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Abstract 20 

Liquid scintillation counting (LSC) is a major technique not only for measurement of 21 

pure beta emitting radionuclides, but also radionuclides decay by electron capture and 22 

alpha emission. Although it is a conventional radiometric technique, but still a 23 

competitive techniques for the measurement of many radionuclides. This paper 24 

summaries the major development of this measurement technique in instrumentation, 25 

methodology and applications in the past decades. The progresses in the instrumentation 26 

and methodology mainly focus on the commercialization of triple-to-double coincidence 27 

ratio based LSC techniques and its application in the determination of different types of 28 

radionuclides. An overall review and discussion on the LSC based analytical methods for 29 

the determination of major radionuclides in environmental researches, decommissioning 30 

of nuclear faculties and nuclear application are presented, in both measurement 31 

techniques and sample preparation using radiochemical separation. Meanwhile the 32 

problems and challenges in the development and application of the LSC are also 33 

discussed.   34 

 35 
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Introduction 40 

Liquid scintillation counting (LSC) is a conventional radiometric method for 41 

measurement of beta emitting radionuclides including those decay by electron capture. 42 

With the application of alpha-beta discrimination using pulse shape analyzer (PSA), alpha 43 

emitting radionuclides can be also measured by LSC in the presence of beta emitting 44 

radionuclides. The major advantages of LSC are high counting efficiency (up to 100%), 45 

relative simple procedure for target preparation, and the feature to obtain beta spectrum of 46 

the samples. This measurement technique is still a major radiometric method in the 47 

determination of beta emitting radionuclides, especially those emitting low energy beta 48 

particles and decaying by electron capture, and still a competitive method compared to 49 

mass spectrometry for the short-lived radionuclides (t½ < 100 years).  50 

Although the LSC techniques has been developed and applied for more than 60 years 51 

since its first application in the 1950’s and was considered as a mature measurement 52 

methods, further development in the methodology and new applications continue in the 53 

past decades. A series of international conferences dedicated to this technique have been 54 

organized for 23 editions since 1957, and the last conference (LSC 2017) was organized 55 

in 2017 in Copenhagen (http://lsc2017.nutech.dtu.dk). In the instrumentation and 56 

methodology aspects, the major progresses in the past decades are the commercialization 57 

of triple-to-double coincidence ratio (TDCR) based instrument, which can implement so-58 

called absolute measurement without the quench curve or standard addition for efficiency 59 

calibration [1-4]. The determination of radionuclides using plastic scintillation resin and 60 

conventional LSC instrument has being proposed and shown a promising application, 61 

especially for the rapid analysis, which can avoid the utilization of the organic scintillator, 62 

therefore reduce the organic radioactive waste [5-8]. In the past years, an increased 63 
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application of LSC occurred in the measurement of radionuclides for decommissioning of 64 

nuclear facilities, such as 36Cl, 41Ca, 55Fe, 63Ni, 93Zr, 99Tc and 129I [9-16]. The LSC has 65 

also shown a competitive application in the rapid analysis of radionuclides for emergency 66 

preparedness and homeland security purposes due to its relative short measurement time 67 

and simple target preparation [17-20]. In the studies of environmental process using 68 

radionuclides, which are naturally occurred and released from human nuclear activities, 69 

LSC is also a major technique, especially in the measurement of 14C, 3H, 234Th and 70 
210Pb/210Bi/210Po [21-26].  LSC is still a common used measurement method in the routine 71 

monitoring work in the nuclear facilities and medical researches. Besides the 72 

anthropogenic radionuclides, the LSC is a key measurement technique for the 73 

measurement of natural occurred radionuclides, such as 210Pb, 226Ra, 228Ra, 222Rn [27-28] 74 

due to its high availability in radioanalytical laboratory and simple sample preparation. 75 

The LSC is also widely used for the measurement of gross alpha and gross beta in water 76 

samples for screen purpose due to its simple sample preparation.  77 

This paper aims present the major progresses in the LSC methodology and new 78 

applications of LSC in the determination of radionuclides in different fields, the basic 79 

principles and main features of the LSC can be find in many books and papers [29-32]. 80 

Progress on the instrumentation and methodology of LSC 81 

The major progress on the instrumentation of LSC in the past decades is the 82 

commercialization of triple-to-double coincidence ratio (TDCR) LSC technique, which 83 

makes this technique become a routine method for measurement of beta emitting 84 

radionuclides.  85 

 86 

TDCR liquid scintillation counting 87 

The TDCR method is considered as an absolute measurement technique of LSC for 88 

the measurement of the activity of pure -emitting and pure electron capture (EC) 89 

nuclides. In the liquid scintillation analyzer (LSA) based on TDCR technique, three 90 
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photomultiplier tubes (PMTs) and two different coincident outputs are equipped (Fig. 1). 91 

The integration of theoretical calculation of counting efficiency (TDCR value) is based 92 

on a physical and statistical model of the distribution of scintillation photons and their 93 

detection probability by the LSA. When a relationship between TDCR values and the real 94 

counting efficiency obtained by measurement of a standard solution with different quench 95 

level is established, the radioactivity of the target radionuclides can be obtained without 96 

the quench curve or standard addition. The detailed principle of the TDCR method, the 97 

configuration of the TDCR detector system, and the TDCR efficiency calculation 98 

technique have been reported in many literatures [30-32. 99 

In TDCR based LSC, both triple and double coincidences are measured to obtain the 100 

TDCR value for efficiency calculation. Triple coincidences are more sensitive to quench 101 

compared to double coincidences, a correlation between the quench level (or counting 102 

efficiency) and the measured TDCR value can be established for quench correction. 103 

Unlike external standard methods, TDCR is a universal method applicable for both 104 

chemical and color quenching, for aqueous and organic samples and for different 105 

cocktails and range of isotopes. In TDCR based LSA, an external standard for monitoring 106 

quench level is not needed. The TDCR efficiency calculation technique enables the 107 

determination of pure beta-emitting and pure electron capture nuclides in samples of 108 

various states of quench. Alternatively, quench correction can also be made with a curve 109 

fit option. Using a set of quench standard samples for the analyte nuclide, a standard 110 

quench curve of counting efficiency vs. the TDCR value is first established, and the 111 

counting efficiency of an unknown sample can then be determined from the measured 112 

TDCR value of the sample. Once established, the TDCR quench curves are quite generic 113 

and do not need to be redone. For pure beta emitting radionuclides, the TDCR values 114 

usually approximate the overall counting efficiencies. In the Hidex 300SL LSA, a 115 

standard quench curve can be stored with the curve fit option, which can be automatically 116 

employed to determine the real counting efficiency based on the TDCR value of the 117 

sample. The TDCR efficiency calculation technique has been approved to be suitable for 118 

routine analysis of beta-emitting nuclides in samples with different quench levels [30-32]. 119 
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 120 
 121 

 122 
 123 

Fig. 1 Diagram of principle of TDCR system in LSC instrument and the Hidex 300SL 124 

detector structure 125 

 126 

The TDCR based LSC method has been reported in the 1980’s [33], since then many 127 

laboratories have built their own TDCR system for LSC measurement. However, these 128 

early applications of the TDCR method was exclusively employed in metrological 129 

laboratories for radionuclide standardization [31, 32, 34-37]. The first commercial TDCR 130 
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LSA (Hidex 300 SL) was introduced by Hidex Oy in 2008. Recently, two more types of 131 

TDCR LSAs, the Hidex 300SL Super Low level and Hidex 600SL were introduced to the 132 

market by Hidex Oy. By equipped with additional lead shielding, low level PMT 133 

detectors and an active guard detector in the Hidex 300SL super Low Level instrument 134 

for further background reduction, the detection limit is significantly improved to be used 135 

for  environmental monitoring, radiocarbon dating and biofuel verification applications. 136 

By extending sample load capacity and queuing, Hidex 600SL TDCR LSA can hold over 137 

500 small vials or 210 large vials, and can automatic determination large number of 138 

samples. Pulse shape analyzer is also equipped in the Hidex TDCR LSAs, so the alpha 139 

emitting radionuclides can be also measured in the presence of beta emitters using alpha-140 

beta discrimination setup. In the past 5 years, many Hidex TDCR LSAs have been 141 

installed and applied in many laboratories, which makes the TDCR LSC method has 142 

becoming a widely used LSC method for measurement of radionuclide for many 143 

applications such as environmental monitoring, radiological protection, and biomedical 144 

studies.  145 

By compared with conventional LSC method using TriCarb 2200/2500, it was 146 

demonstrated that Hidex 300SL performed a good measurement for 90Sr and 241Pu in soil 147 

and radioactive slurry samples [38]. A comparison of the Hidex 300SL with Quantulus 148 

1414 and TriCarb 2800 in different labs by measurement of 89Sr standard solution has 149 

also demonstrated a good performance of this method [1]. Hidex TDCR LSA has also 150 

been successfully applied for the measurement of 3H, 63Ni, 68Ga, 99Tc and 228Ra and 210Pb 151 

in environmental and waste samples [3, 17, 39-41], it was also used for the determination 152 
68Ga 51Cr, 90Sr and 32P in various biological samples [20, 42-43].  153 

 The TDCR LSC has also been investigated for measurement of 14C samples using 154 

Hidex 300SL instrument, it was found that the TDCR quench correction worked well for 155 

measuring the activity of 14C in quench standards with high activity levels, it may not be 156 

preferred for the correction of benzene impurities in very low activity samples for 157 

radiocarbon dating. Thus, based on the observed position of the right slope of the 14C or 158 

muons spectrum, a quench correction method was proposed and seemed to be more 159 

optimal for 14C dating. However, a relative high background level of 13.7 CPM was 160 
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observed in triple coincidence model, it prevents from the precise measurement of ultra-161 

low-level samples for 14C dating purpose [44]. The introduction of the Hidex 300SL 162 

Super Low Level instrument in the recent years can significantly suppress the 163 

background level, which will makes it comparable to the conventional Quantulus 1220 164 

instrument and enable to be applied for 14C dating.   165 

With the feature of PSA, alpha-beta discrimination can be applied and alpha emitting 166 

radionuclides have been measured by Hidex TDCR LSA, e.g. 226Ra a solution containing 167 
210Pb, 210Bi, and 228Ra [3]. Meanwhile Hedix TDCR LSA was also used for measurement 168 

of gross alpha/gross beta in water samples [45]. 169 

For electron capture nuclides, such as 55Fe, 41Ca and 139Ce, there can be more than one 170 

counting efficiencies corresponding to a given TDCR value, as the decay spectra are not 171 

continuous due to the contribution of two or more separated group of scintillation energy 172 

from conversion electrons and gammas. Thus, the introduction of a new parameter into 173 

the algorithm of counting efficiency determination would be required to yield a single-174 

valued efficiency vs. TDCR curve [46]. Hidex TDCR LSA has been used for the 175 

measurement of 55Fe in radioactive waste, irradiated steel and urine samples [4, 47-48]. 176 

An obvious discrepancy was observed between the measured TDCR value and the 177 

counting efficiency of 55Fe. Therefore, a quench correction needs to be conducted by 178 

fitting with a quench calibration curve, especially for the solution with high color quench 179 

due to the ferric ion in HCl or water solution. By obtaining a simple power function of 180 

counting efficiency vs. the TDCR value with a set of quench standards, satisfactory 181 

results of quench correction for 55Fe has been achieved [47]. To reduce the color quench 182 

in the measurement of 55Fe, H3PO4 can be used to dissolve the separated iron in 183 

precipitate, a colorless solution can be obtained by formation of an iron complex with 184 

H3PO4 [12]. 185 

 186 

Cerenkov counting using TDCR LSA 187 
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Besides the typical beta-emitting radionuclides by counting the electrons produced in 188 

their radioactive decay, the TDCR LSA can be also used for the measurement of high-189 

energy beta emitting nuclides (e.g., 89Sr, 90Y, 32P, 106Rh, 204Tl) by Cerenkov counting [2].  190 

In the Cerenkov counting, the samples are measured by directly counting Cerenkov 191 

photon/s without addition of the scintillation cocktail. Since Cerenkov photons are 192 

produced directly in sample solutions, no inhibition of the photon emission process due to 193 

fluorescence is involved; thus, Cerenkov counting is free of chemical quenching. 194 

However, Cerenkov counting efficiency could be affected strongly by color quenching. 195 

Even very light color can produce a significant quench effect with a noticeable reduction 196 

in counting efficiency.   197 

The color quench for Cerenkov counting is usually corrected by internal standard 198 

method or quench curve method using an external gamma source in the ordination LSC 199 

method.  In the TDCR LSC, constructing of quench correction curves is not needed, the 200 

effects of color quenching on Cerenkov efficiency can be automatically corrected based 201 

on the measured TDCR values. A free parameter model has been proposed for 202 

standardization with the TDCR LSC [2, 49]. A stochastic TDCR model based on the 203 

Monte Carlo code Geant4, has also constructed to determine the Cerenkov efficiency 204 

using the experimental TDCR value [50]. These TDCR Cerenkov models have been 205 

successfully tested for the activity standardizations of 90Y, 89Sr and 68Ge in nuclear 206 

medicine applications [4, 51]. The TDCR Cerenkov method would allow for calculating 207 

the counting efficiency without an external or internal standard source.  208 

Using a TDCR LSA (Hidex 300SL), the TDCR Cerenkov method has been 209 

successfully used for quantitative determination of high-energy beta emitters in 210 

environmental samples. An empirical correlation between the Cerenkov counting 211 

efficiency for 90Y and the measured TDCR value was established for the correction of 212 

color quench effect on the determination of 90Sr/90Y in aqueous samples [18-19]. The 213 

direct TDCR Cerenkov counting can serve as a rapid screening method for high-energy 214 

beta-emitting radionuclides in environmental water samples without any radiochemical 215 

separation procedure. TDCR Cerenkov counting without chemical separation has been 216 

compared with ordinary LSC following radiochemical separation for the measurements 217 
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of 90Sr-90Y in groundwater samples collected in a contaminated riverbed, and found a 218 

good agreement between two methods [52]. Using three commercial liquid scintillation 219 

analyzers (Triathler, Tri-Carb 3180 and Hidex 300 SL) with one-, two- and three PMTs, 220 

the effects of measurement conditions for Cerenkov counting efficiency has been 221 

investigated, it was found that the TDCR Cerenkov counting would be well suited for 222 

routine quantitative determination of high energetic beta-emitting radionuclides in low 223 

level environmental samples [53]. However, to date, the TDCR Cerenkov counting is still 224 

not yet widely applied for measurement of high-energy beta-emitting radionuclides with 225 

only few publications focusing on the determination of 90Sr-90Y in environmental samples 226 

[18, 52, 54-55]. 227 

Determination of anthropogenic radionuclides 228 

LSC is the major technique for measurement of pure beta-emitting radionuclides, 229 

including the radionuclides decay by electron capture. The most important anthropogenic 230 

radionuclides in view of environmental radioactivity, tracer application in various 231 

disciplines and nuclear waste management are 3H, 14C, 36Cl, 41Ca, 55Fe, 63Ni, 89Sr, 90Sr, 232 
129I and 241Pu. Large efforts have been given in the past decades in the establishment and 233 

improvement of the analytical method for these radionuclides, especially with the rapidly 234 

increased requirement in the characterisation analysis of decommissioning waste in the 235 

past years. The progress on the analytical methods for these radionuclides using LSC are 236 

presented below.  237 

 238 

Tritium (3H)  239 

Tritium is a low-energy (Emax = 18.6 KeV) pure beta emitter with a half-life of 12.32 years，the 240 

