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LIQUID-METAL FLOW IN A RECTANGULAR DUCT
WITH A NON-UNIFORM MAGNETIC FIELD

By
John S. Walker

ABSTRACT

This paper treats 1liquid-metal flow in rectangular ducts with thin
conducting walls. A transverse magnetic field changes from a uniform strength
upstream to a weaker uniforn strength downstream. The Hartmann number and the
interaction parameter are assumed to be large, while the magnetic Reynolds
number is assumed to be small. If the magnetic field changes gradually over a
long duct length, the velocity and pressure are nearly uniform in each cross
section and the flow differs slightly from locally fully developed flow. If
the magnetic field changes more abruptly over a shorter duct length, the
velocity and pressure are much larger near the walls parallel to the magnetic
field than in the central part of duct. Solutions for the pressure drops due
to the magnetic field change are presented.



1. INTRODUCTION

In a self-cooled liquid-metal blanket for a magnetic-confinement fusion
raactor, liquid Tlithium or a lithium-Tead wixture circulates through the
reactor to collect the energy and to breed the tritium to fuel the plasma.
For a toroidal rzactor geometry (tokamak), the principal magnetic field is in
the toroidal direction, and the field strength in tesla is given by 36/r,
where r is distance in meters from the reactor's axis [1]. In the region
occupied by *the Dblanket, the magnetic field strength varies from 3 to 8
tesla. Recent advances in plasma physics indicate that stable plasma
confinement way be possible with slightly weaker magnetic fields, but the
variation in toroidal field strength is intrinsic in the tokamak geometry.
The walls of the ducts carrying the liquid metal must be metal because both
hot 1liquid 1ithium and high neutron fluxes degrade the strength of most
electrical insulators. The pressure drop in a magnetohydrodynamic (MHD) duct
flow is proportional to the thickness of the duct's walls, so the walls are
made as thin as possible. A thorough understanding of three-dimensional
1iquid metal flows in ducts with thin conducting walls and with strong non-
uniform magnetic fields is neaded for blanket design calculations.

Holroyd and Walker [2] present analytical solutions for a straight
circular pipe with a thin conducting wall and with a transverse magnetic field
which varies from one uniform strength upstrean to a different uniform
strength downstream. The non-uniform magnetic field region is confined to a
pipe length L, which is comparable to the inside radius of the pipe L, and
both uniforn field strengths are assumed to be large. Walker [3] presents an
extension of this analysis to the case with the magnetic field strength
decaying to zero downstream instead of approaching a large uniform value.

For a rectangular duct with thin conducting walls and with a transverse
magnetic field whose strength varies along the duct, there are boundary layers
adjacent to the walls which are parallel to the magnetic field (side
layers). These side layers carry a significant fraction of the total flow as
high-velocity sheet jets adjacent to the sides, and they are an important part
of the electric current circuit. Walker [4] treats these side layers for the
three-dimensional flows in expansions and contractions with uniform transverse
magnetic fields. Walker [5] presents the boundary value problems governing



the side layers in a rectangular duct with a transverse magnetic field whose
strength varies over a duct length L, which 1s comparable to L, where L is
half the distance between the sides for a rectangular duct. These boundary
value problems are formidable and no solutions are presented. Hevre, we assume
that L, >> L, and this assumption makes the boundary value problems
tractable. In a tokamak, the magnetic field strength varies from 3 to 8 tesla
over a duct length of 7.5 m if the duct's centerline is perpendicu]ér to the
tokamak's axis, while the distance between the duct walls parallel to the
magnetic field is 0.4 m or less (L < 0.2 m) [1]. Therefore, this assumption
is appropriate for fusion reactor blankets. The present results indicate that
this analysis is appropriate for Lp > 6L. If we apply the present analysis to
a case with Lp ¢ L, then the essential physics is correct, but an axial
derivative which would actually smooth transitions is erroneously neglected.
However, the present analysis also reveals an implicit assumption behind the
boundary value problems presented by Walker [5] for bp = 0({L), which is not
valid for real thin conducting ducts. In particular, the solutions of the
boundary value problems presented by Walker [5] would grossly overestimate the
prassure drop due to three-dimensional effects aP3p» while the present
analysis would almost certainly be closer and would be conservative with a

slight overastimation.

If the value of Lm/L is extremely large, the axial field gradient has
negligible effect and the solution at each cross section is given by the
solution for fully developed flow with the local value of the magnetic field
strength. The locally fully developed flow solution serves as a reference
solution and deviations from it indicate the magnitude of the three-
dimensional effects. It turns out that the locally fully developrd flow is
realized for L /L > c‘l/z, where ¢ = g, t/ol is the small wall conductance
ratio and t is the thickness of the walls, while ¢, and ¢ are the electrical
conductivities of the walls and 1iquid metal. For a typical case, the axial
velocity deviates from that for locally fully developed flow by 6.9% and 1.2%

for L, = 2.c~1/2 and Ly = 5Lc‘1/2, respectively. For a typical fusion
blanket, ¢ = 0.01. As the value of Lm/L is reduced from these extremely
large values, the fraction of the total flow, which is carried by high-
velocity sheet jets adjacent to the sides, increases, and the velocity in the
inviscid core region becomes non-uniform with a larger velocity near the sides



than at the plane of symmetry midway between the sides. As Lm/L decreases
further, while still being large, the velocity in the core becomes zero and
all the flow is carried by the side layers. For 1 << Lm/L << c‘l/z, there are
two boundary layers adjacent to each side. As the flow and electric current
in the core become more concentrated near the sides, the core evolves into an
inviscid outer side layer adjacent to each side. This outer layer is
separated from the side by the same viscous side layer which is now the inner
side layer. The inner side layer carries even more of the total flow than it
did when part of the flow was distributed over the entire cross section. If
we continue reducing L /L until this ratio is 0(1) and we bring back the
axial derivatives neglected here, then we have the boundary value problems
presented by Walker [5]. In this case, the core is essentially stagnant, each
outer side layer has an o(cl/z) thickness and represents a sheet of axial
electric current and each inner side layer carries half of the total flow. If
we consider the present analysis for 1 << Lm/L = 0(c'1/2) and apply it for the
case Ly = 0.1 Lc‘l/z. we find that the core solution clearly exhibits flow and
electric current concentration near the sides. For a typical case, u, < 0.025
for {z| < 0.5, but u, increases rapidly as 2| increases beyond 0.5 and
reaches u. = 3.5 at z = l. Here ug is the axial core velocity normalized by
U, which is tho average axial velocity, and z is the coordinate perpendicular
to the sides normalized by L. Similarly, almost all the transverse pressure
variation is confined to 0.5 < |z} < 1, where the pressure serves as a strean-
function for the axial electric current density. However, each inviscid outer
side layer which is beginning to emerge from the core solution still occupies
a quarter of the duct's cross section, so they are certainly not thin enough
to be considered boundary layers for Lj = 0.1 Letl/2. 1f ¢ = 0.01, this case
corresponds to L; = L, which should be the case for the boundary value
problems presented by Walker [5]. While the flow is tending toward this case,
it has certainly not reached it.

Walker [5] seeks an asymptotic solution as ¢ » 0 with L /L = 0(1). This
analysis implicitly assumes that cl/ZLm/L + 0. In practical situations,
cl/sz/L is probably never less than 0.1 and the flow for this value is still
far from that for cl/sz/L +» 0. The analysis of Walker [5] predicts that the
axial electric current in the non-uniform field region is confined to the thin
outer side layers and the electrical resistance of these layers is large



because of their thinness. The large resistance restricts the electrical
current circualtion which gives a small apgy. In reality, the axial electric
current in each direction is spread over a quarter of the cross section even
for L, = L, so the actual electrical resistance is smaller than that of the
thin outer side layers, the total current circulation is larger and Apjzg is
larger. Therefore, the solution of the boundary value problems presented by
Walker [5] would underestimate the extra pressure drop due to three-
dimensional effects.

