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SUMMARY

An experimentalprogramusing liquid oxygen (LOX) and RP-I as the propel-
lants and supercrltlcalLOX as the coolantwas conductedat 4.14, 8.2?, and

13.79 MN/m2 (600, 1200, and 2000 psla) chamberpressure. The objectivesof

this programwere to evaluatethe coolingcharacteristicsof LOX wlth the
LOX/RP-Ipropellants,the buildupof soot on the hot-gas-sldechamberwall and

the effect of an internalLOX leak on the structuralintegrityof theI
combustor.

Five thrust chamberswlth throat diametersof 6.6 cm (2.6 In.) were tested
successfully. The first three were tested at 4.14 MN/m2 (600 psla)Chamber
pressureover a mixture ratio range of 2.25 to 2.92. One of these three was

tested for over 22 cyclic tests after the first throughcrack from the coolant
channelto the combustionzone was observedwith no apparentmetal burningor

distress. The fourth chamberwas testedat B.27 MN/m2 (1200 psla) chamber
pressureover a mixture range of 1.93 to 2.98. The fourthand fifth chambers
were tested at 13.79 MN/m2 (2000 psla) chamberpressureover a mixture ratio
range of 1.79 to 2.68.

INTRODUCTION :

Preliminarydesign studiesby NASA and Its contractors(refs.l to 4) for

vehiclessuch as the mlxed-mode,slngle-stage-to-orblt(SSTO),and the heavy

llft launch vehicle (HLLV),have shown a requirementfor a new high pressure

(27.58 MN/m2 - 4000 psla chamberpressure)boosterengine using a hydrocarbon

fuel and oxygen for propellants. Furthermore,ongoingstudiesare evaluating

hydrocarbonfueled propulsionsystemsapplicableto operationsfor a quick
response,highlymaneuverablelaunch vehicle. These systemswould ultimately
lead to a truly economicalmeans of accomplishingmany of the space missions

envisionedin the 1990 time periodand beyond. The candidatehydrocarbonfuels
for these assumed systemsappear to be RP-I, propane,and methane. One speci-
fic hydrocarbonfuel or propulsionsystem has not been selectedat thls time.

One characteristicof LOX/RP-Iand LOX/propanecombustionover the mix-

ture range (O/F) of InterestIs the formationof soot and the buildupof a

carbon layer along the hot thrust chamberwall. This carbon layer acts as an
insulatorreducingthe heat transferinto the combustorwalls. The carbon

layer thicknesswill vary with differentaxial locationsand may be affected
by chamberpressure level and by the start and shutdownsequencesof the test

firings. A reasonableassumption,supportedby experimentalevidence,relating

to hot gas depositsIs that an equilibriumis reachedbetweenthe depositing
layer and that which Is being eroded away. There is evidencethat chemical
reactionplays a significantrole in determiningthe equilibriumwhen molecular



and/or atomic oxygen is present In the hot gas stream. However, somedeposit
would likely flake off the wall by the erosion effect of the gas moving over
the deposit surface resulting in hot spots.

The requirements for a very high chamber pressure, (very high heat flux)
hydrocarbon fueled rocket engine has necessitated that the engine designer con-
sider evaluating the cooling capability of both the fuel and the oxidizer. An
inherent disadvantage of RP-1 and even the ltghter parafftntc hyrocarbon pro-
pane, Is the tendency for these hydrocarbons to undergo decomposition (coking)
In the coolant passages. They form barrier coatings from the decomposition
(coklng), thereby greatly reducing their cooling capability. A further compll-
cation with hydrocarbon propellant cooling recently identified In reference 5
is the corrosion of copper by chemical attack caused by trace metallic impuri-
ties In the fuel.

Becauseof the coklng coolinglimitationand chemicalattack problems
associatedwlth using a hydrocarbonas the regenerativecoolant,It is neces-

sary to considerthe oxidant(oxygen)as a possible coolantoption for the
advanced LOX-hydrocarbonengine. Supercrltlcalliquid oxygen is a desirable

heat transfercandidatedue to its generallyfavorablethermodynamicand trans-
port properties. However,a concernwlth the use of oxygen as a coolantis
what would happen if a through-crackformed In the wall allowingoxygen to
enter the combustor. One hypothesisofferedis that the oxygen upon entering

the combustionchamber throughthe crack could potentiallyoxidizethe carbon
layer or react with the fuel rich combustorproductswhich in turn could heat
the thrust chamberwall to Its ignitiontemperatureand cause a catastrophic
failure. Another scenarioofferedis that the LOX enteringthroughthe crack
would fllm-coolthe carbon layer wlth no oxidationof either the carbon layer
or the metal wall.