LSC is the most often used method for its measurement. Ionization chamber and proportional 241 
counter methods can be  also used for the measurement of tritium, but often used for measure 242 
relative high-level tritium because of high detection limit. In these methods, gas tritium (HT, T2) 243 
and 14C (14CO2, CH4) are direct introduced to detector chamber and measured for on-line 244 
monitoring for tritium level [56]. 245 

Besides the production in the upper atmosphere through cosmic ray reactions of nitrogen and 246 
oxygen, tritium in the present environment is mainly from atmospheric nuclear weapons testing 247 
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and on-going nuclear fuel cycle operations. Since the partial atmospheric nuclear test ban treaty 248 
in 1963, the worldwide levels of tritium in the environment have been decreasing at a rate 249 
approximately equal to its half-life. Generally, nuclear fuel cycle operations are of concern to the 250 
immediate locale only, with relatively minor contributions to more general environmental tritium 251 
levels. Regulated monitoring of specific sites and hydrological studies are the principal 252 
applications of environmental tritium analysis.  253 
Tritium in water form is normally prepared as purified water for measurement using LSC. To 254 
improve the counting efficiency, water is filtered, neutralized and distilled to remove the particles 255 
and chemicals (including salts) to reduce the quench effect. To overcome the color quench (e.g. 256 
urine sample), charcoal adsorption is often utilized to remove the colorful organics before further 257 
neutralization and distillation. A commercial available tritium column (Tritium resin, Triskem 258 

International) is dedicated to purify water sample for tritium (tritated water) 259 

determination using LSC, this column is filled with cation and anion exchange resins for 260 

removal of ions and a prefilter for removal of organics. A scintillation cocktail is mixed 261 

with the purified water for LSC measurement, a better compatible cocktail is normally 262 

selected to use bigger volume of water and to obtain a better counting efficiency, and 263 

finally a good detection limit.  For determination of tritium in environment, 10 ml water 264 

sample is often used and mixed with 10 ml scintillation cocktail for LSC measurement. In 265 

this case, a detection limit of 1-2 Bq/L can be obtained using ultra-low level LSA (e.g. 266 

Quantulus 1220, PerkinElmer, USA). For improvement of detection limit, a high capacity 267 

LSA (e.g. AccuFLEX LSC-LB7, HITACHI ALOKA, Japan) with 145 ml vial can be 268 

used. In this case, up to 70 ml water sample can be used, and a detection limit down to 269 

0.3 Bq/L can be reached.  270 

Since tritium in the present environmental water samples is already declined to < 2 Bq/L, 271 

the direct measurement using LSC is not sufficient sensitive for its reliable determination. 272 

Electrolysis method is therefore often applied for the enrichment of tritium in water. This 273 

method is based on the slightly higher binding energies of tritium with oxygen in tritated 274 

water compared to hydrogen, and molecules of THO are not decomposed to form HT and 275 

O2 as readily as H2O or DHO (T = tritium, D = deuterium). With this method, tritium can 276 

be enriched by a factor of 15-40, depending on the volume of the electrolysis cell and 277 

final volume of the enriched tritiated water. It should be mentioned that the electrolysis 278 

process is quite slow; 5-10 days are normally needed for treatment of 100-500 ml water 279 
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in each cell. Combined the electrolysis enrichment, the detection limit of LSC for tritium 280 

can be improved to be lower than 0.1 Bq/L. Noble gas mass spectrometry is the most 281 

sensitive technique for measurement of tritium in very low-levels (< 1 mBq), which is 282 

based on the measurement of 3He, the decay daughter of tritium. Helium in the sample is 283 

first removed by vacuum, and the sample in a tight container is kept for a few months for 284 

ingrowth of helium from tritium decay, the produced 3He is separated and measured 285 

using noble gas mass spectrometry [57]. The major drawback of this method is its long 286 

analytical time of a few month to years due to the ingrowth of 3He, and LSC is still the 287 

dominant method for measurement of tritium. 288 

Tritium in solid sample such as biological and soil samples needs to be separated first 289 

from the solid matrices. Tritium exist in biological samples as part of the water 290 

component (FWT, free water tritium) or as part of the organic structure (BT, bound 291 

tritium). The free water tritium is often separated from the sample by freeze drying and 292 

collecting the evaporated water. To analyze the bound tritium, the sample is dried first 293 

(freeze drying or low-temperature oven drying at ~60–80°C) and then combusted to 294 

separate the bound tritium. The water of combustion is collected, purified as required and 295 

measured using LSC.  296 

Azeotropic distillation is also used for extraction of free water tritium, and cyclohexane is 297 

the most often used azeotrope for extracting water from various biological samples, such 298 

as honey, milk, vegetation, soil, and fish for tritium measurement using LSC. The organic 299 

bound tritium in biological samples and firming binding tritium inside of the crystal of 300 

grains of soil and sediment are often separated using combustion with oxygen flow at 301 

high temperature. In this case, tritium in organic substance is converted to water vapor 302 

and collected by condensing [58-59], and the firmly binding tritium in the crystal of soil 303 

and sediment grains and metals can be also separated by converting it into water vapor by 304 

combustion with oxygen flow [60-62]. The converted tritium in water vapor form is 305 

condensed and collected as liquid water and finally measured using LSC. 306 

In the past decades, the major progress on the determination of tritium focus on the 307 

analysis of various decommissioning samples because of the increased requirement in the 308 

characterization of decommissioning waste, and highly present of tritium in all types of 309 

samples in the nuclear facilities and the high mobility of tritium [10, 61-65 ]. Hou [10, 61] 310 
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has reported a combustion method for separation of tritium from decommissioning 311 

samples, such as concrete, graphite, steel, aluminum for its determination using LSC. A 312 

Sample Oxidizer (PerkinElmer) was used for the separation of tritium in all species. The 313 

solid sample was ground/cut to fine powder/small pieces and mixed with combustible 314 

materials (e.g. cellulous powder), all tritium in the samples is converted to THO by 315 

combustion with an oxygen flow and at temperature of more than 1000 C. The formed 316 

water vapor is converted to liquid water in an air condenser and is directly collected in a 317 

LSC vial; scintillation cocktail is flow into the vial through the tube for rinsing. After 318 

mixing, tritium is then measured using LSC. The entire process only takes less than two 319 

minutes, and therefore very suitable for the rapid analysis of large number of 320 

decommissioning sample. An attention should be given in the sampling and sample 321 

preparation steps to avoid the loss and contamination of tritium because of high volatility 322 

and mobile property of tritium. Warwick et al. [61] investigated the release feature of 323 

different species of tritium from solid samples using a programmable combustion system 324 

(Fig. 2), and demonstrated that combustion method can be used not only for separation of 325 

total tritium, but also for speciation analysis of tritium [61,63 ].  326 

 327 

Carbon-14 328 

Carbon-14 has a half-life of 5730 years and decays by pure beta emission (Emax = 156 329 

keV). In the environment, 14C is produced by the interaction of cosmically produced 330 

neutrons with atmospheric nitrogen in the upper atmosphere, which provides a 331 

continuous and constant source of 14C in the atmosphere. The uniform uptake as 14CO2 332 

into living plant material, conversion to plant carbohydrates, and subsequent transfer 333 

through the food chain are the basis of the radiocarbon dating technique. 14C dating is 334 

used in a wide range of scientific disciplines including archaeology, geology, soil science, 335 

climate reconstruction, and oceanography, and LSC has been the widely used 336 

measurement technique for 14C dating. Human nuclear activity such as atmospheric 337 

nuclear weapons tests (principally during the 1950s and 1960s) has injected huge amount 338 

of 14C (1.2108 GBq) to the atmosphere, which increased 14C level in the atmosphere by 339 

a factor of two. With the exchange of 14C in the ecosystem, the 14C level in the 340 

environment decreased gradually, but still higher than the pre-nuclear level at present 341 
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environment. Discharges from facilities associated with the nuclear fuel cycle (principally 342 

nuclear power plants and fuel reprocessing plants) have also releases 14C to the 343 

environment. Although 14C is not the most abundant anthropogenic radionuclides 344 

released to the environment, its long half-life, high environmental mobility, and ability to 345 

enter the food chain mean that it delivers one of the highest collective effective dose 346 

equivalents to the global population, hence the level of 14C in the environment is critical 347 

for environmental monitoring of the nuclear facilities [66]. Petroleum derivatives are 348 

occasionally used to adulterate natural food and drink products (e.g. wines, spirits, or 349 

cider vinegars) without the buyer’s knowledge. Because petroleum-based products are 350 

sufficiently old that they contain no 14C, depletions in 14C content are normally indicative 351 

of adulteration. Carbon dioxide is the main greenhouse gas released to the atmosphere as 352 

a result of human activities. A 30 % rise in CO2 concentration has been observed since 353 

the start of the industrial revolution, this is mainly attributed to the increased use of fossil 354 

based fuel for energy production and transportation. Since the 14C in the fossil fuel is 355 

absent, measurement of atmospheric 14C level and its distribution can be used for directly 356 

estimating the amount of fossil CO2 releases, and has been widely applied in the past 357 

years [22-23].  358 

Carbon-14 is often measured by LSC after separation from the sample matrices and other 359 

radionuclides. Combustion is the most effective method for separation of 14C from solid 360 

samples, Acid digestion is also used for water and solid sample by converting carbon 361 

species to CO2. The released CO2 can be absorbed using NaOH or quaternary amines for 362 

the LSC measurement of 14C. Carbo-Sorb E (PerkinElmer, Inc.) and Solusol (National 363 

Diagnostics) are examples of high-capacity carbon dioxide absorbers that are compatible 364 

with LSC cocktails. Due to strong quenching, less trapping capacities and severe 365 

chemiluminescence, 14CO2 absorbed in NaOH solution is not often directly used for LSC, 366 

but for further purification.  367 

The combustion and direct absorption of CO2 in quaternary amine is simple and effective 368 

method for the separation and measurement of 14C. The major disadvantage of the CO2 369 

absorption technique is the relative small amount of carbon that can be absorbed, 370 

therefore often applied for analysis of samples from nuclear facilities or surrounding 371 

environment, which have a relative high 14C concentration. Hou [10, 61] have reported a 372 
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method for the determination of 14C in samples from nuclear decommissioning, such as 373 

graphite, concrete and metals. 14C was released from the sample matrix as CO2 by 374 

oxidation combustion with O2 flow at a temperature higher than 1000C with Pt as 375 

catalyzer to convert all CO to CO2. It was also confirmed that both organic and inorganic 376 

carbon in the samples can be completely converted to CO2 in this condition. The released 377 
14CO2 is trapped using 8-12 ml of Carb-Sorb E solution filled into a trapping column to 378 

ensure a high absorption efficiency. The trap solution was then mixed with Permafluor 379 

E+ scintillation cocktail for LSC measurement. The entire separation was implemented 380 

with a Sample Oxidizer (PerkinElmer Inc.), which makes the separation to be completed 381 

within 2 minutes. The major disadvantage of this method is that the sample amount can 382 

be treated is relative small (0.2-1.0 g), which limits the analysis of big sample and the 383 

detection limit of the method. A tube furnace was also reported for separation of 14C from 384 

solid sample using combustion. In this case, the sample amount can be increased to 20 g, 385 

therefore improve the detection limit [67]. Fig. 2 shows diagrams of these two systems 386 

for 14C analysis.  This method was also confirmed to be applicable for other solid samples, 387 

such as soil, sediment, vegetation, tissues, exchange resin, filter, and plastic materials [62, 388 

67].  389 

A method for the determination of 14C in water samples was reported using 390 

evaporation and combustion for carbon separation and LSC for 14C measurement [10]. In 391 

environmental water samples, 14C presents as both inorganic (carbonate) and organic 392 

associated form, evaporation with addition of stable carbonate as carrier is first used to 393 

concentrate 14C and convert to solid. The residue with concentrated 14C was used for the 394 

analysis using the same procedure as other solid sample described above.  395 

Wet oxidation using strong oxidative reagents (K2S2O8 with AgNO3 in acidic media or 396 

CrO3 and H2SO4) and acid digestion (H2SO4) has also been applied for separation 14C in 397 

water and ion exchange resin samples. Acid digestion is used to separate 14C in 398 

carbonate/bicarbonate form, while wet oxidation in acidic media for decomposing 399 

organic compounds is used for separation of 14C in both organic and carbonate forms. 400 

The released 14C is adsorbed in alkaline solution for LSC measurement of 14C [68]. In the 401 

combustion and wet digestion process, other volatile radionuclides such as tritium, 36Cl 402 

and 99Tc might be also released from sample with 14C and interfering the measurement of 403 
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14C. A pre-condensing or pre-absorption with diluted acid (H2SO4) is often applied for 404 

removal of these interferences. In this case, CO2 can pass through the condenser or the 405 

acidic solution and absorbed in the alkaline solution, but all other radionuclides deposited 406 

on the condenser or absorbed in the acidic solution and removed from 14C.   407 

 408 

 409 
 410 

Fig. 2 Diagram of two combustion system for separation 14C and tritium from solid 411 

samples.  412 

 413 

 414 

The absorption capacity of alkaline solution for 14CO2 is relative low, 10 mL of Carbo-415 

Sorb can only absorb 58 mmol of CO2, which is equivalent to 0.7 g of carbon. Therefore, 416 

the combustion and direct absorption of 14CO2 in alkaline solution for 14C measurement 417 
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using LSC is not sufficient good for determination of low-level 14C in environmental 418 

samples, especially for the 14C dating and application in the estimation of fossil CO2 419 

emission. The conventional benzene synthesis method is still used, which enable to use 420 

19 g of carbon in maximum for 14C measurement [69]. In this method, all species carbon 421 

is first converted to CO2 by combustion or acid hydrolysis. The collected CO2 is 422 

subsequently converted to lithium carbide by reaction with molten lithium, and on 423 

cooling, the addition of water to C2H4 causes the production of acetylene (C2H4). The 424 

acetylene is then cyclotrimerized to benzene using a chromium- or vanadium-based 425 

catalyst. Duo to high carbon content (92.3%), a clear aromatic solvent capable of 426 

dissolving sufficient Fluor, excellent energy transmission properties, benzene is an ideal 427 

counting medium for 14C. In most instances, solid flours would be added directly, rather 428 

than a scintillation cocktail. This minimizes volume additions and therefore any increase 429 

in quenchable background, meanwhile highest volume of sample for measurement. 430 