In the present analysis, there is (1) an upstream fully developed flow in
the upstream uniform magnetic field, (2) an upstream transition region in
which the effects of the axial magnetic field gradient are significant but the
field strength deviates from its upstream uniform value by only a smail,
namely 0(c1/2) amount, (3) a gradually varying magnetic field region in which
the magnetic field strength is changing but axial derivatives are small, (4) a
downstream transition region, and (5) a downstream fully developed flow. The
analysis indicates that each transition region extends a distance of 3L into
the gradually varying field region. If Ly > 6L, the flow manages to reach the
gradually varying field solution in some central region, the two transition
regions do not interact, and the present analysis is valid. For by < 6L, the
gradually varying field region is gone and the two transition regions are
merged into one region in which the magnetic field is changing by an 0(1)
amount. Tha flow entaring the merged transition region begins to evolve
toward the gradually varying field solution, but never reaches it. Instead,
the evolution reverses back toward fully developed flow. Therefore, the axial
derivative, which is neglected here, prevents the flow from reaching the
severity of the flow coacentration near the sides which would occur if the
gradually varying field solution were reached. If we use the present
predictions for ap3y for Ly < 6L, we have the pressure drop for a full
transition from fully developed flow to the gradually varying field solution
and back to fully developed flow. The real flow only makes part of this
transition and only requiras part of this pressure drop. Therefore, the
present predictions are valid for L, > 6L and are conservatively approximate
for L, < 6L. This assumes that the strength of the weaker magnetic field is
roughly half of that of the stronger magnetic field. If the weaker field is
only one-tenth the stronger field, the critical value of Lm/L is somewhat



greater thar, 6, while if the weaker field is nine-tenths of the stronger
field, it is less than 6.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The ratio of the induced magnetic field, which is produced by the
electric currents in the liquid metal and in the duct walls, to the applied
magnetic field, which is produced by an external magnet, is given by cl/sz.
Here R, = wolpl 1is the magnetic Reynolds number and u is the magnetic
permeability for the liquid metal and duct walls. Both c and R, are small for
a fusion blanket, so we neglect the induced magnetic field. The applied
magnetic field is governed by

B=-gp, V=0 (1)

where y is the magnetic potential function. The faces of the present magnet
are shown in Figure 1 and are located at

ta'l d, for x < 0
y = ts'l d [1 +e(s -1)x], for 0 < x < e-l
+d, for x » ¢ >

where the coordinates are normalized by L, ¢ = Lm/L and g8 >1, so that the pole
faces are closer together upstream than downstream. The characteristic
magnetic field strength, By, is chosen as the weaker uniform magnetic field
strength downstream. The magnet 1is assumed to be very wide in the z
direction, S0 that B = Bx(x,y) 2 + By(x,y) i, where g and i are unit
vectors. The magnet poles are assumed to have a very large magnetic
susceptibility, so that B inside the poles is decoupled from the outside, and
¥ = td at the lower and upper pole faces, respectively. In Sections 3 and 4,
ve take ¢ = ycl72, 1.e., Ly = L y~lc™1/2, where v is an 0{1) parameter, i.e.,
vy remains finite and non-zero as ¢ + 0. In the central or gradually varying
field region, we compress the axial coordinate by substituting x = xc-1/2, 1n
this region the solution of the equations (1) gives
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all + (8 - 1) yXI™ + ofc) (2a)

w0
n

= e g(g < 1) y [+ (8 - 1) X372 + 0(c3?) (2b)

(=¥}
1

for 0 < X < y‘l. In the upstream transition region near x = 0, the magnetic
Field must match the upstrean uniform field By a8 X *» - and the gradually
varying field (2) as x » ». The solution of the equations (1) near x = 0 is

3y
= 172 "*u
By = 8 -yC 5y {x,y) + 0{c) (3a)
8y
_ i/2 "y
B, = ~v¢ e (x,y) + 0(c) (3b)
where
-B'l(e - 1) ¥(x,y:8), for x <0
by = -1 (3¢c)
B(g - 1)xy - 8 (8 - 1) ¥{-x,y3;8), forx >0
Y- A n -2 .
¥(x,y;8) = d°n t (-1)" n™¢ sin(gnny/d) exp{gnax/d) (3d)

n=1

In the downstream transition region near x* = x - e'l = 0, the magnetic field
must match the gradually varying field (2) as x* + -» and the downstream
uniform field i as x* + ». The solution is

o
) 172 3%
By =1 - ye 5 (x*,y) + 0{c) (4a)
Y
B, = ~vc /2 =2 (x*,y) + 0lc) (4b)
whare

B'I(B - 1) x*y + 8'1(8 - 1) v¥i{x*,y;1), forx*¢ O (ac)
c
3'1(3 - 1) v(-x*,y;1), for x* > 0
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In section 5, we treat the case /2 << e << 1, so that ¢ and ¢ are
independent small parameters. Then we compress the axial coordinate with
x = X1, For this case, the wmagnetic field in the gradually varying field
and transition regions is given by the same expressions (2-4) with y and ‘:1/2
replaced by 1 and ¢, respectively.

The ratio of the electromagnetic body force to the inertial "force" is
characterized by the interaction parameter N = cB§ L/pUy, where p is the
liquid metal's density. For a typical self-cooied blanket N = 104, so that
inertial effects are small. We neglect inertial effects everywhere and then
use the inertialess solutions to define the required condition on N. In the
core regions, N >> 1 is sufficient to insure that inertial effects are
negligible. However, in the side layers, the axiai velocity is large and in
the transition regions near x = 0 and e’l. this large axial velocity changes
over an O{1) duct length as some of the flow migrates from the core to the
side layers or back. To neglect inertial effects in these subregions requires
that N >> M3/2, where M = Byl (O/pv)llz is the Hartmann number and v is the
liquid metal's kinematic viscosity. Since M = 104 for a typical blanket, this
condition is not met. However, there are several reasons to believe that the
present inertialess analysis provides good predictions even though N = 0(M)
instead of N >> M2, For the fully developed flows at x = it= the inertialess
solutions with the high-velocity sheet jets near z = tl are valid for any N
since there are no axial variations. In the downstream transition region for
a typical case, the fraction of the total flow carried by each side layer Qg
wust decrease from 0.073 to 0.068 in a duct length equal to 6L. The condition
N > W2 assumes that the side layer velocity is M1/2U0 in a duct length
equal to L. The results for this typical case indicate that the maximum side
layer velocity is roughly 0.25 M1/2U0 and changes by only 0.017 M1/2U0 in a
duct length equal to 6L. Therefore, the relative error in the inertialess
solution for the downstream transition region side layer can be expected to be
0.000713/24-1, wnich is only 7.1% for N = M = 10%. There is a sligntly
larger change in Qg in the side layer for the upstream transition region, but
here the magnetic field strength is gB,, so that the local interaction
parameter and Hartmann number are given by sZN and gM respectively. The 3‘1/2
in the local inertialess error more than cancels the effect of the larger
velocity change. In the side layers, in the gradually varying field region
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for the same typical case, Qg decreases from 0.098 to 0.073 over a duct length
equal to L, = Le‘l, so the relative error in the inertialess solution is
smaller here by a factor of . The typical case discussed here has y = 1,
8 =2, and a = cMl/2 =, If we consider a much larger slope for the
diverging magnet pole faces by increasing y and 8, then inertial effects would
becone more important, particularly near x = 0 and e'l. In the extreme casa
with L, = L, the boundary value problems presented by Walker [5] indicate that
Qs must decrease from 0.5 to 0.063 for the side layers near x = s'l. However,
the present analysis for L = 0.1 Le=1/2 shows that Qg only changes from 0.22
to 0.068 here and this is the csame case if ¢ = 0.01. The present results give
a relative inartialess error of 0.023M3/2N‘1, which is unfortunately 233% for
N=NM-= 104, s0 inertial effects are not negligible for such abrupt magnetic
field changes. The inertial effects would prevent the full acceleration of
the side layers in the gradually varying field region, but the interaction of
the transition regions for Ly = L does the same thing, so Qg never reaches
0.22. In addition, inertial effects would disturb the downstream fully
developed flow to larger values of x*. As the product y(g - 1) increases,
inertia changes the velocity profiles near x = 0 and e'l before it changes
apgp for two reasons. Inertia first becomes important in the transition
regions, but these regions make no significant contributions to apzp. This
pressure drop is due entirely to the gradually varying field region in which
the inertial effects are smaller by a factor of e¢. In addition, the side
layer flows 1involve ‘an acceleration followed by an almost identical
deceleration, so that the pressure changes due to inertial effects tend to
cancel as long as the flows are stable. The critical values of N for the
instabilities of the side layers which generate vortices parallel to the
magnetic field are much smaller than 104. As with any asymptotic analysis the
error in the predictions of the present inertialess analysis as a function of
N for a given duct and magnet can best be defined by experiments. previous
MHD experinents with reasonably detailed velocity and pressure measurements
have been restricted to N < 50. At Argonne National Laboratory, experiments
for the present situation, with N = 100 - 1000 or larger and with detailed
neasurenents are planned for sometime in the next year or two.

