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Liquid migration in sheared unsaturated granular media
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Abstract We show how liquid migrates in sheared un-

saturated granular media using a grain scale model for

capillary bridges. Liquid is redistributed to neighboring

contacts after rupture of individual capillary bridges

leading to redistribution of liquid on large scales. The

liquid profile evolution coincides with a recently de-

veloped continuum description for liquid migration in

shear bands. The velocity profiles which are linked to

the migration of liquid as well as the density profiles of

wet and dry granular media are studied.

Keywords Wet granular matter · Contact dynamics

simulations · Liquid bridge · Cohesion · Liquid

migration

1 Introduction

How does liquid spread in wet granular media under

shear? We know from everyday experience that mixing

large amounts of powders and liquid is a challenging

task. Liquid bridges appearing in wet granular matter

exert cohesive forces onto the grains resulting in sub-

stantial changes of the mechanical properties [1] highly

enhancing the difficulty in obtaining a homogenous mix-

ture of liquid and powder. The development of advanced

techniques for the improvement of mixing processes re-

quires gaining knowledge about the influence of the
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grain scale redistribution of liquid onto the large scale

liquid migration in a granular medium.

Depending on the amount of liquid contained in

the sample, one distinguishes three important regimes

[2,1]: The pendular, the funicular and the fully satu-

rated state. In the pendular regime, at low liquid con-

tents, only capillary bridges form at the contact points

whereas in the funicular state, larger liquid structures

called capillary clusters are emerging. The fundamen-

tal difference between ordinary cohesive and wet gran-

ular matter in the pendular state is that in the wet

case the cohesive force acts only after liquid bridge for-

mation exhibiting hysteresis, resulting in a rich variety

of observed phenomena [1,3]. The interaction distance

of two grains is determined by the rupture distance

of a capillary bridge. The forces and rupture distances
were experimentally measured in Ref. [4] where the au-

thors provided well established formulas suitable for

numerical simulations. Discrete element methods are

widely used to model wet granular matter. The sim-

plest model to account for hysteresis is the minimal

capillary model [1]. Simplified models for capillary clus-

ters were introduced in Ref. [5]. Most simulations imple-

ment geometry imposed or homogenous capillary bridge

volumes [6]. Richefeu [7] implemented a redistribution

scheme for liquid and investigated the mechanical prop-

erties of wet granular matter in direct shear but did not

allow for larger changes in liquid concentrations. A very

important problem which was rarely studied in the past

is the transport of liquid in wet granular matter. It is

still unclear which mechanisms are responsible for an al-

tering liquid concentration. M. Scheel et al. [3] studied

the equilibration of liquid bridges through thin films on

the particles due to Laplace pressure differences. How-

ever, liquid is also redistributed due to relative motion

of grains leading to steady rupture and creation of liq-
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uid bridges. In this paper, we study this redistribution

process in detail for granular samples in the pendular

regime and we present a model for capillary bridges tak-

ing into account the redistribution of liquid after bridge

rupture. As opposed to previous studies where the vol-

ume of the bridges is either homogeneous or given by

the local geometry we explicitly account for the volume

of individual capillary bridges given by the amount of

liquid which was trapped by the roughness of the par-

ticles. The redistribution of liquid gives rise to locally

changing liquid concentrations which will be studied in

periodic simple shear between two rough walls [8,9].

2 Model

We model wet granular matter in the pendular regime,

i.e. at low liquid contents under shear. For this purpose

we use Contact Dynamics to model spherical hard par-

ticles and develop a model for capillary bridges with

adhesive forces.

2.1 Particle dynamics

Particles are modeled using Contact Dynamics origi-

nally developed by J. J. Moreau which is suitable for

rigid particles [10,11]. Here, contact forces are calcu-

lated based on perfect volume exclusion and Coulom-

bian friction. In the framework of Contact Dynamics,

more contact laws have been established such as rolling

friction, hydrodynamic lubrication and cohesion [12–

14]. The fundamental difference to standard discrete

element methods lies in the determination of the con-

tact forces which are calculated based on perfect volume

exclusion of the contacting particles. For instance, the

contact normal force Fn between two grains is calcu-

lated such that the two grains do not overlap at the

next time step. A tangential constraint force F testt is

subsequently calculated under the condition of no slip

at the contact which requires the relative tangential

velocity to vanish at the next timestep. However, |Ft|
must not exceed the threshold value µ|Fn| where µ is

the friction coefficient. If the previous calculation of

|F testt | is greater than the threshold we set |Ft| = µ|Fn|
which is a sliding, energy dissipating contact, else we

set Ft = F testt .

