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By using exact quantum Monte Carlo methods we calculate the ground-state properties of the liquid

phase in one-dimensional Bose mixtures with contact interactions. We find that the liquid state can be

formed if the ratio of coupling strengths between interspecies attractive and intraspecies repulsive

interactions exceeds a critical value. As a function of this ratio we determine the density where the energy

per particle has a minimum and the one where the compressibility diverges, thereby identifying the

equilibrium density and the spinodal point in the phase diagram of the homogeneous liquid. Furthermore,

in the stable liquid state, we calculate the chemical potential, the speed of sound, as well as structural and

coherence properties, such as the pair correlation function, the static structure factor, and the one-body

density matrix, thus providing a detailed description of the bulk region in self-bound droplets.
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Ultracold atoms provide a rich toolbox to realize different

states of matter where many-body correlations can be

investigated in a very clean experimental setup. In early

years, the most common gas phase, in both the normal and

superfluid regime, and artificial crystals created by external

lattice potentials were routinely produced [1]. More recently,

interaction effects have been exploited to obtain spontaneous

breaking of translational symmetry in ordered arrangements

of particles subject to long-range forces [2] and inmost exotic

supersolid systems, featuring both the rigidity of standard

solids and the dissipationless motion of vacancies typical of

superfluids [3,4]. Furthermore, self-bound liquid droplets

were generated as a result of quantum fluctuations in samples

interacting via anisotropic dipolar forces [5–9], as well as via

contact interparticle potentials [10–12].

In three and two dimensions such droplets would

collapse according to mean-field theory and are stabilized,

for large enough numbers of particles, by repulsive corre-

lations beyond the mean-field description. Dipolar droplets

were characterized theoretically by means of a generalized

nonlocal, nonlinear Schrödinger equation [13] and also

by exact quantum Monte Carlo (QMC) methods, employ-

ing a model two-body potential with hard-core repulsion

[14]. Droplets in a two-component Bose gas with short-

range interactions were first predicted and studied using a

generalized Gross-Pitaevskii (GGP) equation in Ref. [15].

QMC simulations of these latter systems have also been

carried out, even though only for limited numbers of

particles [16].

In one spatial dimension, quantum droplets of Bose

mixtures with contact interactions have been predicted to

occur as a result of a different mechanism. Here, beyond-

mean-field fluctuations are attractive and one needs a net

mean-field repulsion in order to stabilize the droplet, which

therefore are expected to form in the region where,

according to mean-field theory, the homogeneous gas

mixture is still stable [17]. The approach based on the

GGP equation is valid in the weak-coupling limit and

provides a full description of the ground-state energetics of

the bulk liquid phase as well as of the density profiles in

droplets with a finite number of particles [17].

Droplets in 1D are also particularly interesting because

of the enhanced role of quantum fluctuations and because

stable regimes of strong correlations are experimentally

achievable [18–21] and enjoy enhanced stability. This

opens the intriguing perspective of investigating the 1D

liquid phase when interactions are strong and cannot be

accounted for by the GGP approach. In the present Letter,

we address theoretically the regime of strongly correlated

liquids by means of exact QMC methods applied to a 1D

mixture of Bose gases with contact interactions. We

determine the phase diagram of the homogeneous liquid

in terms of density and coupling strengths. Furthermore,

in bulk systems at equilibrium a number of relevant

thermodynamic quantities are calculated, such as chemical

potential and compressibility, as well as the behavior of

correlation functions, which provides a clear indication of

the presence of strong interactions.

We consider the following Hamiltonian,

H ¼ −

ℏ
2

2m

X

Na

i¼1

∂2

∂x2i
þ g

X
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δðxi − xjÞ −
ℏ
2
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X
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composed of the kinetic energy of the two components with

the same mass m and atom numbers Na and Nb, of the

repulsive intraspecies potentials modeled by the same

coupling constant g > 0 and by the attractive interspecies

potential of strength g̃ < 0. Here, xi with i ¼ 1;…; Na and

xα with α ¼ 1;…; Nb denote, respectively, the positions of

particles belonging to component a and b of the mixture. In

a box of size L the homogeneous densities of the two

components are given by na ¼ Na=L and nb ¼ Nb=L. We

consider balanced systems where Na ¼ Nb ¼ N=2, such
that the relevant dimensionless coupling parameters are

given by γ ¼ ½ðgmÞ=ðnℏ2Þ� and η ¼ ½ðjg̃jmÞ=ðnℏ2Þ� in

terms of the total density n ¼ N=L. An important energy

scale is fixed by the binding energy of dimers in vacuum,

ϵb ¼ −½ðℏ2Þ=ðmã2Þ�, where ã ¼ ½ð2ℏ2Þ=ðmjg̃jÞ� is the 1D

scattering length associated with the attractive interspecies

contact potential.