The inductionless, inertialess, dimensionless equations governing the
1iquid metal flow are
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=yxBentoly, =0 (5a,b)
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£

(5¢,d)
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1=t vuxs,

Here p, i, ¥V, and $ are the pressure, electric current density, velocity, and
electric potential function, normalized by ol BgL aUgBgs Uy and UBL,

respectively (See [6], Chapter 2). The dimensicaless app1ied magnetic field B
is given by one of the expressions (2-4) or by sx and x far upstream and
downstream, respectively. The present duct has a constant rectangular section
(see Figure 1). Here, we assume that all four walls have the same thickness,
t, because this is the case for the future experiments at Argonne National
Laboratory. In a fusion blanket, the walls parallel to the toroidal magnetic
field may be thicker than those perpendicular to this field. The extension of
the present analysis to ducts with different wall thicknesses is straight-
forward [7]. If t << L, then the variation of the electric potential function
between the inside and outside surfaces of each wall is negligible. The
electric potential in the wall, ¢, 1s simply given by the value in the 1iquid
metal at the inside surface of the wall. The tangential components of the
electric current density in the wall are then given by

3 = -(aw/c)zqﬁw (6)
Integration of the equation (5d) inside the wall then gives the thin
conducting wall boundary condition [4] on the 1iquid-metal variables evaluated
at the inside surface of each wall:

2 2
jo=sc §_%+3—% at y = #a (7a)
Y ax® oz

2 2

99,38  atz=4#l {7b)
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In addition to applying the boundary conditions (7}, we must also insure that
electric current is conserved at the corners at y = ta and z = tl. From
cquation (9)

1imn gi{x,y,-l) = £ lim %%{x,ta,z) (8a)
y+ta y z2+-1
1im gf{x,y,l) = % lim g%{x,ta,z) (8b)
y>ta Y z+1

The velocity must satisfy the boundary and total flow conditions
v=0 aty=ta, and at z = ¢l (9a,b)

[ ] wudydz=4a (10)

-1 -a
where the latter is a consequence of choosing the average velocity for U,.
The boundary value problem (5, 7-9) is linear and homogeneous and the solution
is scaled by the total flow condition {(10). The solution Jor flow from a
region of weaker magnetic field to a region of stronger magnetic field is
Jiven by replacing the 4a in the condition (10) with -4a. This simply changes
the sign of all solutions given here.

The principal subregions of the flow (see Figure 2) ara: (c) the core
region in the gradually varying field region for 0 < x < y'l ifes= ycl-/2 or
for 0 < X < 1 if c¢}2 << ¢ << 1 and its side layers (s); (u) the core in the
upstreain transition region near x = 0 and its side layers (us); (d) the core
in the downstream transition region near x = 5-1 and its side layers (ds); the
upstream (ufd) and the dewnstream (dfd) fully developed flows which are
approached as x + ¥ ~, respectively. Each of these regions is separated from
the top and bottom by a Hartmann layer with O(M‘l) thickness. The Hartmann
layer variables satisfy the boundary conditions (%9a) and match the adjacent

core or side layer variables provided the latter satisfy

v = 0, at y = ta {11)



4
us Zg'l S O(M-VZ) ds
I,

-t‘[-

{ |
y 4 X=€-'
ufd u d dfd
_ N
- i) oM2) | ds
T

FIGURE 2: Horizontal section in the y=0 plane showing the principal subregions of the flow

All subreglons are separated from the top and bottom at y=+a by Hartmann layers.
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The jumps in j, and ¢ across the Hartmann layers are o(M~1) and o2y,

respectively, so that the condition (7a) can be applied directly to the core
or side layer variables provided ¢ >> ML, The top or botton and the adjacent
Hartmann layer are electrical resistors in parallel. The condition ¢ >> -l
states that the top or botton has a much smaller resistance than the adjacent
Hartmann layer, and that the tangential current in the Hartmann layer is much
smaller than that in the top or bottom.

Since typical values are ¢ = 0.01 and M = 104, we assume that ¢ = aM'l/z,

where « is an 9{1) parameter. We are looking for an asymptotic solution for
c+» 0 and M + = with the restriction that ch/z + a , a finite, non-zero
constant. CEach side and adjacent side layer are also electrical resistors in
parallel and o is the ratio of the side layer's resistance to the side's
resistance. For a given finite «, the tangential electric currents are split
between these parallel resistors. The two extreme cases are M-l <c ¢ < wl/2
for which all the currents flow in the side layer, and M'1/2 << ¢ << 1 for
which all the currents flow in the side. Walker [4] shows that as o« + O the
solution for ¢ = oM=1/2 gives the solution for M=l << ¢ << M=1/2 4nd that as
a +  the solution for ¢ = aM~1/2 gives the solution for M-1/2 << ¢ << 1.
Therefore, the present analysis includes the two extreme cases as special
cases. It also shows precisely how large or small a aust be for the simpler
extreme case solutions to apply. For a typical three-dimensional flow
considered here (g =2, y = 1, a = 1}, the solution for o = 0.1 still deviates
by 5% from the solution for M‘l << ¢ <« M‘l/z. For the same case, the
solutions for o = 8 and 20 deviate by 2.6% and 1.0% from that for
M'l/z <« ¢ << 1.

3. GRADUALLY VARYING FIELD REGION FOR Ly, = Ly~lc"1/2

In the core the solution for the equations (5) with the appropriate
symmetry about y = 0 is

2
3¢ 3°p
_ -1 “Y¢ _n-2 C -1
U, = By 37 VYo © By y ;;E_ -8

3¢
B - 1) vy 55 (12a,b)
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3. o Op ap
- "l _...g. - -2 ..._C. = -l .. <
We = BT oy By 5z Iye T By 5T (12c,d)

ap P
s o .-l c . . s~ ¢
Jye = -8 (8 - 1) vy 57 Je =8y 3 (12e,f)

Here the subscript ¢ denotes the leading terms in the asymptotic expansions
for the core variables in the gradually varying field region for 0 < X < y'l;
u. and ¢, are 0(1); Ver We» Jyge and p are 0(c1/2); jyc and j,. are 0(c);
sy(x) is given by the expression (2a) neglecting the O(c} terms; ¢.(X,z) and
Pc{X,z) are unknown integration functions. The boundary conditions (7a, 11)
give a pair of equations governing p. and ¢, and these equations only involve
derivatives with respect to z. The solutiors with the appropriate symmetry

about 2z = 0 are

il

Pe = Pt ABya'llz [cosh(fz) - cosh(f)~ (13a)

o = A sinn(fz), F(X) = (g - 1ya /P[1+ (5 - Dyxa”! (13b,¢)
Here A(X) and P.(X) are unknown integration functions to be determined by the
side layer solution, while P. = p. at z = #l.

Since the flow is symmetric about z = 0, we need only treat the side
layers at z = -1. With the stretched side layer coordinate g = M2z 4 1),
the equations (5) give

3¢ T op
- ol _'s -1 - S p=2 'S
WS = "By X -y8 (B l)y 3y By 'ﬁ' (14a)
3% op L
_ a1 %%s _ o-1%%s -1 S
us =By 3o Jys = By T +y8 (8 - 1) Byy YA (14b,c)
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jys = - ;;i. s ° -uB;l ;;5 * B;z Z;;E (14d,e)

;:75 Bf Z—?;—s-+ vig - sty 2—32,-:% - :—zs- (14f)

-:-:—s = a—zyvi - vels - 1y ?—3335- - oB, ;;E (14g)
35 g

33 ;;;i = ::¢3 (14h)

for 0 < X < y'l. ~_ac<yc<a, 0<g <=, Here ug fis O(Ml/z), vg s

0(c1/2M1/2), bg and jys are 0(1), wg and j,¢ are 0(c1/2), Jzq Ts Of M~1/2) and
p = /2 P(X) + /2 M'l/zps(x.y;c)

The equations (14f-h) govern the variables Vgs Pg and dgs while the equations
(l4a-e) give the other side-layer variables in terms of tirese three key
variables.