2.2 Capillary bridges

A wetting liquid forms a wetting layer on a grain sur-

face. As soon as two grains touch, liquid from the wet-

ting layer accumulates at the contact point to form a

capillary bridge. This meniscus gives rise to an adhe-

sive capillary force. The force was measured in detail in

Ref. [4] and the authors derived an empirical formula

for the capillary force given by

Fc =
2πrcΓ cos θ

1 + 1.05s
√
rc/V + 2.5s2rc/V

(1)

where V is the bridge volume, rc the average radius of

curvature of the two spheres, Γ the surface tension of

the liquid air interface and s the separation [4]. This

empirical formula for the forces is well established and

valid for small capillary bridges up to V ≈ 0.03r3c .

The contact angle θ is set to zero in this work. We

see that the capillary force is independent of the vol-

ume when s = 0. However, roughness influences the

attractive force as soon as the length scale of the liquid

bridge is comparable to the length scale of the rough-

ness [15]. In that case, the force can be much smaller. In

the pendular regime where only capillary bridges exist,

the authors distinguish three regimes for very small, for

intermediate and for large amounts of liquid. The first

two regimes are characterized by a monotonically in-

creasing capillary force with volume before the force

becomes constant in the third regime. We simplify

the force law by choosing a threshold volume Vc be-

low which the attraction vanishes. The capillary force

is then implemented as F = Θ(V − Vc)Fc where Θ(x)

is the Heaviside step function and Vc depends on the

type and the length scale of roughness considered. Usu-

ally, the length scale of roughness is small compared

to the particle size such that Vc is often very small. In

our work, we chose Vc = 3 · 10−5R3 throughout, where

R denotes the largest particle radius within the sample

(see section 3).

When two grains separate, the liquid bridge even-

tually ruptures. The above mentioned authors [4] also

provide an empirical formula for the rupture distance

sc which is

sc = V 1/3 + 0.1V 2/3/rc (2)

for zero contact angle and small volume.

There are two relevant mechanisms leading to a re-

distribution of liquid. First, in case of rupture, the liq-

uid is sucked back onto the grains very fast. At low

water contents, the pressure in the bridges compared to

the pressure in the wetting layers is small, such that the

liquid is drawn into the already existing bridges [1]. The

time scale for this redistribution process is expected to

be of the same order as the time scale for bridge for-

mation between two grains when the roughness is satu-

rated with liquid. If the relative velocities of the grains

are small enough this redistribution of liquid can be

considered to take place instantaneously.
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Fig. 1 (Color online) The liquid redistribution scheme after
bridge rupture. The total amount of liquid is conserved in
this model.

Secondly, as shown experimentally in Ref. [3], there

is a flux of liquid between capillary bridges through the

wetting layers on the bead surfaces or through the vapor

phase driven by Laplace pressure differences. However,

the equilibration of capillary bridges can be neglected if

the lifetime of a capillary bridge is much smaller than

the equilibration time scale. For a fixed equilibration

time scale, this criterion is fulfilled for sufficiently high

shear rates since the relative velocities of the grains

become larger and the lifetimes of the capillary bridges

become smaller with increasing shear rate.