However, compared to the direct alkaline absorption and LSC measurement, this method 431 

is tedious and more expensive, therefore mainly applied for the 14C dating or precise 432 

measurement of 14C in low level or background level environmental samples. With the 433 

rapid development of accelerator mass spectrometry (AMS) and its wide application, 14C 434 

measurement for dating purpose is now mainly carried out by AMS technique. 435 

 436 

Chloride-36 437 
36Cl is a long-lived (t1/2 =301 ky) pure beta-emitter (Emax = 709 keV), formed by neutron 438 

activation reaction of stable chlorine 35Cl(n,γ)36Cl in nuclear reactor. Less important 439 

sources are nuclear reactions induced by cosmic radiation in atmosphere, water and 440 

bedrock. Because of its low specific activity, 36Cl is not considered substantial danger to 441 

humans at present environmental level. However, since the high mobility of chlorine and 442 

long half-live, 36Cl is a useful tracer in interpreting environmental processes [70-72] and 443 

important for waste depository.  444 

Many methods have been reported for the determination of 36Cl in environmental and 445 

waste samples [11, 73-76]. For soil, concrete and other solid materials, chlorine is 446 

separated from the sample in one of two ways: vaporizing chlorine to Cl2 gas by 447 

subjecting the sample to high temperature or by boiling the sample in strong oxidizing 448 
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acids. The released chlorine gas from the samples is captured in a NaOH solution. The 449 

sample can also be dissolved so that the chlorine remains in solution as chloride ions. It 450 

should be mentioned that no (or very small amount of) HCl or HClO4 should be added 451 

for sample decomposition, otherwise a huge amount of Cl from the acid will be transfer 452 

to the final sample, make it impossible to be measured. In all three cases, a known 453 

amount of chlorine carrier, in the form of NaCl or NaClO3 is added to the sample. 454 

Chlorine gas trapped in the NaOH solution is reduced to chloride with NaNO2, and the 455 

chloride is precipitated as silver chloride (AgCl) by adding AgNO3 after acidifying the 456 

solution to a weakly acidic medium using HNO3. Iodine can be removed by dissolving 457 

the precipitate with NH4OH, in which AgCl is dissolved but AgI does not. The AgI 458 

precipitate is discarded and the chloride in the NH4OH solution is again precipitated by 459 

acidification to pH<2. The chemical yield of the separation is determined by measuring 460 

the amount of chlorine using ICP-MS or ion chromatography. Finally, 36Cl in the purified 461 

AgCl precipitate is counted by LSC after dissolving the precipitate with ammonium and 462 

adding scintillation cocktail. Because of the relative high beta energy of 36Cl, the 463 

counting efficiency of 36Cl is normally higher than 85% depending on the quench level, 464 

and need to be corrected using quench curve or standard addition method. Because AgCl 465 

dissolved in ammonia solution is not stable, Ag+ can be gradually oxidized to Ag2O, 466 

worsen the quench level of the sample, making the analytical results not precise.   467 

Hou et al. [11] reported a method for the determination of 36Cl in decommissioning 468 

samples, including graphite, concrete and metals. Fig. 3 shows an analytical procedure 469 

for the determination of 36Cl in waste samples. In this method, the sample is first 470 

decomposed. Graphite sample is decomposed by acid dissolution with a mixed acids 471 

(H2SO4:HNO3:HClO4=15:4:1); the metals such as lead, aluminum and stainless steel are 472 

dissolved with 5M HNO3, 5M H2SO4, and H2SO4-H3PO4, respectively. During the 473 

decomposition by heating, the solution is bubbled with nitrogen gas, and the released 474 

gas (including Cl2) is trapped in 3 sequential trapping solutions: one H2O, two 0.4M 475 

NaOH. The concrete sample is decomposed by alkaline fusion by mixing sample with 476 

NaOH-Na2CO3 and fused at 500 °C for 3-4 h, the fused cake is dissolved with H2O, and 477 

the leachate is used for the determination of 36Cl. Before sample decomposition, stable 478 

chloride as carrier and other stable elements as hold back carriers are added. The 479 
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decomposed sample solution is then transferred to a separation funnel. NaHSO3 solution 480 

is added to convert all iodine to iodide, HNO3 is then added to adjust pH <2. After 481 

addition of CCl4, NaNO2 solution is added to oxidize iodine to I2, and chlorine is 482 

reduced to Cl-, I2 is then extracted to CCl4 phase by shaking. AgNO3 solution is then 483 

added to the aqueous phase after extraction of iodine, stirring the solution to aggregate 484 

the AgCl precipitate. The AgCl precipitate is separated by centrifuge, and washed with 485 

1 M HNO3 to remove the interfering metal radionuclides. The precipitate is dissolved 486 

with 25% NH3, HNO3 is then added to the solution to pH<2 to re-precipitate AgCl. The 487 

AgCl precipitate separated by centrifuge is dissolved in 25% NH3 solution. The solution 488 

is loaded to an anion exchange column, which is converted to OH- form and conditioned 489 

with 25% NH4OH. The column is washed with 25% NH3 until no Ag+ in the rinsed 490 

solution.  Chloride on the column is then eluted with 0.2 mol/L NH4NO3-0.6 mol/L 491 

NH4OH. The eluate is evaporated to dryness on a hotplate; the residue is dissolved with 492 

2 ml water and transferred to a LSC vial. 0.1 ml of the solution is taken to measure 493 

stable chlorine by ICP-MS for chemical yield monitor. 15 ml of cocktail is added to the 494 

remaining solution, 36Cl in the solution is measured by LSC. The decontamination 495 

factors for all interfering radionuclides are higher than 106, and recovery of Cl is higher 496 

than 90%.  Since the final solution of 36Cl is prepared in 2 ml of water, the quench level 497 

is very low and the counting efficiency is higher than >98%.  498 
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 499 
 Fig. 3  Analytical procedure for the determination of 36Cl in nuclear waste samples [11] 500 
 501 

For the nuclear waste samples, 36Cl level is normally relative high to be measured by 502 

LSC. While, for most of environmental samples, especially the sample with natural 503 

originated 36Cl (36Cl/Cl < 10-11), LSC is not sensitive enough to measure such a low level 504 
36Cl (< 1 mBq or 36Cl/Cl < 10-10 for 10 mg Cl in the sample). The most sensitive 505 

accelerator mass spectrometry (AMS) is needed, which can measure 36Cl in the sample 506 

target with 36Cl/35Cl atomic ratio of 10-15.   507 

 508 
Calcium-41 509 

41Ca (t½=1.03105 years) is mainly produced by neutron activation reaction of 510 
40Ca(n, Ca. It is also a naturally occurring radionuclide produced by the reaction of 511 

stable calcium (40Ca) of the earth with neutrons from the cosmic rays and fission of 512 

uranium. Human nuclear activities including atmospheric nuclear weapons testing and 513 

operation of nuclear facilities have also released some 41Ca to the environment. In the 514 

nuclear reactor, 41Ca is mainly produced in the concrete shielding because of its high 515 

calcium content and its exposure to the neutrons from the reactor. 41Ca is an important 516 
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radionuclide in the disposal of radioactive waste, because of its long half-life and high 517 

mobility in the environment and high bioavailability.  518 
41Ca decays to the ground state of 41K by pure electron capture, emitting X-rays and 519 

Auger electrons of very low energy (0.3-3.6 keV). It can thus be measured by X-ray 520 

spectrometry and LSC, but the LSC is much more sensitive [9, 77-80] compared with X-521 

ray spectrometry because of its low counting efficiency (<0.08%) and low abundance of 522 

X-ray of 41Ca (11.4% for 3.31 keV X-ray).  523 

Due to the pure electron capture decay of 41Ca, chemical separation from the sample 524 

matrices and purification from all other radionuclides are necessary before measurement 525 

of 41Ca using LSC or other techniques. Suárez et al. [77] reported a radiochemical 526 

separation procedure for separation of calcium from other radionuclides, which is based 527 

on the hydroxides precipitation of transition metals and chromate precipitation of Ba, Sr 528 

and Ra with a chemical recovery of 40%. In this procedure, the separation of Ba, Sr and 529 

Ra by chromate precipitation is very critical because of very restrict control of pH value. 530 

Ion exchange and extraction chromatography have also been used for separation of 531 

calcium [78, 80]. Anion exchange chromatography was used to remove all radionuclides 532 

presenting as anion in high concentration HCl media, and extraction chromatography 533 

using TRU resin was applied to remove actinides and lanthanides. However, this 534 

procedure is not well suitable for removal of earth alkaline radionuclides such as 535 

radiostrontium, radium and barium. An tertbutylmethylether/ethanol extraction step was 536 

proposed to extract calcium and to remove Sr, Ba and Ra [80]. With all these steps, a 537 

recovery of more than 65% and decontamination factor of <103 for most of interfering 538 

radionuclides were obtained. Hou [9] reported a simple and effective method for 539 

determination of 41Ca in ordinary and heavy concrete (containing more than 75% of 540 

BaSO4) based on the relative low solubility production of Ca(OH)2 compared to the 541 

hydroxides of Sr, Ba and Ra in NaOH solution. Calcium (mainly as calcium carbonate) is 542 

first leached using aqua regia, and the experiment shows that more than 95% of Ca can 543 

be leached out from the concrete sample in this step. There are 3 main steps for the 544 

separation of Ca from the interfering radionuclides. Ca is first separated from the 545 

transition metals, such as Co, Eu, Fe, Ni and transuranic by precipitation at pH 9 using 546 

NaOH. In this step, the interfering radioisotopes of these elements are precipitated, while 547 
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Ca remains in the solution with Sr, as well as Ba, Ra, Cs, etc. Ca and Sr in the 548 

supernatant are then precipitated as carbonates with Ba and Ra by adding Na2CO3 and 549 

separated from alkali metals and non-metal elements. Ca is then separated from Sr, Ba 550 

and Ra by precipitation of Ca as Ca(OH)2 in 0.5 mol/L NaOH solution after dissolution 551 

of the carbonate precipitates. This is based on the low solubility of Ca(OH)2 in high 552 

concentration of NaOH (higher than 0.5 mol/L) compared with Sr, Ba, and Ra. This step 553 

is repeated and the separated Ca(OH)2 is dissolved with HCl for measurement using LSC 554 

after neutralizing to pH 6-8. The chemical yield of 80-90% for 41Ca was obtained by 555 

measurement of Ca before and after chemical separation using ICP-OES. The 556 

decontamination factor for the interfering radionuclides such as 60Co, 152Eu, 133Ba, 85Sr, 557 
137Cs, 55Fe, and 63Ni are higher than 105. The detection limit of 20 mBq for 41Ca was 558 

achieved by using low background LSC instrument (Quantulus 1220) [9].   559 

However, this method could not separate 45Ca from 41Ca. If both isotopes exist in the 560 

sample, interference of 45Ca to the measurement of 41Ca has to be corrected, which can be 561 

carried out by measurement of the contribution of 45Ca to the window of 41Ca at lower 562 

channel. Due to the low energy of Auger electrons (0.3-3.6 keV) used for measurement of 563 
41Ca by LSC, the counting efficiency is relatively low (<25%), and highly influenced by 564 

quench. The separated calcium sample is normally prepared in a neutral solution of CaCl2 565 

and all other element (especially iron) has to be completely removed. The major quench 566 

effect is the amount of calcium in the samples. In addition, luminesce is also an 567 

interference for the measurement of 41Ca, which has to be considered in the measurement 568 

of 41Ca using LSC. 569 

For measurement of 41Ca in natural environmental level (< 1 mBq), more sensitive 570 

mass spectrometry techniques such as AMS [81] and resonance ionization mass 571 

spectrometry (RIMS) [82] are needed, a 41Ca/40Ca atomic ratio as low as 10-15 can be 572 

measured by AMS.  573 

 574 

Iron-55 575 
55Fe (t1/2=2.7 years) decays via electron capture with the emission of Auger 576 

electrons and low energy X-rays (5.89 keV, 16.9%). 55Fe is mainly measured by LSC 577 

although X-ray spectrometry and gas flow proportional counter can be also used, but very 578 
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low counting efficiencies (<1%). 55Fe is produced by neutron activation reactions of two 579 

major stable iron isotopes: 54Fe(n,55Fe and 56Fe(n,2n)55Fe. Since iron is the main 580 

component of construction materials in nuclear reactors, huge amounts of 55Fe were 581 

produced in nuclear reactors and other nuclear facilities/devices with neutron production. 582 
55Fe enters into the environment mainly through the release of radioactive effluents of 583 

nuclear reactors, as well as atmospheric nuclear weapons tests in 1945-1980. 584 

Determination of 55Fe is often required for monitoring the radioactivity in the nuclear 585 

facilities and their discharges, as well as characterisation and depository of nuclear 586 

wastes. Iron has to be separated from the sample matrices and then completely purified 587 

from other radionuclides prior to the measurement of 55Fe. 588 

Most of work on the determination of 55Fe is addressed to the analysis of 589 

decommissioning waste, and the key issue on the analytical method is the separation of 590 

iron from other radionuclides and its high efficient measurement.  591 

The separation of iron from the sample matrices (solution) is often carried out by 592 

hydroxide precipitation based on the formation of Fe(OH)3 and Fe(OH)2. However, for 593 

some special samples, the matrix component need to be first removed. For instance, in 594 

acid-dissolved lead sample, lead has to be removed by PbSO4 precipitation to avoid the 595 

formation of a large amount of Pb(OH)2 during the Fe(OH)3 precipitation step. For 596 

aluminium sample, the bulk Al(OH)3 in the Fe(OH)3 precipitation step can be removed 597 

by adding more NaOH to a concentration 0.2 M for converting Al(OH)3  precipitate to 598 

soluble NaAlO2 [12]. 599 

All transition metals can be co-precipitated with Fe(OH)3 in alkali solution, among 600 

them the most important radionuclides are 60Co, 63Ni, 54Mn, 152Eu and 154Eu in 601 

decommissioning waste and further chemical separation is necessary to isolate iron from 602 

these interfering radionuclides. Chelating and anion exchange chromatography combined 603 

with solvent extraction have been used to separate iron from other nuclides [83, 84]. The 604 

commonly used extraction reagents include ethyl acetate, isobutyl ketone and isopropyl 605 

ether, particularly iron has a high partition coefficient in ethyl acetate [85]. However, as 606 

solvent extraction is not very specific for iron, the decontamination of interfering 607 

radionuclides is not sufficient with one extraction. To improve the separation efficiency 608 

of iron from other radionuclides, an extraction chromatography based on di-isobutyl-609 
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ketone has been proposed [85]. A commercial solid phase extraction chromatographic 610 

resin, TRU resin, has also been applied to separate iron for the determination of 55Fe [86, 611 

87]. One limitation of this resin is the low capacity for a small extraction 612 

chromatographic column (2 ml), which can only allow for upload of sample solution with 613 

less than 2 mg iron. For sample with high iron content, such as soil, sediment and steel, 614 

anion exchange chromatography using strong basic anion resin (e.g., AG1-4) has been 615 

confirmed to be an effective method for separation iron from other interfering 616 

radionuclides with a high recovery (>95%) and a high decontamination factor (>104) for 617 

most of interfering radionuclides (e.g. 60Co, 58Co, 152Eu, 154Eu, 63Ni, 137Cs, 90Sr). This is 618 

mainly due to the high distribution coefficient of FeCl4
- on the anion resin in high 619 

concentration of HCl solution. Fig. 4 shows a separation procedure of iron from the most 620 

important interfering radionuclides using a strong basic anion exchange chromatography. 621 

By this way, 55Fe can be completely separated from 58,60Co, 63Ni, 152,154Eu and 65Zn. 622 