Matching the core solution (12, 13) gives the conditions
Ve * 0, b * -A sinh (f) {15a,b)

pe + B (X,-1) - cAsya‘l’Zf sinh (f), as g » = (15¢)
where pé(x.z) is the 0(c1/2 M'l/z) perturbation pressure in the core. Walker
[4] shows that the 0(1) ¢y s constant in the sections of the top and bottom
adjacent to the side layer and this is compatible with the condition (7a).
This result and the condition (11) give the boundary conditions

v, = 0, ¢, = -A sinh (f), aty = :a (16a,b)
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The boundary conditions {7b, 9b) become

VS = 0, *a—,;,— = 0 (17a,b)
ap 9¢ - ¢
5= = By 3 - 18 Lig - 1) Bﬁyb—yi (17¢)
2 3
3% 3% dp
B¢ S . 1 s € atr=0 (17d)

Yl g v &
The equations (14f,g) and the conditions (15a,c, l6a, 17a,c) constitute a
boundary value problem governing vg and po if the solution for ¢, is known.
This boundary value problem has a solution for any ¢, which satisfies a
solubility condition. This condition is derived by integrating the equation
(14f) from y = -a to y = a and fromz = 0 to ¢ = = and by introducing the
conditions (15b,c, 16a, l7c). The resulting condition can be integrated with
raspect to X to obtain

d
/s (X,y,0) dy = C B (X) (18)
4 S Y

where C is the constant integration. When we introduce the core and side
layer axial velocities (l2a, 14b) into the total flow condition (10) and we
use the matching between ¢. and ¢, we obtain the same condition (18) with
€ = -2a. The solution for bs gives the O(Mllz) axial side-layer velocity ug
which carries part of the total O(1) flow. The fraction of the total flow
carried by each side layer QS changes along the duct, so that there must be a
transfer of 0(1) flow between the core and side layers and this requires the
0(c1/2) transverse velocities We and w. In the core, U, is independent of y,
but in the side layer ug has a variation with y which is associated with
3¢S(X,y,0)/3y. The latter is not zero as long as electric current enters the
side at y = *a and flows down the side and into the side layer as
jzs(x,y,O). Therefore, as the flow is transferred between the core and the
side layer, it must be redistributed in the y direction and this requires the
0(c1/2M1/2)vs. The pressure variation associated with this flow transfer and
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vertical redistribution is an 0{c1/24"1/2) perturbation pg of the principal
0(c1/2) side-layer pressure PC(X). The solution for the secondary velocities
Vg and wg and the perturbation pressure pg is guaranteed as long as the
primary velocities u. and ug satisfy the total flow condition (10) which gives
the solubility condition (18) with C = -2a. The solutions for Vg and pg are
straightforward, but are not presented here because they provide l1ittle
additional insight into the flow.

We must also guarantee conservation of electric current at the corners at
y = ta, z = -1 with the condition (8a). We modify this condition so that the
¢ on the right-hand side is the core be* The modified condition states that
the 0(c1/“) electric current flowing from the side into the corner, plus the
ﬂ(cl/z) current flowing from the side layer into the adjacent part of the top
or Dbottom, must equal the 0(c1/2) current flowing in the top or bottom
adjacent to the core at z = -1. This condition is for a duct length with an
0(1) aX which corresponds to an 0(c™1/2) aX and neglects the axial current in
the portion of the top or bottom adjacent to the side layer because this
current is 0(c3/24-1/2), The condition (8a) becomes

= 3 3¢ A
== (X,2a,0) + "} I w5 s (X42,2) dg = £ 55€ (X,-1) (19)

The first and second terms represent the electric currents in the y direction
in the side and side layer, respectively. The ratio of these parallel
resistors is a = M2 1f o > 1, the second term is negligible and all the
0(c1/2) electric current in the y direction flows through the side. If
o << 1, the first term is neg]1g1b1e, all this current flows through the side
1ayer, ¢ decreases to O(a) = O(CMI/Z) which is small for M'1 << ¢ << N 1/2

and the side layers no longer carry any of the 0(1) total flow. If (1) we
integrate the governing equation (14h) fromy = -a to y = a and from ¢z = 0 to
t = =, (2) we integrate the thin conducting wall condition (17d) from y = -

to y = a, and (3) we introduce the results into the condition (19), it reduces
to

.,

L]
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dp -1 3¢ -1
I <2 By 5z (X,-1) = -a” BA f cosh (f) (20)

The conservation of electric current condition (8a) has now been extended from
the corners at y = za, z = -1 to the region composed of the side, side layer
and adjacent parts of the top and bottom. The condition (20) states that
these is no net current across th2 aX length of the plane which is parallel to
the side and which separates the core from the side layer. The total 0(c1/2)
electric currents in the z direction in the core and in the adjacent section
of the top or bottom, evaluated at z = -1, are

dp

-1 "¢
-2a(AX)By T -(AX)Af cosh(f)

respectively. The electric current flowing from the core into the side layer
must return to the top and bottom adjacent to the core in the same cross
section. This is true because the axial currents in the side and side layer
are both much smaller than 0(cl/2),

With the expression (20) introduced into the thin conducting wall
condition (17d), the solution of the boundary value problem (1l4h, 15b, 16b,
17b,d) is

¢. = -A sinh(f) ~A ¢ a_cos[(2n + Ll)ny/2a~ expl-i z) x
s n=g " n
[sinla z) + cos(a z}= (21a)
where
a, = 16af cosh(f) 23 -1"2n + 1)73(a + G-IA;I)-I (21b)
b= 3 [18, (20 + 112712 (21¢)

The solubility or total flow condition (18) with C = -2a now determines
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A= stn(f) + 2070 5 (<0)"en ¢ D7 (22)
n=0

In the next section we show that the O(CI/Z) pressure at z = tl is constant
through the transition regions which match the present solutions at X = 0 and
y‘l and match the upstream and downstream fully developed flows. We choose
p=10atx=0, z=#l, so that p here represents the deviation of the actual
pressure from the pressure at these two points. Therefore, the initial
condition for the equation (20) is P.{0) = 0. This equation is integrated
numerically to get P.(X). The equations (12, 13, 14b,d,e, 21, 22) now give
all core variables and the important side layer variables ug, Jyg. and J,q.
The pressure gradient for locally fully developed flow [4] in the gradually
varying field region is

d

p - 4 ol lielae
I A C R U R W (23)

n=0

The actual pressure gradients for both the locally fully developed flow and
the three-dimensional flow are 0(c), but the axial scale is compressed by
0(c1/2), so that pc(X,z) and pfd(x) are both 0(c}/2), The equation (23) is

also integrated numerically from X = 0 where pgq = 0.

The results for the core and side layers in the gradually varying field
region depend on four parameters: a = the aspect ratio of the duct's cross
section, a = the ratio of ¢ to M~1/2 wnich reflects the relative electrical
resistances of the side and side layer, g = the ratio of the stronger magnetic
field strength to the weaker one, and y = the ratio of Le~l/2 ¢ Lys so that a
large y means that the magneti¢ field changes over a short duct length and a
small y means it changes over a long duct length. The gradient of the
transverse component of the magnetic field is

dB

= 8T (8- 1) B (24)
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which varies from -g(g - 1)y at X = 0 to -6"1(3 - 1)y at X = Y'l, so that the
product (B8 - 1)y is an average measure of the magnetic field gradient. The
vesults are relatively insensitive to a unless a is either very large or very
small, and only results for a square cross section {a = 1) are presented
here. The velocity profiles for the side layers are very similar to those
presented by Walker [4] with the wmagnitude of the velocity scaled to reflect
the local value of Qg, so no side layer velocity profiles are presented
here. The important side layer result is Qg(X). Here, we present results for
QC(X), the fraction of the total flow carried by the core at each cross
section, while Qg = 0.5(1 - Q).

Far upstream and downstream ¢ = 1.685z and 0.864z, respectively, for a =
land g = 2. At 2 = 0, ¢ = 0 everywhere, but at z = 1, ¢ drops from 1.685 to
0.864, while at z = -1, ¢ rises from -1.685 to -0.864. These axial voltage
differences drive axial electric currents in the #x direction near z = tl.
For Tocal fully developed flow, the current circulates only in cross sections
with current in the +2 direction in the core and in the -z direction in the
top or bottom. The current circuit is completed by currents in the y
direction in the sides and side layers. For the three-dimensional flows
treated here, the axial currents due to the axial voltages differences are
superimposed on the transverse current vor locally fully dev2loped flow. As a
result, a current line leaving the side at z = -] in the gradually varying
field region first turns in the core and goes far upstream. Many of these
current lines cross the z = 0 plane in the upstream transition region, while
the rest cross it near X = 0. The current lines are symmetri¢ about z = 0, so
tney return to the side a z =1 at the same X where they left the side at
z = -1. Again the electric circuit is completed through the sides, side
layers and top and bottom. For all values of y some of the axial currents
complete their circuit in the core of the downstream transition region.
Therefore, there are some current lines contained entirely in the 1iquid metal
with current in the ix direction near z = %l in the gradually varying field
region, current in the +z direction near X = 0, and current in the -z
direction in the downstream transition region core. For sufficiently large vy,
more of the axial curraent lines are completed in the core rather than in the
walls and there is current in the -z direction in the gradually varying field
region as well as in the downstream transition core. Wherever the current in



the liquid metal is in the -z direction, it is pumping the flow rather than
retarding it, so that the local pressure rises in the flow direction.