The purposes of the presentprogramwere to evaluatethe coolingcharac-
teristicsof liquid oxygenwith LOX/RP-1propellants,determinethe buildup of

soot on the hot-gas-sldechamberwall, and observethe effect of an internal
LOX leak on the structuralIntegrltyof the combustor.

This programfocusedon LOX/RP-Ipropellantcombustionand achieved test

resultsat a chamberpressureapproximatelyhalf the chamber pressureof an
advanced system. The effort concentratedon the design and test of small
thrust chambers(22 241 to 75 619 N - 5000 to 17 000 Ibs force thrust)and

involveddevelopingproceduresfor smooth starts and shutdownsand the design
of resonatorhardwarefor combustionstabilityas well as injectorsto assess

combustionefficiencycomparisons.

A series of experimentaltests in which soot deposit on the wall was

determinedwere conductedat 4.14, 8.27, and 13.79 MN/m2 (600, 1200, and

2000 psla) chamberpressurewlth LOX/RP-Ias the propellantsand using LOX as

the coolant. The 4.14 MN/m2 (600 psla) chamberpressuretests coveredan O/F
range of 2.2 to 2.9, the 8.27 MN/m2 (1200 psla) chamberpressuretests cov-
ered an O/F range of 1.9 to 3.0 and the 13.79 MN/m2 (2000 psla) chamberpres-
sure tests coveredan O/F range of 1.8 to 2.7. To evaluatethe effect of a LOX

leak on structuralintegrity,a cyclichot flre test series at 4.14 MN/m2
(600 psla) chamberpressurewas conducteduntil a crack developedin the hot

gas wa11.
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HEAT TRANSFERCORRELATION

Heat transferto supercrltlcaloxygen has been investigated(ref. 6) with
a series of heated tubes at hlgh pressuresrangingfrom 17 to 34.5 MN/m2
(2460 to 5000 psla) and bulk temperatureof 96 to 217 K (173 to 391 °R). From

this test data and previouslyexistingdata (refs. 7 and 8) which increased

• the range from 2 to 34.5 MN/m2 (290 to 5000 psla) and bulk temperatureof 96

to 566 K (173 to lO19 °R), a multlple regresslonanalysiswas conductedas

part of the work done In reference6 which led to the followingdesign corre-
lationfor calculatingsupercrltlcaloxygen heat transfercoefficients:

04 (Kb_l/2 ,______2/3 /5

NUb = 0"0025 Reb Prb" (_-I/2\_w) IC_p-Pb)\Pcr)(PbYI <I . L-_DI

where

Cp constantpressure specificheat

Cp integratedaverage specificheat from Tw to T
b

D inside tube diameter

h heat transfercoefficient

K thermalconductivity

L heated tube length

Nu Nusselt number,hD/K

P pressure (local static)

Pr Prandtlnumber, Cp u/K

Re Reynoldsnumber,pDV/u

T temperature

V fluid velocity

viscosity

p density

Subscripts:

b evaluatedat bulk temperature

cr critical state

w evaluatedat wall temperature



The thrust chambers used in this investigation were designed and fabricated
using thts cooling side heat transfer correlation. Refer to reference 9 for
design details. This correlation was validated by the work of reference lO,
where the measured wall temperatures agreed with the analytically predicted
wall temperature.

APPARATUSANDPROCEDURES

Injectors

A typicalinjectorused in this program (ref. ll) at 4.14 MN/m2
(600 psia) chamberpressure is shown in figure 1. Thls injectoris a 37 ele-

ment oxidizer-fuel-oxidlzertripletinjectorwith an impingementhalf angle of

the oxidizeronto the fuel of 30°. The tripletelementpatternwas arranged
to providemutually perpendicularLOX fans.

To obtain a more uniformflow distributionbehind the injectorface for

the higher chamberpressures,a 61 elementinjectoras shown in figure 2 was

used for the B.21 MN/m2 (1200 psla) chamberpressuretesting. Thls injector
was originallyfabricatedwith the 61 elementsas tripletsarranged in a pat-
tern to provide LOX tangentialfans. However,this injectorpatternresulted

In a hlgh temperatureof the hot-gaswall. As a result,the injectorwas mod-

ified In the outer rlng of elementsby welding closed all the holes and then
redrillingthe fuel holes and inner LDX holes as showerheads. The outer zone

then consistedof 24 fuel holes and 24 oxidantholes. This patternprovided

25 percentof the total fuel flow and 13 percentof the oxygen flow in the
outer zone. At an overallO/F of 2 there was an O/F of 1.03 in the outer zone
and an O/F of 2.32 In the core.