Therefore, a model in which the equilibration of liq-

uid bridges is neglected and in which the liquid is in-

stantaneously redistributed to neighboring bridges after

bridge rupture is indeed valid in a certain range of shear

rates: The relative motion of the grains must be slower

than the redistribution of liquid after bridge rupture

but faster than the equilibration of liquid bridges. The

time scale for bridge formation is less than a millisec-

ond for grains of one millimeter diameter [1,16]. On the

other hand, typical equilibration times of liquid bridges

are of the order one to five minutes [3] for glass beads of

half a millimeter diameter which is a much larger time

scale. Since we expect the time scale for liquid redistri-

bution after bridge rupture to be of the same order as

the time scale for bridge formation, the assumption of

instantaneous liquid redistribution after bridge rupture

and neglection of equilibration of liquid bridges will be

valid in the range 10−2s−1 � γ̇ � 103s−1 which spans

a large range of applicable shear rates γ̇. Note that

at sufficiently large shear rates, the liquid bridges are

never in thermodynamical equilibrium since the bridges

have no time to equilibrate.

Based on these considerations we propose the fol-

lowing model for redistribution: Each particle can carry

an individual amount of liquid Vf in a wetting layer

on the grain surface. Since there is always some liq-

uid of volume Vmin trapped in the roughness of the

grains [3] , Vf must be larger or equal to Vmin. When

two particles come into contact and at least one parti-

cle has Vf > Vmin, a capillary bridge is instantaneously

formed. Since for each grain, Vmin is fixed and trapped

in the surface roughness, the available liquid for bridge

formation is Vf − Vmin therefore, without loss of gen-

erality, we can use Vmin = 0 and the bridge volume V

is given by the sum of the two involved films, i.e. after

bridge formation V = V 1
f + V 2

f and V kf = 0, k ∈ 1, 2. If

the separation of particles exceeds the critical distance

sc, the bridge volume Vrup is equally split between the

two particles Pj such that V jf = Vrup/2, j ∈ {1, 2}: At

the same time, if there exist further contacts, namely

capillary bridges or dry contacts, all liquid is equally

distributed among them such that the new volume of a

neighboring contact Cji , i ∈ {1 · · ·Nj} of particle Pj is

given by V j,newi = Vrup/(2Nj) +V j,oldi , where Nj is the

number of neighboring contacts of particle j. An exam-

ple of this redistribution scheme is shown in fig. 1 where

initially, all bridges have the same volume. If Nj = 0,

i.e. particle j has no neighbors, the liquid is kept in the

wetting layer of particle j and is used for the forma-

tion of a bridge at a later time. In quasi static flows

however, this case happens very rarely since most par-

ticles have multiple contacts. Our model is designed

for small enough liquid contents only. Therefore, as a

model simplification, we do not allow the formation of

liquid clusters via bridge coalescence [3] by using an up-

per threshold Vmax of the bridge volumes which must

not be exceeded. In that case, all contacts of that par-

ticle with V < Vmax are filled first and if all are filled

completely, the liquid remains in the film and is re-

distributed to a liquid bridge forming at a later time.

This case however, happens very rarely since we will

consider relatively low liquid contents in our numerical

experiments. The appropriate value for Vmax can be es-

timated by considering that for monodisperse spheres,

Vmax = 0.058r3 [3] where r denotes the particle radius.

As we shall see in the next section, the ratio between the

smallest and largest ratio in our samples is 0.8. There-

fore, we use Vmax = 0.03R3 where R denotes the largest

particle radius within the sample. Also, when disregard-

ing equilibration processes between liquid bridges, it is

not possible that two individual bridges interact to form

a unique bridge. Furthermore, in reality, the liquid of
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a ruptured bridge is not equally redistributed between

unequal spheres. However, it was calculated [17] that

for a particle pair of size ratio 0.8 the larger particle

receives less than 60% of the liquid bridge volume. As

the probability of finding a pair of size ratio 1 (respec-

tively 0.8) is largest (respectively smallest), the liquid

transfer ratio will be very often close to 50%. In our

model, liquid mass conservation is ensured, whereas in

suction controlled models, e.g. [6] the Laplace pressure

is prescribed such that the total amount of liquid can

change.