Figure 3 presents graphs of Pe and u. at various crass sections along the
gradually varying field region for o =y = 1 and 8 2. The total axial
currents in the tx direction for z 3 0 are always maxitum at X = 0 where the
magnetic field gradient (24) and the axial voltage gradients are maximum. The
axial current produces a body force away from the z = 0 plane and towards the
sides. This body force produces the transverse pressure and velocity
variations shown in Figure 3. As X increases, current lines are entering the
sides (or completing their circuit at 2 = 0 in the liquid metal for
sufficiently large y), so that the total axial current in either direction
decreases, the transverse body force decreases and the transverse variations
in e and U, decrease. The transition between the non-uniform velocity X = 0
(or 1) and u = 0.843 {or 0.864) in the upstream (or downstream) fully
developed flow for « = 1 and 8 = 2 is the role of the upstream (or downstream)
transition region at x = 0 (or a"l).

The results for the gradually varying field region depend strongly on y,
as illustrated in Figure 4 for a = 1 and g = 2. Figures 4a-c present u. and
P At X = 0 since the values here involve the maximum transverse variations
for any X. For y = 0.2, u. is very close to u for locally fully developed
flow. As y increases, the flow moves away from the z = 0 plane and toward the
sides. The core is evolving toward two outer side layers near z = 11 which
are separated by a nearly stagnant region near z = 0. For y > 6.5, uc(0,0) is
aessentially zero. The overall axial voltage difference is 0.812z. If the
axial currant at X = 0 is also linear in z, it produces a parabolic pressure
variation, {1 - z2). For v < 3, the graphs in Figure 4b have nearly parabolic
shapes. For y > 3, the axial electric current, like the axial velocity. is
becoming concentrated into regions near z = 11 with a nearly current-free
region near z = 9, This results in a steep pressure gradient near z = 1 and
a more uniform pressure near z = 0. At y = 13, there is a uniform pressure
core for |z] < 0.6 and a sheet of axial electric current in each emerging
outer side layer for {z] > 0.6. As y increases from zero, the duct length for
the axial voltage difference decreases so that the axial voltage gradient
increases. As long as the axial current is distributed over the entire cross
section (y < 3) the magnitude of the total axial current and the pressure
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FIGURE 3a: Pressure pc(x,z) in the core of the gradually varying
field region for &= 'r= a=1amd F = 2.
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FIGURE La: Core velocity at X = O,
for {=a=1, P= 2 and various ’Y.

Fr:lo.o

50

3.0

2.0

=0.2
‘ N/ =

0.57

0.0t

0.54
1.0

2.0

3.0 50

7=10.0

L. [l

pm——

00

'
1

04 _. 06 08 10

0.2 z



- 27

000 , 02 04 ° 06 08 _Ip

7=3.0
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difference between z = 0 and z = tl1 increase as y increases. However, for
v > 3, the fraction of the cross section over which j, s distributed
decreases which increases the effective electrical resistnace to axial
currents. The increase in the resistance exceeds the increase in the axial
voltage gradient as y increases further, so that the total axial current and
the difference between p. at z = 0 and z = 1 decrease. Figure 4c illustrates
the peak and subsequent decrezase of the transverse pressure difference with
increasing vy.

Holroyd and Walker [2] show that there are certain characteristic
surfaces for liquid metal flows in strong magnetic fields. A characteristic
surface is defined by the set of magnetic field lines with the same value of

S
£ = fot [B(s)]™} ds

where s is the distance measured along the magnetic field line from its
intersection with the inside surface of the bottom at s = 0 to its
intersection with the inside surface of the top at s = sg» while
B(s) = [Bi + 85]1/2 is the magnetic field strength at each point on the
magnetic field line. If g is the same for 211 magnetic field lines (e.g., a
uniform magnetic field and parallel top and bottom), then there are no
distinct characteristic surfaces and there are relatively few restrictions on
J. If ¢ varies considerabley, then the electric current in the core must flow
along the characteristic surfaces defined by constant values of £. In any
core region the viscous term in the equation (5a) is negligible and the
electromagnetic body force j x B must bhe balanced by the pressure gradient
gp.  Therefore V x (j x B) = 0. This distinguishes a liquid metal from a
solid conductor. A solid has a structure which can provide the stress field
to balance any body force until yielding occurs. A nearly inviscid,
inertialess liquid has only pressure to balance a body force. If a current
produced a rotational body force, the fiuid would respond violently. The
resultant change in v would change the balance in the Ohm's law (5¢), thus
changing j until its body force is irrotational. The characteristic surface
derivation involves this irroutationality condition, equation (5d) and the fact



that the normal current to the top and bottom is negligible. The present
results help to define the boundary between "free" flows with the same value
of ¢ for every magnetic field line and "guided" flows with distinct
characteristic surfaces for different values of . For the present problem:
if de/dx << cl/z, then the flow is free; if dg/dx >> cl/z, then the flow is
guided and there is no axial electric current in the core. The present
analysis treats the transition case with dg/dx = O(cl/z), so that the
characteristic surface mechanism is pulling the electric current lines but is
not strong enough to force perfect alignment with the characteristic
surfaces. As y increases, transverse characteristic surfaces are emerging
near z = 0 which block the axial electric current here. They do not block the
axial current near z = il because a?'¢/az2 is becoming large near z = tl, so
that the normal current to the top and bottom from the thin conducting wall
condition (7a) is not negligible. The evolution of the core into two outer
side layers separated by a region without axial current or velocity
corresponds to the emergence of characteristic surfaces which block the axial
current and velocity except wher2 transverse voltage gradients in the top and
bottom are sufficiently large to drive significant electric currents into or
out of the liquid metal at y = ta. The effective electrical resistance to
axial currents increases rapidly with the restriction of these currents to
regions near z = %1, so that the three-dimensional electrical current
circulations are reduced in spite of increasing axial voltage gradients.
Therefore, transverse pressure variations and apy; peak at certain values of v
and decrease with further increases in y. Any treatment of three-dimensional
effects which ignores the fact that the lack of structure of the liquid metal
restricts the three-dimensional current circulation and limits Ap3p grossly
overestimates apq) (see, for example, Hoffman and Carlson [8]).

Figure 4d presents the axial variation of the pressures at z = 0 and at
z = t1 for three values of y, as well as pfd(X) for comparison. Here, vyp is
plotted as a function of yX to give the same axial scales and to make the
graph of vypeq the same for all y. However, the actual axial length for
vy = 0.5 is three time that for y = 1.5. For y = 0.5, the pressure drop along
the sides is only 4% more than that for locally fully developed flow. The
pressure at z = 0 has a significant drop in the upstream transition region
because of the extra current lines crossing the z = 0 plane here. Downstream,
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it approaches the pressure at the sides. In the downstream transition region
it rises to equal the pressure at the sides because of the current in the -z
direction here. For y = 1, the pressure drop at z = £l is 15% more than that
for locally fully devaloped flow. The prassure at z = 0 has a much larger
drop in the upstream transition region, decreases for all X indicating that
J; > 0 throughout the gradually varying field region, approaches the pressure
at z = ¥l as X increases, and increases to equal the pressure at z = %1 in the
downstream transition region. For y = 1.5, the pressure drop at z = $l is 32%
more than that for locally fully developed flow. The pressure at z = 0 drops
enormously in the upstream transition vregion, rises for 0 < X < 0.27
indicating that jz < 0 at z = 0 for these values of X, drops for
0.27 < X < 0.67, and rises to equal the pressuce at z = tl in the downstream
transition region. For ~ = 1 and g = 2: (a) for y < 1, p at z = Q drops
through both the upstream transition and gradually varying field regions and
only rises through the downstream transition region; (b) for y » 2, pat z =0
drops enormously through the upstream transition region and then rises through
both the gradually varying field and downstream transition regions; (c) for
l <y<2, p at z = 0 drops through the upsiream transition region, first

1

rises and then drops in the gradually varying field region and finally rises:
in the downst:eam transition region.