Figure3 shows a 61 elementinjectorused for the 13.79 MN/m2 (2000 psla)

chamberpressuretesting. This injectorwas modified in the outer ring of
elementsas the 8.27 MN/m2 (1200 psla) chamberpressureinjectorwas. The
outer rlng of elementswere welded closedand the fuel holes and inner LOX

holes redrllledas showerheads. Thls patternprovided30 percentfuel flow in
the outer zone and 18 percentoxygen In the outer zone. At an overallO/F of
2, there was an O/F of l.lB in the outer zone and an O/F of 2.35 In the core.

The hole sizes, areas, and pressuredrops for the three injectorsare
shown In table I.

CombustionChambers

The thrust chamber hot gas linerswere fabricatedof an oxygen-free,high-
conductivity(OFHC)copper and containedlO0 axial milled slots for the coolant
passages. The passageswere closed out with electroformednickel. The details
of the coolantchanneldimensionsare given In reference9.

Becauseof the higher heat releasesat 8.27 MN/m2 (1200 psla) and
13.79 MN/m2 (2000 psia) chamberpressure,a shortercombustionchamberwas

used at these chamberpressuresthan at 4.14 MN/m2 (600 psla) chamberpres-

sure. The dimensionsof the thrust chambersare shown In figure 4 and
table If.



Five thrust chambers were used during this program. A photograph of a
chamber in the test stand being fired vertically downward is shown In figure 5.
A photograph of a chamber, resonator, and injector Is shown in figure 6. The
thrust chambers were instrumented with Chromel/Constantan thermocouples imbed-

ded in the rib between coolant channels approxtmately-l.27 mm(0.05 in.) from
the hot gas wall as described in reference 12. All of the chambers had 16

thermocouples evenly spaced clrcumferentlally in 4 axial positions, 2 upstream
of the throat, 1 at the throat, and 1 downstream of the throat. In the shorter

chambers, the two planes upstream of the throat were at 16.5 and 26.0 cm (6.5
and 10.25 in.), the throat was 29.2 cm (11.5 In.), and the downstream plane
was 31.8 cm (12.5 in.) from the injector face. In the longer chambers the 2

planes upstream of the throat were at 26.0 and 36.2 cm (10.25 and 14.25 in.),
the throat was 39.4 cm (15.5 In.), and the downstream plane was 41.9 cm

(16.5 ln.) from the injector face. These positions provide temperature tnstru-

mentatlon in the cylindrical, convergent, throat, and divergent portlons of the
thrust chamber. The instrumentation can be seen in the thrust chamber portion
of figure 6.

Resonators

A water-cooledresonator,as shown in the middle portionof figure 6, was
used in this investigationto providestable combustion. It was composedof
16 cavitiesarrangedevenly around its inside surface. The resonatorwas coax-
ial with, and placed betweenthe chamberand the injector. The cavitieswere
in llne with the thrust chamberat its edge and were 3.63 cm (I.43 in.) long.
The injectorformed the inner wall of the cavitieswhich were 2.54 cm (l in.)

long (see fig. 4). Thls correspondedto a quarterwave tube to dampen the

second tangentialfrequencyof 9700 cycles/secwhich was the expectedfrequency
of the combustionoscillationscausingthe instability. The same type of reso-
nator had been used in the work describedin reference13.

Igniter

Propellantignitionwas accomplishedwith a hydrogen/oxygenspark torch
igniterinsertedthroughthe resonatorwall Just downstreamof the cavities.

This igniterwas startedJust prior to the main propellantflow and supplied
the energy necessaryto start the LOX/RP-1combustion. After LOX/RP-1combus-
tion was initiatedthe torch flows were turned off and a Small inert purge gas
flow startedto preventhot combustiongas from backingup into the igniter.

Test Facilityand Procedures

This programwas conductedin a 222 410 N (50 000 Ibf) thrust,sea-level
rocket test stand equippedwlth an exhaust-gasmufflerand scrubber. The

facility used pressurizedpropellantstoragetanks to supply the propellants

to the combustionchamber. The propellantswere liquid oxygen (LOX) and
amblent-temperatureRP-I. A separatesource of LOX was used as the coolant.

Installationof the thrust chamberon the facilitythrust stand can be seen in
figure 7.

Two types of tests, cyclicand steady state,were performedduring this

program. In the cyclic tests, the chamberwas broughtup to the desiredpres-
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sure and maintainedat that pressure for 0.5 sec and then the propellant
valves were closed for a durationof 2 sec. The fuel valve was closed first

to avoid fuel contaminationof the LOX portion of the In_ectorwhen cyclic
tests were performed. This was followedimmediatelyby a secondcycle to the

same operatingcondition. As many as 25 consecutivecycles at a time were

performedin this manner. The LOX coolantflow continuedduring both firing
and nonflrlngportionsof the cycle. This type of test was used to first pro-
duce a crack in to the combustionchamberand then to investigatethe effect

of a LOX leak throughthe crack on thrust chamberwall integritywith the

chamber still firing.

