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LIQUID-METAL FLOW IN A RECTANGULAR DUCT
WITH A NON-UNIFORM MAGNETIC FIELD

By
John S. Walker

ABSTRACT

This paper treats liquid-metal flow in rectangular ducts with thin
conducting walls. A transverse magnetic field changes from a uniform strength
upstream to a weaker uniform strength downstream. The Hartmann number and the
interaction parameter are assumed to be large, while the magnetic Reynolds
number is assumed to be small. If the magnetic field changes gradually over a
long duct length, the velocity and pressure are nearly uniform 1n each cross
section and the flow differs slightly from locally fully developed flow. If
the magnetic field changes more abruptly over a shorter duct length, the
velocity and pressure are much larger near the walls parallel to the magnetic
field than in the central part of duct. Solutions for the pressure drops due
to the magnetic field change are presented.
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1. INTRODUCTION

In a self-cooled liquid-metal blanket for a magnetic-confinement fusion

reactor, l iquid lithium or a lithium-lead mixture circulates through the

reactor to collect the energy and to breed the tr i t ium to fuel the plasma.

For a toroidal rsactor geometry (tokamak), the principal magnetic f ie ld is in

the toroidal direction, and the f ie ld strength in tesla is given by 36/r,

where r is distance in meters from the reactor's axis [1 ] . In the region

occupied by the blanket, the magnetic f ie ld strength varies from 3 to 8

tesla. Recent advances in plasma physics indicate that stable plasma

confinement may be possible with sl ight ly weaker magnetic f ie lds , but the

variation in toroidal f i e ld strength is in t r ins ic in the tokamak geometry.

The walls of the ducts carrying the l iquid metal must be metal because both

hot l iqu id l ithium and high neutron fluxes degrade the strength of most

electrical insulators. The pressure drop In a magnetohydrodynamic (MHD) duct

flow is proportional to the thickness of the duct's walls, so the walls are

made as thin as possible. A thorough understanding of three-dimensional

l iqu id metal flows 1n ducts with thin conducting walls and with strong non-

uniform magnetic f ields 1s needed for blanket design calculations.

Holroyd and Walker [2] present analytical solutions for a straight

circular pipe with a thin conducting wall and with a transverse magnetic f ie ld

which varies from one uniform strength upstream to a dif ferent uniform

strength downstream. The non-uniform magnetic f ie ld region is confined to a

pipe length Lm which is comparable to the inside radius of the pipe L, and

both uniform f ie ld strengths are assumed to be large. Walker [3] presents an

extension of this analysis to the case with the magnetic f i e ld strength

decaying to zero downstream instead of approaching a large uniform value.

For a rectangular duct with thin conducting walls and with a transverse

magnetic f ie ld whose strength varies along the duct, there are boundary layers

adjacent to the walls which are parallel to the magnetic f i e ld (side

layers). These side layers carry a signif icant fraction of the total flow as

high-velocity sheet je ts adjacent to the sides, and they are an important part

of the electric current c i r cu i t . Walker [4] treats these side layers for the

three-dimensional flows in expansions and contractions with uniform transverse

magnetic f ie lds. Walker [5] presents the boundary value problems governing
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the side layers in a rectangular duct with a transverse magnetic field whose
strength varies over a duct length Lp) which is comparable to L, where L is
half the distance between the sides for a rectangular duct. These boundary
value problems are formidable and no solutions are presented. Here, we assume
that L^ >> L, and this assumption makes the boundary value problems
tractable. In a tokamak, the magnetic field strength varies from 3 to 8 tesla
over a duct length of 7.5 m if the duct's centerline is perpendicular to the
tokamak's axis, while the distance between the duct walls parallel to the
magnetic field is 0.4 m or less (L < 0.2 m) [1]. Therefore, this assumption
is appropriate for fusion reactor blankets. The present results Indicate that
this analysis is appropriate for Lm > 6L. If we apply the present analysis to
a case with Lm < 6L, then the essential physics is correct, but an axial
derivative which would actually smooth transitions 1s erroneously neglected.
However, the present analysis also reveals an implicit assumption behind the
boundary value problems presented by Walker [5] for Lm = 0(L), which 1s not
valid for real thin conducting ducts. In particular, the solutions of the
boundary value problems presented by Walker [5] would grossly overestimate the
pressure drop due to three-dimensional effects AP3Q, while the present
analysis would almost certainly be closer and would be conservative with a
slight overestimation.

If the value of L^/L is extremely large, the axial field gradient has
negligible effect and the solution at each cross section Is given by the
solution for fully developed flow with the local value of the magnetic field
strength. The locally fully developed flow solution serves as a reference
solution and deviations from it indicate the magnitude of the three-
dimensional effects. It turns out that the locally fully developri flow is
realized for Lm/L » c"1^2, where c = awt/aL is the small wall conductance
ratio and t is the thickness of the walls, while ow and a are the electrical
conductivities of the walls and liquid metal. For a typical case, the axial
velocity deviates from that for locally fully developed flow by 6.9% and 1.2%
for L,,, = 2Lc~1/2 and Lm = SU"

1' 2, respectively. For a typical fusion
blanket, c = 0.01. As the value of Lm/L is reduced from these extremely
large values, the fraction of the total flow, which Is carried by high-
velocity sheet jets adjacent to the sides, increases, and the velocity in the
inviscid core region becomes non-uniform with a larger velocity near the sides
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than at the plane of symmetry midway between the sides. As Lm/L decreases
further, while still being large, the velocity in the core becomes zero and
all the flow is carried by the side layers. For 1 << Lm/L << c"

1/2, there are
two boundary layers adjacent to each side. As the flow and electric current
in the core become more concentrated near the sides, the core evolves into an
inviscid outer side layer adjacent to each side. This outer layer is
separated from the side by the same viscous side layer which is now the inner
side layer. The inner side layer carries even more of the total flow than it
did when part of the flow was distributed over the entire cross section. If
we continue reducing Lm/L until this ratio is 0(1) and we bring back the
axial derivatives neglected here, then we have the boundary value problems
presented by Walker [5]. In this case, the core is essentially stagnant, each
outer side layer has an 0(c^ 2) thickness and represents a sheet of axial
electric current and each inner side layer carries half of the total flow. If
we consider the present analysis for 1 << Lm/L = Q(c~^

2) an(i apply it for the
case Lm = 0.1 Lc"^

2, we find that the core solution clearly exhibits flow and
electric current concentration near the sides. For a typical case, uc < 0.025
for |z| «; 0.5, but uc increases rapidly as |z| Increases beyond 0.5 and
reaches uc = 3.5 at z = ±1. Here uc 1s the axial core velocity normalized by
UQ which is the average axial velocity, and z is the coordinate perpendicular
to the sides normalized by L. Similarly, almost all the transverse pressure
variation is confined to 0.5 < |z| < 1, where the pressure serves as a stream-
function for the axial electric current density. However, each inviscid outer
side layer which is beginning to emerge from the core solution still occupies
a quarter of the duct's cross section, so they are certainly not thin enough
to be considered boundary layers for Lm = 0.1 Lc"

1/2. If c = 0.01, this case
corresponds to Lm = L, which should be the case for the boundary value
problems presented by Walker [5]. While the flow is tending toward this case,
it has certainly not reached it.

Walker [5] seeks an asymptotic solution as c + 0 with Lm/L = 0(1). This
analysis implicitly assumes that c1/2Lm/L ->• 0. In practical situations,
c1/r2Lm/L is probably never less than 0.1 and the flow for this value is still
far from that for c1/2Lm/L •»• 0. The analysis of Walker [5] predicts that the
axial electric current in the non-uniform field region is confined to the thin
outer side layers and the electrical resistance of these layers is large
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because of their thinness. The large resistance restricts the electrical
current circualtion which gives a small Apjg. In reality, the axial electric
current in each direction is spread over a quarter of the cross section even
for Ln] = L, so the actual electrical resistance is smaller than that of the
thin outer side layers, the total current circulation is larger and AP30 is
larger. Therefore, the solution of the boundary value problems presented by
WalKer [5] would underestimate the extra pressure drop due to three-
dimensional effects.

In the present analysis, there is (1) an upstream fully developed flow in
the upstream uniform magnetic field, (2) an upstreain transition region in
which the effects of the axial magnetic field gradient are significant but the
field strength deviates from its upstream uniform value by only a small,
namely (Me1'2) amount, (3) a gradually varying magnetic field region in which
the magnetic field strength is changing but axial derivatives are small, (4) a
downstream transition region, and (5) a downstream fully developed flow. The
analysis indicates that each transition region extends a distance of 3L Into
the gradually varying field region. If Lm > 6L, the flow manages to reach the
gradually varying field solution 1n some central region, the two transition
regions do not interact, and the present analysis is valid. For L^ < 6L, the
gradually varying field region is gone and the two transition regions are
merged into one region in which the magnetic field is changing by an 0(1)
amount. The flow entering the merged transition region begins to evolve
toward the gradually varying field solution, but never reaches it. Instead,
the evolution reverses back toward fully developed flow. Therefore, the axial
derivative, which is neglected here, prevents the flow from reaching the
severity of the flow concentration near the sides which would occur if the
gradually varying field solution were reached. If we use the present
predictions for APJQ for l_m < 6L, we have the pressure drop for a full
transition from fully developed flow to the gradually varying field solution
and back to fully developed flow. The real flow only makes part of this
transition and only requires part of this pressure drop. Therefore, the
present predictions are valid for Lm > 6L and are conservatively approximate
for L^ < 6L. This assumes that the strength of the weaker magnetic field is
roughly half of that of the stronger magnetic field. If the weaker field is
only one-tenth the stronger field, the critical value of L^/L is somewhat
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greater thai. 6, while i f the weaker f ie ld is nine-tenths of the stronger

f ie ld , i t is less than 6.