Figure de presents graphs of Q.(X) for various y. The graph for y < 0.2
is also the graph for locally fully developed flow. If o> 1, all the
current in the y direction near z = +1 flows through the side which has a much
lower elactrical resistance than the side layer, and Qc = 0.75 for all fully:
developed flows at a = 1 [4]. If o << 1, then all the y current is in thef
side layer and Qc = 1 for fully developed flows. At X = 0, By = g, s0 that!
the local Hartmann number is gM. Therefore, the local side layer thickness is
O(B'I/ZM'I/Z) and the ratio of its resistance to that of the side
isel/zml/zc = 031/2. The thinner side layer has more resistance which forces
more current into the side and reduces Qc for local fully developed flow. As
X increases, By decreases, the side layer thickness increases, more of the
current flows in the side layer and Qc for locally fully developed flow
increases. Clearly, Qg increases dramatically with increasing y. As vy
increases, the flow in the core becomes more concentrated near z = tl1 and the
fraction of the flow carried by high velocity sheet jets in the side tayers at
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FIGUEE 4e: Fraction of the total flow carried by the core, Qc(x),
for &=a=1, F=2andvarious 7.
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Z = t] increases. The sheet jets in the side layers are associated with the
current in the y direction in the side. Such currents require a voltage
gradient so e¢s(x,y,0)/ay is not zero. However, 3¢./3y = 0, so that there is
a jump in the 0(1) ¢ across the side layer. In the z component of Ohm's law
{5¢c), 3¢p/az = O(Ml/z) in the side layer; j, cannot be O(Ml/z) since it is 0{c)
at z = t1, so u must be 0(M/2) in order to produce a ¥ x B to balance the
large ¥¢. The equation (14b) gives

oo

[ uglty,z) dg = B3t
0

-l
v A¢s = By [¢C(x’-1) - ¢S(X,.Y.0)] (25)

The boundary condition (16b) shows that ddg = 0 at y = ta. For o »> 1, the
first term in the equation (l4e) dominates and j,¢(X,y,0) is independent of
y. The ij is 1inear in y in the side and

seg = 0B, (1 - y¥ad) (26)

The sheet jet has a parabolic distribution of flow with y. In fact, the
relationship (26) is relativiey good for all values of a. The principal
effect of reducing a is to permit some of the current to fiow in the side
layer rather than in the side, which reduces Qs but does not change its
parabolic distribution in y very much. As y increases, the core flow becomes
concentrated near 2 = 1. This corresponds to an increase in the value of
3¢./0z at z = 1, which implies an increase in the electrical current in the z
direction in the top and bottom at z = tl. These currents must flow in the y
direction in the side or side layer. Therefore a¢; and Qg are proportional to
3¢./32 at z = 1 and increase as this voltage gradient increases.

The dependence of the results for the gradually varying field region on 8
are illustrated in Figure 5. Three-dimensional effects are primarily a
function of the magnetic field gradient whose magnitude is reflected in the
product y(g - 1), and there are some qualitative similarities of the results
for different combinations of y and 8 which have the same value of y{(g - 1).
However, these are only rough similarities. For g = 2 and y = 2, there is 50%



reduction in field strength in a duct length L, = 0.5Lc'1/2, while for g = 3
and y = 1, there is a 67% reduction in field strength in a duct length
Lm = Lg~l/2,  Both cases give the same average magnetic field gradient, but
the latter has a much larger average magnetic field strength than the
former. Results depend on field gradient and field strength. The velocity
profiles in Figure 5a are very similar to the corresponding ones in Figure 4a,
so the velocity profile is primarily a function of field gradient. However,
the pressure profiles in Figure 5b are quite different from the corresponding
ones in Figure 4b for the Targer values of g and y. As g increases for a
given y, the variations of ¢ becomes large enough to produce characteristic
surfaces blocking the axial current near z = 0. This increases the effective
electrical resistance to axial currents and decreases the axial electric
currents in spite of increases in the axial voltage gradients. This is the
same as the result of increasing y for a given g. However, if y is increased
with fixed g, the decreasing elactrical current is interacting with a constant
magnetic field strength and produces a decreasing body force, a decreasing
transverse pressure difference and a decreasing apsp. On the other hand, if 8
is increased with fixed y, then the decreasing electric current is interacting
with an increasing magnetic field strength and produces an increasing body
force, increasing transverse pressure difference, and increasing apsy. The
pressure differences depend on the magnetic field strength as well as its

gradient.

The axial pressure variations for three values of g are shown in Figure
5c. The results for g8 = 2 are the same as those for 7‘1 in Figure 4d. The
curves for g = 1.5 are similar to those in Figure 4d for y = 0.5, i.e., not
far from locally fully developed flow. However, as g increases, the analogy
fails. For g = 3 and y = 1, the flow in the gradually varying field region is
evolving toward a uniform core pressure and axial velocity as X increases much
more rapidly than it does for 8 = 2 and y = 2. Thus, there is only a small
di fference betweem pc at z = tl and at 2 = 0 at x = 7‘1 for large g. This
also explains the large variation of Q. with X for large g in Figure 5d. With
8 = 5, the velocity profile at X = 0 is very non-uniform with a large value of
a¢c/az at z = 1. This drives a large current through the side and increases
Qs. As X increases B, decreases by 80%, Uq evolves quickly toward a uniform

Y
value and a¢c/az at z = tl1 decreases appropriately.
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FIGURE 5a: u, at X=0 for of= a = ‘)’= 1 and various P .
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FIGURE 5b: p_ at X=0 for o{= a =%’= 1 and various P .

3.0
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FIGURE 5c: p, at z=1 (solid 1ines), p,atz=0 (dashed 1ines), and
Prg (dot~dash 1ines) for &= a = 7 = 1 and various P .
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The dependence of the results for the gradually varying field region on o
are illustrated in Figure 6. The variations of u, at X = 0 in Figure 6a and
of QC(X) in Figure 6d are those expected. For larger values of o, more of the
electric current in the y direction flows in the side, giving a relatively
larger Qg, so that Q. and u. are relatively smaller. Figures 6b and ¢
indicate that all pressures, including that for locally fully developed flow,
increases as o decreases. We have normalized the pressures with cl/chOBozL,
so that we need to keep ¢ constant to have a constant reference pressure. We
should consider the wall thickness as constant and vary o = cui/2 by varying
M. The side and side layer are resistors in parallel and are part of the
total electrical circuit. For o >> 1, only the side carries current. As a
decreases the side layer also starts to carry current so that the combined
electrical resistance decreases. Reducing the resistance in one part of a
circuit increases the current everywhere, so all pressure variations are
increased. The analysis for M~1/2 << ¢ << 1 s considerably easier than the
present one for ¢ = a M‘l/a, but the former underestimates the pressure drops
unless a ¥s quite large--at least 10. For a duct with different wall
thicknesses, the « which matters is that for the walls parallel to the
magnetic field. At the other extreme, the results for o = 0.1 still differ
considerably from those for M-l << ¢ << m-1/2,

The 0{cl/2) pressure at z = 11 does not vary through either transition
region, while the pressure at z = 0 changes through both transition regions to
equal the value at z = 11, These pressure changes are associated with the
completion of the circuit for the axial electric currents in the gradually
varying field region at X = 0 and v-1. Beyond each transition region is fully
developed flow for By = 8 or 1. Therefore, the difference between the overall
pressure drop for the actual three-dimensional flow and that for the
corresponding locally fully developed flow is simply pc(v'l,tl) - pfd(v'l).
Expressed in dimensional terms, this pressure drop due to three-dimensional
effects is
1/2

2
ap3p = Ke ol B, L (27)
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FIGURE 6a1 u, at X=0 for a = ¢'= 1, P= 2 and various OK.
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FIGURE 6c: P, at z=1 (solid 1lines), p, at z=0 (dashed lines)and
Pgy (dot-dash lines) for a =9'= 1, F = 2 and various ¢(.
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where the coefficient K depends on «, 8, vy, and a, while Bo is the strength of
the weaker uniform magnetic field and L is half the distance between the walls
parallel to the magnetic field. Since we can determine apgp without solving
for the transition regions, the present results are not restricted to the
particular magnet geometry shown in Fiqure 1. The present results apply to
any gradual variation of the transverse magnetic field. Here the upstream and
downstream junctions add no additional 0(c1/2) pressure drops. In a fusion
blanket, the magnetic field becomes uniform at one end of a radial duct
because the duct turns to the axial direction. Such an elbow has no 0(c1/2)
three-dimensional pressure drop [9]. If the "piping fixtures" at x = 0 and
x = ¢! do have 0(c1/2) pressure drops, they can be summed with the present
one as independent pressure losses. Figure 7 presents the values of K versus
y for various combinations of a and 8. Again we see that apg (a) has a peak
at a certain value of y for each a and g, and decreases for larger vy, {(b)
always increases as 8 increases, and (c) always decreases as a increases.