In the steady-statetests, the pressurewas broughtup in the chamberand
malntalnedat the desired level for a durationfrom 1.3 to lO sec. The heat

transferinformationwas obtainedfrom this type of test. The thermocouples

Imbeddedin the channel ribs reachedsteadyvalues in approximatelyl sec and
remainedconstantwhile the data were recorded.

Test cycles were programmedinto a solld-statetimer that was accurateand

repeatableto within ±O.OOl sec. Fuel and oxidizerflows were controlledby

fixed-posltlonvalves and propellanttank pressure. Coolantinlet pressurewas

controlledby coolanttank pressure. Coolantexit pressurewas kept constant
by a closed-loopcontrollermodulatinga back pressurevalve. With this

arrangement,the coolant flow rate startedhigh and decreasedto the desired
value as the final combustionconditionswere reached. The coolantwas vented

after use.

Control room operationof the test includedmonitoringof the test hard-

ware by means of three closed-clrculttelevisioncameras. The output of one

televisioncamerawas recordedon magnetic tape for later playback.

Data was recordedevery 0.02 sec, averagedover five recordings,and the

average reportedevery O.lO sec....

TEST RESULTS

Test Conditions

Five thrust chamberswere tested during this program. The conditionsfor
these tests are shown In table II. ChambersS/N l, 2, and 3 were operatedat

4.14 MN/m2 (600 psla) chamberpressure. ChamberS/N 4 was operatedat

8.27 MN/m2 (1200 p_la) chamberpressureand chamberS/N 4 and 5 were oper-
ated at 13.79 MN/mz (2000 psla) chamberpressure. One of these thrust cham-

bers (S/N 3) was cyclicallytested until a crack throughthe coolingchannel
to the combustionchamberwas observed. The crack developedsometimebetween
the 42nd and 71st cycle. It was furthertested until 93 cycles had been accu-

mulated. At this time testingwas stopped,but furthertests could have been
run. Chamber S/N l was tested 9 times, chamberS/N 2 - 13 times, chamberS/N
4 - 31 times,and chamberS/N 5 - 1 time. Only chamberS/N 3 developeda

crack. Thus, successfullycoolingwith LOX was demonstratedwith no
catastrophicfailures.



Injector Performance

Figure 8 Is a plot of the C* efficiency which was determined from cham-
ber pressure versus the mixture ratio tested. The measured performance of
three different injectors are plotted on this graph. The differences in these
injectors were explained in the Injector section.

Except for somedata scatter, It can be seen that the 4.14 MN/m2
(600 psta) injector developed over 99 percent efficiency, the 8.27 MN/m2
(1200 psta) injector 95 percent efficiency, and the 13.79 MN/m2 (2000 psta)
injector 96 percent efficiency. The lower efficiency for the two higher cham-
ber pressures resulted from the injector modifications to reduce the wall tem-
peratures and the shorter chamber lengths. Reference 14 gives a further •
explanation of why zone cooling of a rocket thrust chamber can reduce the
injector efficiency.

Soot Thickness Analysis

Because of uncertainty of effects of startup and shutdown on soot deposi-
tion, an analytical approach was utlllzed to determine the deposit thickness.
A calculatlonwas performed to predict the temperature distribution In the
thrust chamberwalls at the four axial locations where the instrumentation was
located. This was done with a modified SINDA (a two-dimensional, finite dif-
ference, relaxation heat transfer) computer code for a slotted copper liner
configuration with an electroformed nickel close-out as the thrust chambers
used in this program were fabricated. The predictions were performed at'the
chamberpressureand mixture ratio operatingconditionsthat wereexperlment-
ally run. A value of 0.00125cal/cm sec °C (7xi0-6BTU/In.sec °F) was used

for the thermalconductivityof soot. The axial locationswere in the cylin-

drical section,the convergingsection,the throat,and the divergingsection.

A soot coating of various(1, 2, and 3 mils, i.e., O.OOl, 0.002, and 0.003 In.)

thicknesswas assumed on the hot gas wall. From these calculations,flg-

ures 9(a) to (e) for the cyllndrlcalsection,figureslO(a) to (e) for the

converging,figures ll(a) to (e) for the throat,and figures12(a) to (e) for

the divergingsectionwere constructedshowingthe predictedwall temperature
at the locationof the rib thermocouplesfor varioussoot deposit thicknesses.

Then the plot was enteredwlth the experimentallymeasured rib temperatureand
the soot thicknessdetermined.