3 Simulated Setup

We simulate normal stress controlled periodic simple

shear between two rough walls. We use particle radii

uniformly distributed between 0.8 and 1 in units of

the largest particle radius R which defines the unit

of length and the mass of the particles is fixed by the

particle mass density ρ = 1 m
R3 such that the mass of a

particle with radius 1R has a mass of 4π
3 m where m de-

notes the unit of mass. Fig. 2 shows the geometry used

in our numerical experiments. The bottom wall is fixed

at position z = 0 but moving at constant speed vshear
along the x direction. The top wall is fixed along the x

and y-direction and a pressure P is applied onto it such

that the position of the wall zwall(t) fluctuates around

zwall = 〈zwall(t)〉. The mass of the upper wall is 2000 m

and the mass of the lower wall is infinite. Gravity is ne-

glected and we use periodic boundary conditions in x

and y direction. The system dimensions are Lx = 20R,

Ly = 12R, zwall ≈ 78R. The results will be presented

in terms of the deformation γ, which we define as the

shear displacement vsheart divided by the system height

zwall. The unit of time T is chosen as T = 6R/vshear
meaning that during a time interval of 1T the lower

wall has moved by a distance of 6R. As proposed by

Rognon et al. [18] there are two dimensionless param-

eters which govern the mechanics of the system, the

inertial number I = γ̇R
√
ρ/P and the cohesion num-

ber η = Fmaxc /PR2 = 2πΓ/PR which is the ratio of the

largest cohesive force and the force exerted on a particle

by the pressure P . The local shear rate is denoted by

γ̇ = ∂vx/∂z where vx is the particle velocity in the x-

direction. We first study the simplest case η = 0 where

shear flow is approximately homogeneous which can be

realized in experiments by choosing a sufficiently high

pressure. We subsequently study the case where η > 0

and in both cases, we fix I ≈ 0.008. Initially, we impose

a Gaussian distribution of liquid bridge volumes. As a

function of the bridge position z the volumes are initial-

ized according to Vb(z) = A exp(−(z − zwall/2)2/σ2
0)

with amplitude A and width σ0 and we monitor the

evolution of the liquid distribution during shear. Here,

the shearing walls are assumed to be hydrophobic.

4 Results: η = 0

In this section, we present results in the limit of van-

ishing cohesion number. We show the obtained velocity

profiles and the consequences for the liquid distribution.

4.1 Velocity profile

Velocity profiles have already been studied for non-

cohesive systems in detail [8,19]. It was shown that un-

der high confining pressures the system is alternating

between diffuse shear and shear banding occurring at

random height z. These shear bands are however not

stable, in fact they disappear and reappear constantly

at different positions. However, when averaging the ve-

locity profile over long time scales it becomes linear

apart from a slight S-shape which would vanish in the

limit I → 0 [19]. The time averaged velocity profile for

our system is shown in the inset on the left of fig. 3.

4.2 Liquid profile

During shear the liquid profile changes. In fig. 2 we ob-

serve that the initial Gaussian liquid distribution (left

picture) spreads towards the top and bottom walls (mid-

dle and right pictures). There are two relevant processes

involved causing the spreading of liquid. It is known

that in plane shear flows particles undergo a diffusive

motion and therefore, also liquid which is carried by the

menisci will diffuse in space [20,21]. Secondly, there is a

transport of liquid associated to liquid bridge rupture.

As explained in section 2.2 the liquid is redistributed to

all neighboring liquid bridges after bridge rupture which

means that locally, after a bridge rupture event, there is

a liquid flux away from the rupture point. Fig. 3 shows

the evolution of the liquid distribution at deformations

γ = 0, 30, 60 where Q is the average bridge volume per

particle. The data was averaged over a small deforma-

tion, five independent runs and in slices of width 2R.

We observe the liquid distribution to remain Gaussian

(solid lines) with an increasing width σ(γ) which is ex-

actly the case for diffusive processes. The solution of

the standard diffusion equation with Gaussian initial

condition is a Gaussian for which σ2(t) increases lin-

early in time [22]. Since γ is proportional to t it can be

expressed as σ2(γ) = σ2
0 +4Dγ where D is the diffusion

coefficient. The inset in fig. 3 shows σ2 as a function of

γ (blue crosses) and an excellent linear fit to the data
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Fig. 2 (Color online) Snapshots of plane shear between two
walls at the beginning (left), at an intermediate time (middle)
and at the end of the simulation (right). Only the central
part of the sample is shown and the y direction points into
the plane. The capillary bridges are indicated by dark blue
lines connecting the centers of two spheres whose width is
proportional to the bridge volume. It is seen that the liquid
is spreading towards the top and the bottom wall.