4. UPSTREAM TRANSITION REGION FOR Ly = Ly~lc-1/2

In the upstream transition region the magnetic field is given by the
equations (3). In the core for this region the solution of the equations (5)
with the appropriate symuetry about y = 0 is

3 3
- ‘1 ___IL = - '1 U
U, =B " 5z W, 8™ 5% {28a,b)
2 2
3°p 3p 3y, 9
_ =2 u u -2 “"u “Yu
vu =gy —2—+ -y B——-T (ZBC)
ax 8z
ap ap
.-l U _ =1 ""u
Jay =8 37 I = -8 53¢ (28d,e)
ay,. ap
= yp2 U _U (28f)
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FIGURE 7a1 Three-dimensional pressure drop coefficlent for o= 0.1.
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FIGURE 7ct Three-dimensional pressure drop coefficient for o= 2.
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FIGURE 7d: Three-dimensional
pressure drop coefficlent
for N: 10,
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Here Uys Wy and ¢y are 0(1); vy» Jyyr dpy and p, are 0(c1/2); jyu is 0(c);
pu(x,z) and ¢,(x,2) are unknown integration functions; wu(x,y) is given by
equations (3c,d). The boundary conditions (7a, 1l1) give the equations

governing p, and oy

2 -1 % 3y

vp, = va 5§£ (x,a) 57 (29a)
2 _ -2 %y 3Py
Ve, = Y8 5 (x,a) 57 (29b)

for -» < x < = and -1 < z < 1, where v2 is the Laplacian with respect to x and
2. The side layers cannot accept any 0(c1/2) electric current over an o(l)
duct length since j, is only 0(c) in the side layers. Therefore, the equation
(28e) and the condition p = 0 at x = 0 and z = £l give the boundary condition

p, = 0 atz =il (30)

We introduce the Fourier series solutions

p, = )_: hn(x) cos (an) (31a)
n=0
b, = 2G(x) + E gn(x) sin (an) _ (31b)
n=0
where
1 ' 3y
Kn = {n + ?') m, G(x) = 52—-(x,t1) (31c,d)




The boundary conditions (30) are satisfied and the equations (29) reduce to
the ordinary differential equations

dn 3 _
a;?ﬂ = xﬁhn + ya 1 3;5 {x,a) [Kngn + 2nn1(-1)"G] (32a)
d2‘-‘n 2 2 Ay n -2 d%

;(-2-= nOp = Y8 <n 3% {x,a) hn - 2{-1) “n '(;2- (32b)

These equations are coupled to the side layer solution.

For the side layer at z = -1 in the upstream transition region, the
equations (5) give

3
-1 9p 9 979

Jous = B ' '3%§'+ 8 "‘“%E (33)
ag

and the equations (l4a-d,f-h) with (a) the subscript s replaced by us, (b)
Qy(x) replacaa by the constant 8, {c) X replaced by x, and (d) y = 0. These
equations apply for ~= < X < w, ~a <y <a, 0< g <=, Here Uyg and vui are
O(Ml/z); Wus»  Pyse Jyys> and jyus are 0(1); Jaus and pyg are 0(M™ /2).
Matching the adjacent core gives the boundary conditions

Vus * 0, dys * ¢u(x,-1), Pus * aPu(x), as g + » (34)

where P,(x) 1is the O0{c) perturbation pressure in the core evaluated at
z = -1. Again the 0(1) ¢, is constant in the adjacent parts of the top and
bottom [4], so that this fact and the boundary condition (11) give

Vys = 0, dys = ¢u(x.-1), at y = #a {35)

The boundary conditions (7b, 9b) become
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2 ap 2
- us _ us _ . “Pus )
Vys = O T 0, T T (36a-c)
2 2 3
3 3 3 ¢ ¢ ap
ag? s g2 B, atg =0 (36d)
ax ay ag

When the total flow condition (10) 4is applied to a cross section of the
upstream transition region, it gives the condition (18) with ¢4(X,y,0)
replaced by ¢s(x,y,0) and with Cay(X) replaced by -2ag. The extension of the
conservation of current condition (8a) parallels that leading to the equation
(20) and gives

dp

g = -sa”l6(x) ' (37)

The solutions of the modified equations (14f-h) with the boundary
conditions (34, 35, 36a,b) are

Vus © mfl bm(x) sin (mry/a) exp (-rm;) sin (rm;) (38a)
Pus = uPu(X) +8 mfl b, (x) cos (mny/a) exp (-t.2) cos (rm;) (38b)
by = 8, (%s-1) # nio e (x) cos [(2n + 1)ny/2a] exp (-2 z) x {38¢c)
[cos (xz) + sin (An;)]
where 1 = (emn/Za)l/2 and A, is given by the equation (2lc) with By replaced

by B so that each i, is now a constant instead of a function of X. The
boundary condition (36c) determines the coefficients b, in terms of e,
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a ° e
by = Ty L R (39)
n=0
where
R = D™ s fnsms e (n-me DY

The present version of the total flow condition (18) and the equation (38c)
give

061 = -8 - & (D)% e (x) (40)

n

11~ 8

0

This must equal the core solution (31b) evaluated at z = -1, so that

6x) =g+ 3 (-1)" [t ep(x) = g (x)] (41)

il 98

n=0

When we introduce the solutions (37, 38b,c, 39, 40) into the remaining
boundary condition (36d), we obtain an ordinary differential equation for
e (x),

n

2
d-e
;;25 = <§ a2 (1 + u'IA;I) et 2:;1 al (-1)" (42)

2
de ©

K {ntk) -1 -1 -1 -1
-gx}— [2(-1) Kp K¢ - @ mf]_ m an ka]
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The coupled equations (32, 41, 42) govern en(x). gn(x), hn(x) and G(x).
Once these equations have been solved, the equations (28, 31) give all the
core variables, whila the modified equations (l4a-d) and the equations (33,
38-40) give all the side layer variables. The equation (37) gives the
variation of the 0(c) pressure along the sides in the upstream transition
region, but we have already neglected a comparable pressure drop in the
gradually varying field region. The solutions of the equations (32, 41, 42)
automatically matcn the fully developed flow solution for B‘y =g as X + -» and
the solution in the gradually varying field region evaluated at X = 0 as
X + -o, Direct numerical integration of the coupled equations (32, 41, 42) is
difficult because round-off errors grow exponentially with integration in
either direction. Instead (a) we use a central difference for the second
derivatives with ax = 0.2 for |x| < Xg (b) we assume that the second
derivatives are zero at x = X, (c) we truncate all infinite series with n =
LN and n = Ny * 1, and (d) we relax the solutions until the equations (32, 41,
42) are satisfied everywhere. Solutions with various Xo and n, indicate that
the results are the same for any Xy @ 3 and for any n, » 9. The series (31,
38) converge very rapidly so that only 10 terms in each give excellent

results.

The value of the variable coefficient awu/ax at y = a depends on d. If
the upstream pole faces touch the outside of the duct [d = g{a + t/L)] the
magnet provides the most abrupt possible transition between the uniform and
gradually varying magnetic fields. As the pole faces are moved away from the
top and botto of the duct, the transition becomes more gradual. The results
in Figure 8 are for the values a = 1, d =3, a >> 1, g = 2, and vy = 1; results
for other parameter values are similar. The traasition from the uniform
velocity and pressure for fully developed flow to the non-uniform ones for the
flow in the gradually varying field region at X = 0 is illustrated in Figures
8a,b. This transition is associated with the completion of the circuit for
the axial electric currents at X = 0. Axial variations are plotted in Figure
8c. As the flow becomes more concentrated near z = £l, the values of 3¢,/d2
at z = il increase which drives more electric current into the corners at y =
ta, z = %1 and through the sides. Qs increases proportionately and this

reduces Qc.



-+ FIGURE Ba: Axial velocity in the core in the
upstream transition region fora = ¢ =1,

0980T K>>1, P= 2 and d=3,




x=-0.4

x=0.0

FIGURE 8b: Pressure in the core in the upstream transitlion region

for a = 7: 1, “>>1' e=2andd=3.



FIGURE 8ci Axial velocitles, fraction of the flow ®h the core, and pressure at the centerline in the
upstream transition region core for a= ¥ = 1, 0(>>1,F =2, and d = 3.
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The analysis and rasults for the downstream transition region are very
similar to the present ones for the upstream transition region. The
transitions between the solution for the gradually varying field region at
X = y‘l and the fully developed flow for Ey = 1 are much less dramatic than
the present ones because e and pe are much more wniform at X = y'l than at
X = 0. The magnetic field transition is also more gradual because the pole
faces are further away from the duct. A composite solution which is valid for
all x can be constructed by adding the solutions for the two transition
regions and for the gradually varying field region with X = xcl/z, and by
subtracting the solutions for the gradually varying field region at X = 0 and
at X = y‘l. In order to get the correct pressure gradients far upstream and
downstream, we should add

-c{l + c)"1 azx. ¢l + 1)’l(x - s-;)

to the pressure for x < 0 and for x > e'l. respectively.

5. SOLUTIONS FOR L << Ly << L¢™1/2

The solutions in sections 3 and 4 assume that the magnetic field gradient
is 0(c1/2). Here we assume that this gradient is small, but much larger than
cl/z, i.e,. cl/2 ¢ ¢ = L/Lm << 1. For the gradually varying field region in
0< X< e‘l, we compress the axial coordinate by substituting x = Xe~l. The
magnetic field in each region is given by the equations (2-4) with y and cl/2
replaced by 1 and ¢ respectively. The Figure 2 is modified by the addition of
outer side layers (o) with 0(c1/2:-1) thickness adjacent to the sides at z =
i1, while the side layers (s) with 0(M~1/2) thickness are now the inner side

layers.