Figures13(a) to (e) Is a plot of the soot thicknessat the variouscham-
ber axial locationsfor the chamberpressureand mixture ratio range experi-
mentally covered In thls investigation.

Figures14(a) to (d) shows the soot thicknessover the chamberpressure
range coveredat an O/F of nominally2.8. Figure14(a) shows the soot thick-
ness In the cyllndrlcalportionof the chamberto be uniformat 4 mils thick.
Figure 14(b) shows that In the convergentsection,the soot thicknessdecreases
from 2 mils at 4.14 MN/m2 (600 psla) chamberpressuredown to 0 thicknessat

13.7g MN/m2 (2000 psla) chamberpressure. Figure 14(c) shows the same condi-
tions at the throat over the pressure range,and figure 14(d_ Indlcatesthat
the soot thicknessdecreasesfrom around 4 mils at 4.14 MN/mL (600 psla) down

to l mll at 13.79 MN/m2 (2000 psla) chamberpressure in the divergentsection.



Figures 15(a) to (d) shows the soot thickness over the mixture ratio range
covered at a nominal chamber pressure of 8.27 MN/m2 (1200 psla). Figure 15(a)
showsthe soot thickness in the cylindrical portion of the chamber to decrease
from 6.5 mils thick at an O/F of nominally 2 down to a thickness of 4 mils at
an O/F of nominally 3. Figure 15(b) shows that In the convergent section, the
soot thickness decreases from Just over 2 mils at an O/F of nominally 2 down to
a thickness of 1 mtl at an O/F of nominally 3. Figure 15(c) shows that at the
throat the thickness varies from 1.5 mils at an O/F of nominally 2 down to a

thickness of 3ust over 0.5 mll at an O/F of nominally 3. Finally, In the
diverging section figure 15(d) shows that the thickness varies from 3 mtls at
an O/F of nominally 2 down to a thickness of 1.5 mlls at an O/F of nominally 3.

Effectsof LOX Leaks on the Thrust ChamberIntegrity

Cyclic test operationwas performedto determinewhat effect a crack In
the combustionchamberwall would have If it allowedoxygen to enter the com-

bustion zone. It was postulatedthat there would be no effect if the metal
wall were maintainedbelow Its ignitiontemperature. From table II it can be

seen that one of the chamberswas operateduntil cracks developed. These

cracks were In the throat region. Leakagethroughthese cracks was very evl-

dent by observingthe large amountsof vapors leavingthe chamberbetween

cycles and at the beginningof the tests. Thls was particularlytrue from

cycle 71 to 93 after the cracks had been visuallyidentified. The chamber
showed no signs of apparentmetal burningor distress. In fact, upon post

inspectionthe lack of discolorationrevealedthat the area around the crack

was overcooledby the leakingoxygen. This was also observed in thrust chamber
tests wlth cracks In which hydrogenwas used as the coolant,and thrust chamber
tests with cracks In which LOX was used to cool hydrogen/oxygenpropellants
(ref. lO). There was no catastrophicfailure.

CONCLUDINGREMARKS

The presentphase of the LOX coolingprogramhas demonstratedthat super-
criticalLOX Is capableof cooling thrustchambers using LOX/RP-Ias the com-

bustlonpropellants. These propellantswere thoughtto perhaps presenta more

severe operatingenvironmentIf a small crack developedin the chamberwall
becauseof the presence of a soot layer. The concernwas that the leaking

coolant, LOX, entering the combustionchamberthroughthe crack, could oxidize
the soot film which could In turn heat the chamberwall to Its ignitiontem-

perature. From the soot analysisat the 4.14 MN/m2 (600 psla) chamberpres-
sure, a soot layer was indeed presentIn the area where the cracks developed

(the throat),however,this did not aggravatethe situation. The metal wall
was maintainedbelow Its ignitiontemperatureand no catastrophicfailure
resulted.

SUMMARYOF RESULTS

Flve thrust chamberswlth identicalcoolantpassagegeometrieswere tested

with LOX/RP-Ias the propellantsand LOX as the coolant. Three of these thrust
chamberswere tested at 4.14 MN/m2 (600 psla) chamberpressureand over a mix-

ture ratio range of 2.25 to 2.92. One thrust chamberwas tested at 8.27 MN/m2
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(1200 psta) chamber pressure over a mixture range of 1.93 to 2.98. Two of the
thrust chambers were tested at 13.79 MN/m2 (2000 psla) chamber pressure over
a mixture ratio range of 1.79 to 2.68. The results of these tests were as
follows:

1. Successful cooling with LOXwas demonstrated.

2. One chamber was cyclically tested 93 times. During this testing,
cracks appeared in the hot-gas wall that permitted oxygen to flow into the
combustion region wtth no catastrophic failures. With this chamber, more than
22 cyclic tests were madeafter the first through-crack was observed with no
apparent metal ignition or dlstress.