(red line) indicating diffusive behavior. Here,D is about

0.4R2 per unit deformation. Recently, a continuum de-

scription was developed for a similar model which was

experimentally verified in a split bottom shear cell [23].

After bridge rupture, liquid was redistributed to neigh-

boring capillary bridges taking into account the Laplace

pressure in the bridges as well as the distance from the

rupture point to the neighboring bridges. A modified

diffusion equation was derived by considering that liq-

uid fluxes occur via bridge rupture events which are

proportional to the volume of the ruptured bridges and

to the local bridge rupture rate. The continuum equa-

tion was given by

Q̇b = C
∂2

∂z2
(γ̇Qb) (3)

where Qb is the average bridge volume and C is a con-

stant. This equation takes into account the diffusive mo-

tion of the particles as well as the liquid migration due

to bridge rupture where the latter proves to be more

important. We notice that the equation is applicable

to the plane shear geometry as well: Since the veloc-

ity profile is linear, γ̇ is constant such that we recover

the ordinary diffusion equation Q̇b = D∂2/∂z2Qb. As-

suming that the amount of contacts per particle is con-

stant, Qb can be replaced by Q. The shear rate profile

γ̇ imposes a bridge rupture rate profile which for con-

stant γ̇ is expected to be homogenous along the sample.

Each rupture event involves a redistribution of liquid to

neighboring liquid bridges, which causes a macroscopic

liquid redistribution from regions of larger liquid con-

tents towards lower liquid contents in a diffusive man-

ner.
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Fig. 3 (Color online) The averaged liquid content as a func-
tion of the height z in periodic simple shear for η = 0 at de-
formations γ = 0, 30, 60. The lines are Gaussian fits to the
data points. The inset on the right shows a linear increase
of the width σ2 with time as expected for diffusive behavior.
The inset on the left shows the averaged velocity profile as a
function of the height z.

4.3 Dependence on liquid content

The influence of the liquid content on the diffusion con-

stants was investigated by varying the amplitude A

of the Gaussian liquid distribution. Here, we used a

smaller system for computational reasons. Fig. 4 shows

the diffusion coefficients D for different amplitudes A

of the Gaussian. It can be seen that the diffusion coeffi-

cients decrease with increasing liquid content. A certain

dependence is indeed expected: Since the rupture dis-

tance of a capillary bridge scales as sc ≈ V 1/3
b the strain

needed to rupture a capillary bridge increases with in-

creasing bridge volume. The strain needed to break a

contact in a dry granular medium is of order unity [18]

such that the rupture time for dry granular media can

be estimated by Tsc=0 ∼ 1/γ̇. The additional strain γr
needed to rupture a capillary bridge can be estimated

by γr ∼ sc/R. Thus, the rupture time Tsc=0 for dry con-

tacts is increased by Tsc ∝ Tsc=0 + sc/Rγ̇ ∝ 1 + sc/R

such that we expect the diffusion constants to decrease

with Q as D ∼ 1/(1 + bQ1/3), where b is a fit parame-

ter. Fig. 4 shows the diffusion coefficient D for different

amplitudes of the Gaussian which can be well fitted by

D(A) = a/(1 + bA1/3) with fit parameters a = 0.633R2

and b = 2.936R−1.

5 Results: η > 0

Now we study the case of finite cohesion number η. We

obtain a non-homogenous velocity profile and investi-

gate its influence on the liquid migration.
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Fig. 4 Diffusion constants D as function of the amplitude
A of the initial Gaussian liquid distribution. They decrease
with increasing amplitude because the rupture distances are
larger and thus the rupture rate decreases. The solid line is a
fit according to D(A) = a/(1 + bA1/3).

5.1 The non-homogenous case: velocity and density

profiles

As opposed to the case η = 0 here the capillary forces

play a dominant role since weaker tangential stresses

are less capable to rupture the bonds between the grains.