2 . GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The ratio of the induced magnetic f ie ld , which is produced by the

electric currents in the l iquid metal and in the duct walls, to the applied

magnetic f ie ld , which is produced by an external magnet, is given by c1/2!^.

Here 1^ = yaUQL is the magnetic Reynolds number and y is the magnetic

permeability for the l iquid metal and duct walls. Both c and R,,, are small for

a fusion blanket, so we neglect the induced magnetic f ie ld . The applied

magnetic f ie ld is governed by

B = -Vi|i, V2i|i = 0 (1)

where ^ is the magnetic potential function. The faces of the present magnet
are shown in Figure 1 and are located at

±B~ d, for x < 0
y = is"1 d [1 + e(e - D x ] , for 0 < x <

±d, for x > e"

where the coordinates are normalized by L, e = Lm/L and s >1» so that the pole
faces are closer together upstream than downstream. The characteristic
magnetic field strength, BQ, is chosen as the weaker uniform magnetic field
strength downstream. The magnet is assumed to be very wide in the z
direction, so that B = B(x,y) x + B fx.y) y, where x and y are unit
vectors. The magnet poles are assumed to have a very large magnetic
susceptibility, so that B inside the poles is decoupled from the outside, and
• = ±d at the lower and upper pole faces, respectively. In Sections 3 and 4,
we take e = yc1'2. *-e., Lm = L Y~

1c~ly'2> where Y is an Q M parameter, i.e.,
Y remains finite and non-zero as c + 0. In the central or gradually varying
field region, we compress the axial coordinate by substituting x = Xc ' . In
this region the solution of the equations (1) gives



Magnet Pole Face

Bx(x,y)x + Bv(x,y)y

Magnet Pole Face

2fl 'dL

FIGURE lai Axial section of
the rectangular duct and magnet
pole faces showing the coordinates
and velocity components in the z=0 plane

2dL

' ffff///f ft I f I f / f f /1 / / / / / / / / / / / /



Magnet Pole Face

Duct

t

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / ///A

2aL z,w

2L
t

t

•

00

Magnet Pole Face
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By = 8[1 + (S - 1) YX ] " 1 + 0(c) (2a)

Bx = - Y c 1 / 2 8(8 - 1) y [1 + (8 - 1) YX]"2 + 0(c3 /2) (2b)

for 0 < X < y"1. In the upstream transition region near x = 0, the magnetic
A.

f ie ld must match the upstream uniform f ie ld 0^ as x + -» and the gradually

varying f ie ld (2) as x + «. The solution of the equations (1) near x = 0 1s

By = S - Y C 1 / 2 ^ - (x,y) + 0{c) (3a)

Bx = - Y c 1 / 2
 jf- (x.y) *• 0(c) (3b)

where

-8 (8 - 1) f (x ,y ;8) , for x < 0
• u = i (3c)

8(8 - Dxy - 8" (8 - 1) W - x . y ^ ) , for x > 0

;B) = d2n'2 E ( - l ) n n'2 sin(emry/d) exp{enirx/d) (3d)
n=l

In the downstream transition region near x* = x - e = 0, the magnetic field
must match the gradually varying field (2) as x* •»• -« and the downstream
uniform field ̂  as x* + ». The solution is

0 ( c ) ( 4 a )

Bx - -,
where

e'^e - l) x*y + e'^e - 1) ¥{x*,y;l), for x* < 0

3 (8 - 1) ?(-x*,y;lh for x* > 0
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In section 5, we treat the case c1^2 << e << 1. so that e and c are

independent small parameters. Then we compress the axial coordinate with

x = Xe"1. For this case, the magnetic field in the gradually varying field

and transition regions is given by the same expressions (2-4) with y and c1 '

replaced by 1 and e, respectively.

The ratio of the electromagnetic body force to the inertial "force" is

characterized by the interaction parameter N = aB2 L/pUQ, where p is the

liquid metal's density. For a typical self-cooled blanket N = 10 , so that

inertial effects are small. We neglect inertial effects everywhere and then

use the inertialess solutions to define the required condition on N. In the

core regions, N >> 1 is sufficient to insure that inertial effects are

negligible. However, in the side layers, the axial velocity is large and in

the transition regions near x = 0 and e"1, this large axial velocity changes

over an 0(1) duct length as some of the flow migrates from the core to the

side layers or back. To neglect inertial effects in these subregions requires

that N » M3/r2, where M = 8QL (o/pv)1/2 is the Hartmann number and v is the

liquid metal's kinematic viscosity. Since M = 10* for a typical blanket, this

condition is not met. However, there are several reasons to believe that the

present inertialess analysis provides good predictions even though N = 0(M)

instead of M >> M3/2. For the fully developed flows at x = ±» the inertialess

solutions with the high-velocity sheet jets near z = ±1 are valid for any N

since there are no axial variations. In the downstream transition region for

a typical case, the fraction of the total flow carried by each side layer Qs

must decrease from 0.073 to 0.068 in a duct length equal to 6L. The condition

N » M3^2 assumes that the side layer velocity is V^^\iQ in a duct length

equal to L. The results for this typical case indicate that the maximum side

layer velocity is roughly 0.25 M 1 ^^ and changes by only 0.017 M1/r2U0 in a

duct length equal to 6L. Therefore, the relative error in the inertialess

solution for the downstream transition region side layer can be expected to be

Q.OOOyiM^IT1, which is only 7.1% for N = M = 104. There is a slightly

larger change in Qs in the side layer for the upstream transition region, but

here the magnetic field strength is eB0, so that the local interaction

parameter and Hartmann number are given by &2N and sM respectively. The p" 1 ' 2

in the local inertialess error more than cancels the effect of the larger

velocity change. In the side layers, in the gradually varying field region
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for the same typical case, Qs decreases from 0.090 to 0.073 over a duct length

equal to Lm = Le"1, so the relative error in the inertialess solution is

smaller here by a factor of e. The typical case discussed here has y = 1,

3 = 2, and a = cM^ = 1 . If we consider a much larger slope for the

diverging magnet pole faces by increasing y and a, then inertial effects would

become more important, particularly near x = 0 and e"1. In the extreme casa

with L,̂  = L, the boundary value problems presented by Walker [5] indicate that

Qs must decrease from 0.5 to 0.063 for the side layers near x = e"1. However,

the present analysis for lm =0 .1 Lc"1/2 shows that Qs only changes from 0.22

to 0.068 here and this is the same case if c = 0.01. The present results give

a relative inertialess error of 0.023M3/2M"1, which is unfortunately 233% for

N = M = 104, so inertial effects are not negligible for such abrupt magnetic

field changes. The inertial effects would prevent the full acceleration of

the side layers in the gradually varying field region, but the interaction of

the transition regions for Lffl = L does the same thing, so Qs never reaches

0.22. In addition, inertial effects would disturb the downstream fully

developed flow to larger values of x*. As the product y{e - 1) increases,

inertia changes the velocity profiles near x = 0 and e before i t changes

Ap3D for two reasons. Inertia first becomes important in the transition

regions, but these regions make no significant contributions to AP3D. This

pressure drop is due entirely to the gradually varying field region in which

the inertial effects are smaller by a factor of e. In addition, the side

layer flows involve an acceleration followed by an almost identical

deceleration, so that the pressure changes due to inertial effects tend to

cancel as long as the flows are stable. The critical values of N for the

instabilities of the side layers which generate vortices parallel to the

magnetic field are much smaller than 10 . As with any asymptotic analysis the

error in the predictions of the present inertialess analysis as a function of

N for a given duct and magnet can best be defined by experiments, previous

MHD experiments with reasonably detailed velocity and pressure measurements

have been restricted to N < 50. At Argonne National Laboratory, experiments
for the present situation, with N = 100 - 1000 or larger and with detailed

measurements are planned for sometime in the next year or two.

The inductionless, inertialess, dimensionless equations governing the

liquid metal flow are
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vp = j x B + M"2 v2 v, v v = 0 (5a,b)

j = -7* + v x B, v j = 0 (5c,d)

Here p, j , , v, and <j> are the pressure, electric current density, velocity, and

electric potential function, normalized by CTU0BQL, <JU0B0, UO and UQB0L,

respectively (See [6 ] , Chapter 2). The dimension!ess applied magnetic field B

is given by one of the expressions (2-4) or by sj£ and £ far upstream and

downstream, respectively. The present duct has a constant rectangular section

(see Figure 1). Here, we assume that all four walls have the same thickness,

t , because this is the case for the future experiments at Argonne National

Laboratory. In a fusion blanket, the walls parallel to the toroidal magnetic

field may be thicker than those perpendicular to this field. The extension of

the present analysis to ducts with different wall thicknesses i s straight-

forward [7] . If t << L, then the variation of the electric potential function

between the inside aid outside surfaces of each wall is negligible. The

electric potential in the wall, $w, 1s simply given by the value 1n the liquid

metal at the inside surface of the wall. The tangential components of the

electric current density in the wall are then given by

Integration of the equation (5d) inside the wall then gives the thin

conducting wall boundary condition [4] on the liquid-metal variables evaluated

at the inside surface of each wall:

at y = ±a (7a)

a t z - i l (7b)
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In addition to applying the boundary conditions (7), we must also insure that
electric current is conserved at the corners at y = ±a and z = ±1. From
equation (6)

lim i±(X,y,-l) = i lim |£(x,±a,z) (8a)
y*±a 3y z>-l 3Z

lim |J<x,y,l) = + 11m f£(x,±a,z) (8b)
3y l 3Z

The velocity must satisfy the boundary and total flow conditions

v = 0 at y = ±a, and at z = ±1 (9a,b)

1 a
/ / u dy dz = 4a (10)
-1 -a

where the latter is a consequence of choosing the average velocity for Uo.
The boundary value problem (5, 7-9) is linear and homogeneous and the solution
is scaled by the total flow condition (10). The solution i'or flow from a
region of weaker magnetic field to a region of stronger magnetic field is
given by replacing the 4a in the condition (10) with -4a. This simply changes
the sign of all solutions given here.