Other radionuclides, including all alkali and alkaline earth metals, could not form anion 623 

complex with chloride and would be removed. In combination with hydroxides 624 

precipitation, a chemical separation procedure has been successfully applied for 625 

separation of iron from different waste samples for 55Fe determination. This method has 626 

also been used to investigate the distribution of 55Fe in the environment surrounding 627 

nuclear power plant [88]. For samples with high iron content (> 50 mg) and high 60Co 628 

radioactivity, a repeated anion exchange chromatographic separation can effectively 629 

remove 60Co with a high recovery of iron (Fig. 5). 630 

 A modified procedure using hydroxide precipitation followed by anion exchange 631 

chromatographic separation and LSC measurement has also been applied to 632 

determination of 55Fe in urine samples [47]. Due to complicated matrix component in 633 

urine, the concentration of NaOH in the sample solution needs to be increased to 2 M to 634 

get a high recovery of iron in the hydroxide precipitation step.  635 

 636 
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 637 
Fig. 4 Separation of Eu, Ba, Co, Cu, Fe and Zn by anion exchange chromatography (Bio-638 

Rad AG1x-4, 1 x 20 cm), 0-40ml: 9 mol/l HCl, 40-70ml:5 mol/l HCl, 70-105 ml: 639 

0.5mol/l HCl and 105-135: 0.05 mol/l HCl 640 

 641 

 642 
 643 

Fig. 5 Analytical procedure for 55Fe and 63Ni in environmental and waste samples.  644 
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The distinct yellow color of Fe3+ can cause a very strong color quench, which 645 

significantly reduces the counting efficiency of 55Fe by LSC. Because the very low 646 

energy of Auger electrons emitted by 55Fe (5-6 keV) is measured by LSC, the high color 647 

quench could reduce the counting efficiency to <10%, causing a worse detection limit. A 648 

number of approaches have been adopted to reduce the color quenching of Fe, such as 649 

solvent extraction to transfer iron to organic phase and reduction of Fe3+ to Fe2+ by 650 

ascorbic acid. These approaches could not completely overcome the color quench of Fe. 651 

In addition, the Fe2+ is not very stable and can be re-oxidized to Fe3+ slowly in air, 652 

causing a gradually increased quench level and decreased counting efficiency. An 653 

effective method for removing the yellow color of Fe3+ using H3PO4 has been proposed 654 

[12, 84]. By this method, a colorless Fe3+ solution is obtained and the counting efficiency 655 

is significantly improved to more than 40%. Since H3PO4 has less quench effect and high 656 

compatibility with scintillation cocktail compared to other acids, and the amount of Fe 657 

mixed with cocktail can thus be significantly increased. It has been confirmed that for 658 

less than 10 mg Fe carrier, 40% counting efficiency is obtained; and for 200 mg Fe, the 659 

counting efficiency is 15% [12]. 660 

 661 

Nickel-63 662 
63Ni (t1/2 =101.2 y) is a neutron activation product formed by neutron capture of stable 663 

nickel (62Ni). 63Ni in the environment was released through corrosion of steel components, 664 

associated with the primary coolant system of nuclear power reactors. 63Ni is pure beta 665 

emitter with relative low energy (Emax = 67 keV), LSC is the most often used method for 666 

its measurement. Another nickel isotope, 59Ni (t1/2 = 7.5 104 y), is similarly formed from 667 

stable 58Ni. The initial activity ratio of 63Ni/59Ni is around 100 or more, and 59Ni decays 668 

by electron capture with emission of X-rays. Given the low sensitivity of LSC to X-rays, 669 
59Ni has very minor effect on the low-energy part of the beta spectrum of 63Ni [89. 63Ni in 670 

the environment originates from radioactive effluents from nuclear facilities and from 671 

nuclear weapons tests and accidents. The principal requirement for the determination of 672 
63Ni is to characterize nuclear waste for decommissioning and radioactive waste disposal. 673 

The determination of 63Ni in the environmental samples was also applied to evaluate the 674 

impact of the nuclear facilities. 675 
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Due to its low beta energy, the determination of 63Ni requires chemical separation and 676 

purification of nickel from coexisting elements and radionuclides. Methods for 677 

determining 63Ni have been reported for many sample matrices including liquid effluent, 678 

sludge, ion exchange resin, graphite, heavy concrete, steel, copper, lead and aluminium 679 

from nuclear power plants and environmental samples like soil, sediment, sea water, fish, 680 

vegetation and urine [12, 84, 87, 88, 90-92].  681 

The pre-treatment of samples containing organic matter is started by wet or dry ashing 682 

and then continued by leaching the residue with concentrated HCl or HNO3 to dissolve 683 

nickel and other elements. For concrete, graphite and metals, acid digestion or dissolution 684 

is often used and confirm to be reliable. Graphite, concrete, soil and sediment do not have 685 

to be completely dissolved using mixed acids and/or alkaline fusion following by acid 686 

digestion. Stable nickel as carrier and other elements as holdback carriers are added 687 

before chemical separation to determine chemical yield and to effectively removal 688 

interfering radionuclides. Some methods are often applied for pre-concentration and 689 

separation of Ni from interfering radionuclides, e.g. precipitation of Fe(OH)3 with 690 

ammonia to remove many metals, while nickel remains in the supernatant; precipitation 691 

of nickel using insoluble Ni-DMG complex; solvent extraction of Ni using DMG or tri-n-692 

octylphosphine (TOPO) as extractant; anion exchange chromatography, and extraction 693 

chromatography using Ni resin. It was observed that large fraction of Ni can be also co-694 

precipitated with Fe(OH)3 when using ammonia, these might be attributed to the wrap of 695 

Ni in the Fe(OH)3 when high amount of iron presents in the solution. Hou et al. [12] 696 

(2005) developed a chemical separation procedure for determination of 63Ni in 697 

decommissioning waste and environmental samples. Ni in the sample solution is first 698 

separated using hydroxide precipitation by addition of NaOH, most of anions, alkaline 699 

elements (e.g. 3H, 137Cs, 36Cl, 90Sr, 133Ba etc.) are removed. The precipitate is then 700 

dissolved in HCl and prepared in high concentration of HCl (9 M), which is loaded to a 701 

strong basic anion exchange resin column. Ni2+ passed through the column, but most of 702 

transition metals (e.g. 60Co, 55Fe, 65Zn) are retained on the column. Thereafter Ni is 703 

further purified using the Ni Resin extraction chromatography, to remove the remaining 704 

interfering radionuclides (e.g. 152,154Eu, 60Co, 54Mn, etc.). They used this method  for 705 

determining  63Ni in nuclear waste samples including heavy concrete, aluminium, lead 706 
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and graphite, and achieved high decontamination factors (> 105) for all interfering 707 

radionuclides. Chemical yields were over 90 % and the detection limit of 0.014 Bq for 708 
63Ni using a low-background LSA. This method has also been applied for environmental 709 

samples [88] Warwick and Croudace [84] developed a method that was based on the 710 

same separation steps as those of Hou et al. [12]; but the extraction chromatography 711 

separation using Ni resin was performed prior to the anion exchange. It has also been 712 

observed that 60Co and 58Co could not be sufficiently removed by using only Ni resin 713 

extraction chromatography, making the method unreliable and a correction have to be 714 

implemented to subtract the interference from 58Co and 60Co. Two sequentially connected 715 

Ni resin extraction chromatography separation steps can reduce the contribution of 716 

radioactive cobalt. Therefore, a separation step using anion exchange chromatography is 717 

necessary for the samples with high radioactive cobalt isotopes (58Co, 60Co) [87]. Fig. 5 718 

shows a combined procedure for separation of nickel and iron for the determination of 719 
63Ni and 55Fe.  720 

The sample preparation for measuring the 63Ni activity by the LSC counter is quite 721 

simple. The eluate containing the sample fraction is collected from the chromatographic 722 

column at the end of separation procedure. The eluate is evaporated to near dryness and 723 

the residue is dissolved in a few milliliters of dilute HCl or HNO3, which is placed in a 724 

LSC vial for counting. Attention has to be given when evaporating the Ni eluate to 725 

dryness, because nickel in the HNO3 (3-12 M) eluate presents as Ni(NO3)2, which has a 726 

low boiling point (136.7 C) and can be easily lost during evaporation at high temperature 727 

(>137 C). Therefore, the eluate of Ni is often evaporated to near dryness (<0.5 ml) on a 728 

hotplate with low temperature (< 120 C) in the end of the evaporation (< 3 ml).  729 

The counting efficiencies of the prepared 63Ni sample vary from ~50% to ~80% 730 

depending on the sample composition. Quench corrections are applied in most cases.  731 

Detection limits of 0.005 0.014 Bq/sample for 63Ni has been reported by using a 732 

combined chemical separation procedure and ultra-low background LSC instrument [12, 733 

84].  734 

Besides the radiometric techniques, 63Ni can be also determined using AMS [93]. The 735 

comparison by Hou and Roos [89] showed that the detection limits of 0.1245 mBq  736 

achieved by the AMS methods. For both methods, chemical separation is necessary. 737 
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Nevertheless, the 63Ni assays are mostly performed using LSC, because of the 738 

accessibility of the LSC counters in radiochemical laboratories. 739 

 740 

Strontium-89 and Strontium-90/Yttrium-90  741 
90Sr (Emax = 546 keV,  t1/2 = 28.8 y) and 89Sr (Emax = 1495 keV, t1/2 = 50.57 d) are 742 

fission products, 89Sr can be also produced by neutron activation of stable 88Sr. The main 743 

sources of 90Sr and 89Sr in the environment are atmospheric nuclear weapons tests, 744 

nuclear accidents and discharges from nuclear facilities. Fallout from nuclear weapons 745 

testing is primarily responsible for the 90Sr/90Y concentrations found globally in the 746 

environment. 90Sr is important for environmental monitoring because of its relatively 747 

high fission yield (5.7% for 235U), its long physical and biological half-lives, and its 748 

transfer to food chains. It is highly toxic because it accumulates in bone tissue which is 749 

exposed by high energy betas of 90Sr/ 90Y. 89Sr shares the same biological significance but 750 

is less hazardous. It has a much shorter physical half-life and thus will not have a long-751 

term environmental impact.  752 

Both 90Sr and 89Sr are pure beta emitter, and 90Sr decays to short-lived pure beta emitter 753 
90Y (t1/2 = 64.05h), LSC is the major method for their measurement. For quantitative 754 

analysis of radiostrontium, strontium has to be separated from sample matrix and all other 755 

radionuclides before measurement [94]. Strontium is one of alkaline earth elements; it 756 

mimics calcium in its behaviour but much less abundance. The emphasis on the assay of 757 

radiostrontium has been focused on the separation chemistry, especially its separation 758 

from other alkaline earth elements and similar property radionuclides (226,228Ra, 133Ba, 759 
210Pb, etc.).  These methods are mainly based on precipitation/co-precipitation, solvent 760 

extraction, ion chromatography or ion exchange, extraction chromatography or 761 

combination of these techniques [94].  762 

 The oldest method for radiostrontium determination is based on precipitation of 763 

Sr(NO3)2 in high concentration of HNO3 (72%) solution by using fumic nitric acid for 764 

separation of strontium from most of elements including calcium, from yttrium and 765 

fission products by the hydroxide precipitation, and from barium, radium and lead by 766 

chromate precipitation. For pre-concentration of strontium, carbonate precipitation 767 

(SrCO3) is often used. In this step, calcium and many other elements including metals are 768 
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also precipitated. The method is efficient but not selective for strontium although it is still 769 

used in some labs. The main disadvantage of this procedure is its involvement of large 770 

amount of fumic nitric acid and chromate, which are more dangerous and harmful for the 771 

operators.  772 

In the past decades, the extraction chromatography using the Sr•Spec resin has been 773 

widely used for the determination of radiostrontium. In this resin, a crown ether [bis-774 

4,4'(5')-tert-butylcyclohexano-18-crown-6] in 1-octanol is grafted on an inert polymeric 775 

resin (Amberlite XAD-7 or Amberchrom CG-71ms) and packed it into a 776 

chromatographic column. The Sr Spec resin shows a high selectivity for strontium ions 777 

over calcium, magnesium and most other metals and fission products. In this method, the 778 

sample is first ashed or acid digested to transfer Sr to a solution, and then pre-779 

concentrated using SrCO3 or Sr3(PO4)2 precipitation After dissolved and prepared in 2-8 780 

M HNO3 medium, the sample solution is loaded to the Sr Spec column. If phosphate 781 

precipitation was applied, Al(NO3)3 should be added to the solution to remove the effect 782 

of phosphate. The column is then rinsed using 8M HNO3, and strontium adsorbed on the 783 

column is finally eluted with 0.05M HNO3 solution. Strontium is strongly adsorbed on 784 

the Sr column, whereas most interfering elements, including yttrium, were removed with 785 

the feed and rinse solutions. Barium, lead and tetravalent neptunium and plutonium are 786 

also retained by the column, and an attention should be given to avoid these element enter 787 

to the eluate of Sr.  788 

TRU column stacked with Sr resin column has been proposed to get a better 789 

decontamination for Ba, Pb, Pu, Th and U [20]. Sr resin method has been widely used for 790 

determination of radiostronium in various matrices such as water, soil, sediment and diet 791 

[95-98]. For rapid determination of radiostrontium in milk samples, HCl and 792 

trichloroacetic acid were first added to the sample to flocculate the suspended fat and 793 

proteins in milk after addition of stable strontium carrier. The strontium in the supernatant 794 

was then precipitated as carbonate and used for further separation using Sr Spec column 795 

[17]. For determination of radiostronium in steel and iron samples, a procedure was 796 

reported by using SrF2/CaF2 precipitation for separation of Sr from large amount of iron, 797 

following by Sr Spec column to purify strontium [96]. In general, the separations using Sr 798 

resin is considered simple, rapid, economic and safe. 799 
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Besides the Sr Spec resin provided by Triskem and Eichrom, other similar resins for 800 

separation of strontium have also been developed. AnaLig®Sr01 (or SuperLig® 620) 801 

resin is prepared by covalently bonding of ligand, most likely a variation of an 18-crown-802 

6 (18C6) structure on silica gel [98]. Another one was prepared by grafting two 803 

extractants, 4,40(50)-bis-t-butylcyclohexano-18-crown-6 and di(2-ethyl-hexyl) 804 

phosphoric acid onto Amber chrom CG-71 [99]. These resins showed similar features in 805 

the separation of radiostrontium for the determination of 89Sr and 90Sr using LSC. 806 

However, they are not well commercialized and not easy to obtain. The most popular Sr 807 

resin is still the Sr Spec resin from Triskem and Eichrom. 808 

The main limitation on the application of Sr Spec and similar resin in the 809 

determination of radiostronium is its low capacity for Sr and the interferences of high 810 

calcium and salt content in sample on the strontium separation. For a 1.5 g Sr Spec resin 811 

column, loading of no more than 5 mg Sr should be followed. For analysis of high Sr and 812 

Ca containing sample (e.g., bone ash), a big column or splitting sample into aliquots and 813 

loading to more Sr Spec. columns are needed [42]. For low-level environmental samples, 814 

large sample size is needed for determination of ultra-low level 90Sr, which often contain 815 

large amount of stable Sr, Ca, Ba, other interfering elements and radionuclides, the 816 

simple extraction chromatography separation using Sr resin may not be suitable.  817 

Chen et al. [100] reported a simple method for the determination of 90Sr in environmental 818 

samples containing high Ca and Sr, such as in large volume of seawater samples (45 819 

liters). In this method, strontium is first separated from seawater by co-precipitation of 820 