Since wet grains stick together, the velocity profile de-

velops a plateau and the shear rate drops inside the

wet area. Examples for such plateaus can be seen in

fig. 5 for two different cohesion numbers. The shearing

of a mixture of two granular materials with different

friction coefficients was studied recently by Unger [24].

The upper half of the shear cell was filled with material

having a larger coefficient of friction than that of the

lower part. He observed that in such a system, the up-

per part with larger friction coefficient undergoes shear

hardening. The shear rate was found to be given by

γ̇ ∝ cosh(k(z − zc)) (4)

where zc is the middle position of the upper part of

the cell and therefore, the velocity profile is given by a

sinh function. Since in our case, the tangential force

is also enhanced due to the attractive force, the same

arguments as in Ref. [24] are applicable to our system.

Indeed, fig. 5 shows typical velocity profiles appearing

during shear which can be fitted by E + A sinh(k(z −
zc)/zwall) inside the wet region. Since the liquid profile

changes, we only show velocity profiles averaged over a

small deformation of 0.4. We see that increasing the co-

hesion number η leads to a non linearity in the velocity

profile which becomes more pronounced with increasing

η. The parameters E, A, k and zc fluctuate very much

over time as shown exemplarily for the parameter k in
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Fig. 5 Typical velocity profiles emerging during shear. Aver-
ages were performed over five time steps during a deformation
of about 0.4. The plateau in the velocity profile is flatter for
larger η. Lines are fits to the data.
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Fig. 6 (Color online) The coefficient k for different cohesion
numbers η as a function of γ. For increasing η, the coefficient k
increases which reflects the hardening of the granular medium
inside the wet region.

fig. 6. We observe k to significantly increase with in-

creasing cohesion number η. As pointed out by Unger,

the amount of agitation a layer in the x-y plane receives

from the next upper respectively lower layer decreases

with increasing k. Here, the same behavior is found, i.e.

the shear rate in the wet region drops more for larger

cohesion numbers.

Next, we study the density profiles for different co-

hesion numbers. The density φ of cohesive granular me-

dia in plane shear was found to decrease with increasing

η [18], due to the formation of large stable pores in the

medium during shear. Somewhat counterintuitively, we

find that the density shown in fig. 7 for three different

cohesion numbers η increases in the wet region despite

the presence of cohesive forces. On the other hand, the

shear rate respectively the local inertial number in the

wet region is decreased which in fact inhibits the for-

mation of larger pores. Our observation coincides with
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Fig. 7 (Color online) The density φ as a function of the
height z for different cohesion numbers η. We see that the
density increases inside the wet region when increasing the
cohesion number η.

Ref. [24] where density differences originate from hav-

ing two materials with different friction coefficients, al-

though the microscopic origin for increased density is

different in our work.

5.2 Liquid profile: The non-homogenous case

We showed that under shear the liquid migrates due to

diffusion and liquid bridge rupture. Both processes are

however, a function of the shear rate. Since the shear

rate drops in the wet region, although the deformation

rate vshear/zwall is the same as for the case η = 0,

we expect the liquid to migrate on larger time scales

which reflects a frequently encountered problem in in-

dustrial applications when mixing granular matter with

liquid. If the humidity profile was non-homogenous but

the grains were wet everywhere, we would recover the

linear velocity profile again which enhances the mixing

properties. We can already deduce that mixing dry and

wet powder is even more difficult than equalizing the

liquid distribution of completely wet samples because

of cohesion and the appearance of powder clumps. The

evolution of the liquid profile for η = 0.47 is shown in

fig. 8. As opposed to the case η = 0 we see a deviation

from a Gaussian at the border between the wet and

the dry region at z ∼ 50. It corresponds to the place

where the shear rate profile starts to rapidly deviate

from a constant. At this point, we cannot describe any-

more liquid migration in a purely diffusive picture since

now the bridge rupture rate is not constant anymore. In

regions where the shear rate is lower, less bridges will

rupture per unit time than in regions of high shear rate.
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Fig. 8 (Color online) The averaged liquid content as a func-
tion of the height z in periodic simple shear for η = 0 at
deformations γ = 0, 80. The dashed lines are Gaussian fits
to the data points and the black solid lines are the numerical
solutions of eq. (5). The inset on the left shows the liquid con-
tent in different slices as a function of the deformation where
the solid lines are results from simulations and the dashed
lines are the solutions of eq. (5). The inset on the right shows
lnQ as a function of z, where filled diamonds are results for
η = 0.47, crosses for η = 0 and dashed lines are Gaussians.