The principal subregions of the flow (see Figure 2) ara: (c) the core
region in the gradually varying field region for 0 < x < y if e = yc or
for 0 < X < 1 if c 1 / 2 << e << 1 and its side layers (s); (u) the core in the
upstream transition region near x = 0 and its side layers (us); (d) the core
in the downstream transition region near x = e~* and its side layers (ds); the
upstream (ufd) and the downstream (dfd) fully developed flows which are
approached as x + + », respectively. Each of these regions is separated from
the top and bottom by a Hartmann layer with 0(M~*) thickness. The Hartmann
layer variables satisfy the boundary conditions (9a) and match the adjacent
core or side layer variables provided the latter satisfy

v = 0, at y = ±a (11)



us 0{M'l/2)--t—I-
0(1) »ft-o(c-l/2) or 0(6-l>.

ds

ufd u dfd

us (XM-|/2)

FIGURE 2: Horizontal section in the y=0 plane showing the principal subregions of the flow.
All subregions are separated from the top and bottom at y=+a by Hartmann layers.
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The jumps in 1 , and <j> across the Hartmann layers are OfM"1) and O(M"2),

respectively, so that the condition (7a) can be applied directly to the core

or side layer variables provided c >> M . The top or bottom and the adjacent

Hartmann layer are electrical resistors in paral lel. The condition c » M

states that the top or bottom has a much smaller resistance than the adjacent

Hartmann layer, and that the tangential current in the Hartinann layer is much

smaller than that in the top or bottom.

Since typical values are c = 0.01 and M = 10 , we assume that c = aM ,

where a is an 0(1) parameter. We are looking for an asymptotic solution for

c + 0 and M •> » with the restriction that cM1/2 ->• o , a f i n i t e , non-zero

constant. Each side and adjacent side layer are also electrical resistors in

parallel and a is the ratio of the side layer's resistance to the side's

resistance. For a given f in i te a, the tangential electric currents are sp l i t

between these parallel resistors. The two extreme cases are M"1 << c << M"1'2

for which all the currents flow in the side layer, and M"1/2 « c « 1 for

which al l the currents flow in the side. Walker [4] shows that as a + 0 the

solution for c = aM"1/2 gives the solution for M"1 « c « M"1/2 and that as

« + « the solution for c = aM'1/2 gives the solution for M"1/2 << c << 1.

Therefore, the present analysis includes the two extreme cases as special

cases. I t also shows precisely how large or small a niust be for the simpler

extreme case solutions to apply. For a typical three-dimensional flow

considered here ( B = 2 , Y = 1 . 3 = 1 ) , the solution for a = 0.1 s t i l l deviates

by 5% from the solution for M"1 « c « M"1/2. For the same case, the

solutions for a = 8 and 20 deviate by 2.6* and 1.0% from that for

« c « 1.

3 . GRADUALLY VARYING FIELD REGION FOR L,, = L Y '

In the core the solution for the equations (5) with the appropriate

symmetry about y = 0 i s

2
ur =

 K TT-y
 vr = K V ~T5" " B (S - 1) y* -5— (12a,b)

c y dz o y __t dz
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1 8 *c -2 3Pc -1 aPc
wc - V TT V I T ' Jxc = By1

 ST
 (12c'd>

3Pr 1 3Pr

_ c 5 j z c = _B-1 _^£ (I2e,f)

Here the subscript c denotes the leading terms in the asymptotic expansions

for the core variables in the gradually varying f ie ld region for 0 < X < y~ ;

uc and $c are 0(1); vc, wc, j x c and pc are 0{c1 / 2 ) ; j y c and j z c are 0(c);

By(X) is given by the expression (2a) neglecting the 0(c) terms; <|>c(X,z) and

pc{X,z) are unknown integration functions. The boundary conditions (7a, 11)

give a pair of equations governing pc and <j>c and these equations only involve

derivatives with respect to z. The solution-; with the appropriate symmetry

about z = 0 are

pc = Pc + ABya"1/2 [cosh(fz) - cosh(f)- (13a)

*c = A sinh(fz), f(X) = (s - Dya1 / 2 [1 + (s - D Y * - " 1 (13b,c)

Here A(X) and PC(X) are unknown integration functions to be determined by the

side layer solution, while Pc = pc at z = ±1.

Since the flow is symmetric about z = 0, we need only treat the side

layers at z = - 1 . With the stretched side layer coordinate 5 = M ' (z + 1),

the equations (5) give

ws = "By IT - ^ J (e - Dy ay5" V 3 ^ (14a)

1 8*e 13Pc 1 3*c

• V 8T* j x s = B ) f i r + Y8 ( s ' l ) V *r ( 14b>c )
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sv o a 2 p , 32<t> a*

V s ' S T (14f)

3PC 32VC , 83AC dP r

(Hg)
3? 3?

—r- = —i1 (14h)
sy 3?

for 0 < X < Y " 1 , -a < y < a, 0 < 5 < «. Here us 1s 0{M1/2), vs Is

0 ( c l / 2 M l / 2 ) j ^ a n d j ^ s a r e 0 ( 1 ) i Wg a n d j x s a r e o(c 1 / 2 ) , j 2 S Is 0( M"1/2) and

p = c1 / 2 PC(X) + c1 / 2 M"1/2ps(X,y iC)

The equations (14f-h) govern the variables vs, ps and $s, while the equations

(14a-e) give the other side-layer variables in terms of these three key

variables.

Matching the core solution (12, 13) gives the conditions

vs > 0, <j>s + -A sinh (f) (15a,b)

ps * p̂  (X.-l) - ?ABya"1/2f sinh ( f ) , as c + - (15c)

where p'(X,z) is the 0{c*'2 M"^ ' 2 ) perturbation pressure in the core. Walker

shows that the 0(1) <(iw is constant in the sections of the top and bottom

adjacent to the side layer and this is compatible with the condition (7a).

This result and the condition (11) give the boundary conditions

vtf = 0, *„ - -A sinh ( f ) , at y = ±a (16a,b)
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The boundary conditions (7b, 9b) become

vs = 0, - ^ 0 (17a.b)

i o 3<t>c

-A-^JV (17c)

7f-
B
*«f- " 5 ' ° 117dl^ 7f

The equations (14f,g) and the conditions (15a,c, 16a, 17a,c) constitute a

boundary value problem governing v and pg i f the solution for <|>s is known.

This boundary value problem has a solution for any <j>s which satisfies a

solubil ity condition. This condition is derived by integrating the equation

(14f) from y = -a to y = a and from ? = 0 to 5 = « and by introducing the

conditions (15b,c, 16a, 17c). The resulting condition can be Integrated with

respect to X to obtain

/ * . (X,y,0) dy = C B (X) (18)
-a y

where C is the constant integration- When we introduce the core and side

layer axial velocities (12a, 14b) into the total flow condition (10) and we

use the matching between $c and <j,s> we obtain the same condition (18) with

C = -2a. The solution for <j>s gives the 0(M1/f2) axial side-layer velocity us

which carries part of the total 0(1) flow. The fraction of the total flow

carried by each side layer Qs changes along the duct, so that there must be a

transfer of 0(1) flow between the core and side layers and this requires the

CXc1/2) transverse velocities wc and w$. In the core, uc is independent of y,

but in the side layer us has a variation with y which is associated with

3$s(X,y,0)/3y. The latter is not zero as long as electric current enters the

side at y = ±a and flows down the side and into the side layer as

j (X,y,0). Therefore, as the flow is transferred between the core and the

side layer, i t must be redistributed in the y direction and this requires the

0(c1/ '2M i^2)vs. The pressure variation associated with this flow transfer and
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vertical redistribution is an 0(cl/6N~i/i) perturbation ps of the principal
CHc1/2) side-layer pressure PC(X). The solution for the secondary velocities
vs and ws and the perturbation pressure ps is guaranteed as long as the
primary velocities uc and us satisfy the total flow condition (10) which gives
the solubility condition (18) with C = -2a. The solutions for vs and ps are
straightforward, but are not presented here because they provide little
additional insight into the flow.