3. The LOX passing through the crack in the hot-gas wall did not react
wlth the carbon layer at the throat on the combustion wall, thereby, raising
the metal wall temperature to its tgnltlon temperature and causing a cata-
strophic fatlure. It also did not react dtrectly wtth the metal wall.

4. The thrust chamber wall cracks that formed as a result of the cyclic
testing with LOX as the coolant, appeared to have similar characteristics as
those from a previous program where llquld hydrogen was the coolant.

5. The LOX cooling of LOX/RP-1 propellants was very slmtlar to the LOX
cooling of hydrogen/oxygen propellants.

6. At a nominal O/F of 2.8, soot thickness decreases as chamber pressure
increases, except In the cylindrical portion of the thruster where It remained
a constant thickness.

7. Soot deposition was the least In the throat region at all chamber
pressures and mixture ratios.

8. Soot thickness decreased at a gtven thrust chamber axial location as
mixture ratio increased in the range from two to three.
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TABLE I. - INJECTOR HOLES SIZES AREAS, AND PRESSURE DROPS

Injector Number of Pattern Fuel hole diameter, Fuel are_, mm2, LOX hole diameter, mm LOX area mm 2 aP at O/F = 2.8
number elements mm (in.) (in._) (in.) (in.2)

Fuel LOX

MN/m2, MN/m 2,
(psid) (psid)

I 37 Triplet 1,702 84.129 1.489 130.5 0.414 1.311
O-F-O (0,067) (0.1304) (0,059) (0.2023) (60) (190)
LOX fans

mutually

perpen-
dicular

2 61 Triplet Zone hole diameters Zone hole areas Zone hole diameters Zone hole areas 1.932 4.071
O-F-O (280) (590)
Tangen- 24 36 I 24 72 3

tial LOX Outer Core Center Outer Core Center Outer Core Center Outer Core Center

fans holes holes hole holes holes holes

1.168 1.600 1.600 25.715 72.382 2.011 1.168 1,702 1.397 25.735 163.74 4.581

(0,046) (0.063) (0.063) (0,040) (0.112) (0.0031) (0,046) (0,067) (0.055) (0,040) (0,254) (0.0071)

3 61 Triplet 24 36 I Outer Core iCenter 24 72 3 Outer Core Center AP at OIF = 2.65
O-F-O Outer Core Center Outer Core Center

Tangen- holes holes hole holes holes holes

tial LOX
fans 1.626 2.007 2.007 49,806 113.89 3,164 1,588 1.950 1.702 47.534 216.32 6,839 2.346 4.485

(0.064) (0.079) (0.079) (0,077) (0.177) (0.0049) (0,062) (0,077) (0.067) (0.073) (0.335) (0,011) (340) 650)

TABLE II. - TEST CONDITIONS AND HISTORY

Chamber, Chamber Nominal Nominal Number of Nominal Nominal Nominal

SIN length chamber mixture cycles coolant coolant coolant
injector pressure, ratio thrust flow rate, inlet outlet

to throat, MN/m_, range chamber kg/sec, pressu e, pressu e,

cm, (in.) (psia) tested (Ib/sec) MN/m_, MN/m_,
(psia) (psia)

I 39.4(15.5) 4.14 2.25 9

2 39.4(15.5) (600) to 13 7.3 16.20 12.07
3 39.4(15.5) 2.92 93 (16) (2350) (1750)

(cracked

between

42-71)

4 29.2(11.5) 8.27 1.93 26 11 24.13 17.93

(1200) to (25) (3500) (2600)

2.98

4 29.2(11.5) 13.79 1.79 5

5 29.2(11.5) (2000) to 1 18 20.68 5.86
2.68 (39) (3000) (850)
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FIGURE 1. - TYPICAL 4.14 /qN/M2 (600 PSIA) CHAMBERPRESSUREINJECTOR.
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FIGURE 2.- TYPICAL 8.27 MN/M2 (1200 PSIA) CHAMBERPRESSUREINJECTOR.
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FIGURE 3. - TYPICAL 13.79 MN/M2 (2000 PSIA) CHAMBER PRESSURE INJECTOR.
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FIGURE 4.- THRUST CHAMBER DIMENSIONS.
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FIGURE5.- LOX COOLEDCHAMBERFIRINGLOX/RP-IPROPELLANTSAT 8.27MN/M2
(1200 PSIA) CHAMBER PRESSURE.
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FIGURE 6,- THRUST CHAM_ER, RESONATOR, AND INJECTOR,
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FIGURE 7. - THRUST CHAMBER MOUNTED IN THE TEST FACILITY.
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FIGURE 9,- SOOT THICKNESS DISTRIBUTION FOR CYLINDRICAL SECTION.
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FIGURE 10.- SOOT THICKNESS DISTRIBUTION IN CONVERGING SECTION.