Let us first discuss the ground state of the Hamiltonian in

Eq. (1) in the weak-coupling limit, corresponding to γ ≪ 1

and η ≪ 1. The energy density in terms of the total density

n is given by

EGGP

L
¼ n2

4
ðg − jg̃jÞ −

ffiffiffiffi

m
p

n3=2

3
ffiffiffi

2
p

πℏ
½ðg − jg̃jÞ3=2 þ ðgþ jg̃jÞ3=2�:

ð2Þ

This represents the local energy to which the GGP func-

tional adds the kinetic energy contribution ½ðℏ2Þ=ð2mÞ�×
ð∇ ffiffiffi

n
p Þ2 [17]. From the ground-state energy E of the

mixture one can extract all relevant thermodynamic quan-

tities: the extremum condition f½ðdEÞ=N�=ðdnÞg ¼ 0

yields the equilibrium density neq of the liquid, and the

relations μ ¼ ½ðdEÞ=ðdNÞ� and mc2 ¼ n½ðdμÞ=ðdnÞ� calcu-
lated at the density neq give, respectively, the chemical

potential μeq and the speed of sound ceq at equilibrium. In

the GGP approach these quantities are obtained using EGGP

of Eq. (2) as a perturbative approximation to the energy E.
We study the ground-state properties of the Hamiltonian

in Eq. (1) in a box of size L with periodic boundary

conditions by means of QMC techniques. More specifi-

cally, the diffusion Monte Carlo method solves the many-

body Schrödinger equation in imaginary time, thereby

obtaining the exact ground-state energy through a large-

time projection [22]. Importance sampling is implemented

via a guiding function, which also encodes the contact

boundary conditions imposed by the interactions in the

Hamiltonian. The guiding wave function is constructed as a

product of pairwise correlation terms which, at short

interparticle distance, reproduce the exact solution of the

two-body problem with the contact potential and at longer

distances account for many-body correlations [23,24].

Finite-size effects are considered by performing calcula-

tions with different N and are found to be smaller than the

typical statistical uncertainty.

The results for the ground-state energy per particle E=N
are shown in Fig. 1 for fixed values of the ratio of coupling

constants jg̃j=g and as a function of the dimensionless gas

parameter njaj. Here, a ¼ −½ð2ℏ2Þ=ðmgÞ� is the scattering

length associated with collision processes of the repulsive

intraspecies potential with strength g. Two distinct behav-

iors are clearly visible: if the ratio jg̃j=g is sufficiently small,

the energy is a monotonically increasing function of the

density signaling a gas phase where the minimum of energy

is reached at a vanishing density and corresponds to half of

the binding energy ϵb. On the contrary, if the ratio is larger

than a critical value, a minimum shows up in E=N and the

density at the minimum corresponds to the equilibrium

density of the liquid phase. The critical ratio of coupling

strengths is found to be ðjg̃j=gÞcrit ¼ 0.47ð2Þ. This value is
in close agreement with the result of the four-body

scattering problem where the effective interaction between

dimers crosses from repulsive to attractive [27]. In the low

density limit the system is described by a model of dimers

with effective interactions obtained from three-dimer cal-

culations [28], which is consistent with our simulations.

Figure 1 reports also the result of the GGP theory based on

the energy functional of Eq. (2). At high density, where the

weak-coupling theory is applicable, we find good agree-

ment, but large deviations both in the energy of the

minimum and in the shape of curve are visible at small

density. Similar results for the 3D homogeneous liquid

phase have been obtained in Ref. [29] using a variational

approach.