We must also guarantee conservation of electric current at the corners at
y = ±a, z = -1 with the condition (8a). We modify this condition so that the
$ on the right-hand side is the core $c- The modified condition states that
the 0(c '*") electric current flowing from the side into the corner, plus the
0(c1/'2) current flowing from the side layer into the adjacent part of the top
or bottom, must equal the Ofc1^2) current flowing in the top or bottom
adjacent to the core at z = -1. This condition is for a duct length with an
0(1) AX which corresponds to an Ofc"1^2) AX and neglects the axial current in
the portion of the top or bottom adjacent to the side layer because this
current, is 0(c^/ 2M"^ 2). The condition (8a) becomes

^ (x,±a,O) + a"1 / g^- (X,±a,c) d5 = ± g/(X.-l) (19)

The first and second terms represent the electric currents in the y direction
in the side and side layer, respectively. The ratio of these parallel
resistors is a = cM1/2. If a >> 1, the second term is negligible and all the
O(c^ 2) electric current in the y direction flows through the side. If
a « 1, the first term is negligible, all this current flows through the side
layer, ^ decreases to 0(a) = CKcM1/2) which is small for M"1 « c « M"1''2,
and the side layers no longer carry any of the 0(1) total flow. If (1) we
integrate the governing equation (14h) from y = -a to y = a and from 5 = 0 to
z = », (2) we integrate the thin conducting wall condition (17d) from y = -a
to y = a, and (3) we introduce the results into the condition (19), it reduces
to
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dPc _i 3*c .1

= -a By g^- (X.-l) = -a ByA f cosh (f) (20)

The conservation of electric current condition (8a) has now been extended from
the corners at y = ±a, z = -1 to the region composed of the side, side layer
and adjacent parts of the top and bottom. The condition (20) states that
these is no net current across tha aX length of the plane which is parallel to
the side and which separates the core from the side layer. The total 0(c*")
electric currents in the z direction in the core and in the adjacent section
of the top or bottom, evaluated at z = -1, are

1 d Pr-2aUX)B x ̂ , -(AX)Af cosh(f)

respectively. The electric current flowing from the core Into the side layer
must return to the top and bottom adjacent to the core in the same cross
section. This is true because the axial currents in the side and side layer
are both much smaller than

With the expression (20) introduced into the thin conducting wall
condition (17d), the solution of the boundary value problem (14h, 15b, 16b,
17b,d) is

* = -A s i n h ( f ) - A s a c o s [ ( 2 n + l ) i r y / 2 a « e x p ( - A ? )
5 n=0 " "

[n n ) » (21a)

where

an = 16af cosh(f) ,T3(-l)n{2n + l)"3(a + of1*"1)"1 (21b)

v i ^ V ( 2 1 c )

The solubil i ty or total flow condition (18) with C = -2a now determines
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A = Bw[s1nh{f) + 2 * ' 1 z ( - l ) V n + D ^ a -*1 (22)
y n=0

In the next section we show that the 0{c ' ) pressure at z = ±1 is constant

through the transit ion regions which match the present solutions at X = 0 and

Y " 1 and match the upstream and downstream fu l ly developed flows. We choose

p = 0 at x = 0, z = ±1, so that p here represents the deviation of the actual

pressure from the pressure at. these two points. Therefore, the i n i t i a l

condition for the equation (20) is Pc(0) = 0. This equation is integrated

numerically to get PC(X). The equations (12, 13, 14b,d,e, 21, 22) now give

a l l core variables and the important side layer variables u s , j y S , and j 2 S .

The pressure gradient for locally fu l l y developed flow [4] in the gradually

varying f i e ld region is

Jj£d(X) * B* a" l [ l + 32a*"4

y n=0
-Jj£d(X) * -B* a" l [ l + 32a*"4

 z (2n + 1)"4(1 + a " 1 * : 1 ) " 1 ] ' 1 (23)
a* y n=0 n

The actual pressure gradients for both the locally fu l ly developed flow and

the three-dimensional flow are 0(c)» but the axial scale is compressed by

O(c 1 / 2 ) , so that pc(X,z) and pf(j(X) are both 0 (c 1 / 2 ) . The equation (23) is

also integrated numerically from X = 0 where p f j = 0.

The results for the core and side layers in the gradually varying f i e l d

region depend on four parameters: a = the aspect rat io of the duct's cross

section, a = the rat io of c to M~*'2 which ref lects the relat ive electr ical

resistances of the side and side layer, 3 = the rat io of the stronger magnetic

f i e l d strength to the weaker one, and y = the rat io of Lc"1 /2 to Lm, so that a

large y means that the magnetic f i e ld changes over a short duct length and a

small Y means i t changes over a long duct length. The gradient of the

transverse component of the magnetic f ie ld is

d B - 1 ?

= -6"1 (B - 1) YBy (24)



which varies from -p(s - l)y at X = 0 to -B^fB - Dy at X = y"^t so that the

product (B - l)y is an average measure of the magnetic f ie ld gradient. The

results are relatively insensitive to a unless a is either very large or very

small, and only results for a square cross section (a = 1) are presented

here. The velocity profiles for the side layers are very similar to those

presented by Walker [4] with the magnitude of the velocity scaled to reflect

the local value of Qs, so no side layer velocity profiles are presented

here. The important side layer result is QS(X). Here, we present results for

QC(X), the fraction of the total flow carried by the core at each cross

section, while Qs = 0.5(1 - Qc).

Far upstream and downstream <f> = 1.685z and 0.864z, respectively, for a =

1 and 8 = 2. At z = 0, <j> = 0 everywhere, but at z = 1, <j> drops from 1.685 to

0.864, while at z = - 1 , <j> rises from -1.685 to -0.864. These axial voltage

differences drive axial electric currents in the ±x direction near z = ±1.

For local ful ly developed flow, the current circulates only in cross sections

with current in the +z direction in the core and in the -z direction 1n the

top or bottom. The current c i rcui t is completed by currents 1n the y

direction in the sides and side layers. For the three-dimensional flows

treated here, the axial currents due to the axial voltages differences are

superimposed on the transverse current fo»" locally ful ly developed flow. As a

result, a current line leaving the side ?t z = -1 in the gradually varying

f ie ld region f i r s t turns in the core and goes far upstream. Many of these

current lines cross the z = 0 plane in the upstream transition region, while

the rest cross i t near X = 0. The current lines are symmetric about z = 0, so

they return to the side a z =1 at the same X where they le f t the side at

z = - 1 , Again the electric circui t is completed through the sides, side

layers and top and bottom. For al l values of y some of the axial currents

complete their c ircui t in the core of the downstream transition region.

Therefore, there are some current lines contained entirely in the l iquid metal

with current in the ±x direction near z = ±1 in the gradually varying f ie ld

region, current in the +z direction near X = 0, and current in the -z

direction in the downstream transition region core. For sufficiently large y,

more of the axial current lines are completed in the core rather than in the

walls and there is current in the -z direction in the gradually varying f ie ld

region as well as in the downstream transition core. Wherever the current in



the liquid <netal is in the -z direction, it is pumping the flow rather than
retarding it, so that the local pressure rises in the flow direction.

Figure 3 presents graphs of pc and uc at various cross sections along the
gradually varying field region for a = Y = 1 and s = 2. The total axial
currents in the ±x direction for z ^ 0 are always maximum at X = 0 where the
magnetic field gradient (24) and the axial voltage gradients are maximum. The
axial current produces a body force away from the z = 0 plane and towards the
sides. This body force produces the transverse pressure and velocity
variations shown in Figure 3. As X increases, current lines are entering the
sides (or completing their circuit at 2 = 0 in the liquid metal for
sufficiently large y), so that the total axial current in either direction
decreases, the transverse body force decreases and the transverse variations
in pc and uc decrease. The transition between the non-uniform velocity X = 0
(or 1) and u = 0.843 (or 0.864) in the upstream (or downstream) fully
developed flow for a = 1 and 3 = 2 is the role of the upstream (or downstream)
transition region at x = 0 (or e ).

The results for the gradually varying field region depend strongly on Y.
as illustrated in Figure 4 for a = 1 and (3 = 2. Figures 4a-c present uc and
pc at X = 0 since the values here involve the maximum transverse variations
for any X. For Y = 0-2, uc is very close to u for locally fully developed
flow. As Y increases, the flow moves away from the z = 0 plane and toward the
sides. The core is evolving toward two outer side layers near z = ±1 which
are separated by a nearly stagnant region near z = 0. For Y > 6.5, uc(0,0) is
essentially zero. The overall axial voltage difference is O.812z. If the
axial current at X = 0 is also linear in z, it produces a parabolic pressure
variation, (1 - z^). For Y < 3, the graphs in Figure 4b have nearly parabolic
shapes. For Y > 3S the axial electric current, like the axial velocity, is
becoming concentrated into regions near z = ±1 with a nearly current-free
region near z = 0. This results in a steep pressure gradient near z = ±1 and
a more uniform pressure near z = 0. At Y - W» there is a uniform pressure
core for |z| < 0.6 and a sheet of axial electric current in each emerging
outer side layer for |zl > 0.6. As Y increases from zero, the duct length for
the axial voltage difference decreases so that the axial voltage gradient
increases. As long as the axial current is distributed over the entire cross
section (Y < 3) the magnitude of the total axial current and the pressure
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=10.0

FIGURE 4b; p at X=0 for o(= a = 1, 0 = 2 and various
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FIGURE 4CJ p and u at z=0 and u at z=l, all at X=0, as functions
c o c

of Y for 0( = a = 1, ana fl= 2.



difference between z = 0 and z = ±1 increase as y increases. However, for

y > 3, the fraction of the cross section over which j x is distributed

decreases which increases the effective electrical resistnace to axial

currents. The increase in the resistance exceeds the increase in the axial

voltage gradient as y increases further, so that the total axial current and

the difference between pc at z = 0 and z = ±1 decrease. Figure 4c illustrates

the peak and subsequent decrease of the transverse pressure difference with

increasing y.