THRUST CHAMBER I

-- PC = 4.20 MN/M2 (608 PSIA)

3 _ 01F = 2,90

_.. O MEASURED AVERAGED

2 -- L_ -- DAT:IcAL

,

o f I I I I I
300 400 500 600 700 800 900

MEASURED RIB TEMPERATURE, OR

(A) SOOT THICKNESS AT THROAT 39,4 CM (15.5 IN.) FROM
INJECTOR FACE,

3

THRUST CHAMBER 4 THRUST CHAMBER 4

"_ Pc = 8.08 MN/M2 (1172 PSIA) PC = 7.91 MN/M2 (1147 PSIA)
0/F = 2.89 O/F = 2.49

2
O MEASURED AVERAGED DATA O MEASURED AVERAGED DATA

-- ANALYTICAL -- ANALYTICAL

B I --
o

0 I I I-'-F--_I I 1 1 I 1
(B) SOOT THICKNESS AT THROAT 29.2 CM (11.5 IN.) FROM (C) SOOT THICKNESS AT THROAT 29.2 CM (11.5 IN,) FROM
INJECTOR FACE, INJECTOR FACE,

3

THRUST CHAMBER tl THRUST CHAMBER 4

PC = 7.98 MN/M2 (1157 PSIA) PC = 13,48 MN/M2 (1955 PSIA)
0/F = 1.92 0/F = 2.63

2

O MEASURED AVERAGED DATA O MEASURED AVERAGED DATA

ANALYTICAL _ ANALYTICAL

I

o I I I
300 400 500 600 700 800 900 300 400 500 600 700 800 900

MEASURED RIB TEMPERATURE, OR MEASURED RIB TEMPERATURE, OR

(D) SOOT THICKNESS AT THROAT 29.2 CM (11.5 IN.) FROM (E) SOOT THICKNESS AT THROAT 29.2 CM (11.5 IN.) FROM
INJECTOR FACE, INJECTOR FACE.

FIGURE 11.- SOOT THICKNESS DISTRIBUTION AT THROAT, •



I XTHRUSTCHAMBER

-- PC = 4,20 MN/M23
(608 PSIA)

0/F = 2.90_
2

O MEASURED AVERAGED DATA
ANALYTICAL

I --

o I I I 1 I 1
200 300 400 500 600 700 800

MEASURED RIB TEMPERATURE, OR

(A) SOOT THICKNESS 41.9 CM (16.5 IN.) FROM INJECTOR

FACE.
4 --

\ THRUST CHAMBER 4 \ THRUST CHAMBER
4

3 -- \ PC = 8.08 MN/M2 (1172 PSIA) -- \ PC = 7.91MN/M 2 (1147 PSIA)

_ O/F = 2"89 _ O/F = 2"49

2 _ _ O MEASURED AVERAGED DATA -- {_ O MEASURED AVERAGED DATA

_ _ALYTICAL _ANALYTICAL

o I I I ]"---.I 1 I I I -'--I----_II
(B) SOOT THICKENESS 31.8 (12.5 IN.) FROM INJECTOR FACE. (C) SOOT THICKNESS 31.8 (12.5 IN.) FROM INJECTOR FACE.

THRUST CHAMBER 4 THRUST CHAMBRER 4

PC = 7.98 MN/M2 (1157 PSIA) \ PC = 13.48 MN/M2(1955 PSIA)3 --

0/F = 2.630/F = 1.92

\ O MEASURED AVERAGED DATA _ O MEASURED AVERAGED DATA

200 300 400 500 600 700 800 200 300 400 500 600 700 800

MEASURED RIB TEMPERATURE, OR MEASURED RIB TEMPERATURE, OR

(D) SOOT THICKNESS 31.8 (12,5 IN.) FROM INJECTOR FACE, (E) SOOT THICKNESS 31.8 (12,5 IN.) FROM INJECTOR FACE.

FIGURE 12.- SOOT THICKNESS DISTRIBUTION IN DIVERGING SECTION.



4--

O O

2 -- 0 0

rTHROAT

Vo I I I I
10 12 14 16 18

"(A) THRUSTCHAMBER I; Pc = 4.20 MN/M2
(608 PSIA); 0/_ = 2,90,

O

G

O
2 THROAT_.\ O O

O \ (_ /-THROAT

I I _I { 1 1 IZl 1
_o 0 (B) THRUST CHAMBER 4_ PC = 8.08 MN/M2 (C) THRUST CHAMBER 4; PC = 7.91MN/M 2

(1172 PSIA); 0/I:= 2.89. (1147 PSIA); 0/F = 2.49.