The curves shown in Fig. 1 allow us to determine the

phase diagram of the homogeneous liquid in the region of

ratios ðjg̃j=gÞcrit < jg̃j=g < 1, where this state can exist. The

phase diagram is shown in Fig. 2, wherewe report the values

of the equilibrium density neq and of the spinodal density,

FIG. 1. Energy per particle, in units of half of the binding

energy, as a function of the density for different values of the ratio

jg̃j=g of coupling constants. Error bars are smaller than the

symbol sizes. The dashed line is the result of the GGP approach at

jg̃j=g ¼ 0.9 (cyan) and at jg̃j=g ¼ 0.6 (yellow).
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defined as the point where f½ðd2EÞ=L�=ðdn2Þg ¼ 0. At

density n below the spinodal line the homogeneous system

is mechanically unstable and breaks into droplets. For larger

values of n the homogeneous phase is stable with a positive

or negative pressure depending on whether n is larger or

smaller than neq.We also find that theGGP approach is quite

reliable in predicting both the equilibrium and the spinodal

line. Deviations start to appear for jg̃j=g≲ 0.6.

Various ground-state properties of the liquid state at the

equilibrium density neq are shown in Fig. 3 as a function of

the ratio jg̃j=g. In particular, we provide results for the

chemical potential μeq, which determines the rate of

evaporation of particles from a droplet due to thermal

effects, and the speed of sound ceq, fixing the low-lying

collective modes of the droplet. Significant deviations

compared to the GGP approach are found for μeq at small

ratios, where the weak-coupling theory fails to recover the

physics of bound dimers. On the other hand, we find that

ceq is well described by the GGP energy functional down to

the smallest values of jg̃j=g considered in Fig. 3. Note,

however, that the speed of sound is reported here in units of

the Fermi velocity vF ¼ ½ðℏπneqÞ=ð2mÞ�, which itself

depends on the equilibrium density neq.

Relevant information about the structure of the liquid

state at equilibrium is obtained from the study of correlation

functions. The pair correlation functions of parallel and

antiparallel spins are defined as expectation values h� � �i
over the ground state,

gaaðsÞ ¼ 1þ 4

n2

�

hδnaðxþ sÞδnaðxÞi −
n

2
δðsÞ

�

;

gabðsÞ ¼ 1þ 4

n2
hδnaðxþ sÞδnbðxÞi; ð3Þ

of the density fluctuations δnaðxÞ ¼
PNa

i¼1
δðx − xiÞ −

ðn=2Þ and δnbðxÞ ¼
PNb

α¼1
δðx − xαÞ − ðn=2Þ of the two

components measured with respect to the average density.

These functions are shown in Fig. 4 for different values of

the ratio jg̃j=g. At large distances correlations vanish,

yielding the result gaa ¼ gab ¼ 1. The antiparallel spin

correlation function gab shows a long-range suppression

and a peak for s≲ ã. This behavior arises from the short-

range pairing between opposite spins occurring on length

scales of the order of the size ã of a dimer and from the

phononic long-range tail. By reducing the ratio jg̃j=g, both
the minimum and the height of the peak become more

prominent. On the contrary, the behavior of gaa is fully

determined by the repulsive intraspecies correlations and it

exhibits a monotonically decreasing behavior as the dis-

tance is reduced. Also in this case, for smaller values of

jg̃j=g, correlation effects are stronger, and close to the

critical ratio the repulsion between like particles produces a

large suppression of gaa. We notice that the density pair

FIG. 2. Phase diagram of the homogeneous liquid phase: (blue)

circles correspond to the equilibrium density of the liquid and

(red) squares to the spinodal point where the compressibility

diverges. Dashed lines refer to the predictions of the GGP theory.

FIG. 3. Chemical potential μeq in units of half of the dimer

binding energy: (blue) circles and right vertical axis. Speed of

sound ceq in units of the Fermi velocity: (red) squares and left

vertical axis. The dashed lines correspond to the results of the

GGP theory.

FIG. 4. Pair correlation function of parallel spins gaa (dashed

lines) and antiparallel spins gab (solid lines) in the liquid for

different values of the ratio jg̃j=g of coupling constants.
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correlation function, defined as the average gDðsÞ ¼
1

2
½gaaðsÞ þ gabðsÞ�, is peaked at short distances, signaling

the dominant role of attractive interactions characteristic of

a liquid. Conversely, the magnetic pair correlation function

defined as gMðsÞ ¼ 1þ 1

2
½gaaðsÞ − gabðsÞ� is suppressed at

short distances as a consequence of the repulsion between

dimers.