Holroyd and Walker [2] show that there are certain characteristic

surfaces for liquid metal flows in strong magnetic fields. A characteristic

surface is defined by the set of magnetic field lines with the same value of

5 = / * [Bis)]"1 ds

where s is the distance measured along the magnetic field line from its

intersection with the inside surface of the bottom at s = 0 to its

intersection with the inside surface of the top at s = st, while
2 2 1/2

8(s) = [B + B ] is the magnetic field strength at each point on the

magnetic field line. If s is the same for all magnetic field lines (e.g., a

uniform magnetic field and parallel top and bottom), then there are no

distinct characteristic surfaces and there are relatively few restrictions on

j.. If 5 varies considerably, then the electric current in the core must flow

along the characteristic surfaces defined by constant values of ?. In any

core region the viscous term in the equation (5a) is negligible and the

electromagnetic body force 4, x B must be balanced by the pressure gradient

vp. Therefore v x (j x B) = 0. This distinguishes a liquid metal from a

solid conductor. A solid has a structure which can provide the stress field

to balance any body force until yielding occurs. A nearly inviscid,

inertialess liquid has only pressure to balance a body force. If a current

produced a rotational body force, the fsuid would respond violently. The

resultant change in v would change the balance in the Ohm's law (5c), thus

changing j, until its body force is irrotational. The characteristic surface

derivation involves this irrotationality condition, equation (5d) and the fact
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that the normal current to the top and bottom is negligible. The present
results help to define the boundary between "free" flows with the same value
of s, for every magnetic field line and "guided" flows with distinct
characteristic surfaces for different values of 5. For the present problem:
if dc/dx << c1^2, then the flow is free; if d?/dx >> c1//2, then the flow is
guided and there is no axial electric current in the core. The present
analysis treats the transition case with ds/dx = 0 ( c ^ 2 ) , so that the
characteristic surface mechanism is pulling the electric current lines but is
not strong enough to force perfect alignment with the characteristic
surfaces. As y increases, transverse characteristic surfaces are emerging
near 2 = 0 which block the axial electric current here. They do not block the
axial current near z = ±1 because a >j>/az is becoming large near z = ±1, so
that the normal current to the top and bottom from the thin conducting wall
condition (7a) is not negligible. The evolution of the core into two outer
side layers separated by a region without axial current or velocity
corresponds to the emergence of characteristic surfaces which block the axial
current and velocity except whera transverse voltage gradients in the top and
bottom are sufficiently large to drive significant electric currents into or
out of the liquid metal at y = ±a. The effective electrical resistance to
axial currents increases rapidly with the restriction of these currents to
regions near z = ±1, so that the three-dimensional electrical current
circulations are reduced in spite of increasing axial voltage gradients.
Therefore, transverse pressure variations and AP3Q peak at certain values of y
and decrease with further increases in y. Any treatment of three-dimensional
effects which ignores the fact that the lack of structure of the liquid metal
restricts the three-dimensional current circulation and limits AP3Q grossly
overestimates AP30 (see, for example, Hoffman and Carlson [8]).

Figure 4d presents the axial variation of the pressures at z = 0 and at
z = ±1 for three values of y, as well as Pf^U) for comparison. Here, yp is
plotted as a function of yX to give the same axial scales and to make the
graph of YPfd the same for all y. However, the actual axial length for
Y = 0.5 is three time that for y = 1.5. For y = 0.5, the pressure drop along
the sides is only 4% more than that for locally fully developed flow. The
pressure at z = 0 has a significant drop in the upstream transition region
because of the extra current lines crossing the z = 0 plane here. Downstream,



- 31 -

0.0 i \

-0.5 ••

y=i.o

y=i.5

-3.04-
FIGURE ̂ d: PC(X,O) (dashed lines), pc(x,l) (solid lines) and pfd(X)

(dot-dash line) for o(= a = lt H = 2 and various V'.
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it approaches the pressure at the sides. In the downstream transition region
it rises to equal the pressure at the sides because of the current in the -z
direction here. For y = 1, the pressure drop at 2 = ±1 is 15% more than that
for locally fully developed flow. The pressure at z = 0 has a much larger
drop in the upstream transition region, decreases for all X indicating that
j 2 > 0 throughout the gradually varying field region, approaches the pressure
at z = ±1 as X increases, and increases to equal the pressure at z = ±1 in the
downstream transition region. For y = 1.5, the pressure drop at z = ±1 is 32%
more than that for locally fully developed flow. The pressure at z = 0 drops
enormously in the upstream transition region, rises for 0 < X < 0.27
indicating that j z < 0 at z = 0 for these values of X, drops for
0.27 < X < 0.67, and rises to equal the pressu-'e at z = fl in the downstream
transition region. For -. = 1 and 0 = 2: (a) for y < 1, p at z = 0 drops
through both the upstream transition and gradually varying field regions and
only rises through the downstream transition region; (b) for y > 2, p at z = 0
drops enormously through the upstream transition region and then rises through
both the gradually varying field and downstream transition regions; (c) for
1 < Y < 2 , p at 2 = 0 drops through the upstream transition region, first
rises and then drops in the gradually varying field region and finally rises \
in the downstream transition region.

Figure 4e presents graphs of QC(X) for various y. The graph for y «; 0.2
is also the graph for locally fully developed flow. If a >> 1, all the
current in the y direction near z = ±1 flows through the side which has a much
lower electrical resistance than the side layer, and Qc = 0.75 for all fully'
developed flows at a = 1 [4]. If <x « 1, then all the y current is in the;
side layer and Q_ = 1 for fully developed flows. At X = 0, By = 6, so that

1

the local Hartmann number is eM. Therefore, the local side layer thickness is
0(8"1/'2M"1/2) and the ratio of its resistance to that of the side
iss M c = as*/2. The thinner side layer has more resistance which forces
more current into the side and reduces Qc for local fully developed flow. As
X increases, By decreases, the side layer thickness increases, more of the
current flows in the side layer and Qc for locally fully developed flow
increases. Clearly, Qs increases dramatically with increasing y. As y
increases, the flow in the core becomes more concentrated near z = ±1 and the
fraction of the flow carried by high velocity sheet jets in the side layers at
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z = ±1 increases. The sheet jets in the side layers are associated with the

current in tne y direction in the side. Such currents require a voltage

gradient so 3*s(X,y,0)/ay is not zero. However, a^/ay = 0, so that there is

a jump in the 0(1) $ across the side layer. In the z component of Ohm's law

(5c), 3$/3z = 0(M1/2) in the side layer; j z cannot be 0(M1/2) since i t is O(c)

at z = ±1, so u must be Q(M1/'2) in order to produce a v x B to balance the

large v<j>. The equation (14b) gives

u.{X,y,c) d? = B"1 A* . = B ^ U J X . - U " +,(X,y,0)] (25)

The boundary condition (16b) shows that &<t>s = 0 at y = ±a. For a » 1, the

f i rs t term in the equation (14e) dominates and jzs(X,y,O) is independent of

y- The JyW is linear in y in the side and

A*s = 3Qs8y(l - y2/a2) (26)

The sheet je t has a parabolic distribution of flow with y. In fact, the

relationship (26) is relativley good for all values of a. The principal

effect of reducing o is to permit some of the current to flow in the side

layer rather than in the side, which reduces Qs but does not change i ts

parabolic distribution in y very much. As y increases, the core flow becomes

concentrated near z = ±1. This corresponds to an increase in the value of

3<j>c/az at z = ±1, which implies an increase in the electrical current in the z

direction in the top and bottom at z = ±1. These currents must flow in the y

direction in the side or side layer. Therefore i<(»s and Qs are proportional to

3<t>c/3z at z = ±1 and increase as this voltage gradient increases.

The dependence of the results for the gradually varying f ie ld region on e

are i l lustrated in Figure 5. Three-dimensional effects are primarily a

function of the magnetic f ie ld gradient whose magnitude is reflected in the

product Y(B - 1), and there are some qualitative similarit ies of the results

for different combinations of y and 8 which have the same value of y(e - D«

However, these are only rough similari t ies. For e = 2 and y = 2, there is 50%
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reduction in f ie ld strength in a duct length Lffl = O.5LC"1/2, while for e = 3

and y = 1. there is a 67» reduction in f ield strength in a duct length

L = L c ~ ^ . Both cases give the same average magnetic f ie ld gradient, but

the latter has a much larger average magnetic f ie ld strength than the

former. Results depend on f ie ld gradient and f ie ld strength. The velocity

profiles in Figure 5a are very similar to the corresponding ones in Figure 4a,

so the velocity profi le is primarily a function of f ie ld gradient. However,

the pressure profiles in Figure 5b are quite different from the corresponding

ones in Figure 4b for the larger values of e and y. As e increases for a

given y> the variations of c becomes large enough to produce characteristic

surfaces blocking the axial current near z = 0. This increases the effective

electrical resistance to axial currents and decreases the axial electric

currents in spite of increases in the axial voltage gradients. This is the

same as the result of increasing y for a given 0. However, i f y is increased

with fixed 3, the decreasing electrical current is interacting with a constant

magnetic f ield strength and produces a decreasing body force, a decreasing

transverse pressure difference and a decreasing AP3Q. On the other hand, i f e

is increased with fixed y, then the decreasing electric current is interacting

with an increasing magnetic f ie ld strength and produces an increasing body

force, increasing transverse pressure difference, and increasing AP3Q. The

pressure differences depend on the magnetic f ie ld strength as well as i t s

gradient.

The axial pressure variations for three values of e are shown in Figure

5c. The results for s = 2 are the same as those for y"1 In Figure 4d. The

curves for 6 = 1.5 are similar to those in Figure 4d for y = 0.5, i .e . , not

far from locally ful ly developed flow. However, as g increases, the analogy

fa i l s . For 8 = 3 and y = 1, the flow in the gradually varying f ie ld region is

evolving toward a uniform core pressure and axial velocity as X increases much

more rapidly than i t does for 6 = 2 and y = 2. Thus, there is only a small

difference betweem pc at z = ±1 and at 2 = 0 at x = y"1 for large e. This

also explains the large variation of Qc with X for large e in Figure 5d. With

8 = 5 , the velocity profile at X = 0 is very non-uniform with a large value of

3<j>c/az at z = ±1. This drives a large current through the side and increases

Qs. As X increases B decreases by 80%, \iQ evolves quickly toward a uniform

value and 3$_/3z at z = ±1 decreases appropriately.
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FIGURE 5a: u at X=0 for 0(= a = ^ = 1 and various Q .fi
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The dependence of the results for the gradually varying f ie ld region on a

are i l lustrated in Figure 6. The variations of uc at X = 0 in Figure 6a and

of QC(X) in Figure 6d are those expected. For larger values of a, more of the

electric current in the y direction flows in the side, giving a relatively

larger Qs, so that Qc and uc are relatively smaller. Figures 6b and c

indicate that all pressures, including that for locally ful ly developed flow,

increases as a decreases. We have normalized the pressures with c^2aU0B0
2L,

so that we need to keep c constant to have a constant reference pressure. We

should consider the wall thickness as constant and vary a = cM*'2 by varying

M. The side and side layer are resistors in parallel and are part of the

total electrical c i rcu i t . For a >> 1, only the side carries current. As a

decreases the side layer also starts to carry current so that the combined

electrical resistance decreases. Reducing the resistance in one part of a

circuit increases the current everywhere, so al l pressure variations are

increased. The analysis for M"-^2 << c << 1 is considerably easier than the

present one for c = a M"^2 , but the former underestimates the pressure drops

unless a is quite large--at least 10. For a duct with different wall

thicknesses, the a which matters 1s that for the walls parallel to the

magnetic f ie ld . At the other extreme, the results for a =0 .1 s t i l l d i f fer

considerably from those for M"1 « c « M"1^2.

