bottom and exactly the right current must flow out

of each wall to give the new current distribution at X + iX which is again uniform in y.

Through the boundary conditions (2), this relates 4> to the axial currents and D'. Then

Ohm's law determines u, as in equation (6d).

We have not considered an elbow with 6g = 90°. For the present downstream duct

with eg < 90°, the axial pressure gradient for fully developed flow is

j | = - A c o U o B o
2 c o s 2 e e (19)

For a duct which is parallel to the uniform magnetic field, the flow is ordinary, laminar,

Poiseuille flow with

ap fpU

il = " "2# <20>

where f and D^ are the friction factor and hydraulic diameter, respectively. This

pressure gradient is much smaller than that given by the equation (19) for eg = 85°, so

that one might try to align the ducts with the magnetic field in order to decrease the

pressure gradient. However, the formula (20) assumes that the Hartmann number based
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on the transverse magnetic field strength BQ cos 6g is small, i.e., that

cos eg << M~

With M = 10 - 1 0 , it is impossible to make the duct so perfectly parallel to the

magnetic field, especially for a variety of operating conditions. Therefore, the parallel

field case with the small pressure gradient (20) represents a very singular limit which

cannot be realistically expected in any blanket design. The limits of the present analysis

are indicated by the conditions (14) with N and M based on BQ cos 9g.
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