CaCO3-SrCO3 with the addition of stable strontium carrier of 0.3-0.5 g Sr and Na2CO3, 821 

the sample was heated to 90-95 C and kept for 2 hour. The precipitation is separated by 822 

settling for overnight to remove the supernatant followed by centrifuging the remaining 823 

sludge. After dissolution of the CaCO3-SrCO3 using HCl, calcium is separated by 824 

hydroxide precipitation by the addition of NaOH to a final concentration of 0.5 M NaOH. 825 

In this condition, Ca(OH)2 precipitate is formed, but strontium remains in the solution 826 

and separated from large amount of calcium. Strontium in the supernatant is then 827 

separated as SrCO3 precipitate by the addition of Na2CO3. The formed SrCO3 is dissolved 828 

in HNO3 solution and kept for 2-3 weeks for ingrowth of 90Y from 90Sr. To this solution, 829 

yttrium carrier is added, and then strontium is separated by adding H2SO4 to form SrSO4 830 
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precipitate In this case, Ba and Ra remaining in the sample are precipitated and removed 831 

from yttrium. 90Y is then separated by adding oxalic acid to form yttrium oxalate 832 

precipitate, and 90Y in the precipitate is measured using low background gas flow G-M 833 

counter (Risø detector) or LSC after dissolved in HNO3. The decontamination factors for 834 

most of interfering elements/radionuclides (Ca, Ra, Ba) are higher than 103, and a 835 

detection limit of 5 mBq was achieved. The main feature of this method is its capacity to 836 

handle high calcium samples. Besides water samples (seawater, ground, river and lake 837 

water), this method has also been applied for the analysis of milk, bone and large size soil 838 

samples for 90Sr [101]. 839 

Due to the short half-life, 90Y (64 h) reaches equilibrium with 90Sr in an only few weeks, 840 

they are normally in equilibrium in the environmental samples. Direct separation and 841 

measurement of 90Y from the samples or separation of the ingrown 90Y from the 842 

separated 90Sr can be used to measure 90Sr. Based on high adsorption of Y on an 843 

extraction chromatographic resin DGA (Triskem International), it was applied for 844 

separation of Y from the sample and separated strontium solution, the obtained Y solution 845 

was measured for determination of 90Sr in the samples [96].  846 

In addition, solvent extraction and ion exchange chromatography are also used for 847 

separating radiostrontium from various environmental matrices [94]. Tributyl phosphate 848 

(TBP) and bis-2-etytlhexyl-phosphoric acid (HDEHP) have been the most commonly 849 

used organic extractants to separate 90Y from liquid samples, which is assumed to be in 850 

equilibrium with 90Sr. Consequently, rapid assays of 90Sr via 90Y.  851 

Regardless of the separation method, the separated Sr is finally prepared for LSC or 852 

Cerenkov counting. At the end of the separation procedure, strontium is precipitated as 853 

the carbonate or the oxalate, then dissolved in dilute HCl or HNO3 acid and mixed with 854 

the LSC cocktail. The organic eluates/phase from the chromatographic columns or 855 

solvent extraction can be used for LSC measurement. Chemical yields of strontium and 856 

yttrium can be determined by gravimetric methods or atomic absorption 857 

spectrophotometry, flame photometry or using 85Sr as a yield tracer. Stable Sr and Y 858 

originally present in the samples have to be considered in the measurement of the 859 

chemical yield, especially for the environmental samples which might contain significant 860 

amount of stable Sr and Y. 861 
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In the samples, especially shortly collected from a nuclear facilities or its surrounding 862 

environment, both 89Sr and 90Sr might present, the simultaneous determination of 90Sr and 863 
89Sr by LSC is possible using several approaches. The separated strontium sample can be 864 

measured merely by LSC after mixing with scintillation cocktail or directly by Cerenkov 865 

counting or by measuring the sample first by Cerenkov counting followed by adding 866 

scintillation cocktail for LSC. Because the overlap of the beta spectra of 90Sr and 89Sr, the 867 

strontium sample is often measured twice at various times during the 90Y ingrowth. 868 

Thereafter 90Sr and 89Sr activities can be calculated from the two independent counts in 869 

consideration of the contribution of 90Sr, 90Y and 89Sr on the counts in different counting 870 

windows. The different counting efficiency for 90Sr, 90Y and 89Sr and the time for 90Y 871 

ingrowth and the 89Sr decay have to be considered and corrected. When 90Y is separated, 872 

its activity is often measured by Cerenkov counting immediately after the separation. If 873 

only 90Sr is to be determined, this measurement is sufficient; but in the occurrence of 89Sr, 874 

the combined 89Sr and 90Sr activity should be measured in the separated strontium sample. 875 

For low activity samples with high 89Sr/90Sr activity ratios, accurate determination of 876 
90Sr is better to be measured by separation and measurement of the ingrown 90Y using 877 

Cerenkov counting or G-M counter. In this method, strontium in the sample solution is 878 

first adsorbed onto the Sr Spec column, then waiting for 1-2 days to allow ingrowth of 879 
90Y on the column. The ingrown 90Y is then elated from the column using 8M HNO3 and 880 

used for Cerenkov counting. 89Sr and 90Sr are elated afterwards in the normal way using 881 

water or diluted HNO3 (i.e., 0.05 M HNO3) and measured by LSA. Fig. 6 shows the 882 

spectra of 89Sr, 90Sr and 90Y in the application where the measurement is based using two 883 

LSC windows. The detection limits by the current low-background LSA are typically less 884 

than 0.1 Bq (1 2 hours count time). 885 

Determination of 89Sr and 90Sr by Cerenkov counting is based on the fact that both 89Sr 886 

and 90Y can be detected by measuring the Cerenkov radiation (photons) in colourless 887 

aqueous solutions with about 40% and 60% counting efficiency, respectively, while the 888 

counting efficiency of 90Sr is less than 1.4% because of the low energy of its beta 889 

particles. The 89Sr activity is determined almost exclusively from the freshly separated 890 

strontium sample. Recounting is performed after some ingrowth of 90Y from 90Sr and the 891 

calculation of the concentrations of 89Sr and 90Sr is possible from these two counts. 892 
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Alternatively, 90Y can be separated from the purified strontium sample after its ingrowth 893 

and counted separately. Although the efficiency of Cerenkov counting of 89Sr and 90Y is 894 

lower than that of LSC, the detection limits of Cerenkov counting for them are similar as 895 

the LSC because of the lower background in the Cerenkov counting. The Cerenkov 896 

counting techniques allow the use of 85Sr as a yield tracer because it decays through 897 

electron capture, could not produce Cerenkov radiation; therefore, it is not detected by 898 

this counting.  899 

 900 

 901 

 

Fig. 6  LSC spectra of 89Sr, 90Sr and 90Y. The spectrum of 90Sr include small contribution 

of its daughter radionuclides of 90Y.  

 902 

Technetium-99 903 
99Tc is a fission product of 235U and 239Pu with relatively high fission yields (6.1 % 904 

from 235U). 99Tc in the environment mainly originates from nuclear weapons tests and 905 

nuclear fuel cycle operations, especially the releases from spent fuel reprocessing plants 906 

in Sellfield (UK) and La Hague (France) [102]. The principal reasons for the high interest 907 
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in the analysis of 99Tc in environmental samples are its very long half-life, high mobility 908 

and solubility as the pertechnetate ion (TcO4
-) in oxidative conditions, and consequently 909 

its high transfer rate from soil to edible vegetation and from seawater to seaweeds. Under 910 

reducing condition, it can be reduced to Tc4+ and strongly bound to sediments. Studies on 911 
99Tc have focused on marine and coastal environments owing to discharges from nuclear 912 

reprocessing plants [6, 103-113]. 99Tc is one of the most significant components in the 913 

disposal of nuclear wastes. In nuclear medicine, 99mTc (t1/2 = 6 h) is used in high-activity 914 

amounts, which decay to 99Tc, and becomes another source of 99Tc in the environment. 915 
99Tc is a long-lived (t1/2 = 2.11·105 y) pure beta emitter (Emax = 293.5 keV), and therefore 916 

can be measured by LSC after separation from sample matrices and all other 917 

radionuclides. It can be also measured by ICP-MS, in this case the chemical separation 918 

from the isobaric interference is the main challenge because of serious interference of the 919 

isobars (99Ru and 98Mo1H) of stable isotopes.  920 

 Chemical separation techniques including anion exchange, solvent extraction, 921 

selective precipitation, extraction chromatography and even a combustion technique have 922 

been used to assay 99Tc in various environmental samples, nuclear effluent and waste 923 

samples. Technetium is a volatile element when presents as heptoxide, loss of technetium 924 

might also occur during sample preparation and separation, a caution has to be taken 925 

during evaporation or ashing. Shi et al. [105] investigated the stability of technetium in 926 

various chemical treatment steps including ashing of solid materials and evaporation of 927 

aqueous solution. It was found that no significant loss of technetium occurs in ashing of 928 

seaweed under 800oC for less than 6 hours and under 500 oC for soil and sediment 929 

samples. Evaporation of a solution in different concentration of HNO3 to dryness at less 930 

than 100 oC does not cause obvious loss of technetium, while significant loss of 931 

technetium happens in HCl media, especially in high concentration of HCl. However, if a 932 

small volume of solution (more than 0.5 mL) remained after evaporation, the loss of 933 

technetium can be highly reduced. Salt presenting in the solution can reduce the loss of 934 

technetium during evaporation.  935 

 99Tc has no stable isotope to use as a carrier or for chemical yield monitoring. 936 

Although the analytical behaviour of rhenium is quite similar to that of Tc, these elements 937 

can behave quite differently under certain conditions; precautions need to be taken if 938 
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rhenium is used as a tracer. 99mTc, obtained from a 99Mo-99mTc generator has been used 939 

widely as a yield tracer in the radiochemical separation of 99Tc for environmental samples, 940 

because it is readily available and its emission of gamma rays. The disadvantage of the 941 
99mTc tracer is that it may contain 99Tc, 99Mo and 103Ru as impurities, which may cause 942 

serious interference in the measurement of 99Tc at low level, requiring correction for each 943 

tracer solution used [114]. Hou et al. [115] has developed a simple method to produce the 944 
99mTc tracer solution that is pure enough to be utilized in the analysis of low-level 945 

environmental samples. The 99mTc-99Mo generator was first eluted using saline water 946 

(0.9% NaCl) for 3-5 times to remove the accumulated 99Tc in the generator through decay 947 

of 99mTc and 99Mo, the new ingrown 99mTc is then eluted after a suitable ingrowth time (1 948 

min – 3 hours). The obtained 99mTc solution is then purified by passing through an 949 

activated alumina cartridge to remove any 99Mo and 103Ru leaked from the column. The 950 
99mTc activity is measured with a gamma spectrometer before preparing the sample for 951 

the LSC. Thereafter, the sample is stored for a week to allow 99mTc to decay completely 952 

before measuring the 99Tc activity by LSC. Another possibility for a yield tracer would be 953 

to use 95mTc (half-life = 61 d). 95mTc decays through electron capture with emission of 954 

gamma rays, and can be measured through counting the low-energy auger electrons using 955 

LSC. Therefore, 99Tc and 95mTc can be discriminated and measured by LSA. 956 

Chemical separation methods are mainly based on a combination of selective 957 

precipitations, ion exchange and solvent extraction using different extractants like DB18-958 

C6 crown ether (dibenzo-18-crown-6), tri-n-octylamine (TnOA) and tri-n-butyl 959 

phosphate (TBP). Separation of technetium using anion exchange chromatography is 960 

based on the very high affinity of TcO4
- on the strong basic anion exchange resin in either 961 

diluted acid, alkaline or neutral media. Chen et al. [116] has reported a method for 962 

determination of 99Tc in seawater and other environment samples. 99Tc is first pre-963 

concentrated from large volume of seawater samples (up to 200 L) using anion exchange 964 

chromatography. The filtered seawater is spiked with 99mTc tracer, and then loaded to a 965 

big anion exchange column (2.5 cm in diameter and 40 cm in length, AG1-4 resin, Cl- 966 

form). After rinsing with diluted NaOH and diluted HNO3 solution, 99Tc is eluted from 967 

the column using 8-10 M HNO3. The eluate is evaporated to small volume (<10 ml), and 968 

treated with H2O2 and NaClO with heating to remove Ru. Afterwards, the solution is 969 
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converted to 1M HSO4 medium, 99Tc in the solution is further purified by solvent 970 

extraction using 5% triisooctylamine (TIOA) in xylene. The overall recovery of 99Tc is 971 

more than 75% and the most interference can be removed to be able to measure 972 

background level 99Tc in seawater samples (0.003mBq/L) using up to 500 L seawater.  973 

Fe(OH)3 precipitation has been used to remove the radionuclides of transition metals, 974 

actinide and lanthanides, while Tc as water soluble TcO4
-
 remained in the supernatant. In 975 

this case, the sample solution is better treated with oxidizing reagents (e.g. K2S2O8, H2O2, 976 

etc.) to ensure all technetium is converted to TcO4
-.  Technetium extracted into tri-n-977 

octylamine (TnOA) in xylene from H2SO4 medium was used to purify Tc from Ru, and 978 

the extracted 99Tc in TnOA-xylene can be mixed with the scintillation cocktail for LSC 979 

measurement of 99Tc [117].  980 

Selective extraction chromatographic methods using TEVA•Spec resin (Triskem 981 

International) has become the most popular method for the determination of 99Tc in 982 

environmental samples [103-105, 112]. The function group on TEVA resin is similar as 983 

anion exchange resin; TcO4
- also shows a high affinity to TEVA resin. The sample is 984 

normally loaded in a neutral solution or in 0.1M HNO3 solution to a TEVA column, Tc is 985 

retained, while most of other elements pass through the column. 99Tc is finally eluted 986 

with 48 M HNO3. Shi et al. [105] has reported a method for removing Ru from 99Tc by 987 

pretreatment of the loading solution with 30% H2O2 in alkaline media, and found a 988 

significantly improvement in the removal of ruthenium in chromatographic separation 989 

using TEVA column. This might be attributed to the reduction of ruthenium in this 990 

process. In addition, TEVA also show a better removal of Mo from Tc. With two 991 

sequential TEVA column, Mo and Tc can be remove with a high decontamination factor 992 

[105]. 993 

Quantitative measurement of 99Tc by LSC is viewed as a practical but also as the main 994 

approach, because of the more widespread accessibility of the LSAs, meanwhile it is also 995 

tolerance of isobaric ions interference (99Ru and 98Mo1H), which is the major challenge in 996 

the ICP-MS measurement of 99Tc.  The LSC efficiencies of 99Tc are typically in the range 997 

of 7080% depending on sample composition and quenching. The backgrounds using 998 

low-background LSA (e.g. Quantulus LSA) are between 1.63.3 cpm and the detection 999 

limits of 17 mBq (2 hours count) can be achieved [89]. 1000 
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Tarancon et al. [5] has proposed concept to combine the chromatographic separation 1001 

with scintillation for the determination of radionuclides using LSC. In this method, a 1002 

plastic scintillation resin is synthesized, in which extraction reagent and scintillator are 1003 

grafted on plastic beads. The plastic scintillation resin behaves as both extraction 1004 

chromatographic resin and scintillator. The resin is prepared and uploaded to a column, 1005 

the sample solution is loaded to the column, the target radionuclide is adsorbed on the 1006 

resin, and the matrix and interfering radionuclides are removed by rinsing. The 1007 

scintillation resin with the analyte radionuclide in the column is directly measured by 1008 

ordinary LSC. This research group has reported a method for the determination of 99Tc in 1009 

environmental and waste samples [6]. A specific plastic scintillation resin was 1010 

synthesized by drafting Aliquat 336 (trioctylmethylammonium chloride) as extractant to 1011 

plastic scintillation microsphere. Here, the plastic scintillation microsphere (PSm) 1012 

behaves like liquid scintillation cocktail but in a solid phase. PSm consists of a polymeric 1013 

solvent and both primary and secondary scintillators, such as the classical PPO, POPOP, 1014 

p-T or bis-MSB. Fluor molecules remain encapsulated inside the PS solid. Fig. 7 shows 1015 

schematic diagram of the determination of 99Tc using the plastic scintillation resin.  1016 