The Ofc1/2) pressure at z = ±1 does not vary through either transition

region, while the pressure at 2 = 0 changes through both transition regions to

equal the value at z = 11. These pressure changes are associated with the

completion of the circuit for the axial electric currents in the gradually

varying f ie ld region at X = 0 and y"1 . Beyond each transition region is ful ly

developed flow for By = s or 1. Therefore, the difference between the overall

pressure drop for the actual three-dimensional flow and that for the

corresponding locally ful ly developed flow is simply PC (Y""* ,±1} - p^ty )•

Expressed in dimensional terms, this pressure drop due to three-dimensional

effects is

I / O 9

Ap3D = K c 1 " aU0B^L (27)
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where the coefficient K depends on a, s> Y, and a, while BQ is the strength of
the weaker uniform magnetic field and L is half the distance between the walls
parallel to the magnetic field. Since we can determine AP30 without solving
for the transition regions, the present results are not restricted to the
particular magnet geometry shown in Fiqure 1. The present results apply to
any gradual variation of the transverse magnetic field. Here the upstream and
downstream junctions add no additional 0(c^ 2) pressure drops. In a fusion
blanket, the magnetic field becomes uniform at one end of a radial duct
because the duct turns to the axial direction. Such an elbow has no Olc1/2)
three-dimensional pressure drop [9]. If the "piping fixtures" at x = 0 and
x = e"1 do have (He1/2) pressure drops, they can be summed with the present
one as Independent pressure losses. Figure 7 presents the values of K versus
Y for various combinations of a and @. Again we see that AP3Q (a) has a peak
at a certain value of y for each a and g, and decreases for larger y, (b)
always increases as s Increases, and (c) always decreases as a Increases.

•• UPSTREAM TRANSITION REGION FOR L,, = L Y ^

In the upstream transition region the magnetic field 1s given by the
equations (3). In the core for this region the solution of the equations (5)
with the appropriate symmetry about y = 0 is

4 +!^L -Y8-
2^^ KM

3X dZ

i 3P . 8p
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FIGURE ?bt Three-dimensional pressure drop
coefficient for 0(= 1.
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Here u u , wu and <t>u are 0(1); vu , j x u , J 2 U and pu are Ofc1 ' '2) ; j y u i s 0(c) ;

Pu(x,z) and 4>u(x,z) are unknown Integration functions; ij>u(x,y) 1s given by

equations (3c,d). The boundary conditions (7a, 11) give the equations

governing pu and $u ,

o , zt, a<j>..

^ <*••> ^ r

for -» < x < » and -1 < z <; 1, where v2 is the Laplacian with respect to x and
z. The side layers cannot accept any O ( c ^ ) electric current over an 0(1)
duct length since j z Is only 0(c) in the side layers. Therefore, the equation
(28e) and the condition p = 0 at x = 0 and z = ±1 give the boundary condition

Pu * 0, at z = ±1 (30)

We introduce the Fourier series solutions

Pu = E h n ( x ) cos (< z) Ola)

* , = zG(x) + z gn(x) sin (< z) (31b)
u n=0 n n

where

1 *u
= (n + j ) IT, G(x) = —- (x,±l) (31c,d)
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The boundary conditions (30) are satisfied and the equations (29) reduce to
the ordinary differential equations

- ^ = KJhn + ya"1 g / <x,a) Ungn + Z K ' ^ - I ) ^ ] (32a)

-2 3*u , . . ,, ixn -2 d
26<n 3 J T (x,a) hn - 2(-l) Kn

These equations are coupled to the side layer solution.

For the side layer at z = -1 in the upstream transition region, the

equations (5) give

1
zus

and the equations (14a-d,f-h) with (a) the subscript s replaced by us, (b)
TBy(X) replace by the constant s, (c) X replaced by x, and (d) Y - 0. These

equations apply for -» < x < », -a < y < a, 0 < 5 < «. Here u u s and v U 5 are
0(M 1 / 2); wus, $us, j x u s , and j y u s are 0(1); j 2 U S and P|JS are 0(M"*/

2).
Matching the adjacent core gives the boundary conditions

vus * °* *us + •u t X i" 1 ) > pus + aPu
(x)* as c * " (34)

where Pu(x) is the 0{c) perturbation pressure in the core evaluated at
z - -1. Again the 0(1) $w is constant in the adjacent parts of the top and
bottom [4], so that this fact and the boundary condition (11) give

vus = °» *us = * u U ) ' 1 ) > at y = ±a (35)

The boundary conditions (7b, 9b) become
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i t c - 0 (36d)

When the total flow condition (10) Is applied to a cross section of the

upstream transition region, i t gives the condition (18) with <f>s(X,y,O)

replaced by <|>s(x,y,0) and with CBy(X) replaced by -2ae. The extension of the

conservation of current condition (8a) parallels that leading to the equation

(20) and gives

^ ^ (37)

The solutions of the modified equations (14f-h) with the boundary

conditions (34, 35, 36a,b) are

,J e*P (-Tme) s 1 n (T_C) (38a)
_ 4 HI III III

Pus
 s aPu(x) + e z bm(x) cos (niTry/a) exp (-rmc) cos (T[n?) (38b)

+.,c = *,,{x»-1^ + E Q
nM

 c o s C^2n + l )*y/2a] exp (-xncJ x (38c)
us u n = 0 n n

[cos (xnc) + sin U n c ) ]

where rm = (emir/2a)1^2 and \n is given by the equation (21c) with By replaced

by 3 so that each xn is now a constant Instead of a function of X. The

boundary condition (36c) determines the coefficients bm in terms of en ,
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bm a vJ l j Q dT1 Rmn

where

Rnm = { - l ) ( n + i n ) n"1 [{n + m + h~l + (n - m + | ) " 1

The present version of the total flow condition (18) and the equation (38c)

give

= - s - I (-l)"^1 en(x) (40)

This must equal the core solution (31b) evaluated at z = -1, so that

G(x) = e + i: (-l)n Ce!1 en(x) - gn(x)] (41)
n=0 n n n

When we introduce the solutions (37, 38b,c, 39, 40) into the remaining
boundary condition (36d), we obtain an ordinary differential equation for
en(x),

— ^ = <l a"2 (1 + a^x"1) e.+ 2*:1 a - 1 (-l)nG (42)
dx



The coupled equations (32, 41, 42) govern en(x), gn(x), hn(x) and G(x).

Once these equations have been solved, the equations (28, 31) give all the

core variables, while the modified equations (14a-d) and the equations (33,

38-40) give al l the side layer variables. The equation (37) gives the

variation of the 0(c) pressure along the sides in the upstream transition

region, but we have already neglected a comparable pressure drop in the

gradually varying f ie ld region. The solutions of the equations (32, 41, 42)

automatically match the ful ly developed flow solution for B = @ as x + -» and

the solution in the gradually varying f ie ld region evaluated at X = 0 as

x > -«. Direct numerical integration of the coupled equations (32, 41, 42) is

d i f f i cu l t because round-off errors grow exponentially with integration in

either direction. Instead (a) we use a central difference for the second

derivatives with AX = 0.2 for |x| < xQ, (b) we assume that the second

derivatives are zero at x - ±x0, (c) we truncate all in f in i te series with n =

nQ and in = nQ + 1, and (d) we relax the solutions unti l the equations (32, 41,

42) are satisfied everywhere. Solutions with various x0 and nQ indicate that

the results are the same for any x0 > 3 and for any n0 > 9. The series (31,

38) converge very rapidly so that only 10 terms in each give excellent

results.

The value of the variable coefficient 3<jiu/9x at y = a depends on d. I f

the upstream pole faces touch the outside of the duct [d = e(a + t /L ) ] the

magnet provides the most abrupt possible transition between the uniform and

gradually varying magnetic f ie lds. As the pole faces are moved away from the

top and botto of the duct, the transition becomes more gradual. The results

in Figure 8 are for the values a = 1, d = 3, a » 1, e = 2, and y = 1; results

for other parameter values are similar. The transition from the uniform

velocity and pressure for ful ly developed flow to the non-uniform ones for the

flow in the gradually varying f ie ld region at X = 0 is i l lustrated in Figures

8a,b. This transition is associated with the completion of the c i rcui t for

the axial electric currents at X = 0. Axial variations are plotted in Figure

8c. As the flow becomes more concentrated near z = ±1, the values of a<{,u/3z

at z = ±1 increase which drives more electric current into the corners at y =

±a, z = ±1 and through the sides. Qs increases proportionately and this

reduces Qc-
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x*3.0

FIGURE 8b: Pressure in the core in the upstream transition region

for a = y = 1, 0 (» l . fi= 2 and d = 3-1, 0(»l. fi
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The analysis and results for the downstream transition region are very
similar to the present ones for the upstream transition region. The
transitions between the solution for the gradually varying field region at
X = Y~* and the fully developed flow for B = 1 are much loss dramatic than
the present ones because uc and pc are much more UT! form at X = y than at
X = 0. The magnetic field transition is also more gradual because the pole
faces are further away from the duct. A composite solution which is valid for
all x can be constructed by adding the solutions for the two transition
regions and for the gradually varying field region with X = xc1/2, and by
subtracting the solutions for the gradually varying field region at X = 0 and
at X = Y~*> In order to get the correct pressure gradients far upstream and
downstream, we should add

-c(l + c ) " 1 B2x, -c(l + l)~l(* - e"x)

to the pressure for x < 0 and for x > e"*, respectively.