Therefore, it is necessary to take the shear rate profile

into account. We apply the continuum description

Q̇ = C
∂2

∂z2
(γ̇Q) (5)

from Ref. [23] to our system. To solve eq. (5) numeri-

cally we use the measured shear rate profile as an input

to eq. (5) and the constant C was set to 0.475 in units of

R2. The solid line in fig. 8 shows the numerical solution

of eq. (5) which corrects the deviations from a Gaus-

sian at the interface between dry and wet granulate. To

have a better view on the accuracy of eq. (5) we plot

ln(Q) as a function of the height in the inset on the

right (filled symbols) in fig. 8 as well as the results for

η = 0 for comparison. We see that the deviations from a

Gaussian are much more pronounced for η = 0.47 than

for η = 0 caused by the shear rate. This shows that in

our model, the shear rate profile determines how liq-

uid migrates within the system and must be taken into

account in a diffusive description for liquid migration.

The reason why we see deviations from a Gaussian for

η = 0 is on the one hand due to the boundaries and on

the other hand due to the slight non-constancy of the

shear rate profile. The observation of purely diffusive

liquid migration in a numerical experiment would be

possible in larger systems and by choosing appropriate

boundary conditions without walls, e.g. Lees-Edwards

boundary conditions [25]. The inset in fig. 8 on the left

shows the evolution of Q in slices corresponding to the

data points in the main panel as a function of γ (red

solid lines) which is followed by the numerical solution

(black dashed lines) of eq. (5) very nicely. Since the local
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shear rate drives the liquid migration, improving mix-

ing properties of grains and liquids can be achieved by

decreasing the cohesion number. Experimentally, this

requires increasing the pressure onto the top wall.

Since the liquid migrates during shear, the velocity

profiles are expected to change in time. The shear rate

can be fitted by γ̇(z) = F + G(z − zc)
2 with fit pa-

rameters F , G and zc for sufficiently small |z − zc|. In

our simulations, we found that F does not change much

with γ for fixed η. It is fluctuating around F = 0.03T−1

for η = 0.31 and F = 0.006T−1 for η = 0.63. There-

fore, the parameter G is a measure for the width of the

plateau which increases with decreasing G. Fig. 9 shows

the parameter G as a function of γ for two different co-

hesion numbers. In both cases, G decreases consistently

with γ. The fact that the velocity profile is affected by

the liquid distribution could be used in experiments to

indirectly measure the position of the interface between

the dry and wet region by measuring the velocity profile

of the granulate.
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2
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x 10
−4

γ

G
[(
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2
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1
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η = 0.63
η = 0.31

Fig. 9 The parameter G of the fit of the shear rate is plotted
as a function of γ. Since liquid is migrating, the plateau in the
velocity profile widens which is reflected by the decreasing fit
parameter G with γ.

6 Conclusion

We studied liquid migration in unsaturated granular

media in plane shear. We found that liquid migrates

diffusively if the shear rate profile is constant along

the sample in agreement with experimental observa-

tions made in process engineering [26,17]. However, a

non-homogeneous shear rate profile leads to a different

liquid migration pattern in agreement with Ref. [23].

The basic origin of the liquid migration is the bridge

rupture imposed by the shear rate and the associated

microscopic redistribution of liquid to neighboring con-

tacts. The influence of the cohesion number η on ve-

locity profiles was studied and linked to the evolution

of the liquid profiles. Homogenous mixtures of liquid

and powder are achieved by increasing shear rates and

stresses. Direct experimental measurements of the liq-

uid distribution in sheared granulates are difficult, but

would be feasible in indirect measurements of the ve-

locity profiles since the liquid distribution affects the

velocity profile.
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