 1017 

 1018 
Fig. 7 Schematic diagram of plastic scintillation for determination of 99Tc [6]  1019 

 1020 

 1021 

Iodine-129 1022 
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129I decays by beta emission with the maximum beta energy of 150 keV, accompanied 1023 

with emission of low intensity (7.5%) 39.6 keV gamma ray and some 29.46 keV (20.4%) 1024 

and 29.78 keV (37.7%) X-rays. It can be therefore measured by LSC and  spectrometry, 1025 

while LSC is more sensitive. 1026 
129I is naturally present in the environment, generated mainly in the atmosphere from 1027 

xenon by nuclear reactions induced by cosmic radiation. The concentration of natural 129I 1028 

in the environment is so low that it is not usually expressed as activity concentration but 1029 

in proportion to the only stable isotope of iodine as 129I/127I atomic ratio. Before the 1030 

nuclear age, the 129I/127I atomic ratio was about 10-12 in the sea and somewhat higher in 1031 

terrestrial environment. 129I in the present environment is mainly released from the 1032 

human nuclear activities, including nuclear weapons tests, nuclear accidents, and 1033 

emissions from nuclear facilities, the level of 129I in the environment has risen, and the 1034 
129I/127I ratio has increased by several orders of magnitude, up to as much as 10-4 in the 1035 

surrounding location of nuclear fuel reprocessing plants. The most extensive releases of 1036 
129I to the environment occurred at the spent nuclear fuel reprocessing facilities at 1037 

Sellafield (UK) and La Hague (France) since the early 1990s [118-120].  1038 

The very long half-life of 129I (1.6×107 y) means that its specific activity is very low 1039 

(6.5×106 Bq/g). Thus, radiometric methods including LSC are suitable only for samples 1040 

in which the 129I activity is high. Such samples are found in nuclear power plants and fuel 1041 

reprocessing facilities, or environmental samples around the reprocessing plants. 1042 

Radiometric methods are not sensitive enough for measuring the very low activity 1043 

concentrations of 129I in the environment. More sensitive methods are neutron activation 1044 

analysis and especially accelerator mass spectrometry [118, 121]. 1045 

Measurement of 129I using LSC is mainly used for the analysis of nuclear waste or 1046 

environmental samples collected in the contaminated site by nuclear activities (e.g. 1047 

reprocessing plants or nuclear accident sites) [122-123]. For  determination of 129I in the 1048 

ion exchange resin used in the purification of the primary circuit of nuclear power plants, 1049 

the iodine in the resin is first extracted using NaOCl. In this case, iodide adsorbed on the 1050 

exchange resin is oxidized to iodate, which has low affinity to the resin and eluted from 1051 

the resin.  After addition of KIO3 solution as carrier, the iodate is reduced to I2 using 1052 

hydroxylamine hydrochloride in acidic media and extracted into CCl4 phase. Afterwards, 1053 
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iodine is back extracted into water with NaHSO3, which reduces I2 to I-. The iodide is 1054 

then oxidized to I2 with NaNO2 in acid condition, which is extracted with toluene or 1055 

CHCl3. The iodine in the toluene is back extracted into aqueous solution with 0.01 M 1056 

NaHSO3. Scintillation cocktail is added to the aqueous solution and the activity of 129I is 1057 

measured by liquid scintillation counting. The detection limit of 0.6 Bq/L was achieved.   1058 

For solid samples, such as soil, sediment, vegetation, air particles, 129I has to be separated 1059 

from the sample matrix and then purified for its measurement using LSC or other 1060 

techniques. Based on its volatility, iodine is often separated from solid samples by 1061 

combustion to release iodine as gaseous form [124-126]. The released iodine is trapped in 1062 

NaOH solution, which is then used to separate iodine by extraction with CCl4 as 1063 

described above for its measurement. In addition, alkali fusion can be also used to 1064 

separate iodine from environmental samples, such as soil, sediment, air particles, 1065 

vegetation and animal tissues [121, 127]. In this case, NaOH is then mixed with the 1066 

sample. After dried, the mixture is ashed/fussed at 500-550 °C for 3-4 hours. The 1067 

ashed/fused sample is leached with hot water, and the leachate is separated from residue 1068 

by filtration.  Iodine in the leachate is finally separated by CCl4 extraction as described 1069 

above [121, 127]. Fig. 3 shows a combined procedure for determination of 129I and 36Cl 1070 

in soil samples, in which alkaline fusion or acid digestion were applied for decomposition 1071 

of samples and solvent extraction was applied for separation of 129I from sample matrices 1072 

and interference radionuclides. For the separation of iodine from water, milk and urine 1073 

samples, especially large volume of seawater (30-50 liters), an anion exchange 1074 

chromatographic method has been reported by Hou et al. [119, 120]. In this method, 1075 

iodine in the water or other liquid samples is first reduced to iodide using KHSO3 at 1076 

pH<2, the sample is loaded to an anion exchange column (AG1×-4, NO3
- form), the 1077 

adsorbed iodine is then eluted with 2 M of NaNO3 solution. The iodine in the eluate is 1078 

separated by CCl4 extraction. Iodine is finally obtained in a small volume of back 1079 

extraction solution, which is used for LSC measurement or prepared in suitable target for 1080 

neutron activation analysis or AMS measurement for 129I. 1081 

 1082 

Plutonium-241 1083 

Plutonium was released to the environment from nuclear weapons tests and nuclear 1084 
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fuel cycle operations particularly from reprocessing plants [89, 128]. There are mainly 1085 

four isotopes of plutonium, 238Pu (t1/2 = 87.74 y), 239Pu (t1/2 = 2.41104 y), 240Pu (t1/2 = 1086 

6563 y) and 241Pu (t1/2 = 14.4 y), present in the environment. Among them, only 241Pu is a 1087 

beta emitter with emission of low-energy β-particles (Emax= 21 keV). Although it is less 1088 

radiotoxic than other alpha-emitting plutonium isotopes, 241Pu decays to more toxic α-1089 

emitting 241Am, makes it also an important radionuclides in the radiation protection. 1090 

Meanwhile, the differences in the Pu isotopic ratios are good fingerprint to trace the 1091 

origin of the environmental contamination and for nuclear forensics [89, 129, and 130]. 1092 

Environmental monitoring of 241Pu around nuclear facilities is needed and its 1093 

determination in activity waste in nuclear fuel reprocessing cycles is important, as it will 1094 

influence the method of final disposal. 1095 

 Liquid scintillation is the major method for the measurement of 241Pu, although mass 1096 

spectrometry (ICP-MS) has also been used for its determination [38, 131]. 241Am is the 1097 

direct decay daughter of 241Pu, therefore measurement of the ingrown 241Am from 241Pu 1098 

using alpha spectrometry has also been used for determination of 241Pu.  1099 

Many methods have been developed for the determination plutonium in environmental 1100 

and nuclear samples, as summarized in four comprehensive reviews by [89, 128, and 1101 

132]. The chemical separation schemes of 241Pu are normally complicated, because the 1102 

concentrations of 241Pu is normally very low, its oxidation states have to be considered 1103 

during the separation, and plutonium has to be purified completely from other 1104 

radionuclides in advance to avoid the interference. Fig. 8 shows an often used analytical 1105 

procedure for determination of plutonium isotopes. In general, plutonium is first released 1106 

from the solid sample matrix by acid digestion or alkaline fusion followed by acid 1107 

dissolution. The released plutonium in the sample solution or in liquid samples (water 1108 

sample) is then pre-concentrated by co-precipitation of hydroxide, florid or phosphate. 1109 

The precipitate is dissolved and plutonium is converted to Pu4+ valence state, which can 1110 

be implemented by first reduced all plutonium to Pu3+ using strong reductant such as 1111 

KHSO3, and then oxidize Pu3+ to Pu4+ using NaNO2, concentrated HNO3 containing 1112 

HNO2 can be also used for this purpose. The prepared sample solution is loaded to an 1113 

anion exchange column (e.g. AG 1x-4, or Dowex 1x-4) or TEVA extraction 1114 

chromatographic column, followed by rinsing with HNO3 to remove uranium and all 1115 
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transition elements and HCl for Th removal. Plutonium absorbed on the column is finally 1116 

eluted by reducing it to Pu3+ using NH2OH-HCl or using diluted HCl or diluted HF. The 1117 

plutonium eluate is evaporated to dryness and dissolved in a small volume of diluted HCl 1118 

for LSC measurement of 241Pu.  1119 

 1120 

 1121 

 1122 

 1123 

 1124 

 1125 

 1126 

 1127 

 1128 

 1129 

 1130 

Fig. 8  Diagram of chemical separation procedure for determination of plutonium 1131 

isotopes 1132 

 1133 

241Pu is a low-energy β-emitter, and LSC is the ideal measurement technique for 1134 

determining its activity. While, other plutonium isotopes are alpha emitters, and often 1135 

measured using alpha spectrometry. Therefore, 241Pu and other alpha emitting plutonium 1136 

isotopes are usually measured separately. This is often implemented that the separated 1137 

plutonium is first electro-deposited on metal disc or micro-precipitated as NdF3 co-1138 

precipitate on membrane filter and measured for alpha emitting plutonium isotopes (238Pu, 1139 
239,240Pu and 242Pu as chemical yield tracer) [132]. Afterwards, the Pu sample on the disk 1140 
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or filter paper is dissolved and measured using LSC for determining the 241Pu activity. 1141 

The all alpha emitting plutonium isotopes measured by alpha spectrometry can be used as 1142 

the chemical yield for the 241Pu determination in LSC, which can be measured by using 1143 

alpha-beta discrimination feature equipped in most of LSA.  The Pu on the stainless steel 1144 

is dissolved in concentrated HNO3 and then purified by solvent extraction or ion 1145 

exchange, which is necessary if some interfering elements like Fe and Pt are present in 1146 

the solution with Pu [131]. They cause quenching and decrease the counting efficiency of 1147 
241Pu and increase misclassification. The Pu alpha source prepared as co-precipitation of 1148 

NdF3 can be treated by dissolving Pu in a solution of H3BO3/HNO3 and ethanol for LSC 1149 

measurement of 241Pu. The application of α/β discrimination feature in the LSC can also 1150 

reduce interferences and background in the low-energy β-region of the 241Pu. A typical β-1151 

spectrum of 241Pu with α-peak of other Pu-isotopes is shown in Fig. 9. The detection 1152 

limits for 241Pu are of the order of 10100 mBq per sample based on a 100600 minute 1153 

count time [89].  1154 

 1155 

 1156 

 1157 

 1158 

 1159 

 1160 

 1161 

 1162 

 1163 

 1164 

 

 

Fig. 9  LSC spectra of a plutonium sample measured by Quantulus [131] 

 1165 

 1166 
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Analysis for nature occurred radionuclides 1167 

Naturally occurred radionuclides are mainly decay chain radionuclides of 235U, 238U 1168 

and 232Th, 40K and some cosmogonic radionuclides. However, the radionuclides 1169 

measured using LSC are mainly those decay chain radionuclides of uranium and thorium, 1170 

especially isotopes of Ra, Rn and Pb. In the past decades, LSC is becoming a popular 1171 

method for measurement of gross alpha and gross beta in water samples for screen 1172 

purpose. 1173 

 1174 

Radon 1175 

There are three natural radon isotopes, 219Rn, 220Rn and 222Rn, all are alpha emitter. 1176 

The short-lived 220Rn (t1/2 = 55.6 s) and 219Rn (t1/2 = 3.96 s) are decay products of 232Th 1177 

and 235U, respectively. 222Rn (t1/2 = 3.82 d) is the immediate daughter of 226Ra in the 238U 1178 

decay series. Uranium and thorium occur in all rocks and soils at varying concentrations, 1179 

the produced 222Rn and 220Rn in the rock and soil can diffuse from mineral grains into 1180 

pore spaces and thereafter escape to air and dissolve in water. Because of very short half-1181 

life, 220Rn moves much shorter distances before decaying, it is of concern only where the 1182 

concentration of 232Th is high. 219Rn is not of significant concern for radiation exposure 1183 

owing to its short half-life and to the low abundance of 235U in natural uranium. Radon-1184 

222 is the most significant radon isotope; it presents in air, ground and surface waters. 1185 

The most important mechanism of exposure is the inhalation of radon and its short-lived 1186 

decay products with indoor air; 222Rn also accounts for the majority of the human 1187 

exposure to radiation and presents the largest risk to human health from all natural 1188 

sources of radiation by increasing the risk of lung cancer [133]. Besides the diffusion 1189 

from the ground and construction material, releases from radon-rich household water 1190 

might be also an important reason of high radon in indoor air.  Radon in drinking water 1191 

presents an important risk by radiation exposure of cells in the gastrointestinal tract and 1192 

in other organs. Radon concentrations in surface waters are typically less than 4 Bq/L, 1193 

while in ground waters the concentrations vary over a wide range up to 10,000 Bq/L. 1194 

As an inert gas, radon is an excellent tracer either alone or together with radium for 1195 
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studying geochemical, hydrogeological and oceanic processes like groundwater discharge 1196 

rates, groundwater seepage, vertical turbulent mixing, gas exchange across the air-water 1197 

interface, mixing processes between ground- and seawater and submarine groundwater 1198 

discharges [134-137]. In these studies, the radon concentration is determined in the field 1199 

using an extraction method and a portable LSA or by bringing the sample into the 1200 

laboratory for measurement with a low-background LSA.  1201 

For measurement of Ra in air using LSC, radon is first adsorbed on activated charcoal in 1202 

a small vial during a few days.  Afterwards, radon is extracted from the charcoal into 1203 

toluene or directly into an organic scintillation cocktail to be measured using LSC [138-1204 

139]. Radon emanation rates from soil can be also measured by LSC [140-141]. In this 1205 

case, dried soil is weighed into a glass vial, and wetted with distilled water; an organic 1206 

scintillation cocktail is then added. The vial is closed tightly and stored for a month to 1207 

attain the constant radon level emanated from soil before the measurement. Alternatively, 1208 

radon can be trapped from the dried soil sample directly into the scintillation cocktail in a 1209 

glass vial for measurement. This is performed in a tightly closed glass bottle where the 1210 

soil is located at the bottom and the vial is hanging from a hook fixed into the stopper of 1211 

the glass bottle [141]. The in situ measurement is performed by hanging an open LSC 1212 

vial containing the cocktail inside a test hole or tube sunk into the soil [142]. 1213 