5. SOLUTIONS FOR L « L,, « Lc~1/2

The solutions in sections 3 and 4 assume that the magnetic field gradient
is 0{c*'2). Here we assume that this gradient is small, but much larger than
c1/2, i.e.. c1/2 << e = L/Lffl « 1. For the gradually varying field region in
0 < x < e~*, we compress the axial coordinate by substituting x = Xe~*. The
magnetic field in each region is given by the equations (2-4) with y and c*'2

replaced by 1 and e respectively. The Figure 2 is modified by the addition of
outer side layers (o) with 0(c ' 2 e ~ ) thickness adjacent to the sides at z =
±1, while tha side layers (s) with 0(M""1/|f2) thickness are now the inner side
layers.

In the gradually varying field region for 0 < X < 1, the axial velocities
are 0{M^'2), 0(1) and 0(c) in the inner side layer, outer side layer and core,
respectively. Therefore, the entire 0(1) flow required by the condition (10)
is carried by the high velocity sheet jets in the inner side layers, while the
total axial flows in the outer side layers and core are small, namely
0(c1/'2e"1) and 0(c), respectively. The axial electric current densities j x

are 0(e), Ofc1'2) and 0(ec) in the inner side layer, outer side layer and
core, respectively. Therefore, there is an Ofce"1) total axial electric
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current in the ±x direction in the outer side layers at z = ±1, while the
total axial currents in the inner side layers and core are much smaller,
namely OleM"1/2) and 0(ec) respectively. As y + °° for the solution presented
in sections 3 and 4: (a) the axial velocity and current in the core become
blocked by the emerging characteristic surfaces, (b) the axial flow becomes
concentrated in the inner side layers and (c) the axial current becomes
concentrated in the outer side layers with an 0(c1//2e"1) = Ofy"1) thickness.
The Ofce"1) axial currents in the outer side layers have their maximum values
at X = 0. The upstream leg of the circuit is completed by j z > 0 in the
upstream transition region. The downstream leg is completed through three
parallel resistors: (a) the side layers, sides, top and bottom, (b) the
downstream transition region at x = e"*, and (c) the core in the gradually
varying field region where the 0(c) transverse current must follow the
characteristic surfaces from one side layer to the other. The pressure at z =
0 drops enormously through the upstream transition region and then rises
through the gradually varying field and downstream transition regions. The
Olce"1) pressure throughout the inner side layer Pj(X) is given by the
equation (23) with the one inside square bracket replaced by zero and with
By = e[l +(e - D X ] "

1 in the equations (21c, 23). The pressure for locally
fully developed flow is also Ofce"1) since this is the pressure drop for an
0(e-1) duct length and is given by the equation (23). Therefore, the only
difference between P^tX) and P ^ U ) is the smaller denominator for Pj in ths
modified equation (23). The pressure throughout the core is

1 d Pi
PC(X) = Pt(X) + (8 - D"

1 [1 - (B - DX] ̂ - (X)

which always increases as X increases. The only transverse pressure variation

occurs in the outer side layers and is associated with the sheet of 0(ce-1)

axial electric current here. The pressure in the outer side layer at z = -1

is given by

Pc + (P. - Pc) exp [-a1/2 (e - 1) e"1 By e c"1 / 2 (z + 1)]
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This corresponds to the limit of the solutions (13a,c) as y + *• As before,

we can integrate the equations for P.,- and p ^ numerically from X = 0 to

X = 1. The difference at X = 1 represents the pressure drop due to three-

dimensional effects, in addition to the pressure drop for the locally fully

developed flow. Here the dimensional pressure drop has the form

Ap3D - K' ce"
1 aiyjjl. - K' C a U ^

where this coefficient K' represents the l imi t of yK as y •>•*>. All the curve

in Figure 7 are approaching hyperbolas given by Vy as y + °°. The values of

K1 for 1.5 < e < 4.0 and for a = 1, 2 and 10 are plotted in Figure 9. I f we

plot the curves K'y"* with the corresponding graphs in Figure 7, we find that

the latter are slowly converging to these hyperbolas but are s t i l l below the

hyperbolas by 20-30* at y = 10. For practical values of c, y = 10 corresponds

to a value of lm which is comparable to L. The present solution for

L << Lm << Lg"1/2 i l lustrates the mathematical transition between the

asymptotic analysis for lm = 0(L) and c « 1 [5] and the asymptotic solution

for Lm = OlLc"^2) and c << 1. However, for practical values of c, the

analyses for Lffl = 0(L) and for L « Lm « l ^ " 1 / 2 lead to an unrealistically

severe picture of the flow: a l l the flow is confined to sheet jets in the

inner side layers and all the axial current is confined to current sheets in

the outer side layers. In real i ty, the flow and current are becoming

concentrated near z = ±1 but are s t i l l distributed over a significant part of

the cross section even for Lm - 0(L). This part is s t i l l much too large to be

considered a boundary layer. I f we use the predictions of the analysis in

sections 3 and 4 for al l cases, we wi l l neglect the interaction of the two

transition regions when Lm = 0(L), but we wil l be much closer to reality and

to real ist ic estimates of the pressure drop than either the analyses for

Lm = 0(L) or for L « Lm « Lc~
1/f2. I f we use the composite solution

described at the end of the last section we wi l l remove part of the error of

neglecting the interaction of the two transition regions for Lm = 0(L).

For L << Lm << Lj . "1 /2 , the transition regions accomplish the transition

between the ful ly developed flows and the flow in the gradually varying f ie ld

region, just as they do for L̂  = LC~*'2Y • However, the mathematical
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analysis is quite different. For x - 0(1), the magnetic f ie ld gradient is

s t i l l large enough to create characteristic surfaces blocking the axial

velocity and current in the core. We must go upstream from x = 0 unti l the

magnitude of Bx, given by the equations (3b) with y and c ' replaced by 1 and

e, is 0(c ' ) rather than (e). However, Bx decays exponentially so Bx is

Olc1^2) when x = OCanfc^e"1)] . We compress the range -« < x < 0 into

0 <; T < 1 by substituting x = (d/Sir) an (T). The exponentials in the equation

(3d) are replaced by Tn. After the axial coordinate compression, there is a

"boundary layer" with OU'^c1^) thickness at T = 0, so we stretch the axial

coordiante by substituting T = e"*c ^ T. In the "boundary layer" only the

f i rs t term in the inf in i te series (3d) remains as simply T in the 0(1)

equations. This "boundary layer" is actually the upstream transition region

which has been pushed upstream from x = 0 by the more severe magnetic f ie ld

gradient. The core solution involves two integration functions pu/T z \ anc|

$U (T ,Z) for 0 < T < « and -1 < z < 1, which are governed by coupled e l l ip t i c

equations given by applying the boundary conditions (7a, 11). Fourier series

in z again reduce the e l l ip t i c equations to ordinary differential equations in

x. These equations ^re similar to the equations (32) except that T replaces

3ij)/3x and the equations are more complex because of the coordinate change.

These equations are coupled to the side layer problem which is reduced to

another ordinary differential equation. The equations are solved by

relaxation on the range 0 < T < TQ for various TQ. The results are similar to

those presented in Figure 8. The x = -3 results correspond to T = 0, and as T

increases, the velocity and pressure becomes progressively more non-uniform.

However, as x + «, pu + Pc(0) except near z = ±1 where a progressively steeper

pressure gradient leads to the values pu = 0 at z = ±1. This steep pressure

gradient represents the emerging outer side layers. In addition, uu + 0 and

all the flow migrates into the inner side layers as T + ». Because of the

large gradients, progressively more terms are needed in the Fourier series as

T0 is increased.

6 . CONCLUSIONS

For the radial legs of a poloidal duct in a tokamak blanket, the toroidal

magnetic f ie ld strength varies from 3 to 8 tesla over a duct length of 7.5 m,

i . e . , Bo = 3 t e s 1 a « 3 = 2.67 and Lm = 7 ' 5 m C l ] ' I f we t a k e c = ° - 0 1 ' a = *•
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and , = 0.2 i [square ducts with 40 cm between the first and second walls],
then y = 0.267. If we also take M = 90,000, then a =3. For this case, the
total pressure drop for the entire 7.5 m length of the duct is

For the locally fully developed flow in this duct, the first coefficient above
is replaced by 79.4, so that the actual pressure drop is only 2.5% more than
that for locally fully developed flow. The maximum transverse variation of
the axial velocity occurs at the inboard end of this duct where the magnetic
field strength is 8 tesla. Here, the axial core velocity varies from 0.75UQ
at the centerline to 0.827UQ near the first and second walls.
Correspondingly, the fraction of the total flow in each of the side layers at
this cross section is 0.112, while the value for locally fully developed flow
here 1s 0.107. This flow deviates only slightly from locally fully developed.

On the other hand, where a feed pipe passes between the superconducting
magnet coils, it sees a much larger magnetic field gradient, the flow is
locally very different from fully developed flow. However, here the precise
velocity profile is not particularly important because this is not a region
where heat is deposited. If the three-dimensional pressure drops are large
for these feed pipes, then perhaps one can use laminated pipe walls here
because there is no danger of neutron damage to the electrically Insulating
ceramic materials between the structural metal and the thin metal liner in
contact with the liquid metal.