8 --

o
6 m

O

O
2 -- -- F-THROAT

0 ._-THROAT // O

I I r'l I I Io I
0 6 8 10 12 14 6 8 10 12 14

AXIAL THRUST CHAMBER LENGTH, IN.

(D) THRUST CHAMBER 4; PC = 7.98 MN/M2 (E) THRUST CHAMBER 4: PC = 13.48 MN/M2
(1157 PSIA)_ 0/F = 1.92. (1955 PSIA): 0/F = 2.63.

FIGURE 13,- AXIAL SOOT BUILD UP ON HOT GAS WALLSURFACEOF ROCKETTHRUSTCHAMBER.

i



{I m O

t 3 m

IE

_0 I I I I [ i
_: (A) IN CYLINDRICAL SECTION" 0/F_-_-2.8. (B) IN CONVERGING SECTION; O/F _2.8.

_.5 --

tS -- --

2

1 --

o I I I I I I
_00 800 1200 1600 2000 2400400 800 1200 1_00 2000 2400

CHAMBERPRESSURE, PSIA

(C) AT THROAT; 0/F_.-_2,8. (D) IN DIVERGING SECTION; 0/F _2,8.

FIGURE lq,- SOOT THICKNESS ON THE HOT GAS WALL VERSUS CHAMBER PRESSURE.

8 --

4 --

2 m
uJ
z

I I I I I I
__ 0

o° (A) IN CYLINDRICAL SECTION; PC_.-_1200PSIA. (B) IN CONVERGING SECTION; P_I.200 PSIA.Lo

• 2

' o I I I
1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0

MIXTURE RATIO, 0/F

(c) AT THROAT; PC=1200 PSIA. (D) IN DIVERGING SECTION; PC_1200 PSIA.

FIGURE 15.- SOOT THICKNESS ON THE HOT GAS WALL VERSUS MIXTURE RATIO.



1. Report No. 2. Government Accession No. 3. Reclpient's Catalog No.

NASATM-88805
4. Tltte and Subtitle 5. Report Date

Liquid Oxygen Coolingof High Pressure August 1986
LOX/Hydrocarbon Rocket Thrust Chambers 6.PerformingOrganization Code

553-13-00

7. Author(s) 8. Performing Organization Report No.

Harold G. Price and Philip A. Masters E-3149 i

10.Work UnitNo.

9. Performing Organization Name and Address
11.ContractorGrantNo.

NationalAeronauticsand Space Administration
Lewls ResearchCenter

Cleveland, Ohio 44135 13.TypeofReportandPeriodCovered

12. Sponsoring Agency Name and Address Technt ca1 Memorandum

NationalAeronauticsand Space Administration
14.SponsoringAgencyCode

Washington,D.C. 20546

15. Supplementary Notes

16. Abstract

An experimentalprogram using liquidoxygen (LOX) and RP-I as the propellantsand
supercrltlcalLOX as the coolantwas conductedat 4.14, 8.27, and 13.79 MN/m2
(600, 1200, and 2000 psia) chamberpressure. The objectivesof this programwere

to evaluate the coolingcharacteristicsof LOX with the LOX/RP-Ipropellants,the
buildupof soot on the hot-gas-sidechamberwall and the effect of an internal

LOX leak on the structuralintegrityof the combustor. Five thrust chamberswith
throat diametersof 6.6 cm (2.6 in.) were tested Successfully. The first three

were tested at 4.14 MN/m2 (600 psla) chamberpressureover a mixture ratio

range of 2.25 to 2.92. One of these three was tested for over 22 cyclic tests
after the first throughcrack from the coolantchannelto the combustionzone was
observedwith no apRarentmetal burningor distress. The fourth chamberwas
tested at 8.27 MN/mL (1200 psla) chamberpressureover a mixture range of 1.93

to 2.98. The fourth and fifth chamberswere tested at 13.79 MN/m2 (2000 psla)

chamberpressure over a mixtureratio range of 1.79 to 2.68.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Rocket engine cooling Unclassified- unlimited
LOX cooling STAR Category 20

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Pdce* ;

Unclassified Unclassified

*For sale by the National Technical Information Service, Springfield, Virginia 22161





Na,,ona,Aeronaut,csan,.CONOOL.S,.A,LIIIIII
Space Administration

LewisResearchCenter ADDRESSCORRECTIONREQUESTED

Cleveland,Ohio 44135

Off,,dal Business

Penaltyfor Private Use $300 Postage and Fees Paid
NationalAeronauticsand

Space Administration i
NASA-451