Radon in water originates from the decay of 226Ra, which is either dissolved in water 1214 

or localized in rock or soil minerals in contact with water. Most of the radon in water 1215 

originates from 226Ra in minerals from where radon gas diffuses into pore spaces and 1216 

dissolves in soil or ground water. Hence, most of radon in water is unsupported and 1217 

therefore its concentration in water is often orders of magnitude higher than that of 226Ra 1218 

dissolved in the same water. However, radon will not be transported far from its place of 1219 

birth owing to its short half-life. Special attention should be paid to sample collection and 1220 

its transport when undertaking radon measurements. Radon can easily escape from water 1221 

during the sampling as well the sample transport and storage if the sampling vials are not 1222 

gas-tight, because radon is not highly soluble in water. Samples should also be collected 1223 

into glass bottles, because some radon will be lost by adsorption onto the surface of 1224 

polyethylene bottles and escaped from the bottle by migration through the polyethylene 1225 

wall. The bottle caps should be equipped with rubber or Teflon™ septum to prevent 1226 
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radon leakage from the bottle. As a noble gas, 222Rn is therefore difficult to be measured 1227 

by alpha spectrometry. The most widely used methods for determining radon in water are 1228 

radon emanation, gamma counting and LSC. Among these methods, the detection limit of 1229 

gamma spectrometry (1-9 Bq/L) is quite high [143], a lower detection limit of 0.041.0 1230 

mBq L-1 can be reached by emanation method when using a big sample up to 19 L [144]. 1231 

LSC is a popular method for measurement of 222Rn in water; it is based on the detection 1232 

of radon gas and its short-lived α-emitting daughters, whose decay properties are shown 1233 

in Table 1. 1234 

Table 1. Members of 226Ra subseries and their most significant decay properties. 1235 

Radio- 

nuclide 

Half-life α - decay energy 

(MeV) and 

intensity (%) 

β-decay energy (MeV) and 

intensity (%) 
-emission energy (keV) and intensity 

(%) 

226Ra 1600 y 4.784(93.8), 

4.601(6.2) 

      -  186.2 (3.64) 

222Rn 3.82 d 5.489 (99.9), 

4.986 (0.1) 

      -  510 (0.076) 

218Po 3.11 min 6.002 (100)       - - 
214Pb 26.8 min - 0.667 (45.9), 0.724 (40.2), 

1.019 (11.0) 

 351.9 (35.6), 295.2 (18.4),       242.0 

(7.3) 
214Bi 19.9 min - 3.270 (19.1),1.540 (17.6), 

1.505 (17.0) 

1.423 (8.1), 1.892 (7.4), 1151 

(4.4) 

609.3 (45.5), 1764,5 (15.3), 1120.3 

(14.9), 1238.1 (5.8), 2204.1 (4.9), 768.4 

(4.9) 

214Po 164.3 µs 7.687 (100) - - 

 1236 

The LSC methods for measurement of 222Rn are based on the high solubility of radon 1237 

in organic solvents such as toluene and xylene or organic scintillation cocktail. Water 1238 

samples can be prepared by introducing a small amount of water (10-12 ml) directly into 1239 

the LSC vial containing the organic scintillation cocktail (8-10 ml). A low detection limit 1240 

of (0.040.2 Bq L-1) can be achieved by direct LSC methods by applying more than 60 1241 

minutes counting time and α/β discrimination [145]. This is because the counting 1242 

efficiency of radon with its daughters (218Po, 214Po) in equilibrium can be as high as 1243 
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270% and α backgrounds using α/β discrimination is also very low (<0.1 cmp) in a 1244 

narrow energy alpha window. The main advantages of the LSC methods are their simple 1245 

methodology, high sensitivity and automatic sample counting. If higher sensitivities are 1246 

required, radon can be extracted from a larger water volume directly into the LSC 1247 

scintillation cocktail or into toluene to be mixed with the cocktail. In this case, 222Rn is 1248 

usually extracted from 0.51 L water sample with 2040 mL of extractant. After shaking 1249 

and allowing the layers to separate, a known proportion of the extractant is transferred 1250 

into the scintillation vial for the measurement. The detection limits obtained by these 1251 

methods are 0.00150.02 Bq L-1 depending mainly on the count time and the sample 1252 

volume.  1253 

Emulsifying cocktail (e.g. Ultima Gold XR) can be also used for the measurement of 1254 
222Rn. In this case, two alpha (218Po, 214Po) and two beta decay daughters (214Bi and 214Pb) 1255 

with 222Rn are measured, a counting efficiency up to 500% can be obtained. However, 1256 

due to the increased background level, the detection limit of 222Rn by this method is not 1257 

better than by using organic scintillation cocktail and alpha-beta discrimination method.   1258 

The glass vials equipped with urea screw caps and Al foil liners is often used in this 1259 

measurement to be radon gastight. Low diffusion polyethylene vial with Teflon lined and 1260 

Al lined cap was also used for this work. However, a long time storage should be avoid, 1261 

otherwise a slow diffusion of Ra into the Teflon lined wall of the vial might be happened 1262 

and cause a high analytical uncertainty.   1263 

  1264 

Radium 1265 

Radium has four naturally occurred isotopes, 226Ra (t1/2 = 1600 y), which belongs to 1266 

the 238U decay series, 228Ra (t1/2 = 5.75 y) and 224Ra (t1/2 = 3.66 d), which belong to the 1267 
232Th decay series and 223Ra (t1/2 = 11.43 d), which belongs to the 235U decay series. 1268 

Among these isotopes, 228Ra is a beta emitter with maximum energy of only 39.6 keV, 1269 

while other three are alpha emitters. Radium is widespread in soil, minerals, foodstuffs, 1270 

surface and ground waters and many common materials. Radium-226 is considered as 1271 

one of the most hazardous long-lived α emitters in the environment with respect to 1272 

internal radiation exposure. As an alkaline earth element, radium is accumulated in the 1273 
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skeleton through a process similar to calcium. Food consumption is the main source of 1274 
226Ra to man, but the radiation exposure through drinking water can be also an important 1275 

source, or even be extremely high, if the drinking water originates from ground water 1276 

sources in contact with uranium rich minerals like granites or phosphates. The regulations 1277 

limit the maximum contaminant level in public water supplies for combined 226Ra and 1278 
228Ra to 0.19 Bq L-1 in the USA [146].The primary health concerns of radium have been 1279 

directed to 226Ra and 228Ra and little attention has been given to the short-lived 224Ra and 1280 
223Ra. However, 224Ra can make a significant contribution to elevated measurements of 1281 

gross α-activities in some case.  226Ra, 228Ra, 224Ra and 223Ra in ground and surface 1282 

waters have proven useful as natural tracers to study geochemical processes, particularly 1283 

in the marine environment [135].  1284 

  There are a variety of methods for determining one or more radium isotopes in 1285 

environmental and food samples using different chemical separation and measurement 1286 

methods [27, 146-147].  1287 

Radium isotopes can be determined by LSC, radon emanation, alpha and gamma 1288 

spectrometry. The chemical separation methods are mainly based on precipitation, cation 1289 

exchange, extraction, adsorption or a combination of these techniques. Several 1290 

comparison studies have been made on the commonly used methods for determination of 1291 
226Ra and 228Ra [89, 148]. 1292 

Alpha spectrometry is the most sensitive radiometric method because of its low 1293 

background. In this method, radium must be separated carefully from the sample matrix 1294 

and from other elements, including barium. Thereafter, radium is electrodeposited as a 1295 

thin layer on a stainless steel disk or co-precipitated with BaSO4 and/or PbSO4, which is 1296 

collected on a membrane filter, in order to avoid impairing the resolution and chemical 1297 

yield, [86, 149]. The high resolution of alpha spectroscopy for low mass samples is 1298 

enable to directly measure the concentrations of 226Ra, 224Ra and 223Ra. 228Ra can be 1299 

measured directly from the same disk either by gamma spectrometry via the γ-emitting 1300 

daughter, 228Ac, after 2 days ingrowth or by alpha spectrometry via its α-emitting grand-1301 

daughter, 228Th, after 612 months of ingrowth. The detection limits of 226Ra and 228Ra in 1302 

environmental samples by alpha spectrometric methods are 0.10.5 mBq and 0.20.3 1303 

mBq, respectively, and 0.1–1 Bq and 0.10.3 Bq, respectively, by gamma spectrometry 1304 
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[89, 150-151 ].  1305 

Radon emanation method is based on the separation and measurement of the radon 1306 

and its daughters from radium isotopes. For large volume of water samples, radium 1307 

isotopes can be first pre-concentrated on MnO2 resin, followed by the emanation of their 1308 

radon daughters (219Rn, 220Rn, 222Rn) and measurement of these radon isotopes. A low 1309 

detection limit can be obtained if a large size of sample is analysed. 1310 

Low background LSA with α/β discrimination is the most popular technique for 1311 

determining 226Ra activity. This is due to the high counting efficiency, easy sample 1312 

preparation and automatic sample counting. The typical detection limits are between 1313 

0.31.4 mBq for a 6 hours count [89]. 226Ra is generally determined indirectly through 1314 
222Rn and its short-lived daughters or together with them by LSC. In this method, radium 1315 

has to be separated from the sample matrices and concentrated. Ashing, acid digestion are 1316 

the often applied method for pre-treatment of solid samples. The conventional method to 1317 

separate 226Ra from a sample matrix is the so-called barium sulphate method. The Pb- and 1318 

Ba-carriers are first added into the water or sample solution to co-precipitate radium with 1319 

BaSO4 and PbSO4 at pH 1 with H2SO4. The precipitate is washed a few times with HNO3 1320 

and then dissolved in alkaline EDTA. For further purification and separating radium from 1321 

lead, radium is precipitated again as sulphate using an acetic acid solution at pH 4.5 while 1322 

lead remains in solution to be removed. The nitric acid wash and the re-precipitation of 1323 

RaSO4 in EDTA solution ensure high purification of radium from most interfering 1324 

radionuclides. The chemical yield can be determined gravimetrically or by using 133Ba (if 1325 

only 226Ra is measured) as a yield tracer. The Ra-BaSO4 precipitates are prepared for the 1326 

LSC measurement by suspending fine precipitates into a scintillation gel or by dissolving 1327 

the precipitates in warm alkaline EDTA solution. BaSO4 precipitate can be also converted 1328 

to the more soluble BaCO3, which is dissolved in HNO3 and then mixed with the LSC 1329 

cocktail. Measurement of the samples shortly after the separation using its own alpha 1330 

peak can obtain the results rapidly after the sampling. In that case, the 228Ra activity can 1331 

be calculated from the β-counts with the least amount of corrections owing to minor 1332 

ingrowth of 214Pb and 214Bi. The detection limits for 226Ra, 228Ra and 210Pb are 0.52 mBq, 1333 

4 mBq, and 25.2 mBq, respectively. A better detection limit for 226Ra can be obtained by 1334 

using organic scintillation cocktail. In this case, the separated Ba-RaSO4 precipitate is 1335 
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dissolved in EDTA solution, which is transferred to LSC vial and filled with organic 1336 

scintillation cocktail (e.g. Opti-Flour O). After 3-10 days ingrowth of 222Rn, the vial was 1337 

shaken to extract Rn to organic phase, and then measured by LSC using alpha-beta 1338 

discrimination by counting its three alpha daughters (222Rn, 218Po and 214Po). 1339 

Selective adsorption is also used for radium separation. One of them is the Empore™ 1340 

Radium Rad Disk, which selectively adsorb radium from water with recoveries ranging 1341 

from 90100% for  13 L sample. In this method, water samples are first acidified with 1342 

HNO3 to a 2M and then passed through the disk. After washing the disk with 2M HNO3, 1343 

radium is eluted from the disk with 0.25M EDTA solution, which can be concentrated 1344 

prior to mixing with the LSC cocktail. Lead, strontium and barium are co-separated with 1345 

radium. High barium in the samples will reduce radium recovery considerably, and the 1346 

interfering 210Pb should be separated from radium either before or after the elution. The 1347 

detection limits reported for the Empore™ Radium Rad Disk extraction method vary 1348 

between 12 mBq, 48 mBq and 26 mBq for 226Ra, 228Ra and 210Pb, respectively. 1349 

MnO2-impregnated acrylic fibre cartridge and MnO2 resin (impregnated MnO2 on a 1350 

modified polyacrylonitrile (PAN) supporting material) column are also used to 1351 

concentrate radium from large volume of water samples. The sorption of Ra was 1352 

especially favourable for low-salinity waters; it is also highly dependent on pH, with the 1353 

best range of pH 4 to 8. At higher salinities, other alkaline earth elements (Mg, Ca, and Sr) 1354 

compete with Ra for the free sorption sites in the MnO2 resin. For determination of low-1355 

level 226Ra in large volume saline water (seawater) samples, a MnO2 co-precipitation 1356 

method can be used. Water sample (>10 L) is first acidified using HCl to pH<2, followed 1357 

by addition of KMnO4 solution. After adjusting the pH to 9.0 using ammonia, MnCl2 is 1358 

added during stirring for forming MnO2. MnO2 precipitate which adsorbed radium is 1359 

separated by settling and centrifuge. After washing with water, MnO2 is then dissolved by 1360 

addition of HCl and H2O2 [152]. Radium in the solution can be further purified by 1361 

Ba(Ra)SO4 precipitation for the measurement of 226Ra by LSC.    1362 

Solvent extraction method was also applied for determination of radium.  A 1363 

commercial extractive scintillation cocktail RADAEX® was developed specifically for 1364 

LSC measurement of radium [153]. The extraction of radium with RADAEX needs to be 1365 

carried at alkaline media (pH10-12), large amount of metals in high salt content water 1366 
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will be precipitated in this condition. Therefore, this method cannot be directly applied 1367 

for analysis of high saline water samples.   1368 
228Ra is a low-energy beta emitter (39.6 keV), it is often measured indirectly through its 1369 

daughter, 228Ac and 228Th. For high-level samples, 228Ra can be simply measured through 1370 

the gamma lines of 228Ac by gamma spectrometry, or the beta spectrum of 228Ac using 1371 

LSC. While for the low-level samples with relative high 226Ra, the daughters of 226Ra 1372 

(214Bi, 214Pb) presented in the samples might seriously interferes with the measurement of 1373 
228Ac due to the low resolution of LSC. A method for pre-concentration and separation of 1374 
228Ac was reported for reliable determination of low-level 228Ra [154]. In this method, 1375 

radium is first separated from the sample matrices by co-precipitation of radium with 1376 

MnO2, and then Ra is separated from other radionuclides (U, Th, etc.) by extraction 1377 

chromatography using Diphonix resin, which effectively retains actinides and lanthanides 1378 

while divalent cations like Ra and Ba pass through. Radium presented in the effluent and 1379 

wash solutions from the Diphonic column are set aside for ingrowth of 228Ac. Thereafter 1380 

the solution is loaded to the second Diphonix resin column, the ingrown 228Ac is retained 1381 

on the column and separated from radium, which is then eluted using 1 M HEDPA (1-1382 

hydroxyethane-1,1 diphosphonic acid) directly into a plastic LS vial and mixed with LSC 1383 

cocktail for measurement. The detection limit of 23.2 mBq was reported for 60 min 1384 

counting time. The separated 228Ac can be also measured by Cerenkov counting due to 1385 

the high beta energy of 228Ac (2.07 MeV) 1386 

 1387 

Lead-210  [Bismuth-210 and Polonium-210] 1388 
210Pb (t1/2 = 22.2 y) decays by emitting β particles (Emax = 63.5 keV) with γ emission (Eγ 1389 