In the gradually varying field region for 0 < X < 1, the axial velocities
are 0(M}/2), 0(1) and O(c) in the inner side layer, outer side layer and core,
respectively. Therefore, the entire 0(1) flow required by the condition {10)
is carried by the high velocity sheet jets in the inner side layers, while the
total axial flows in the outer side layers and core are small, namely
0(cl/2c-1) and 0(c), respectively. The axial electric current densities Jy
are 0{e), 0(c1/2) and 0(ec) in the inner side layer, outer side layer and
core, respectively. Therefore, there is an 0lce™l) total axial electric
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current in the #x direction in the outer side layers at z = tl, while the
total axial currents in the inner side layers and core are much smaller,
namely O(eM'l/z) and 0(ec) respectively. As y + = for the solution presented
in sections 3 and 4: (a) the axial velocity and current in the core become
blocked by the emerging characteristic surfaces, (b) the axial flow becomes
concentrated in the inner side layers and (¢) the axial current becomes
concentrated in the outer side layers with an o(c/2:-1) = o(y~1) thickness.
The O(ce~!) axial currents in the outer side layers have their maximum values
at X = 0. The upstream leg of the circuit is completed by j, > O in the
upstream transition region., The downstream leg is completed through three
parallel resistors: (a) the side layers, sides, top and bottom, (b) the
downstream transition region at x = e’l, and (c) the core in the gradually
varying field region where the O0(c) transverse current must follow the
characteristic surfaces from one side layer to the other. The pressure at z =
0 drops enormously through the upstream transition region and then rises
through the gradually varying field and downstream transition regions. The
0(ce™ly pressure throughout the inner side layer P;(X) is given by the
equation (23) with the one inside square bracket replaced by zero and with
By = 8l +(8 - 1)X1"! in the equations (2lc, 23). The pressure for locally
fully developed flow is also 0(ce‘l) since this is the pressure drop for an
0(e™) duct length and is given by the equation (23). Therefore, the only
difference between P;(X) and pgy(X) is the smaller denominator for P; in the
modified equation (23). The pressure throughout the core is

-1 dPi
PO = PX) + (8 - 7L L= (5 - 1X] g5t ()

which always increases as X increases. The only transverse pressure variation
occurs in the outer side layers and is associated with the sheet of 0(ce~1)
axial electric current here. The pressure in the outer side layer at z = -1

is given by

/2 (g - 1) B'l B, e c'l/2 (z + 1)]

1
P+ (Pi - Pc) exp [-a y
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This corresponds to the limit of the solutions (l3a,c) as y + =. As before,
we can integrate the equations for P; and pgy numerically from X = 0 to
X =1. The difference at X = 1 represents the pressure drop due to three-
dimensional effects, in addition to the pressure drop for the locally fully
developed flow. Here the dimensional pressure drop has the form

- [} "1 2 - 1 2
ap3p = K' ce UUOBOL =K COUOBOL\TI

where this coefficient K' represents the limit of yK as y » «». All the curve
in Figure 7 are approaching hyperbolas given by K‘y'l as y » =. The values of
K' for 1.5 < g < 4.0 and for o« = 1, 2 and 10 are plotted in Figure 9. If we
plot the curves K'y“l with the corresponding graphs in Figure 7, we find that
the latter are slowly converging to these hyperbolas but are still below the
hyperbolas by 20-30% at y = 10. For practical values of ¢, y = 10 corresponds
to a value of L. which is comparable to L. The present solution for
L << Ly << L"l/2 illustrates the mathematical transition between the
asymptotic analysis for L = O(L) and ¢ << 1 [5] and the asymptotic solution
for L = O(Lc‘l/z) and ¢ << 1. However, for practical values of ¢, the
analyses for Lp = O(L) and for L <« Ly << Lc'l/2 lead to an unrealistically
severe picture of the flow: all the flow is confined to sheet jets in the
inner side layers and all the axial current is confined to current sheets in
the outer side Tlayers. In reality, the flow and current are becoming
concentrated near z = tl but are still distributed over a significant part of
the cross section even for Lp = O(L). This part is still much too large to be
considered a boundary layer. If we use the predictions of the analysis in
sections 3 and 4 for all cases, we will neglect the interaction of the two
transition regicns when L = O(L), but we will be much closer to reality and
to realistic estimates of the pressure drop than either the analyses for
L, = 0(L) or for L <« Ly << Lc‘l/z. If we use the composite solution
described at the end of the last section we will remove part of the error of
neglecting the interaction of the two transition regions for L, = O(L).

For L << Ly << L."1/2, the transition regions accomplish the transition
between the fully developed flows and the flow in the gradually varying field
region, just as they do for Lm = Lc'l/zy‘l. However, the mathematical
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analysis is quite different. For x = 0(1), the magnetic field gradient is
still large enough to create characteristic surfaces blocking the axial
velocity and current in the core. We must go upstream from x = 0 until the
magnitude of B , given by the equations (3b) with y and cl/2 replaced by 1 and
e, is 0(c}/2) rather than (e). However, B, decays exponentially so By is
O(Cl/z) when x = 0[2n(c1/zs'l)]. We compress the range -« < x ¢ 0 into
0 <T <1 by substituting x = (d/8w) an (T). The exponentials in the equation
(3d) are replaced by TM. After the axial coordinate compression, there is a
“boundary layer" with 0(s‘lc1/2) thickness at T = 0, so we stretch the axial
coordiante by substituting T = e~1cl/2.  In the "boundary layer" only the
first term in the infinite series (3d) remains as simply ¢ in the 0{1)
equations. This "boundary layer" is actually the upstream transition region
which has been pushed upstreanm from x = 0 by the more severe magnetic field

gradient. The core solution involves two integration functions Pu(t,2) and

dylts2) for 0 <1 <« and -1 < z < 1, which are governed by coupled elliptic
equations given by applying the boundary conditions (7a, 11). Fourier series
in 2 again reduce the elliptic equations to ordinary differential equations in
1. These equations are similar to the equations {32) except that 7 replaces
ay/ax and the equations are more complex because of the coordinate change.
These equations are coupled to the side layer problem which is5 reduced to
another ordinary differential equation. The equations are solved by
ralaxation on the range 0 < t < Ty for various T4- The results are similar to
those presented in Figure 8. The x = -3 results correspond to r = 0, and as =
increases, the velocity and pressure becomes progressively more non-uniform.
However, as t » =, p, Pc(0) except near z = 1 where a progressively steeper
pressure gradient leads to the values p, = 0 at z = tl. This steep pressure
gradient represents the emerging outer side layers. In addition, u, > 0 and
all the flow migrates into the inner side layers as t + =. Because of the
large gradients, progressively more terms are needed in the Fourier series as

Tg is increased.

6. CONCLUSIONS

For the radial legs of a poloidal duct in a tokamak blanket, the toroidal
magnetic field strength varies from 3 to 8 tesla over a duct length of 7.5 m,

i.e., Bo = 3 tesla, 8 = 2.67 and Lm =7.5m [1]. If we take ¢ = 0.01, a = 1,
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and . = 0.2 m [square ducts with 40 cm between the first and second walls],

then y = 0.267. If we also take M = 90,000, then o =3, For this case, the
total pressure drop for the entire 7.5 m length of the duct is

8l.dcoU B L=217cqU B

' 00 ) 00

bn

For the locally fully developed flow in this duct, the first coefficient above
is raplaced by 79.4, so that the actual pressure drop is only 2.5% more than
that for locally fully developed flow. The maximum transverse variation of
the axial velocity occurs at the inboard end of this duct where the magnetic
field strength is 8 tesla. Here, the axial core velocity varies from 0.75U,
at the centerline to 0.827U;, near the first and second walls.
Correspondingly, the fraction of the total flow in each of the side layers at
this cross section is 0.112, while the value for locally fully developed flow
here is 0.107. This flow deviates only slightly from locally fully developed.

On the other hand, where a feed pipe passes between the superconducting
magnet coils, it sees a much larger magnetic field gradient, the flow is
locally very differeat from fully developed flow. However, here the precise
velocity profile is not particularly important because this is not a region
where heat is deposited. If the three-dimensional pressure drops are large
for these feed pipes, then perhaps one can use laminated pipe walls here
because there is no danger of neutron damage to the electrically insulating
ceranic materials between the structural metal and the thin metal liner in

contact with the liquid metal.
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