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of Energy through the
Fusion Power Program at Argonne National Laboratory. Professor J. F.
Donaldson provided computational assistance.



- 64 -

REFERENCES
[1] Smith, D. L, et a l . , "Blanket Comparison and Selection Study - Final

Report," Argonne National Laboratory Report ANL-FPP-84-1, 1984.

[2] Holroyd, R. J. and Walker, J. S., "A theoretical study of the effects of
wall conductivity, non-uniform magnetic fields and variable-area ducts on
liquid-metal flows at high Hartmann number," (J. Fluid Mech., Vol. 84,
1978, pp. 471-495).

[3] Walker, J. S., "Liquid metal flow in a thin conducting pipe near the end
of a region of uniform magnetic f i e ld , " (J. Fluid Mech., 1986).

[4] Walker, J. S., "Magnetohydrodynamic flows in rectangular ducts with thin
conducting walls. Part 1. Constant-area and variable-area ducts with
strong uniform magnetic f ie lds," (J. Mecan., Vol. 20, 1981, pp. 79-112).

[5] Walker, J. S., "Three-dimensional laminar MHD flows in rectangular ducts
with thin conducting walls and strong transverse non-uniform magnetic
f ields," (Liquid-Metal Flows and Magnetohydrodynamics, ed. by H.
8ranover, P. Lykoudis and A. Yakhot, AIAA, 1983, pp. 3-19).

[6] Shercliff, J. A., "A Textbook of Magnetohydrodynamics", Pergamon Press,
Oxford, 1965.

[7] Walker, J. S., "Liquid metal MHD flow in a duct whose cross section
changes from a rectangle to a trapezoid with applications 1n fusion
blanket designs," submitted for publication.

[8] Hoffman, M. A. and Carlson, G. A., "Calculation techniques for estimating
the pressure losses for conducting f lu id flows in magnetic f ields,"
Lawrence Radiation Laboratory Report UCRL-51010, 1971.

[9] Walker, J. S., "Liquid metal flow through a thin conducting elbow in a
plane perpendicular to a uniform magnetic f i e ld , " submitted for
publication.



Internal:

c.
J.
M.
«J.
Y.
D.
K.
H.
Y.

Baker
Bailey
Billons
Brooks
Cha
Ehst
Evans
Geyer
Gohar

External:

- 65 -

Distr ibut ion for ANL/FPP/TK-2O7

P. Finn 0. L. Smith
A. Hassanein D. K. Sze
Y. Liu L. Turner
S. Majumdar FPP Files (53)
R. Mattas ANL Contract F i le
B. Misra ANL Libraries
M. Petrick ANL Patent Dept.
B. Picologlou TIS Files (6)
C. Reed

DOE-TIC, for d i s t r i bu t ion per UC-20 (107)
Manager, Chicago Operations Off ice, DOE
University of Chicago Special Committee for the Fusion Program:

S. Baron, Brookhaven National Laboratory
H. K. Forsen, Bechtel National, Inc. , San Francisco
0. A. Maniscalco, TRW, Inc. , Redondo Beach
G, H. Miley, U. I l l i n o i s , Urbana
P. J . Reardon, Brookhaven National Laboratory
P. H. Rutherford, Princeton University
0. Steiner, Rensselaer Polytechnic Ins t i tu te
K. R. Symon, Synchrotron Radiation Center, Stoughton, HI
K. I . Thomassen, Lawrence Livertnore National Laboratory

M. A. Abdou, University of California-Los Angeles
Ch. Alexion, Westinghouse Research and Development
R. G. Alsmi l ler , Oak Ridge National Laboratory
V. C. Baker, Oak Ridge National Laboratory
L. Barleon, KfK, Federal Republic of Germany
K. Barry, The Ralph Parsons Company
S. Berk, DOE
L. A. Berry, Oak Ridge National Laboratory
M. R. Bhat, Brookhaven National Laboratory
B. L. Bishop, Oak Ridge National Laboratory
J. A. Blair, Oak Ridge National Laboratory
A. L. Boch, Oak Ridge National Laboratory
K. H. Bockhoff, Commission of the European Communities
A. Bolon, University of Missouri-Columbia
L. Booth, Los Alamos National Laboratory
H. Branover, Ben Gurion University at the Negev, Israel
R. Brown, Los Alamos National Laboratory
R. Brown, School of Chemical Engineering, MIT
S. Burnett, GA Technologies, Inc.
D. Campbell, Oak Ridge National Laboratory
J. Cannon, Oak Ridge National Laboratory
G. Carlson, Lawrence Livermore National Laboratory
L. Carter, Hanford Engineering Development Laboratory
G. Casini, C.E.A. Ispra (VA), Italy
C. Clifford, Princeton Plasma Physics Laboratory
R. Conn, University of California-Los Angeles



- 66 -

J. Crocker, EG&G Idaho, Inc.
Q. Dudziak, Los Alamos National Laboratory
P. Dunn, University of Notre Dame
M. J. Embrechts, Rensselaer Polytechnic Institute
C. Flanagan, Oak Ridge National Laboratory
K. Furuta, University of Tokyo, Japan
A. Gabriel, Oak Ridge National Laboratory
J. Garner, TRW, Inc., Redondo Beach
D. Graumann, GA Technologies, Inc.
H. Gruppelaar, Netherlands Energy Research Foundation
R. Hancox, Culham Laboratory, U.K.
G. Haste, Oak Ridge National Laboratory
M. Hoffman, University of Cal i forn ia , Davis
R. Holroyd, Culham Laboratory, U.K.
R. Howerton, Lawrence Livermore National Laboratory
W. H. Hughes, Carnegie Melon University
J. Hunt, Cabridge University, U.K.
S. Iwasaki, Lawrence Livermore National Laboratory
D. Jassby, Princeton Plasma Physics Laboratory
R. J . Juza i t i s , Los Alamos National Laboratory
S. Kailas, Indiana University
A, C. Klein, Oregon State University
H. Klein, Physikalisch-Technische Bundesanstalt
D. Kl ine, University of Texas
A. Knoblock, Max-Planck Ins t i tu te fur Plasmaphysik, West Germany
R. A. Krakowski, Los Alamos National Laboratory
H. Kranse, Max-Planck Ins t i t u te fur Plasmaphysik, West Germany
J. Kr is t iak , Slovak Academy of Sciences
G. Kulc inski , University of Wisconsin-Madison
R. A. Li 1 l i e , Oak Ridge National Laboratory
R. J . Livak, Los Alamos National Laboratory
B. G. Logan, Lawrence Livermore National Laboratory
G. Longo, I s t i t u t o di Fisica
C. Lund, San Diego State
P. S. Lykoudis, Purdue University
S. Malang, KfK, Federal Republic of Germany
J. Maniscalco, TRW
C. Marinucci, SIN, V i l l i gen , Switzerland
C. Maynard, University of Wisconsin-Madison
H. McCurdy, Oak Ridge National Laboratory
R. M i l l e r , Los Alamos National Laboratory
R. Moir, Lawrence Livermore National Laboratory
D. Montgomery, Massachusetts Ins t i tu te of Technology
U. Muller, KfK, Federal Republic of Germany
K. Oishi , Shimizu Construction Co., Ltd.
Y. Oka, University of Tokyo, Japan
D. Paul, Electr ic Power Research Ins t i t u te
S. Pearlstein, Brookhaven National Laboratory
E. Pierson, Purdue University, Calumet
J. Planquant, MOL, Belgium
J. Powell, Brookhaven National Laboratory
R. J . Puigh, Westinghouse Hanford Company
J. Ramos, Carnegie Melon University
J . Rathke, Grumman Aerospace Corporation



- 67 -

C. Rhilis, CEA
R. P. Rose, Westinghouse Electric Corporation
R. Roussin, Radiation Shielding Information Center, ORNL
E. Salpietro, NET - IPP
K. R. Schultz, GA Technologies, Inc.
H. Sebening, KfK, Federal Republic of Germany
Y. Seki, Japan Atomic Energy Research Institute
T. Shannon, Oak Ridge National Laboratory
Z. Shapiro, Westinghouse Electric Corporation
N. Sondergaard, David Taylor Naval Ship Research and Development Center
E. M. Sparrow, NSF
W. Stacey, J r . , Georgia Ins t i tu te of Technology
M. Stauber, Grumman Aerospace Corporation
D. Steiner, Rensselaer Polytechnic Ins t i tu te
J . D. Stout, Oak Ridge National Laboratory
K. Sunrita, Osaka Universi ty, Japan
M. A. Sweeney, Sandia National Laboratories
A. Takahtishi, Osaka University
U. Temperley, University of Ediuburgh, U.K.
K. I . Thomassen, Lawrence Livermore National Laboratory
W. L. Thompson, Los Alamos National Laboratory
A. Tsechcinski, lien Gurion University of the Necev
A. Tsinober, Tel Aviv Universi ty, Israel
J. Turner, DOE
>i. Walker, University of I l l i n o i s
a. L. Walnier, MOL, Belgium
I1. Walst'-oin, University of Wisconsin
U. Wattecamps, Commission of the European Communities
G. L. Woodruff, University of Washington-Seattle
V. Zoita, Central Institute of Physics, Bucharest
Librarian, Culham Laboratory, Oxford, England
Library, Centre de Recherches en Physique des Flasma, Lausanne, Switzerland
uibrary, FOM-Institue voor Plasma-Fysika, The Netherlands
Library Laboratorio Gas Ionizati, Frascatti, Italy
Inermonuclear Library, Japan Atomic Energy Research Inst i tute, Tokyo, Japan