= 46.5 keV) and internal conversion to the β-emitting 210Bi (t1/2 = 5.01 d, Emax = 1161.5 1390 

keV) which decays to the α-emitting 210Po (t1/2 = 138.4 d, Eα = 5.3 MeV) (Fig. 10). As 1391 

radionuclides of 238U decay series 210Pb, 210Bi and 210Po exist widely in rock, soil, 1392 

atmosphere, waters, and food. 210Pb and 210Po belong to the most toxic radionuclides. The 1393 

toxicity of 210Po is mainly due to its two alpha-daughters 210Bi and 210Po, 79% of the 1394 

internal dose following ingestion of uranium and thorium series radionuclides is caused 1395 

by 210Pb and 210Po. The main intake of 210Pb and 210Po is derived from the food, the 210Po 1396 

concentrations are high in seafood like fish, molluscs and crabs, and high 210Pb and 210Po 1397 
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concentrations were found in reindeer and caribou meat. Drinking water usually 1398 

constitutes a minor contribution to the normal intake of 210Pb and 210Po; but it can be 1399 

significant for some population groups consuming ground water enrich with radon. The 1400 

guideline value of WHO for 210Pb and 210Po in drinking water is 0.1 Bq L-1 [155], 1401 

therefore, much effort is paid to analyses of 210Pb and 210Po in drinking waters. 210Pb is 1402 

widely used to date sediments in seas, lakes and estuaries, and most of determinations of 1403 
210Pb in environmental studies are used for this purpose.   1404 

 

Fig. 10 Decay scheme for the 210Pb subseries [156]  

210Pb can be directly measured by gamma spectrometry and LSC or beta counting (e.g. 

proportional counter), or indirectly measured by α-spectrometry through counting its 

decay daughter, 210Po. Due to short half-life of 210Bi (5.0 d), it is not often determined 

separately.  The methods based on α and β counting require 210Pb to be separated from the 

matrix and from other radionuclides. Because 210Pb and 210Po are found often in 

disequilibrium in biological and most environmental samples, they have to be analysed 

individually.  

Due to the low intensity (4.25%) of low energy (46.5 keV) gamma ray of 210Pb,  the 

direct gamma spectrometric method requires to analyse large size of samples, long 

counting time, corrections for self-absorption and interference from other γ- and X-rays. 

The detection limit for 210Pb was reported to be up to 0.4 Bq/sample for a 1000 min 

counting time, therefore not suitable for determination of 210Pb in low-level samples. 
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Alpha spectrometric measurement of 210Pb and 210Po is based on two spontaneous 

depositions of 210Po onto a silver (also Ni, Cu, steel) disc and on measuring the 210Po 

activity, and the second deposition is implemented after a few months ingrowth of 210Po 

from 210Pb. Although the detection limit (0.1-0.2 mBq) is quite low, but a long analytical 

period is needed. 

The energy of beta particles of 210Pb (17.0 keV (84%) and 63.5 keV (16%)) is very low, 1405 

the counting efficiency of LSC is low for directly counting the beta emission of 210Pb, 1406 

and sensitive to sample quenching. LSC measurement of 210Pb is often carried out via its 1407 

high beta energy daughter, 210Bi (1161.5 keV) after some days ingrowth. However, Pb has 1408 

to be separated form sample matrices and other radionuclides before LSC measurement. 1409 

Precipitation of Pb as the sulphate, extraction chromatography and solvent extraction are 1410 

the often used method for its separation.  1411 

The separation of 210Pb by co-precipitation as Ba(Ra,Pb)SO4 is a traditional method, 1412 

by which radium isotopes and 210Pb can be separated simultaneously. After the sample 1413 

pre-treatments by ashing, acid digestion or alkali fusion, the chemical separation is 1414 

started by adding stable Pb and Ba carriers as the yield tracers, followed by precipitation 1415 

as the sulphate, the formed sulphate is then dissolved in alkaline EDTA. The separation 1416 

of Pb from Ra is achieved by adjusting the EDTA solution of sample to pH4.24.5 of 1417 

with acetic acid. The Ra precipitates with BaSO4, while Pb remains in the solution. 1418 

Afterward, the solution is further acidified to precipitate Pb as PbSO4. The precipitate is 1419 

washed with distilled water to remove other interfering radionuclides. The 210PbSO4 can 1420 

be prepared for LSC counting by suspending it in a scintillation gel or dissolving it in 1421 

alkaline EDTA solution and then mixing with the LSC cocktail. The sample is often 1422 

counted using LSC with α/β-discrimination, 210Pb is determined from the spectrum of 1423 
210Pb or the ingrown 210Bi.  210Pb can be also measured by Cerenkov counting of the 1424 

ingrown 210Bi, the potential interferences from alpha and soft beta emitters can be 1425 

eliminated in this case, but the counting efficiency of Cerenkov counting is  1426 

comparatively low (20%). An increased Cerenkov counting efficiency up to 75% was 1427 

achieved through the use of Triton X-100 and sodium salicylate as enhancers. Under 1428 

these conditions, 210Po caused some interference, which was not present in the absence of 1429 

the enhancers. When Cerenkov counting was used for measurement of 210Pb through 1430 
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210Bi, no scintillation cocktail is needed; the EDTA dissolution of PbSO4 is directly 1431 

applied for measurement. 1432 

Extraction chromatography using Sr Spec resin have been applied for separation of 1433 
210Pb and 210Po for their determination in various environmental and biological samples 1434 

[157-159]. This is based on the high adsorption of Pb and Po on this resin in diluted HCl 1435 

solution, while 210Bi does not retain on the column.  In this method, the decomposed and 1436 

pre-concentrated sample is prepared in 2M HCl and loaded to a Sr Spec column; 210Po 1437 

and 210Pb absorbed on the column were eluted sequentially using 6M HNO3 and 6M HCl, 1438 

respectively. The HCl elute was evaporated to dryness followed by converting lead from 1439 

chloride to nitrate and by precipitating it as the oxalate for the yield determination. 210Po 1440 

was determined by alpha spectrometry using 208Po as the yield tracer after spontaneous 1441 

deposition on a metal disc. The separated 210Pb was determined by LSC after dissolving 1442 

PbC2O4 into 1 mL of 6M HNO3 and mixing with scintillation cocktail. In this method, 1443 
210Po and 210Pb were efficiently separated from other elements and interfering 1444 

radionuclides [157].  1445 

 1446 

Gross alpha and gross beta measurements 1447 

Gross alpha and gross beta activity measurement is often used for screening analysis in 1448 

monitoring of environment, diet and contamination. Particularly, drinking water supplies 1449 

are screened by the gross alpha and beta analysis method, which is a highly useful control 1450 

measure for the radiological characterization of water and as a factor in the decision as to 1451 

whether further analyses by radionuclide-specific methods will be required. Urine 1452 

samples from the workers who potentially exposed to radioactive contamination is also 1453 

often screened by gross alpha and gross beta measurement to obtain an overview on 1454 

internal exposure of radiation. The guideline activity concentrations of water by WHO 1455 

[155] are 0.5 Bq L-1 for gross alpha and 1 Bq L-1 for gross beta, respectively. Whereas the 1456 

European Union [160] has set the screening values of 0.1 Bq L-1 for gross alpha and 1 Bq 1457 

L-1 for gross beta.  1458 

Some volatile radionuclides are easily lost during the sample preparation, e.g. 3H, 14C and 1459 

radon, these nuclides, as well as short-lived daughters of radon, are excluded from the 1460 

gross alpha and gross beta screening analyses, which have to be determined by specific 1461 
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methods. In the normal situation, most important radionuclides to be screened by gross 1462 

alpha and beta analyses in drinking water sources are the long-lived radionuclides, 234U, 1463 
238U, 226Ra, 228Ra and 210Pb and 210Po, from uranium and thorium decay series.  40K occurs 1464 

in variable amounts in all natural waters; and its contribution to the gross beta counts can 1465 

be significant. However, its determination is not important, because potassium is under 1466 

homeostatic control in the body and its amount remains constant in healthy people. Gross 1467 

alpha and beta measurements are also used to screen transuranic elements and gross beta 1468 

for fission products in the case related to the nuclear faculties and exposures.  1469 

The commonly used methods for gross alpha and beta analysis in drinking water are 1470 

based either on the gas proportional counting (GPC) or on LSC techniques. In the GPC 1471 

method, water sample is evaporated to near dryness, and then quantitatively transfer the 1472 

residue to a planchet for measurement. The GPC method is tedious and labor-intensive, 1473 

and the results are not precise owing to the inherent variability of the sample preparation 1474 

technique and water composition. Meanwhile sample size is strongly limited due to the 1475 

total dissolved solids (TDS) in the sample, which cause self-absorption of α-and β-1476 

particles, and the counting efficiency is affected by TDS and the chemical composition of 1477 

water. The small sample size combined with the relatively low counting efficiency of the 1478 

GPC makes it difficult to attain low detection limits even by applying very long counting 1479 

times. The reported detection limits of the GPC methods are 0.8 Bq L-1 for the gross alpha 1480 

and 3 Bq L-1 for gross beta using a 22 h counting time [161], which could not meet the 1481 

requirement of the regulation for screening of the gross alpha in drinking water (0.1-0.5 1482 

Bq/L). In the LSC method, the water sample is directly or after some pre-concentration 1483 

taken to a LSC vial, and mixed with the scintillation cocktail for LSC counting using α/β-1484 

discrimination. This avoids most of the difficulties typically in the GPC methods, 1485 

although dissolved minerals or organics in water may cause variable quenching, which 1486 

must be considered in the calibrations [161]. If the sample is pre-concentrated, the residue 1487 

is often dissolved into a few mL of dilute HCl, HNO3 or H3PO4 prior to the addition of the 1488 

LS cocktail.  1489 

The calibrations of gross alpha and beta analyses include the optimization of the α/β 1490 

discrimination performance and the determination of α- and β- counting efficiencies and 1491 

spillovers in the selected α- and β-windows. The calibrations become more complicated if 1492 
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variable quenching is corrected, because the optimum pulse decay setting (optimal PSA 1493 

value), as well as efficiencies, backgrounds and spillovers, depend on quenching. Hence, 1494 

each sample should be measured at its optimum SPA setting, which is not a practical 1495 

approach in routine measurements. Another drawback for performing precise calibrations 1496 

is because the optimum SPA setting and alpha and beta spillovers depend on particle 1497 

energies. The real samples may contain several α- and β-emitters with largely variable 1498 

particle energies compared to those used for calibrations including the setting of the 1499 

optimum SPA. The optimum SPA setting is highly effected for higher-energy α- and β-1500 

emitters than for lower-energy emitters. The β-spillover increases with β-particle energy 1501 

while α-spillover decreases with α-particle energy. With increasing quench, the higher 1502 

energy β-particle produces a higher spillover compared to the lower-energy particles, 1503 

while the higher-energy α-particle produces a lower spillover compared to the low-energy 1504 

particles at the same PSA level. In summary, the calibrations with appropriate quench 1505 

corrections are necessary, although they would not provide accurate results for variably 1506 

quenched samples with variable radionuclide composition. The calibrations would be 1507 

simplest if the samples were unquenched and as similar as possible to the nuclides used 1508 

for SPA instrument calibration. It is preferable to perform the calibrations with α- and β-1509 

emitters with the energies equal to the averages of the nuclides expected to be in actual 1510 

samples to be analysed.  1511 

In a similar manner, gross alpha and gross beta activities may be determined for a 1512 

range of other environmental matrices. A filter sample is simply placed in the LSC vial 1513 

with the scintillation cocktail [162] for LSC measurement. Urine samples have been 1514 

prepared by mixing urine directly with the cocktail [163] or after some processing which 1515 

involves oxidation of organic substances, co-precipitation of actinides as phosphate, wet 1516 

ashing using HNO3 and H2O2, conversion of the nitrates to the chlorides, dissolution of 1517 

the white residue in 0.2 M HCl followed by the addition of the cocktail [164]. 1518 

Conclusion and perspectives 1519 

As a conventional radiometric method, LSC has been widely used for measurement of 1520 

various radionuclides for different applications. Although this method has been used for 1521 
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more than 60 years, a continuous development and new applications still progress. The 1522 

major progresses discussed in this paper with the perspective challenges are summarized 1523 

below: 1524 

1) Communization of TDCR based LSA instrument makes this technique one of the 1525 

popular LSC methods, and used in many radiochemical and environmental laboratory 1526 

for the determination of radionuclides of beta emission, electron capture and alpha 1527 

emitters, and in alpha/beta discrimination model and Cerenkov counting model as 1528 

those in ordinary LSC.   1529 

2) With the rapid increased requirement in the decommissioning of nuclear facilities, a 1530 

number of analytical methods for determination of radionuclides mainly occurred in 1531 

decommissioning waste have been developed using LSC as measurement technique. 1532 

This includes the methods for the determination of 36Cl, 41Ca, 55Fe, 63Ni, 99Tc, 129I, 1533 
241Pu in various types of samples. 1534 

3) LSC is still a competitive method for the determination of pure beta emitting 1535 

radionuclides including those decay by electron capture, especially for the short-lived 1536 

(t½<100 years) radionuclides, e.g. 3H, 241Pu, 89Sr and 90Sr. It can provide relative 1537 

rapid and precise measurement compared to other methods,  1538 

4) LSC has been well used for determination of naturally occurred radionuclides, and 1539 

still an attractive method for the determination of 222Rn, 228Ra and 210Pb because of its 1540 

easy operation, short analytical time, and reliable analytical results. LSC has also 1541 

becoming more popular method for the determination of gross alpha and gross beta 1542 

activity for screening purpose.  1543 

5)  More LSC methods are still needed for the determination of other uncommon 1544 

radionuclides for the decommissioning of nuclear facilities, e.g. 93Mo, 93Zr, 79Se, 1545 
126Sn, 151Sm, etc. A challenge in this aspect will be the calibration and standardization 1546 

of the LSC for the measurement of these radionuclides, because of luck of standard 1547 

solution of these radionuclides, and not well established decay properties of these 1548 

radionuclides.  1549 

6) Although an increased number of TDCR based LSA instruments have been installed 1550 
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in many laboratories, the analytical methodology is still limited, and more method 1551 

developments are still needed. With the introduction of the low background TDCR 1552 

based LSA instrument, it is expected that this method will become a more popular 1553 

LSC method in many application fields, e.g. environmental radioactivity and trace 1554 

studies. 1555 

7) Plastic scintillation resins based LSC method has been proposed in the past years, and 1556 

a number of such resins have been synthesized and tested for determination of 1557 

different radionuclides, such as 99Tc, 90Sr and 210Pb. This method can highly simplify 1558 

the separation procedure and avoid the utilization of scintillation cocktail, and 1559 

consequently reduce the organic waste. However, such scintillation resins are still 1560 

limited and the methods need to be further validated for analysis of real 1561 

environmental and nuclear samples with complicated components and matrices.  1562 
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