From the Fourier transforms of the pair corre-

lation functions gDðMÞðsÞ, one obtains the density and

magnetic static structure factors defined as SDðMÞðqÞ ¼ 1þ
n
R

dseiqs½gDðMÞðsÞ − 1�. Both structure factors are shown

in Fig. 5. At large momenta SDðqÞ and SMðqÞ tend to unity,

while for small values of q we find in both cases a linear

dependence. This is expected in the case of the density

structure factor, which should obey the law SDðqÞ ¼
½ðℏqÞ=ð2mceqÞ� fixed by the speed of sound ceq. In the

case of SMðqÞ, instead, one might expect a quadratic

dependence as q → 0 caused by the presence of a pairing

gap in the spin sector [30]. However, as evident from Fig. 3,

we are in the regime jϵbj≲ jμeqj, where the pairing gap is

exponentially suppressed [30]. This implies that the q2

dependence of the magnetic structure factor should take

over only at vanishingly small values of q not reachable in

our simulations. In Fig. 5 we compare the low-q behavior

of both structure factors with the linear slope fixed by

SDðMÞðqÞ ¼ ½ðℏqÞ=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f½χDðMÞ�=ðmneqÞg
q

, where χD ¼
½ðneqÞ=ðmc2eqÞ� is the isothermal compressibility and χM ¼
½2=ðgþ jg̃jÞ� is the estimate of the magnetic susceptibility

assuming the spin sector gapless [31].

Coherence properties in the liquid state at equilibrium

are characterised by the behavior of the one-body density

matrix (OBDM). This is invariant under the exchange of the

two species and is defined as

ρðsÞ ¼ hψ†

aðbÞðxþ sÞψaðbÞðxÞi; ð4Þ

in terms of the field operators giving the density of each

component: naðbÞðxÞ ¼ ψ
†

aðbÞðxÞψaðbÞðxÞ. In systems exhib-

iting off-diagonal long-range order, the OBDM at large

distance s reaches a constant value identified with the

condensate density. However, Bose-Einstein condensation

does not exist in 1D, and at T ¼ 0 the OBDM is expected to

decay with a power law. In Fig. 6 we show the results of

ρðsÞ by varying the ratio jg̃j=g, and we find a clear algebraic
decay with the distance, ρðsÞ ∝ 1=jsjα, which sets in at

sufficiently large values of s. The value of the exponent α is

reported in the inset of Fig. 6 as a function of the ratio jg̃=gj.
The exponent ranges from very small values at jg̃j=g ≃ 1,

where the GGP theory is applicable, to values as large as

α ≃ 0.3 close to the critical ratio of coupling constants. We

emphasize that in the Tonks-Girardeau regime of a single-

component Bose gas, corresponding to particles being

impenetrable and behaving like fermions, the OBDM

decays as ρðsÞ ∝ 1=
ffiffiffiffiffi

jsj
p

[32]. The values of α found

moving towards the critical ratio ðjg̃j=gÞcrit arise from very

strong correlations acting between particles of the same

species, which result in a suppression of the momentum

distribution peak at low wave vectors nðqÞ ∝ 1=jqj1−α as

entailed by the relation between nðqÞ and the OBDM via

the Fourier transform nðqÞ ¼
R

dseiqsρðsÞ.
In conclusion, we have investigated the bulk liquid phase

in attractive 1D Bose-Bose mixtures by using exact

QMC methods. We find that the liquid state can exist only

if the ratio of coupling constants exceeds a critical

value. Furthermore, regimes of strong correlations can

FIG. 5. Density (full symbols) and magnetic (open symbols)

static structure factor in the liquid as a function of q=kF for

different values of the ratio jg̃j=g. Here kF ¼ ℏπn=2 is the Fermi

wave vector. Dashed lines correspond to the low-q linear

dependence fixed by the compressibility and by the magnetic

susceptibility, respectively, for SDðqÞ and SMðqÞ.

FIG. 6. Spatial dependence of the OBDM for different values of

the ratio jg̃j=g of coupling constants. Dashed lines are power-law

fits 1=xα to the long-range behavior. In the inset we report the

values of the exponent α obtained from the fit.
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be achieved well beyond the conditions of applicability of

the weak-coupling GGP theory. Thermal effects are

expected to be negligible, provided that the temperature

remains smaller than the chemical potential. These findings

open new interesting perspectives for experiments on

quantum droplets in 1D geometries. Recently, 39K mixtures

with tunable interspecies coupling have been realized in

quasi-1D configurations [11]. Enhanced stability of the

droplets, as a consequence of a reduced three-body recom-

bination rate, could be achieved by increasing further the

1D character of the mixture. This can be obtained, e.g.,

using a longitudinal periodic potential to make the effective

mass larger [18,19] or an array of 1D tubes with a small

number of atoms per tube [20].
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